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A.lo 

ABSTRACT.

This thesis studies some aspects of the homotopy type of
y function spaces X uhere X,Y are topological spaces 0

The thesis is in two parts. Part A (Chapters I - IV) contains 

a discussion of some known facts on the homotopy type of function spaces 

under the beads of homology (Chapter II), homotopy groups (Chapter III) 

and Postnikov systems (Chapter IV). Also, in Chapter II, a theorem on 

duality is given which is useful in determining the low-dimensional homotopy 

type of (Sn)X when X = Sru ef%1 (r + q<n) 0

Chapter IV contains the statements of the problems whose solution

is the motivation of the theory of Part B0 These problems, which occur
Y naturally in attempting to find the Postnikov system of X by induction

on the Postrdkov system of X , are rough ty of the type of determining
Y Y Y k : X   > A .when XPI are spaces, A is a topological abelian group

and k : X  »A is a map« This problem we call here the "k-invariant 

problem" *

It is a commonplace that the most important property of function 

spaces i« the "exponential law" which states that under certain restrictions
-. Y 2.

the spaces A. and (X ) are honeomorphicA In fact it is usually

the case that the only properties of the function space required are that

as a set X is the set of maps I   >X , and that the exponential lew holds,

In Chapter I, as preparation for the work of Part 3, a brief 

discussion of the exponential lav in a general category is given. The 

rest of the chapter shows how the veil-known weak-topological product may be 

used to obtain an exponential lav for all (Hausdorff) spaces. The weak
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product is also shown to be convenient in the theory of the identification 

maps.

The theory of Part B is given in terns of ess-complexes (complete 

semi-simplical complexes) with base point* In Chapter V the well-known 

ess-exponential lav is extended tb the category of css-M-ads* and the 

exponential law for complexes with base point obtained,; The relation between 

the topblogical and ess- function spaces is discussed, and it is shown that 

the singular functor preserves the exponential law«

The further theoretical work of Part B is initially of two kinds*
Y First, the function complex A where A is an FD-coraplex, is related,

by means of maps and functors, with mapping objects in the category of 

FD-complexes and chain complexes* This is done in such a way to preserve 

the exponential law. Second, a generalised cohomology of a complex is 

introduced, with the coefficient group replaced by an arbitrary chain complex 

(or Fi)-complex) o The theories of cohomology operations and of Silonberg- 

Haclane complexes are correspondingly generalised  Using these two sets of 

constructions, a solution 'of the k-invariant problem is given in terms of 

chain complexes (Chapter IX.j ?).

The rest of Part B is concerned with obtaining the cohomological 

solution of the k-invariant problem, putting the results in a fora suitable
y

for computation, and obtaining applications*

In detail Part B proceeds, after Chapter V, as follows* Chapter 

VI discusses chain complexes and the functor <h of chain complexes* with 

particular attention to signs. The exponential map n<*re is, for chain 

complexes A,fl,C an Isomorphism f\ i (A$B,)^C
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In Chapter VII, on FD-coraplexes, a map product A^B of

FD~complcxes A,B is introducode The exponential map here is an isomorphism 

(A^BjJj C-*A£|(B£C) ' , where A* B is the cartesian product of A and 

Bo If Y is a ess-complex, and C(Y) is essentially the free FD«complex

generated by Y , it is shown that there is an isomorphism
v 

D : A  >C(Y)4A which preserves the exponential law, and by which these

complexes may be identified. The well-known properties of the normalisation
 <

functor N and Dold-Kan functor H are given* and the generalised cohomology 

introduced* The fundamental classification theorem is proved, and the 

theory of operations derived,,

Chapter VIII relates the Dold-Kan theory and generalised 

£ilenberg~Maclane complexes; the exactness properties of the latter are 

discussed.

In Chapter IX products Af>B, A<hB of FD-complexes are defined 

such that A*B* Tl(HA&NB), A<HB<* R(NAfhNB) . An exponential map 

yn: (A9B)^KC ^A(H(B^C) is defined and proved to be an Isomorphism by 

showing that N M is essentially the exponential nap for chain complexes* 

Homotopy equivalences ^ $ A9B >A^B , A : A(JB >A«\B are defined, 

and a comnutativity relation with the exponential maps established*

Using tW* amount of structure, in IX $ ? theorems are given 

which Determine the compositions



where X,Y are ess-complexes, A,B are FD-complexes, k : X->A,

j : B >A are saps and J is a homotopy inverse of ^ « The deter*

Y mination of k 1 is in terms of the evaluation map on X ,, the

determination of J?' is in terms of a kind of generalised suspension 

operation*

Chapter X. shows how Ktinneth isomorphisms may be constructed 

and computed. A Kfthneth isomorphism is, in one case, defined for a given 

ess-complex T and FD-coraplex A and, for all css^comploxes X , .iaps 

H*(X*Y,A)* H*(X, H*(Y,A)) naturally with reSpeci to maps of X .

In Chapter XI, it is shown that such a Kftnneth isomorphism 

has an associated homotopy equivalence X* C(Y)rh A * RH ft(Y,A). The 

compositions of the maps k 8 , 4 8 with such equivalences 

^: C(Y)<HA  »R K*(Y,A), X ";HH*(Y,B) ^ C(Y)^B are determined V 

Theorems A and B of XI« $ le The theorems, which solve the k-invariant 

problem, are obtained from those of IX0J? by the use of certain11 coefficient 

homomorphisms11 « It should be emphasised that the theorems of IX.$2 are 

natural with respect to maps of the complexes concerned, while the theorems
* »

of XS»jl are not; this is one of the reasons why the two parts of the 

solution are kopt separate*

In the rest of Chapter XI, examples of computations using 

Theorem B are given, and the modifications of the theory for the non-base 

point case discussed*

In Chapter HI a generalisation, due to M»G0Oarratt, of the 

Moore-Postnikov system of a fibre map is given, and flbis used to describe
 

known techniques for determining homotopy groups of principal bundles with



fibre an FD-complex* These techniques, together v/ith those of previous 
chapters, are applied to recover by algebraic methods most of M,GoBarratt's 
results on track groups, together with additional information on k-invariante.

The Appendices contain proofs of various theorems in the text, 
except for Apoendix 7; this introduces a new product topology which seems 
to have considerable advantages over the weak product considered in 
Chapter I.
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INTRODUCTION.

If X» Y are topological spaces, the set of all continuous functions

Y  *X may be given the compact-open topology [22] to form the function space

Y Y 
X e The study of the homotopy type of X and its subspaces has, apart from

its obvious intrinsic interest, the additional merit in the light it throws on 

the topological space X or Y 0 Thus we have that (for reasonable X, Y)

yhomotopy invariants of X form, as Y varies, homotopy invariants of X 

(as for example in Hurewicz 8 s original definition of homotopy groups [28])j 

they also form, as X varies, homotopy invariants of Y (as for example

in cohomotopy groups ) 0
y We also note that the study of the homotopy type of X includes the

very important problem of classifying maps Y   >X into homotopy classes*

Y Again particular information on X has been found of use in other questions

of homotopy theory (as for example in Barratt - Pafichter's proof that 

= Z
12

In Part A of this thesis we shall discuss briefly some of the present 

information on homotopy invariants of function spaces* under the headings of 

homology, homotopy groups, and Postnikov systems* Farther, in Chapter I, 

we suggest for the function space a new definition which we believe to be 

convenient in homotopy theory 0 In Chapter II we obtain a theorem in duality 

which has applications to function spaces,,

In Part B we shall be largely concerned with the solution of two problems 

which arise naturally in studying the Postnikov system of function spaces » These 

problems are stated in Chapter IV 0



LL FOflCTIQK SPACES AKD WEAK TOPOLOGIES.

lo Mapping object So

In any category C there is the function Map assigning to any objects 

A,B rC the set Map (AfB) of maps A  *B in C ° soae categories also 

admit, for each A,B <~C , an object A/hB<c  (adopting a notation of E,C, 

Zeeman) which "models" the set Map (A,B) in the category C ° Xn such case 

one expects that a. product XM should be defined in C so that there is a 

natural isomorphism

 »A-iv{B<ivC) A,B,0 £{?. 

The existence of such an isomorphism is often called the "exponential lav11 

for C ; we shall call /' the "exponential map0 n

This isomorphism usually determines an isomorphism 

: Map (AXB, C)   > Map(A8 B<KC) e

If this does happen, then an evaluation map <-. : (A4\B)x»&^B is defined 

by the condition p (fc.) = 1 J A/KB  *A4B0 Then for any leg a function

$\ Map(A,B)   * Map(l<hA, T/hB) 

is defined by the condition

M* (k) =^(k£) , k^Map(A,B),

where f* here is an isomorphism MapCd^Ajk^I^B)   »Map(YAvA, Y/hB) 0 

MI(k) (kfeltep (A,B)) is often written kY ft

Example, 1*1 Let A,B,C be A -modules, where A. is a commutative ring 

with unit* Then Hom/L (A,B)^ . A ̂ B may be given the structure of A. -modules

and
Horn jjA 8^3,0) ^ Hom^A, HomjjBfC)) 0

In this case iviap (A,B) is the abelian group Hom^C^B), while



is the A -module Hom*(A,B)«

^2 Let A,B,C be 5D«complexes (Chapter VII), and let

denote the group of FD-maps A  *B a In Chapter VII, in addition to the well 

known cartesian product A J B of FD-complexes, we define an FD-complex 

A&B; this satisfies (AiB) s3r(A,B), and we construct an isomorphism

y*: (A x B)$ C   » A 1 (BlC) 0

Examples 1B 3 Let A,B,C be FD-eomplexes0 In Chapter IX we construct 

FD-complexes A & B, A*h B and an isomorphism

These products (^> , /K of FD-complexes are closely related to the 

products & 9 <K of chain complexes (Chapter VI )« The relation between these 

products and those of Example 10 2 plays a vital role in Part B0 

Example 1«A Let X, J, Z be M-ads of css-complexes0 In Chapter V we define 

M«ads X^Y, X<h? and prove the exponential law

Let X,T,Z be Hausdorff spaces 0 Let XK,Y be the cartesian 

product of X and Y with the weak topology with respect to its compact subse 

[13,46]» Let ^f*hX denote the set of functions Y  >X which are continuous 

on compact subsets of I, and let Y/hX have the weak topology (2.33) 0 In the 

following section we show that there is a homeombrphism

(Y/hX).



§2* FUNCTION SPACES AMD WEAK FDECTIQET SPACES,

Y 
201« Let X,Y be topological spaces, and let X be the set of all

y 
continuous functions Y »X0 Let the evaluation map £ : X x Y ^X

Y 
be defined by £ (f,x) » f(x) e A topology on X is called admissible if,

Y Y 
with this topology on X and with the product topology on X x Y, £ is

continuousc
y

Theorem 2«%L (Fox: [££]) Any admissible topology on X contains the compact- 

open topologyo If Y is locally compact and Hausdorff9 then the compact-open 

topology is admissible*
*r

Theorem 2»12 (Arens; [2])<> Let Y be completely regular0 If I (I the 

unit interval) has a smallest admissible topology, then Y is locally compacto

An immediate corollary of 20 11S 2.12 is that, with the eompact~open 
Y Y -Z ZxY

topology on X , (X ) and X are not homeomorphio in general; they are
* %

homeomorphic if Y and Z are Hausdorff and Y is locally compact [27; 

Theorem III. 9.9]« or if Y and Z satisfy the first axiom of countability, 

[27],

These restrictive conditions are disagreeable in homotopy theory, and 

we show how they may be avoided by using a different function space » All 

spaces are assumed to be Hausdorff0

Definition 2^21 [l3,46] 0 Let X be a space* The space <X>is X re- 

topologized by the weak topology with respect to its compact subsets, i0e« 

a set A c: X is closed in X iff A o C is closed In X for every compact 

set C<=X,

Dejffofoion 2^22 [29] A space X is a k^spaoe iff <X> = X0 Examples of 

k-spaces are CW-complex [57], locally compact spaces [29; Theorem 7.13] and



spaces satisfying the first axiom of countability [ibicU] The k-spaces are

in fact exactly the identification of locally compact spaces [l£;lo8]; so

any identification of a k-space is again a k-space [l4;l«8l].

Definition 2«%3 f A61 For any X, the identity i^; <X>-»X is continuous*

For any continuous map f : X >Y there is a unique continuous map

<f> : <X>-»<Y> characterised by coramutativity in the diagrams

x
We say f: X   »Y is weakly continuous if fi^ : <X>-»Y is continuous*

24. (Spanier, [46]) A map f : < X>-><Y> is continuous if and only if 

: < X>   >I is continuous* .

A map f : X->< Y> is weakly continuous if and only if 

iyf : X  *Y is weakly continuous 0

Definition 2«2jS [46] Let X,Y be spaces. The weak product of X and Y 

is the topological space X**Y »< X x Y> , where X x Y has the usual 

product topology« Clearly for all X,Y*Z there is a natural homeomorphism

Proposition 2^27 (Coheni [13]) If X and Y are k-spacos one of which is 

locally compact, then X x Y =

2o3o In order' to obtain the theorems one would like, it turns out to be 

necessary to change the set which is to constitute the function space of
' s

maps Y->X, and also to change the topology * That the set which occurs 

naturally in this context is the set of weakly continuous maps Y   >X 

is a remark of Kelley [29|p225]o



Definition 2,31 Let X,Y be space So Then sS& is the set of all weakly

continuous functions Y->X * Thus YfoX e X (as a set) 0

The following theorem is 70 5 of [29] 6 The Hausdorff assumption we are 

making is essential here0

Theorem 2*^2 (Kelley)* Let t : (YtoX) x Y  >X be the evaluation map, 

The compact-open topology is the smallest topology on YtoX such that 

£ |(YhX)x A is continuous for all compact subsets A of Y 0 

Definition 2«33 The weak topology on YfhX is the weakened compact-open 

topology; that is, a set AcYAvX is closed in the weak topology if and only 

if An C is closed in C for every subset CcYtoX which is compact in 

the compact-open topology* That the compact-open topology on Yto X is

Hausdorff is Theorem 7«i of [29]»
<Y^

Obviously Y*hX =<X > a In general the weak and the compact-open

topologies do not coincide; for example if Y is discrete, so that

Y Y »<Y> * then X is homeoaorphic to the product of disjoint copies of

X , one for each y&Yo So if Y contains two elements and is discrete,

y X is homeomorphic to XxX 5 yet XxX may not have the weak topology even if

X doedo

The following proposition is an obvious corollary of 2«320 

Proposition 2«3A The evaluation map ^:(Y4vX)xY  >X is weakly continuous, 

and so continue* on (Y4vX)x tfY 0 

Definition 2.35 Let f eCZXyYHX a We define a function j*fr Z-tY<*k X by

(z) (y) = f(z,y) 24Zt ye-I<i
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Since f : Z x Y   >X is continuous on compact subsets of Z x Y, so also 

is (pf)(z), zeZ, Therefore yWf is well-defined.

The notation (Zx^ Y)4\X is slightly redundant (since (Zx^ Y)<hX « 

(Z x Y)>hX) but seems more revealing as it stands *

Theorem^ 2^36 If f £ (Zx, Y)*hX , then /nf : Z   * Y4\X is weakly-continuouSo 

Proofr We first note that it is no loss to assume Z is a k-space and prove 

/*f is continuous* Second* by 2.25, it is .sufficient to prove that /A f is
. ' '  

continuous vhen Y^X has .the compact-open topology 0

Let then W » M(KfU)cY'hX be a sub-basic open set for the compact-open 

topology of Y<hX; thus K is a compact subset of Yf U is an open subset 

of X   Let J*f ~ g, and zfrg (W) 0

Now f (U) is open in Zx^ Y and so f (U)aZxw K is open in 

ZX..KO Since Z is a k-space and K is compactf it follows from 2027 that 

Zxy K = Z x Kft Therefore f" (U)n Z x K is open in Z x K, But 

z x Kcf~ (U) , and so there exists a set V open in Z such that

z x KdV x K c-f^OJ)   Therefore zeVog (W), Therefore g^fW) is open 

in Z   Therefore g is continuous*

2 ft ;37 M defines a homeomorphism ft : (Zx, Y)A\X -^ Z A (Y/KX)»

ffroof. We prove ^A is continuous, and then define a continuous inverse*

By 2*36* the evaluation map

£: 

corresponds to a continuous map

and M 1 itself corresponds to a map



which also is continuous since (Zx,?) ^ X has the weak topology » 

But obviously f£ =yU 0 Therefore yU is continuous » 

By 2o36 the composition

corresponds to a continuous map

* : Z <k (TAX) —— > (Zsg I) /K X . 

In formulae, if ffcZMYfoX), z ^ z» F* 1* then (*f)U,y) »£(£ x l)(f,s,y)

(y). ObviousOy ^ = 1,

Remark 2«38 If we give I«hX the compact-open topology, all that may be 

proved is that M. is weakly continuous with a weakly continuous inverse,, 

But it is not -unreasonable to regard this as suff iciento

2o4o Let V* be the class of the class of spaces of the homotopy type

of a CW-complexo Milnor [35] has proved the useful theorem that if X*^

and Y is compact then X 6Vv 0 ye prove this is true for Y/hX 0

Lamina 2,. Al If X and Y are of the same homotopy type, then so are

<X> and<Y> .

Proof^ Let f: X   »Yf g; Y  >X be continuous fonctions and

Fs fg^l, G: gfail homotopieSo The functions <f>: < X>   > < Y> ,
/ '

< g> : < Y> — > <X> , defined in 20 23, are continuous, as are 

<G> : XxyI-^<X>, <F> : 1x^1— ̂ <Y> 0 Since I is compact,
s

2*27 implies that <F> , <G> define continuous functions



F« i <Y> x I—»<Y> , G« :<X>xI —^<X> 0 Clearly F», G« are 

homotopies ,F« : < f > < g> ~ ^ QI : ^ g> 4f> <yl.

Let Y be a k-apace0 If X*Y. then <X>^Y and the inclusion
j •• ^

: < X> —^ X is a homotopy equivalenceo 

Proofa Let £: X ~>Y, g : Y —» X be continuous functions such that

gf^lo Let f« = fix:<X> ~> Y, g« = <g> :Y-^x 

f •g 1 *!, g'f »<^lo Let h e g»f : X —» < X> <, Then

= B*
«*

Therefore i^ : < X > ca. X 0

Theorem 2»A3 Let X £V and let Y be compact0 Then
Y and the inclusion Y<hX —^ X is a homotopy equivalence^

Proof* Since a CW-complex is a k-space, the first assertion follows from 20£L 

and t4ilnor ! o theorem that X €r W; the second assertion follows from 2042 

and Milnor*s theorem*,

Remark 2 0 ^U. The assertions about rn-ads corresponding to 2«^lf 2«42, 2«439 

are obviously true 9
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3*lo An unpleasant feature of the theory of identification maps is that 
the product of identification maps is not in general an identification map* 

Because of this certain natural products, such as the join and the smash 

product) turn out to be non-associative, even for CW~complexes*

If we restrict attention to k-spaceB, then we prove below that the 

weak product of Identification maps is an identification map* It seems 

unlikely that this is true for all spaces* However, by modifying the notion 

of identification map to that of "weak identification map" we obtain a 

theorem valid for all spaces*

3.2* Defonition. ?«Q Let X be a (Hausdorff) space and f: X— >Y 

a function onto Y e The week identification topology on Y yiffi
•

to f is the finest topology on Y making f weakly continuous* (That 

such a topology exists is the content of Lemma 3* 22) a If 7 has this topology* 
then f is called a weakn i^Q^tiTfrLca^ipn_^^>a or, simply, a weak identif ication» 

fagmma, 3»2.#_. For any f : X— *Y mapping onto Y 9 the weak identification 

topology on I with respect to f exists and is the set T of all subsets 

C of Y such that f" (G)o& is closed in X for all compact sets A<=.X » 

Proof* The verification that T is a topology is trivial and is omitted* 

But given T is a topology, it is obviously the finest topology on Y 

making f weakly continuous*

The following Lemma is obvious*

T*fpfHII ?iffl **t * * x ~"^ * ta weakly continuous and onto* Then f is a 
weak identification map if and only if fi^t < X> -> Y. is an Identification 
map.
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3o3o Our main purpose is to prove

%hep,rem frgl Let f: P — >X, gj Q —^-Y be weak identification maps 0

Then fx^g : Px^Q — ̂XXyY is an identification map*

By 3o23, this theorem is equivalent to

Theorem 3.32 Let f : P— »X, g: Q — »Y be identification map, and let 

P,Q be k-spaces» Then fSg. P3Q — >%* is an identification map

Proof of 3«32 The spaces X,T are k-spaces, since they are identifications 

of k-»spaces [l4> Io8l] 0

It is sufficient to prove that fSyls Px^Q — * XxwQ is an identification0

For then equally lx,,g: XX..Q — >Xx,I is an identification, and therefore 

so also is

Let h » fiyi 5 Px^Q — > XXyC^ , and let B be a compact subset of Q 0 

By 20 27, Px;B = P x B» By the classical result on the product of

identification maps [55 5 Lemma $9 h |P x B : P x B — »X x B is an 

identification*

Let ZoPxyQ be open and saturated with respect to h „ We must prove

h(Z) is open in Xx^Q 0 This will be true if for any compact subset B e:Q ,

h(Z)o X x B is open in X x B • But this is clearly true, since

h(Z)n X x B c h(2n-F x B), and 2 oP x B is open in P x B and saturated
.»_% •-.

with reapr^ii to the identification map h| P x B 0
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We give an application of Theorem 3*32e 

Definition 3a £L If Xf I are spaces with base points *o»yo respectively, 

the weak smash product X %* tfY is the identification space obtained from

by collapsing to a point the subspace Xxy u x Xy Ye

Proposition 3f ^2 The weak smash product is associative; i»e« for all spaces 

with base point X,Y,Z, the spaces (X&,Y)J&,Z and X&w(T&'yZ) are 

canonieally homeomorphiCe 

Proof* By 3*12 the natural maps

f :

g * 

are identification maps* Since fg" , gf~ are single-valued, they are

continuous* Obviously (fg"1 ) (gf-1) = 1, (gf"*1) (fg""1) = lo

3o5o The weak smash product also occurs in connection with function spaces0 

If X,Y are spaces with base point, let Y<hX be the subspace of the weak 

function space consisting of weakly continuous functions Y—> X which 

respect base point; the base point of Y^X is the constant mapo 

Theorem ffr? ^et X,Y,Z be spaces with base point0 There is a (continuous) 

evaluation map £. : (Y^X) j|Jf uY-~>Z and a homeomorphism

Y)/hX—

such that when Z s Y/hX, then yu(fc) = 1 i Y^X

We do not give the proof as the situation is parallelled later in ess-theory.



HiOLOGY OF FUNCTON SPACES

In this chapter we discuss our present knowledge of the homology of 

function spaces. In fact our knowledge is confined to the homology of 

Y/hX when I and X are spaces with base point (so that the functions of 

Y/t\X .preserve base points) and when I or X is a sphere S31.

When 1 = S11 , the methods used are spectral sequences or homology , 

operations ($1). When X = S°, the fundamental result is Moore's theorem 

(2.1), which gives the low-dimensional homology of Y/ttSn « In § 3 we obtain 

a result on duality which has application to function spaces 0

In this chapter and the next we use the function space Y/oX instead
V

of the classical X 0 This does not affect results on the usual homotopy

invariants, for these depend only on singular homotopy type. However $ we
y do assume without further comment that certain classical results on X

carry over to Y/hXj in each case the proof of the result for 7,/hX is 

a simple modification of the proof for X% An example of the type of result 

we mean is the fibring theorem for function spaces. [27; III 13«l] which in 

fact is true more generally for IA\X than for X 0

Throughout this chapter, spaces are (Hausdorff ) spaces with base point, 

and the functions of Y/hX respect base points.

4 1» Loop Spaces.

The loon space of X is -Q.X = S jftX » where Sm(m » o, !*•»•) is 

the m-sphere. The iterated IfOop spa.ce iX1^ is defined inductively by

X),^?! =IXX, How Sn ^ ySP is canonically
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homeomorphic to S 0 Hence 

£A = S1* (S1

and so by induction JTL^X is canonicaUy homeomorphic to Sn/KX (this is, 

in the classical case, due to Hurewicz [28])«

Let PX = I&X , where I = [o,l] has base point 0 e The projection 

p s PX— » X defined by p(f) = f(l) is a continuous fibre map [43] with 

fibre -H. X * Information on the homology of -Q. X is mainly obtained 

from the spectral sequence of this fibringe For example Sgrre in [43] 

calculates the cohomology ring of £*- Sn 0

These methods apply only inconveniently to the study of -Q. rX (r>l) 0 

Dyer and Lashof [15] following Kudo and Araki [30], use the fact that -Q X 

has a great deal of multiplicative structure to define homology operations

on H *(.IiX, Z ) (p prime); the case p = 2 was covered in [30] 0 Using 

these operations they determine completely H*(jQ. rSn, Z ) (r<n) and obtain

some information on H^, Z ) and H^(£lX, Z ) e

^ 20 A theorem of J.

In this section and the next., homology and cohomology are singular, 

modulo base point and with coefficients the integers Z ,

Let s £ fi^S11) be a generator,, For any X ,

f where : 1 )#-* is the ©raluation

mapo For any 2 6H (X/hS) the slant product €f(»n)/ss ^rf'^CX) [36,46] 

is defined* Let

/i : Hq(X/KSn) -» rf^X) 

be given by 0 (2) = £*( 8 )/»» Moore has shown [36| Theorem 3]
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Theorem 2^ (Moore) If X is a compact space of dimension 4 m t 

m<n , then 

(a) 0 is an isomorphism for 04 q< mtn^2(n-m), n j *

(b) H(X/i>sO for n«q<2(n-m) if2(n-m)>n9

No other result, of similar power, on the homology of function spaces 

seems to be known0

3PAHIgUT:gTffl[£AD DUALITY. 

3»lo Spanier-Whitehead duality, originally given in [43]» has been shown 

by Spanier [47] to have its roots in function spaces and Moore's theorem 2»1« 

Spanier 's emphasis in [47] is on using the function spaces XrhSn to determine 

a dual of X (c«f9 the last paragraph on p<>364 of [4?] 0 ) w© show how, when

X = Sru er ^ Spanier 1 s results nay be used to obtain an explicit n-dual 

of X and to determine the low dimensional homotopy type of X/hSn«

3,2« Let V denote the category of finite connected CW-complexes with base 

point* (In this category we nay replace Hi „ by jfc ), According to [47] 

a duality map is a map (in V? )

u i X'fcX -> S* 

for some n , such that the slant product u*(s )/a trf^^fx) (8° a generator

of ir(S ), 2 *H0(H') ) induces an isomorphism

*\
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Given such a u 9 X 8 is called an h-dual of X by means of u o 

3o3o Let u : X e#X—»Sn be any map (in v9" ) d By I 03«5 u corresponds 

uniquely to a map g^ : X«-*XA\Sn ; further, the following diagram is 

commutative [47; 2«10]

H (X«) Su ^ H (X<hSn)

where 0 is Moore's map (2.l) e Let dim X = m<n .> By 2,1 )0 is iso for 

0< q<min ̂ 2(n-m) 5 n] « So if u is a duality map, then R is iso for 

0<q<min^2(n-m), n) . If further ^ (if) = TT, (XmSn) = 0, thsn 

gu:H (X•) —>TT (XrhSn) is iso for 0 < q < min ̂ 2(n~m), n } * by a theorem of 

J.H.C.Whitoheado Thus information on the low-dimensional homotopy type of 

X/hSn may be deduced from knowledge of an n-dual X 3 of X *
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Let £ nrv(Sn) — >TT^,(Sn*1) denote the classical suspension r

hooomorphiam (cef0 for example [2?]) 0 We prove
M> «» P+4Theorem 3.51 Let X = S ifc e . Then X has OH n-dual if

rf**""1!*) €: Im E1^"1, In particular, X has an n-dual if n^ 2 r + q,

or if n< 2 r + q .and <* e Im

Proof. The identifications u : S?"^* Sr —* S11'1, v t Sn"r-% S1"*^1

are duality maps (r+q$n)<» Let f : Sr*q" —— > Sr represent the 
hoaotopy class °t , and let f 8 : sn~ — > sn-r-q 

the following diagram if. homotopy commutative

Sp

u

By [47; Theorem 6.10], X« s S11""3^^ e n*r is an n-dual of X ,

Now (*) is equivalent to ff^"I(oi) = * B^^f p) , where /S is the

class of f e (the sign, which in fact may be recovered from [6], is unimportant
here)* Thus if Jp""7"1^ )£Im E^"1, then there exists an f 1 such that
(*) is homotopy commuia^ive0

have learnt that this result has been given by P«J«ffilton and V.U.3pm**f 

in tfa^ir paper "On the eobeddabilitiy of certain ooMplexes in Euolidean spaces" 
Proo. Awr. ttath. Soo. (U) I960, 523*526*
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Corollary 3«53. Let X = S u e, and let n>2r+q0 There is a map

ng s E--! = S-- u e— ̂ *h S 

such that g :Tr(EP~2r~%) — yrfc (X/hSn) is an isomorphism for

. 
2 (n-r-q) if 2r+q^ n 4 2r*2q,

n if 2r*2q4n a

Proof, If n> 2r*q we may clearly in 3*51 take f • = E11" "^6 

Thus an n-dual of X is X« = lP~2f~**X. , that is, X is self-dual up to 

suspension (this is proved In [48] when X is the suspension of the real 

or complex protective plane)* So the corollary follows from the remarks 

of 3o3o

3«6o By an Ar-polyhedron is meant an (r«l)~connected polyhedron of 

dimension 4 r+q« On pe 65 of [48] it is stated that n-duals of A^-polyhedron

may be effectively constructed for n^2r+4 (n-dual here is in the sense of
then 

[4?])o It is clear/from 3o3« that the n-type of X/tjSn may be effectively

computed if X is an Ax-polyhedron and n
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HQMOTJPY GROUPS OF FUNCTION SPACES

This chapter contains only classical material (except for the type of 

reformulation mentioned at the beginning of Chapter II ) 0 

LOOP S paces a
** y»jii 1

For any space X with base point, the homeomorphism S h -CX X K S A\ X 

implies that Tr J.C&X)'*'Tr >1(X)o This isomorphism is due to Hurewicz [2&]o 

The homotopy groups of -S1.X are thus completely known*

Track groups*

2e lo If Y,X are spaces with base point, let EY = S* $ Y9 so that 

E 

The multiplication of loops in -Q. (YA\X) induces a multiplication in

so that this set becomes a group, the $racikuiigrpffl>« written 
YTTt (X) 0 Clearly TCX)^ TT, (Y/hX) 0 More generally Tr y(X) is defined 

to be either of TT r(YHvX) or TT o(ErY/hX) 0

These track groups were first discussed by S« Wylie (unpublished) and
Y 

S<,T«Hu [26]« It was proved in [26] that IT, (X) is a solvable group Q

2o2o Important results on track groups were given by M.G»Barratt in [3]«
A.

^heorem 2,21 (Barratt; [3])«> I^t Y be an A.-compleXa For m + n>l, 

TT^(X) is a central extension* of H11 *?^ T^^jU)) ̂  H^YjT^X) ) 0

t i0e« a CW-complex (n*l)-connected and of dimension 4 n * lo

* A group £ is a central extension of G by Q if G is contained in
E/ the centre of E and Q = /G0
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Barratt determines this extension for all m + n>l«» This extension 

is abelian for m + n > 2 and is determined if further Y is finite by the 

behaviour of the Steenrod operation Sq*" in Y with respect to a certain 

pairing TT ») «> TCD — * TTCO. [3l P.290],

Theorem 2.22 (Barrattj [3]). Let I be an A^-complex. For m+ n> 2,
YTT (X) is a central extension of A by B where

(i) A is a quotient group of

(ii) B is a central extension of H11 UpTF_ nW) by a subgroup of

Further this quotient group and subgroup may be determined when Y is finite 

in terms of certain (primary) cohomology operations acting on Y with respect 

to certain pairings of the homotopy groups of X 0

2,3o Barratt ! s methods in [3] may be described roughly as induction on the 

skeletons of Y 0 His method of obtaining the extensions is geometric »

We can obtain by the methods of Part B results equivalent to Barratt 8s* 

The method is the one "dual" to Barratt 9 s, by induction on the Postnikov 

system of X • This results in an algebraic description of the extensions 

of 2o21p together with additional information on k-invariants.

Function spaces with and without base points ff 

Let X be a space, Y a CW-complex and e 6-Y a vertex« 

We define T : Y^X ~» X by r(f) = f( Q), f4Y^X . Then r is a 

fibre map (c.f. [27,111 13.1] for example)* For any xtX , let 

F (X,x) = f (x); Fy(X,x) is the function space of base point preserving
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functions, providing X and Y are given base points x and e

respectively*
v Let 3fe F (Xtx) be taken as base point a

Now the components of S1*^ F (Xfx)
glW

= F *(X,x) (r>l) all have the same homotopy typee Hence for any

space with base point Z ,T *(FY(X,x),* ) «Ty(FI(X,x), *)
Z& Y = if (X,x), where * 2 Y-»X is the constant map with value x .

So the (track) homotopy exact sequence of the fibring F^(X,x)— *» Y^X — * X 

becomes

.00

This sequence for Y,Z spheres is due to G.W,Whitehead [53]> who expresses 

the transgression as a Whitehead product (the correct signs are given in 

[5B])« It is well-known that this result may be generalized to the 

sequence (*), giving that the transgression A is (up to sign) the 

Whitehead product [ »$ ]» where this product is defined as for example

in [4].

It follows immediately that not all components of Y/HX have the 

same homotopy type«

£ 40 Federer's Spectral Sequence..

4.010 Let Y be a CW-complex and X a path-connected space which is 

n«simple for each n >lo Fede^er [21] has shown that thereis a spectral 

sequence whose £T term is
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and whose E"* term is the graded group associated with a certain filtration 

on

An important consequence is that if the homotopy groups of X and 

the integral cohomology groups of I all belong to a class C of abelian 

groups satisfying axioms (£) and (HA) of [45]* then for all p>2,

TTL (I'Kx,^ )ee a
P

4»20 Federer (ibid) also proves the following theorem

Theqrem ^2 Let K(T,m) be an Eilenberg-Maclane space where "TT is an 

abelian group and m > 1« If Y is a finite dimensional CW-complex, then

q>x O.

Theorem 4«2e was proved independently by A0 Heller (unpublished) and R0

Thorn [51] 9 Another proof is given by Spanier [46]s we shall prove a somewhat

more general theorem later (IX 1»32) 0
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JSL« POSTriKCRT SYSTEMS OF FUNCTION SPAC£jS»

We assume the theory of Postnikov systems [42,J7S 38] 0 These give 

a complete description of the singular homotopy type of a topological 

space*

The general problem we are concerned with is the determination of 

the Postnikov system of Y/hX in terms of the Postnikov systems of T 

and X »

§!• LOOP spaces*,

Let K(TT»m+l) be an Eilenberg-Maclane complex, and k: X^K(ir,m+l) 

a map; k determines a cohomology class, also written k 9 in 

H (X,T). The loop space .£XK(TT,mtl) is a space of type (TT,m), 

and so there is a map f : -Q.K(T,m+l) — ̂ K(TT 9m) inducing an isomorphism 

of homotopy groups* The map f(-&k) : ^IX —^KfTTjm) determines a cohomology 

class fcfcHm(-£Xx,T )• Suzuki [50] gives an expression for \ in terms 

of k as follows« Let JTiX -^ PX — ̂X be the canonical fibringo Since 

PX is contractible,, the coboundary

S: Hm(Q.X) 

is an isomorphism* Let o~ be the composition

Suzuki proves that H =<r(k)<> (This result is also a special case of the 

work of Part B here) 0

This result determines inductively the k-invariants of -Q, X in terms 

of those of X • 

* The (understood) coefficient group 10 T *
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groups.

2.10 In this, and the next section, we shall work in the ess-category, as 

this is the most convenient for the questions considered* The ess-function
«r

complex (c.f„ Chapter V) is written X 0

2.2<> Let X be a css-abelian group0 The Postnikov system of X is 

completely determined tjr a theorem of J«C 0 Moore [38] which states that the 

k-invariants of X are zero. Equivalehtly X^TT K(T (X) fr).

If Tr is an abelian group, and m^l, the complex K('!T ,m) .is a 

css-abelian group. Hence K(v,m) is a css-abelian group for all. 7 0
ySo the homotopy type of K(rr,m) is completely determined by its homotopy 

groups, which are given by III 4.2.
y2.30 This simple form for K(tT,m) suggests that a successful attack on

y determining the Postnikov system of X may be obtained by induction on the

Postnikov system of X0 Precisely, the Postnikov system of X represents X

by a sequence P of fibrations with fibres K^T ,m) (^-"^(X)). So XBl ffl IB
y yis represented by a sequence p of fibrations with fibres K(fT ,m) . This

ysequence p is not a Postnikov system. However, if Y is finite dimensional,
Y any finite part of the Postnikov system of X is represented by a finite

ysection of the sequence P .

The general problem is then to "re-sort 11 such a finite section of the
ysequence p into a Postnikov system. This problem involves three particular 

problems, which are discussed in the next section.

S3. Statement of Problems.

The following problems arise naturally out of the nreceding discussion. 

Similar problems have been considered by Thorn [51]



Let k: X— > K(ir,m) be a nap, and I a complex,

Determine the map k 1 which makes the following diagram commutative

~Y

k i

where f is an equivalence.

Problem 3.2 Let K. : K(TT,m) — ̂ K(G,n) be a map and Y a complex,

Determine the map € which makes the following diagram commutative

Y x^ K(G,n)

If I f' 
m^ *' n *

K(Hr(Y,TT), m-r) —— : —— ̂"JT K(H8(Y,G), n-s), 
r=0 s=0

where f,f ' are equivalences*

91 m
Problem 3.3 Let k: X — ̂IT^ K(TT.,r*-l) induce a fibration ^ K(TTr ,r)

— *E— ̂X. Supposing k and the Postnikov system of X known, determine 

the Postnikov system of £ o

We shall be largely concerned in Part B with the solutions of Problems
»

3«1> 3<>2« We state the solutions roughly here, give an example and make some

comments on the solutions 0
Y Solution, 3i>A Let £ I X x Y — V X be the evaluation map* We may select

a "Ktinneth isomorphism11

K* • Hm(XZ* x Y TT ) ,^ &» ft®**"* (XY Hr(Y
r=0 

and an equivalence f , such that k 8 & lc£^k) s
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m n 
Solution 3.5 Let A « "\J K(lT(Y,Tr ),m-r), B s= fT KfH^Gj^n^sjo

r=0 s=0 
m 

In YI H°"r(A,Hp(Y,TT )) a "fundamental class" \A> (A) may be defined which

is the ordinary fundamental class on each factor of A . Let £ be the 

cohomology operation of type (v,m|Gfn) corresponding to £fe Iln(K(nr,m) tG) e
«

We may select "Kfinneth isomorphisms"

rx Y,TT )— —— > H(A, H<Y,TT
r=0

, HS(Y,G)),
s=0 

and equivalences f,f a such that £ = K_ | Jc"1 vO (A)

Example $»6 That these solutions (particularly 3o5) may be put in a form 

suitable for computation is illustrated by the following example 0 Let 

)£ = Sqn: K(Z,m) —— ¥ K(Z2,m+n), and let Y = s'g^e1^1 e Then &' is given 

by the following (self-explanatory) diagram

K(Z,m)Y ^ K(Z p m)

3o70 A discussion of the relation between 3»4 and 3 0 5 may illuminate the 

following chapters. We shall prove all the statements made in this subsection, 

but not necessarily in the order given here*

Suppose we are in the situation of 3»20 According to 3»4f we must 

calculate c*(O fc ^(KfTr^m) x Y,G). The following diagram is commutative
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x I,TT ) ,. . H, ir)

. , < , G)
«r

where f: K("T,m) fit A and & is the cohomology operation corresponding to

* , so that i (v^) ss ^ 9 where u>"4 !?(!£(* ,m),TT ) is the fundamental 

class * The class we require is that obtained by acting with a Kfaneth 

isomorphism on ((f x l)*r1 C* (*) = ((f x I)*)"1 ^t*(v/) 0
TThe evaluation map t : K(ir,m) x T— * K(TT ,m) corresponds to the

identity K(TT >m)y — * K(ir,m)Y ; the identity A-»A determines the
jl 

fundamental class "O (A)fe S Hm"r(A,Hr(Yf v)) e The crux of the argument is

now that the KQnneth isomorphism K,) 9 which is defined entirely in terms 

of chain complexes, is related to the ess-exponential map which is used to 

define £ o Since both £ and **? (A) correspond to identities, we obtain 

that K. 1((f x I)*)""1 €* ( w1 ) = to (A) , and so Solution 3*5.
t

That £. and vO (A) both correspond to the identity, and so are related 

as we have described, is the intuition which suggests the following theory* 

This theory gives a method of passing from complexes to chain complexes, 

and so to homology, all the time preserving the exponential map M 0 

Actually the only fact about K(T ,m) which is used is that K(Tr,m) is 

a css-abelian group, and we prove the theorems more generally for arbitrary 

css-abelian groups*

The actual steps made in the theory are the following,, First, for any
V css-abelian group A , A is isomorphio to G(7)^A , where C(Y) is

ftree 
essentially the/ces-abelian group on I , and 4 is a map product
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defined for all css-abelian groups 0 This turns the problem into one 

involving only the category of css-abelian groups, or, as they are usually 

called, FD-complexes a

There is a functor II assigning to any FD~complex A its normalised 

chain complex HA ; the category of chain complexes has a natural horn product, 

written /h , To make the transition from FD -complexes to chain complexes,
i

we first define a horn product h of FD-complexes such that N(C(l)/hA) is 

closely related to C.,(T)/h KA , and then prove that C(Y)/hA, C(Y)&A are 

of the same FD-homotopy type.o

Each of the above products has an appropriate exponential law, and
TT

we prove that the isomorphism A —* G(Y)&A$ the equivalence C(Y)4 A-*

C(l) h A9 and the functor H9 preserve these exponential laws{« This is

the fundamental part of the theory, as the final transition from chain

complexes to homology is quite simple0 These elements of structure are

sufficient to obtain 3°4* 3«5 above*

3*8 As regards problem 3«3t the homotopy groups of the total space E

can be determined up to isomorphism by a well-known method (c 0 f« Chapter XII ) 0

It is not known how to determine the k-invariants of E, even if

"H~r= 0, r ̂  m9 though solutions of some special cases are easy to obtain**

A special case of this problem is solved in [l; Addendum] as a method of
i

calculating the value of a secondary operation*



PART B
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INTRODUCTION.

Part B of this thesis is largely concerned with the solution of 

Problems 3.1, 3.2 of Chapter IV« Most of the basic functors and relations 

necessary for this solution are given in Chapters V,VI,VII 0 Some of the 

material is classical, but it has usually been found necessary to extend 

and generalise the scope of the functors to apply them to present problems 0
i

A further purpose of Chapter VII, and also Chapter VIII, is to show 

how various parts of the classical theory of Eilenberg«41aclane complexes, 

such as the classification of maps into a K(ir,m) , and the theory of 

operations, may be derived more simply, and in more general form, using 

the theory of Dold-Kan*

The solution of the function complex problem is constructed in 

Chapters IX, X, XI 0 Some applications are given in Chapters XI and XI1 0

The theory we present is in terms of complexes with base pointo The 

modifications necessary for the non-base point case are given in XI § 4-0
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SHAPTER V0 SEioI-SIftPjJCIAL FUNCTION CCfoPLEXES.

In § 1 of this chapter, we extend the classical definition of function 

complexes in the category of ess-complexes to the ess-category of &-ads 

(where M is an indexing set), and prove the exponential lav in this category* 

From this we obtain in § 2 the exponential law in the category of css^complexes 

with base point* In ( 3 we relate ess-function complexes and topological 

function spaces*

M-ads.

(le l) The definitions of ess-complex (complete semi-siapliciaL complex), 

c SB-map, product of ess-complexes, Kan complex, homotopy$ homotopy groups,
". •»

as given for example in [31,37] are assumed here0 The term ess-complex is 

often abbreviated to complex0

(lo 2) We recall that the complex of the standard q-s implex, denoted by A 

may be defined as the free complex on one generator S q of dimension q « 

So if X is a complex and x$X , there is a unique map x:A q ~ » I such 

that x($q) « x o
/

A categorical ess-operator is for each complex X a natural function 

0 : X — tX o Any such operator may be written as a product of face end 

and degeneracy operations 0 If 0 : X — »X is a categorical ess-operator,

then 0 defines a unique map 0* : Ar -* Aq such that |5 *(or)

This sets up a 1-1 correspondence between the set of categorical css-oporators

X, and the set Map p
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Let ^ denote the category whose objects are the complexes

A (q>°) aad whose maps A q —=»Ar are the ess-maps, LetC.be any category< 

We recall [31f I$4] that a ess- G complex S may be defined as a contravariant 

functor S j A -* £ , and that if T is a css-G-complex, a ggg S —> T 

is a natural transformation of functorso

The complex A will also be denoted by I «

(l«3) L,M,1I will denote indexing sets, possibly empty,. An M-ad will mean 

a particular sort of carrier [3,49] X = (X;M) consisting of a complex X 

and a family (Xy)^. M of sub-complexes; (Xj ft) will mean the samo as X 0 

These are the objects of the ess-category of M-ads- where a map .f: X —*>Y 

will mean a css«map f: X—^1 such that f(Xy)oY), 9 X6M «, Clearly the 

category of 0-ads is the usual css-categoryo For all M, ^q denotes .the 

M-ad (A ̂5 M) in which each indexed subcomplex of Aq is empty| the exact 

interpretation of Aq is to be understood in each case'from the context0 

fi^parlj;fi It is convenient to allow the indexing set to be replaced by an 

isomorph at will,

(lo4) The intersection Xo A of an M-ad (X| H) and complex A will mean 

the M-ad consisting of Xn A and the family (XX 0 A)^.^ «

If Lc-M ,, the restriction of an M-ad X to L will mean the L-ad 

consisting of X and the family (X^)\^r » ^hu9 *ne restriction of an M-ad 

to 0 is the complex X 0

The product X * Y of an 14-ad X and I?-ad. Y is the L»ad Z , where 

Z=XxY, L is the union of disjoint copies M 8 of My N* of N and
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The smash product X $ J of two M-ads is the M-ad consisting of 

Xxl and the family (X^x y « x * Tx)X6 M °

(lo5o) The function complex X- of M-ads X, Y is the complex K 

defined by

K = Map

= Map

(where Map denotes the set of maps of

Obviously the restriction of the M-ads X, Y to L-ads X , Y (for^* **^^ ••> ^i^J ^^^^J

Y Y will induce a^ embedding of X- in JL-o 0 In particular, on taking

L = f 9 we have an embedding of X- in X 0 The following lemma is

obviouso
Y Y ' X— is the sub-complex of X containing precisely those

f :Aq x*— >X such that f(A qx Y^)cX x (

(lo 6) The following theorem is due to Cartan [10| Expose 3, $ 2]

Theorem 1«>61 (Cardan) If X, Y, Z are complexes, there is a natural

isomorphism
VZ*Y /vv\Z u : X ^ (X ) 9

given by the formula

f) (w) «f (0X1) ,

lf>6? Let X, Y be M-ads« We define the M-ad Y/hX (called the

M-ad of maps J-»X) | the total space of Y/hX is X- and the family 

of subspaces is ((JnXx)*)^frM , embedded in the obvious way*

2. be M-ads and let M be as in 10 610 Then we prove
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Theorem I ft6^ M induces an isomorphism

Proof o The complexes of the left-hand M-ad are in X2*1, and those in the 

other are in (A ) « It is therefore necessary to show that the isomorphism 

/u maps the indexed subcomplexes on the correct images « That is we must 

prove

,(ii)yu (In 

It is obvious that

So (ii) follows from (i)«

Now f:AzxY-^X is in J--

for all Xfe M o So, by the formula for \ 9 and lemma 1« 51»

(<r,a) e for all (<r, 2 )

(XaXx)- for all K

So f 6 X-* ~ «=» /u f 6 (Y/h X)-

Let us define a homotopy between maps ffl , f , : X ~> Y of M-ads to be a map 

F« I*X ->I of M-ads such that

F(sj3c S1, x) = f± (x) J xfrXq, 1 » 0,1.

Then 10 62 clearly implies

Corollary tl» 63 yu induces a homotopy preserving isomorphism

s Map (ZfcY, X) -^ Map(Z, Y<fcX) . 

We can now make the important 

Definition 1*64 The evaluation mag £ : X~$ Y — > x , for M-ads X, Y , is
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defined by the condition /A>(t) = 1: -* X- 0

Explicit^, £ (f ,y) = f ( ^,y) , ^(A, y* I. o

Baae PointaT

(2el) The category 3£ of complexes with base point* is a subcategory of

the css*category of 2-ads 0 So we have

Theorem 20 11 There is a natural isomorphism of complexes with base point

(where X,Y,Ze36 ) which yields a homotopy preserving isomorphism

: Map (Y#Z,X) — * Map(Y,XZ ) 0

Y Y Here the base point of X is *. , where ^ is the base point of
Y Y ^ X and X is embedded in X in the obvious way for all subcomplexXX <Z- X

Definition 2a l2 Let X,Y denote complexes with base pointo The 

evaluation map £ : XY$ Y-»X is that defined by /u(£) = 1: XY— »XY 0

In 2«1, Y^Z is a 2-ad but is not an object of £ 0 However, if 

X fcX , then Map (Y^fZ,X) may obviously be identified with the set of maps 

from Yx^^x* ^**Z to X, where the former complex has base point 

\Y x * u *x z]. It is convenient, then, to abuse our present language and 

make the

Definition g»21 The smash ̂ product Xfc Y of complexes with base points is 

the complex XxY/Xx* v ^x Y with base point the collapsed complex 

[x x * o ** Y ]« Since ^ has no base pointy the smash product A $ X 

is the complex ^* V^x * with base point

* The base point * of an X fc 3£ is the sub-complex of X generated by a 
given vertex, also written *, of X 0
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If X,Y6X , then we identify (X1) with MapCA1^ Y,X), the set
°4

of maps of complexes with basepointo

Clearly $2,1, with these interpretations, remains valid as it stands 0

(2<>3) For reference, we state explicitly the notions of homotopy in ^ « 

If f.: X —»Y (i = 0,1) are two maps in ^6 , then a homotopy

F: f^a f^ is a map F: &* % X —»Y such that

F(s^ «)(, $ ,x) = f^x) i = 0,1, xfeX « The set of homotopy 

classes of maps X-*Y is defined for all X if and only if Y is Kan, and 

is written [X,Y] 0

A map f: X—>Y is an equivalence if it has "a homotopy inverse, that 

is a map f: Y-*X such that ff'otl, f'faf le Then X and Y are said 

to be equivalento These are written in symbols £; X2tY, X*tY e

£ 3» Relation \jith topological function spaces *

(301) The solution of problems 3*1, 3*2 of Chapter IV, which is our chief 

concern, will be given entirely in the ess-category. The purpose of this section 

is to show that the topological and ess-function spaces are sufficiently closely 

related for such a ess-solution to be translatable into a solution of the 

corresponding topological problem0

The results of this section may be well-known for the classical function 

space, but even there do not seem to be in the literature*

(302) Let 'T be the category of topological spaces with base pointA 

Let S:T—'X ,| |:X —* > be respectively the singular and 

realisation functor [33]* These functiM* are adjoint in the sense that there 

is a natural isomorphism
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§[: Map (|K|/)-»Map(K, S(X)) f K*X, X £ T (3o21), 

where Map denotes the set of maps in the respective category* 

We let j: iS(X)|— >X, i: K-»S (|K|) be the unique maps such that 

$ ( j) = 1 , i s J (1), where the first identity map is on S(X) , and the 

second on |K|«

(3o3) A singular homotopy equivalence* f: X-*Y (X,YfcT ) f which we 

write f: X£i Y f' is a map of spaces with base point such that8

S(f); S(X) — * S(Y) is a homotopy equivalence in X • For all X^T , 

j: |S(X)| — *X is a singular homotopy equivalence [33]* and is an ordinary 

homotopy equivalence if and only if X is of the homotopy type .of a 

CW-complex (with base point) «

(3*4) If X6T* , the map i : <X> — » X (c*f0 Chapter I) inducers an
Jx

isomorphism 3(<X» «,S(X) 9 by which we identify these complexes [46,20 2] 0 

If ' K, L 6 X > there is a natural koaeoiaorifciem |IUL|<« |K|>^|L| » 

by which we identify these spaces [46$ 3o5] This homcomorphism induces a 

homeomorphism

(3*5) For X,T€*r* 9 let Y/hX denote the subspace of the weak function 

space of maps Y — ̂ X consisting of maps respecting base point* 

Theorem 3,51 If Ke3£ , XS-Tj there is a natural isomorphism

X: S(|K|*vX)«* S(X)K0 

Proof

f X) 
, S(X))

= (S(X)K)

Because of the definitions in Chapter I, we avoid the term "weak homotopy 
equivalence «
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Corollary 3.53 ^ Y ̂ ^ *s ofl t^6 homotopgr type of a CW-complex, then
S(if\

there is a homotopy equivalence S(Y*hX)jv s(X) v %

Pro?f For then j: |S(Y)|*Y induces j«: YrS X * |S(Y) |/f> X.

Therefore *S(j') : 3(YfcX)* 3(X)S(l) 0

Corollary 3«53 Let K, L£)£ and let K be Kan« There is a singular 

homotopy equivalence

which is a homotopy equivalence if L is finite.

Pr?of By 3.51, IXIs |3( |K|)L | %|S ( |L| ^ |K|) | . Also

J ! |S(|LU|K|)U S |LU|K| .

Since K is Kan> i:K-^S(|K|) is a homotopy equivalence; so i 

induces a homotopy equivalence i : K — >S(|K|) . The composition 

j |Xl liL | is a singular equivalence |KL | fi^|L|'h|K| 0

If L is finite, |L|^|\|K| is of the homotopy type of a CW-complex 

(I 0 2o43)a So the singular equivalence |K| ^s |L|/h|K| is a hoeotopy 

equivalence0

(3o6) The following theorem shows that S preserves M « We leave the proof 

to an Appendix^

Theorem 3 ff 6 If K,L€X, Xt , there is a commutative diagram

S
'

(s(x) L)K ,

where X is the composition
\f

V »• ^ T IT(s(x)L)K.



VI. CHAIN COMPLEXES

« Graded Groups.

(lol) It is convenient to follow several authors and vary the usual 

definition of a graded group* By a graded grroup A is meant a family of 

disjoint (abelian) groups (A ) indexed by the integers Z ; an£ 

element of A is a member of any one of the groups A 0 If a is an 

element of A s we write a 6 A0 If aSA. we write r = deg(a), the ffepree 

of a o The (distinct) zeros of the groups A are all written 0 „

Associated with A is the (weak) direct sum n k , which is ther ez r
more usual notion of a graded group: the groups A are embedded in the direct 

sum, and their elements called the homogeneous elements of the sum0 Our 

definition readily permits us to use the associated direct product where 

convenient, and to refer without qualification to the degree of an element„

(102) A map f J A-»B of flegree p of graded groups A,B is a family of 

homtomorphisms (f : A ~-*B ) „ j it is trivial if each fp is the trivial 

homomorphismo The maps A -» B of degree p form a group which will be written 

9 where the group operation is defined by addition of values; the maps 

of all degrees therefore form a graded group AAlB p sometimes called 

the map or horn product of A and B 0 Composition of suitable maps f, g 

of degrees p,q forms a map fg of degree p + q0 The trivial map of any 

degree will be written 0 „

(103) Let f: A 1—»A, g: B-tB 1 be maps (of graded groups) of degrees r 

and s respectively, A map (f tog) : A^ B-» A 8 <hB 9 of degree r + s is

defined by

(f <hg)(h) ±.(-l)r(p*s) ghf h<
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The sign given here is determined by the convention of Minor [34] that when
Qf&two terns of degrees *, £ are interchanged, a sign («i) ' is introduced. 

This convention seens easiest to apply and to lead readily to a consistent'-**•*•• .•

system of signso

If ffg are as above^ and ff j An ->Al fg f : B1 — > ff1 are of degrees
r',8 1 respectively, then

rfs+r 1 ) 
(ff <hg«) (f*g)= (-1) (ff'dvg'g) -.

(1*4) The tensor pro^nc^ of graded groups AfB is the graded group A$B
such that (A®B) = ^^ .P r*s=p r s

A pairing * : (ArhB)^(A«/h B«}-^ (A®A')^ (B®B«) is defined by setting

a«'€ A* 5

^ (f$g) is vritten fxg and is called the cartesian, product of f and g « 
If hs Bff B* • ' > C is any nap* then the carteq^yt y^oduc^*^, of ^ ftl^ T fi^ Tf^^ 
respect to h is h(f * g); this is usually vritten ftg , the pairing being 
undarstoodo

(105) There is a natural isomorphism of degree 0 , T s A®B ——— ̂ B»A,
defined by _

T(a«^b) = (-a)M b®a , aCA^, b£B 0

(106) There is a natural isomorphism of degree 0 ui (A®B)^C — » A<K(BihC}
defined tor

(a) (b) = f (a® b) , f C (A9B)/h C, a € Af be B 0

The following lenpa vill be useful in the proofs of two theorems of 

Chapter X ,

* This system differs from that of [11; IV$5] o
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31 if* I*6* A,B,C be graded groups 0 In the composition

Cfh(A/t»B)

we have identified B®Z and B . Let f 6 A/ftB,g £ CfoZ , and let 

g'£C be the unique element such that g(g')~ lo Then

ok (f®g) 

The proof is easy, and id omitted



(107) Let A be a graded group0 The groups 0 A, »}"" A and the maps
V

i£:A-*ijA, ft A — * ij"A of degrees +1, -1 respectively are defined 

by

- = (a) = afe (*~ A)r r~l -

If f: A— >B is a map of degree p , then »£f:^ A — * »£ B is a map of 

degree p defined by (^ f)r+1 - ( »l)rp offr 0"^+1 o Thus 0 becomes 

a functor and so similarly does *T <>

The maps and functors ^ »?"" a1"6 inverse to each other: 

*J?~ = 1 and «2~y = lo Also the functors *} , i?~ are adjoint; that is, 

there are natural identifications (if A)&B « A^h^B,

(lo8) Let G be on abelian group0 The graded group G is defined by

G r * 0
0 r £ 0 0

Therefore the graded group o^G satisfies

" { G r = p 
0 r ^ p

If A is a graded group, the graded group which is A in degree p and 

0 otherwise is 0 PA «

For all graded groups A there are natural identifications 

Z®A = Ap Z/hA = A, A®Z = A . We also identify («J P2)®A and >J PA 

by the map sending l®a -* afe(iJ pA)r , a^ Ap> 1 6 (^)p •

(lo9) If f: A —> B is a map of degree p 9 then Kerf, Imf, Coker f, 

Coiift f will denote the graded groups given by



(Ker f )p = Ker(fy :

(Imf)r = I*( Vp: Ar-p--* V 

(Coker f )p = Coker (fr_: Ar_~*

(Coim f)r a CoimC'f;:

Thus f admits.a factorisation

A
3J i I*

coim f

13 2 in which r% Sr are of degree 0 and f is of degree p 0 Let us say

that f is an o( -morphisn (where X =e pi, mono or iso) 0 iff each f^ is an 

< «ts»morphisnio Then in the above diagram* f is an epimorphisn, jr is a 

mono-morphism and f is an iso-morphiscu The expression 

" f is an o< -morphiam" is usually abbreviated to " f is o< n o

If i s A—?»B is an inclusion, i.e, if each i : A —»By is an 

inclusion, then we write B/A for Coker i9

§2. Chain Complexes,

(20 l) A chain complex (A^ ), ors simply, A , is a graded group A together 

with a "differential" ^ , i.e. a map ^ ; A-? A of degree -1 such that 

a « 0 , The group of cycles of A is the graded group Z(A) = Ker^, 

the group of boundaries is B(A) = Im^o Clearly B(A)<£Z(A) f and we define 

the bomology of A to be the graded group H(A) = Z(A)/B(A) a
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Usually Z(A) , B(A) , Il(A) are written Z (A),B (A), H (A) o
P P Jr V V tr

(2»2) If A,B are chain complexes, a chain map f : A~-*B of degree p 

is a map of graded groups of degree p such that ^f ~ (*4) pf ̂  „ The 

graded group of chain maps A— »B is written 3"*(A,B) (for reasons given 

later), the group of chain maps of degree p being written 3P (A,B) 0 

As usual, if fe^pfM)* then f induces a map %: H(A) — » H(B) of 

degree p •

(2«3) The group ^ A forms with the differential "?d f a chain complex; 

thus

Then ^ 2 A— >»JA is a chain map of degree +10 Similarly, *f A 

has differential ^~^ , and ^*~ is a chain map inverse to 9 o

(20 4) The tensor product A®B of chain complexes A,B is made into a 

chain complex by giving it * the differential^® 1 •«• 1®"^ ; i0 ed in 

accordance with tho convention of 1.4,

® b) =

•L" "

It follows that if f,g are chain maps of degrees p,q respectively, 

f ®g is a chain map of degree p + q «, Thus the tensor product is a 

covariant functor of two chain complexes «

(2«5) The horn product Ar^B of chain complexes A,B is made into a chain 

complex by giving it *tho differential S = l<Hd- 

Thus (Sf) (a) =^fa +(-l)P*1 rt a , a€A,
p

That is, the tensor or horn product of the underlying graded groups 0



Remark A/KB is more usually given the grading opposite in sign to

the present conventions, so that it becomes a co- chain complex, hence
...-••' • c 

the use of the traditional o « This usual grading has been changed

to avoid awkwardness in considering the natural isomorphism (§ 1.6)
, • <

yU : (AfcB)<H C * A A (BJKC) which is fundamental to our treatment of
» ^

function spaces,. The effect of the change, of course, is to make the 

cohomology of a (ess) complex into homology which is non-zero only in 

nonpositive dimensions „ This convention has been used previously by 

So Lefschets [30a] and V,K.A. Guggenhein [24a] ; we are using the 

differential for ArtiB given in [24a] „

It follows at once that if f*g are chain maps of degree 

p,q respectively^ then f (hg is a chain map of degree p + q » Thus 

the horn product is a functor of tvo chain complexes, contravoriant in 

the firsty covariant in the second 0

If APB are chain complexes, the cohomology of A with 

coeff icicaits in B is defined to be H*(M) « H(A^B) jthat is

(2.6) Lemma 2^6 M: (A^B)A G ^ A/k(B/KC) is a chain isomorphism
^ifi^^^^B^VAfil /

if At3,C are chain complexes o



/*. 9 defined in 1.6, is an isomorphism of degree 0 

of the underlying graded groups. The proof of the lemma is trivial 

and is omitted*

(2.7.) Lemma 2.7 Let A,A* , B,B fl be chain complexes. The nap 

<* : (AihB) ® (A'/HB 1 )

of 1.4t is a chain map of degree 0 ,

The proof is easy and is also omitted

CoroUary 2.71. If f 6 AfcB) , g£ A 8 /h B« , then

g * (-DPfxgg , 

The corollary follows immediately from 2.7 since f * g = « (f9g) «

§ 3. Chain hoiaotopy.

(3.1) Chain naps ft A—*B are divided into equivalence classes

by the relation of chain homotopy* A chain homotopar

D: f 3 g i where f, gej U,B), is an element of (AAjB) ^

such that

f . =



This is obviously an equivalence relation in 3- (A,B) sach that if also 

D f * f'£g 9 then D + D 1 : f «• f1 * g * g*, - D :-f* _ g 0 Thus the 

chain homotopy classes of chain maps of degree p inherit a group structure

. When p = 0, this group is written <A,B>, It is clear that 

if f = g * then f * = g* i H(A) — > H(B) 0

(3*2) A chain map fs A— *B of degree 0 is called a c^ain equivalence 

if there exists a chain homotop^, inverse f* to f s that is$ a chain map 

f « : B— *-A of degree 0 such that ff « = 1, f «f = 1 s the appropriate 

identity raaps0 Then A,B are said to be equivalent Those are written in 

gynbols f i A = B, A 3? B 0

(3o3) The following proposition is essentially Exercise 5 of Chapter

of [II].

Lemna 3 0 31 For chain complexes A,B

and Bp(A^ B) is the suljgroup of chain maps of degree p homotopic to the 

trivial map0 Therefore there is an isomorphism

The proof is obvious* for-CAjB) c. (AAB) and for anyP f
f 6(A<hB) , 8f = 0 if and only if c) f = (~l)Pf ̂  , in which case

f e^ (A,B) 0 Sinilarly, f = S c if and only if («l)Pc : f S 0 0 
P



proposition 3,32 If A,B,C are chain complexes, then

t (£0B)/j)C-*A<h(B<ltC) induces a homotopy preserving isomorphism

B,C) -

and so an isomorphism

The proposition follows immediately from 3*31 since yu is an isomorphism 

of chain complexes.
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In|l we gfrre some of the basic notions of FD«=coraplQxes0 in 

§ 2 we define for ED-complexes A jB an FD-complex Art) B which is a !lmap 

product" of A and B • the "exponential law11 for (h is proved. In f 3 

we discuss the normalisation functor f and we introduce tho important notion 

of homology of a css-»complex with coefficients in a chain complex0 InJ 4 

we recall the properties of the Dold-Kan functor, and use these properties 

to prove the fundamental classification theorem OU7) 0 In §5 we give the 

theory of operations^ extending the classical theory to the more 

general coefficients we are using,,

(1«>1) An FD^copqpaLex is a css-abelian group [31; 4]o An FD«map is a 

ess-homomorphismo The category of FP-comploxes is written 3$ 9 the set 

of maps A-»B . in 3J) being written 3*(AtB)0 We regard *3J> as a 

suboategory of 3£ » the category of ess-complexes with base point 9 the base 

point of any A ^*3J) being the subcomplex 0 of zeros of A 0 

(102) There is a functor A from the category of sets to the category of 

free abelian groups 9 assigning to a set S the free abelian group on the 

elements of S 9 and to a set transformation f the hosuxnorphism with the . 

same values on the generators* This induces a functor B from the ess-category

to the category 3$ such that (B(X)) = A(Xq), $ = A(£) for any

categorical css«operator ^ , and B(f ) = A(fq ) for ^V °ss-«iap f: X-* Y •



We define K(q) = B(A^) 0 It is clear that K(q) is the free 
cs8-abelian group (free with respect to the ess-operators and the group 

structure) on one generator S3 in dimension q « So if A is an FD-complex, 
and aeAg, there is a unique map a j K(q)-»A such that a(s q^ = a 0
This defines an isomorphism A » 3- (K(q),A).<*

(1«3) For any css-congaex with base point X there is an embedding 
B(#)c: B(X) o So there is a functor C : X— * 33> such that 
C(X) = B(X)/B(n) o This functor G is one of the standard functors used 
throughout0

(lo^) [l^J The cartesian product pf^yp^ojaDleye^i A^B is the FD«cotnplez 
A&B such that

(Ax

= 9$ <S>96 ^> a categorical css~oporatar0 
Clearly is an additive covariant functor of two variables0 

Iifffifl 1r^ ^ X,I^36 , there are isomorphisms

C(X#Y) « C(X)>LC(Y), C(/£;J(C X)^ K(q) & C(X)* 

by vhich we identify these complexes0

The proof ia obvious, •

(Io 5) [16] Tw> ED-kaaps fQf f^ s A— *B are PIMiomotopio, written 

f S £ if there is an TD^nap PI K(l)xA-^B such that

= f0(a) , F(sg &^ S1^ a) =

We recall that



The notions of FD-homotopy Inverse, FD«homotopy equivalence are defined 

in the usual way, and we use, as for chain complexes, the notations 

f 5 A£B, A«B 0

The relation of FD-homotopy equivalence is an additive equivalence 

relation <* $(&pB)<> So the FD-homotopy classes of ID-naps inherit, from 

3-(A,B), a group structure, and this group is written <A,B> 0

The following Lemma is obvious0

Let x> Y6 ^ • If fo~ fl f x ~>1 » then 

* C(X)~ >G(Y) 0 Thus C induces a function

Tha

(201) The flap product AA\B of FD-complexes A,B, is the FD-conplex

defined by

= 3"(K(q)iiA, B) q = 0,1,««,

= 3- (#*al| 1) <f> a categorical ess-operator,,

dearly (h is an additive functor of two FD«complexoss contravariant in the,•
first, covariant in the second0 We identity (AfhB)o and S-fAfB) In the

obvious way0

(2e2) Let Xe)f, A^JD 0 Let Map (X,A), the set of css-oaps 

X-»A of con^lexes with base point, be given the structure of an abelian 

group by addition of valueso This addition includes an addition in [X,A].
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There la an Isomorphism of groups 

D : Map (XfA) —— $C(X), A) . 
Farther D preserves hamotopy and induces an isomorphism

D i [X, A]— ?<C(X), A> 0

£E2fi{o If f s X-? A , then D(f ) : C(X) — > A is the unique nap whose 
valne on each generator of C(X) is exactly f 0 The first part of the 
lemma is obvious.

&e second part follows from the first by the definitions of 
hoootopy and lotlo

proposition 2.22 If X£3, A fc) , there is an isomorphism

D : 

ly means of vhich wo identify these complexes*

Here A is also regarded as an object of 3£ 0 The proposition 
follows immediately from 2.21, 1041 and the definitions c
(2«3) We nov prove the n exponential law" for the functor (b » closely following 
Carban's proof in the cas-category [10* Expose 3,§ 2]0 
First ve prove 

Proposition 2^^1 Let AtB,G ^ $£ 9 There is a natural isomorphism

Let f 6 3 (A x B,C), a 6 A^ 0 tfe define an PD-oap* ij

i K(q)2c B^?C ly (/»f) (a) = f(ail)0 
An inverse ^ to A is defined ty setting 

- g(a) (Sa» b)f g65(A,B^ C),
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It is trivial to show ty* = 1, M? = 1 0

The naturality of y&t is obvious from its definition*

Let A,B,C fe'J'P * There is a natural isomorphism 
: (AxB}/HC— » Adj. (B/fcC) <,

Prooff In dimension q , u is the isomorphism

3-(K(q)*A*B, C) -frJCKCq)* A, BAG)

of 2«>31o That this isomorphism is natural implies that U Is an 
Cyrollary 2?3^ The isomorphism AA of 2 e 31 is homotopy preserving and 
induces an isomorphism,

We must also show that the isomorphism D preserves
proposition 2.34 ^^ X,I€r?6, A^JJ** The following is a commutative 
diagram of isomorphisms

Map (X#I,A) —— ̂-»3(C(X)KC(Y), A)

^i y IP 
Map (X, A1 ) ——— g— >3f(C(X), C(I)rhA) .

The proof is trivial and is omitted *

The Normalisation Functor N «

(301) The category of chain complexes in which the maps are the chain maps 
of degree 0 is written C « The group of maps A -» B in C is written 
3"(A,B) o The full subcategory of C consisting of chain complexes A suoh 
that AA 9 0, i<0, is written C Q o

(302) Definition (J0 C«Moorej [37]). The normalisation functor is the 
additive functor N i 3"J> ~~* t<> defined



H(A)q *

K(f) = f |H(A) f f :

Classically [13] the normalised chain complex of A€33> is formed 

by taking the boundary ^ a ^0(-l) ^ on the complex A/D(A) , where

D(A) is the subcomplex of degenerate elements 0 In [16] Dold proves that 

there is an isomorphism of chain complexes N(A) <*, 4/3 (A) «

The chain complex N(q) is N K(q) , q * 0,1, 00 o 

(M) We now make the important 

Definition 3r3 If X €?£ , the nprma^ise^ chain, complex pf ,X is

CN(X) = HC(X) e If A€f f the^cphpmojLqgy of X yith coefficients in , A

is H* (X,A) s H* (CH(X)rh A) o If B €• 5^ , the cohomoj.pgy of X with 

coefficients in B is H*(X,B) = H*(X,N B) 0

The introduction of this cohomology is essential for the theory o It also 

leads to a gain in conciseness 0 For example^ if A is a product of Silenberg- 

Maclane complexes, the classical theorem on the classification of maps of <*

complex X into A reads, in our notation, [X,A] s H°(X,A) (c0fo4o7)o
Y 

This conciseness is very useful when dealing with complexes such as A 0

(3o4) For later purposes we will need a classical theorem of Eilenberg-

Zilber [20] 0

theorem 3«£L (Eilenberg-Zilber). Let A,B €SJ) 0 There are natural

chain maps

N(A*B)
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such that 3 A m 19 and such that there is a natural chain homotopy

The theorem that H(A* B) * 1I(A) <2> N(B) i* a natural manner is given in 

[20]. Actual formulae for maps A f j ,.n,..H LUal ^.fr 1 are given 

by Eilenberg-Maclane, in [18]«

(3o42) The naturality of the naps in 3*41, and of the homotopies, is 

importanto The naturality of A , "5 means that if

f : A — *A% g : B — >B J are FD-maps9 then there is a comimitative diagram

<2> H(B) ——— ̂—

NK

^- —— . —
J A 

An implication of naturality is that the maps A p^ 9 and the homotopy

A'S ^ 1 may be entirely expressed in terms of categorical ess-operators; 

that is, these maps and homotopies are given in each dimension by formulae 

of the type

where <f>\ ^ are categorical css-operators 

(This remark is due to Eilenberg-Maclane [I8])

The Dold^Sn

In this section we give the results of Dold-Kan [16] which furnish an 

equivalence between the categories £> and 3-J) . Using these results we 

prove the Classification Theorem 4*7°



The original Dold-Kan functor in fact maps C0 -^ 33) o For our 

purposes, we require this to be extended to a functor C —* ̂ 3) » 

Information on this extended Dold-Kan functor is given in Chapter VIII0 

Definition A.1 (Dold-Kanj [16]) The additive functor 'R'. C —^ 3^ is 

defined by

R(A) rt =3(K(q), A) q a 0,1,...,

ej(f,l) f a map in C 

The restriction R| C0 is written R0 » 

Th^prem A* 2 (Dold-Kan) There are natural equivalences

Gorpllary 1L.3 (Dold-Kan) (a) Let A,A« e3«J> « Then

N :J(A, A«) ^ 3(NA, NA») . 

(b) Let B,B« eCo • Then

R 0 ? 3(B,B«) *J(R0B, R0B«) o 

Theorem 4>^> (Dold-Kan) « The functors N, R c preserve homotopy, i.e.

(a) if f-j^fg are two maps in JJ^ « tn®» ^1 = f 2 ^^ 17fl ^ llf 2

(b) if g1,g2 are two maps in C0 , then g1^

Cor9llary A^5 (Dold-Kan) » The functors N,R0 induce isomorphisms

N :<A,A«>*<TNA, ; NA«> , R O :<TB,B«>^<ROB, ROB«>

for aU AfA'e3J>,BfB«6Co . Also A^A«

R0B

Remark A. 6 The results 4*2 - 4«3 give the reason for the parallel notation 

that has been adopted for FD- and chain complexes,



It might be thought convenient to go further and identify the 

categories C0 and ^J) 0 This course is not adopted here, one reason 

being that such a coarse would mean regarding £0 as a subeategory of 3£ j 

and this seems unnatura!0

(4,7) The following theorem generalises (as we shall see$ c 0fo VTIIf 1) a 

classical theorem on maps into an Eilenberg-Maolane complex. [9; Expose 14j^ 2] 

Ppflpem AT1,. (Classification Theorem) Let X 63£ 9 A 

Then there is a natural isomorphism

^ 5 [Xf A] Si H*(X, HA) = H°(X,A)0

This isomorphism is the composition of the natural isomorphisms
°<C(X)f A> - <CH(X),MA> ~ H(X HA),

where D is given fy 2»219 and ^ is tho isomorphism of VI 3e31« 

Definition A^72 Let A €=3"*P 0 The fundamental q^ass oD (A)eH°(AtA) 

is the class corresponding to the homotopy class of the identity A -^ A 

under the isomorphism X of Ao710 

Propositien LSft The isomorphism V of 4«,71 satisfies

The proof is obvious*

(5ol) Definition 5^1 Let AfB e C or 3"^ 0 An

type (A>B) is a function assigning to each X &3£ a function

&ti H°(XfA)-> H°(XfB) such that for any map f : X-*I in X t
*

the following diagram commutes
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H°(X,A)——————&———————» H°(X,B)

f» 

H°(Y,A) ——————s———————» n°(Y,B),
y

that is, 0 is a vnatural transformation H°( 5A) — * H°( ,B)

vhen these are regarded as functors from X to the category of abelian

groups and set maps*

0 is additive if 0 x is a homomorpblsm for all X , 

Usually & 7 is written simply & *
JT\

The set of operations of type (AfB) is written Cs (A,B) 9 and this 

set is given the structure of an abelian group by addition of values* 

Strictly, that (/ (AfB) ig a set, is a corollary of 5.2 below0 

(5e2) Theorem 5,2 Lot A,B eS^ p There are natural isomorphisms

(^•(AfB) « [A,B] ^ H°(A, NB) 0

proof» The proof is exactly the same (using tbo fundamental class of 

as the classical case* (Serre [43])0

5,21 Let A,B £ C o There is a natural Isomorphism

H°(RA, B)

If x Oe , we prove in VIH 1,34 that H°(X^A) = H (X,HRA) , 

H°(XfB) = H°(X,HRB) 0 Therefore

(A,B) = (^(HRA, HRB)

= (?1[RA, BB) by definition, 

= H°(RA,I®B) ly 5.2 

= H°(BA, B) o
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Corollary 3*22. Operations preserve zero* I.e. if A, 3 eiP» k 6 C^(A, B)

X e )£ and 0 is the zero of H°(X, A), then k(0) s 0 e H°(A, B).

Proof • Bsis follows easily frow the isomorphism (?*(A, B) ** [A, Bj and the

faot that the maps of [A, B] preserve base point*

Remark 5«23« It is clear that @o^r theorems on [A, B] may be stated equally

in terms of H°(A, B) or &(&, B),\and we shall in ai^y given case use *hichever

of th^se is convenient.

t2**) Definition 2.31. Let S1 = A1/!1 be the 1-sphere, so that C^CS1 ) '

Let A eC >X e3£. 'Hie suspension isomorphism o"1 * H (^ # Xt A) ^

is defined to be the unique map making the following diagram commutative

X,A) VI -I
— Ho(l? CN(X) ^ A)

Let A, B E^ ; the suspension a s &(&> B) •» (7* (if A, ij"&) 

is defined by letting ok be for each k E &(k9 B) the operation which for 

each X ej£ makes the following diagram oonmutative.



X,A) H°(XS r A)
0

H°(S' # X,B) a-' ->H°(X,

V M

That ff"P is always an additive operation may be proved as in the
"'- ' - "

classical case0

(5o4) We wish now to say something about the relation between these 

operations and the classical cohomology operations« This is rtOEbeasily 

expressed if we first give some additivity lemmaso 

freipai 5^A1 Let A, B G C for it I 0 There is a natural isomorphism

i, £
Proof- The lemma is immediate using the definition of addition in &

and the fact that H°(Xf SB1) * E H°(X, B1) 0
i^I i&I

Let A^, B €r C. for J e J e There is an injection
V " **

i.f 2L t B)

and a projection

p:

such that pi is tlio injection of the direct sun into the direct, product, 

and p is
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Let as identify, for each X € , the groups 

H°(X, ) and CX^) j we write

= .|j rf o Lot 0^ ©"(A^B) have components 0^ 0 Then we

define i(^) to be 9 on the component K of K

Let 0 €r^( 2 ' A*,B) o Then we define the j®1 cocroonent ofj*J 
to be on K^ , tho composition

KJ -> K -^-» H°(X,B)

It is clear that pi is the injection of the direct sum into the direct product 

Let h be the composition

in which i9 is defined analogously to i above and i" is induced ty the 

injection of the direct sum into the direct product* Then clearly ph = le 

Therefore p is onto, and in fact I ' ^(A^,B) is a direct sunmand of
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In general p has non-trivial kerael0 For example, when J has
\ •

two elements* this follows from the isomorphism 

* A, B) ^ H0 + A.,, B) 0

5o50 Theorem 5.51 If X £ X , A 6 £ f there is an isomorphism

Xs H°(X, A)-*H°(X, H(A)) 

vhioh is natural with respect to maps of X 0 

ESStak Let F be a free complex and f : F— * A a map such that 

f* i H(F)«. H(A) ; let j: F ->H(F) be a (chain) map such that 

g* s R(F) a* H(?) j that maps such as f and g exist is veil knovnc 

By X loll* f and g Induce isomorphisms

H°(X, A) <- H°(X, F) Jg+ H°(X, H(F)) -J?L^ H°(X, H(A))

v / vClearly /\ = tx* g^(f») is natural with respect to naps of X 0

, there is a (non-natural) isomorphism 

X iftliB) ^ 6^(H(A), H(B)> .

It fbllovs from 5«52 thatf at the expense of natorality, ue may 

consider @'(A,B) only in the case where A and B aro chain complexes 

vith trivial differorrtial0 In this case \je may v/rite (caf0 VI 10 S)

How classical^ an operation of type (A^., rj Bflp a) is a natural 

transformation in the category of abelian groups and set maps

f BB )



(using our present conventions as to grading) 0 Bat H (X,A ) = H (X,i? O 

, B) s H°(Xj»fBj 0 So an operation of type (A , r j B , s)
S 8 >

in the olassical sense is exactly an operation of type (i[A ,«f B )

in our sense0

From 5e41 it follows that

CD-early ^(Ap'fB^) ^ TT U (rtc A ,if B ) 0 However there is a projection*" s vfeiŝ vfei r s

(f r v s 

vhich will be of use later 0



62

V111-* THE FUHCTCR Kf .

In this chapter we show the relationship between the Dold-Kan functor 

and the classical construction of the Eileriborg-Maelane Connlex K(rrfm) 5 in 

fact K(ir,m) = R(I£WT) 0 More generally* ty replacing V lay a. chain conplox* 

we obtain a functor K( ,m)j £ -» 3«3> such that fc(Afsi) = Rfy^A) 0

In f 1 we define K( ,m) and prove a number of simple propositions 

about K( ,m) , and so about R 9 which we need elsewhere, We also relate 

these constructs and the VI construction^ and give a siople proof of the \jell~ 

known fact that any FD-conplex is of the homotopy type of a product of Eilenbarc* 

Maelane complexeso
>v

In § 2 we discuss the exactness properties of K( em) ; tho situation 

here is not as simple as for the classical K(r,m) since K*( ,m) is only 

Ieft«ezact0

4 10 Paffinflnt^fflffi ^yy^ Basic

o The complex 1£(Afm) e3"^> is defined

K(A,m)q = ZC^A) = Z^WqJ/hA) q = 0,1

<p = <fc* A 1 <f> a categorical ess-operator 

dearly *K( ?m) , which we also write 0* t is an additive functor C

«2 K° = R s C—

VI3o31, if Aee ,Z0(H(q) <hA)=3-(M(q), 

(1030 ) pflf^^tpirm 1^^^ The additive functor S s C — *C0 is defined

S(A)r = Z(A) r=00
r < 0
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with differential induced by that of A 0

Vie write s for the natural inclusion of chain complexes

s : S(A)<=-A o

Proposition 1^32 If AeC , then $°(a) : K°(SA)« K°(A) .

Proof^ If C t Co 9 then any chain map C — > A factors uniquely

through s j SA<=. A 0 Since N(q) € C0 9 the proposition follows,

Proposition 1..33 BR = 1$? is naturally equivalent to S 0

j»roof» Let A e€ . Then

I&°(A) « 4°(SA) ty 1032 

= HR(SA) ty 1«2 

« SA by VII 4-»2, since SA^

Corollary ^,3 L Let X €X > A € C o There is a natural isomorphism

H°(X,A) » Ba(X,VHRA).

Proof. Clearly (as 3n 1«32) H°(X,A) » H°(X,SA)0 ^r 1033,

Proposition 1.35. There are natural equivalences ° ° m

The first equivalence follows from the isomorphism 

2-0(N(q) /KA)*Z0(M(q)A ÎBA) (c.f. VI 2,3 for our conventions on ? ) 

The second equivalence follows from the first and 1033. 

Proposition 1>36^ Let h^, h_j A-^B be maps In C o 

Then *£ h,, ^ ̂O^)^^^) o ^ Partner At = Of i <-m ,
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RS

so

Let AB€ . Then

(lo4) There is a treH-fcnown W construotion assigning a classifying space 

to any ess-group [18f37]0 The notation of [37j 2,17] is used here, . 

Theorem 1*Z1 Let A 6 &D 0 There is a natural isomorphism WA ^ K( NA, 1 ) 0 

Let a = [a _,.. 0 ,a ]^(NWA) 0 Then

and ^ * = °* So

a 6 (HA) - , , Purther 

, Hence the map f » 

given ly

f(a) = (-a)q[a, »^a,Of . 0 , tO] f

is an isomorphism of chain complexeso 

So

WA X K(nUA,Q) » K(^ NA,0) & K(NA,

«^2> Let A ££ satis^r A.: = Of i <-m 0 Then

Pnx»fr We have rf8(A,m) 2J >} KK(A,m) «J ^J S *t mA 0 ^ assumptioa 

= O mA f and so



(1.5) Theorem 1-51 Let A€C > X 

[X, K(A,ni3 «, 

[X,

« There is a natural isomorphism

* H0(X,<j°A)

1.35
since ((X) € Cd

Let A £ C o There is a natural isomorphism

for

IS f i A-*A« is a map in C such that i^i Hp(A)^ 

m , then K(f,m) is a homotopy equivalence E(A,Q)^ K(A' 9m)e 

3y 10 52, K(£,m) induces an isomorphism of homotopy groups«, 

It should be noted that we cannot assert K(f,m) is an FD-homotopy 

equivalence,

(106) We conclude this section by giving ja, simple proof, without the theory 

of Postnikov systems, of the well-Jmown fact that any PD-eomplex is of the 

homotopy type of a product of Eilenberg-Maclane complexes0 

Theoreia 1^61 Let A^JJD 0 There is an equivalence

00

h s A * K(ir(A),r)
r=o

'Let F be a free chain complex and f : F-*NA a chain map such 

that f w.: H(F) <£ H(HA) is an isomorphism0 Let g i F -* H(HA) ="H^(A) 

be a chain map such that g^s H(F) & H(NA) is an isomorphisiju 

ty 1.53f Bf : RF -^ A is a homotopy equivalence, and so has a homotopy 

inverse (Kf /t A-*BF . Clearly h = (Rg)(Rf)' s 

is a homotopy equivalonce0



66

Since T^(A) has trivial differential, T

and

2a Exactness properties of

The results of this section are not used elsewhere in this thesia. 

(201) Proposition 241 (Cartan) Let E t o-^P'-i-* P._|pio be an 

exact sequence of ess-croups* Then j is a fibre map. 

Proof- Clearly P is a principal fibre bundle with structural group 

in the sense of [10; Expose7 1], the group ^ acting on C1 lay acting on the 

cosets of P in P , So j is a fibre map [10; Expose 1> Proposition 2] 

Proposition 2..12 * Let B s 0 -^> P' — i-» P JUrfo be an exact sequence 

of C80«group8e Tho homotopy sequence of E coincides id.th the hooology 

sequence of KE : 0 -*Np' J: — * NP J _ ̂ Nr'i-* o a 

^roof^ Since j is a fibre map vith fibre P , and P , P , P are 

group complexes, and so Kan, the homotopy sequence of E is well-defined

[31; Theorem 14]»

The functor N is Moore's normalisation functor [37; 2 06]» The complexes 

HP t NP, HP' are in general non-abelian chain complexes. However* they are 

normal in the sense of Frohlich [23], so their homology groups are definedo 

These homology groups are the same as the homotopy groups of the respective

ess-group [37$

This proposition is probably veil-known, bat does not seem to be in 
the literature.



We prove that the sequence NE' is exact* Clearly I 8 is mono 

and j«i« * 0* Let Jffc HP and suppose j* a 0 0 Then f « iy « for

some tf'e P' • But i is oiono and (»P) **-! so 

and we have proved exactness at N 0 Let tf^flP* 0 . Since j is 

a fibre map, there is a JT€ P such that j tfs tf* and ^ .Y = 0, i> 0} 

sofrfcNP, and j is.epi 9

It is proved in fy of [233 that eny exact sequence of normal chain 

complexes has an exact horology sequence 0

Let zrt be a q-cycle of NP" e The homology boundary ^ Lzn ] 

is found as follows: an element y^NP is chosen so that j'y s zrt 9 

and o^. LZW ] is defined to be the horaology class [ Jr'j 9 where IT is a

(q-l)-cycle of NP1 such that i 1 ^ 8 = ^tf 0 But this process is exactly
' '[. 
the some as finding the homotopy transgression of z(l with respect to E

when z" is regarded as a representative of an element of T (l* n)» So 

the boundary operators of £ and NE coincide; the other maps of the 

exact sequences obviously coincide^

(2,2) Proposition 2.?1 H"1 : C — *3J& is left-exacto 

Proof, If A^C, then R(A,m) %3-(CN(Aq),^ mA) a Since «J is exact 

and 3 is left«exact, the proposition follows,, 

herem 2^22 Let E : 0 — * A 8 -i-»A -a^An — » 0 " be an exact sequence

in C • -I** ^^ K U>m) * Tnen (i) Im 3 contains the identity 

component of K(A",m) (ii) for each q>0 , there is a commutative

diagram
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Tq(InJ)

4-T-* W (At} '
°*

£roof* That <* :T1(lmJ) — > Hq_m( A") is defined and is an isomorphism 

follows from part (i) of the proposition and l»52j the commutativity of 

the diagram follows from 2*12, So it is sufficient to prove (i) 0 

To prove (i), it is sufficient to prove that if tfG 7(A%m)
sif •

a Z^tA*1, A") is in the identity component \"K( A11 , m), then ^ is a 

boundary : for if }T=$c», where o" t (CHUq)A A") x , then

cn x j«c for some c G(C(A q)^ A) ; so ar * j'S c

and under these equalities a boundary corresponds to a chain map 

homotopic to Oe So the theorem follows from the following general
*•

lemma on FD-complexes e

Lemma 2. 23 Let B € » and let : B <* (£$(), ^B) be

the isomorphism of VII 4»2o An element 2T& B is in the identity

component of B if and only if $ X ̂  0 : CN(Aq) — * TIB . 

Proof An element Vfc B^ is in the identity component of B«*«"9M&B» Q

0 :Aq — >B <=^D?^ 0 : C(Aq)-^B (VII 2.21) ^

0 : CH(Aq) — >NB (VII 4.0 a) 0 Since ND?s|(V) [l6fp.59], the

lemma is proved e

Remark 2^7L Proposition 2.21 suggests determining the right-derived 

functors R* A • These derived functors exist since C has enough 

injectives [2A]f and are given by the next proposition
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Proposition 2.25* There are natural equivalences for n> 0

0 q>0

Proofa Let A €C , and 0—> A —* I—s^M—>0 be an exact sequence 

where I ^C is an injective object. Let M 1 = Im K^j) \ then 

R & (A)«t Coker & (j) , so there are exact sequences

it

Since I is injective, H(l) = 0 » So from the exact homotopy sequence 

of (*) and 20 22
Tq(M«) »

q = t) o

By 2.22, i" JT (M«) « T (Km(M)i q> 0 0 Therefore from the, exact
H *1

sequence of (**)

0 q>0 JO q>0 

The proposition follows by induction.

(2*3) In [9, Expose 14} Cartan introduces a complex L(lT,m) which 

is a contractible fibre space over K(V,otl) « This construction 

also has a place in the present theory*
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Definition 2*31 The additive functor 'L( p m) : C 

is defined by

9 <i\ 1 £ a categorical ess-operator 

L(f ,m) = f h 1 f a map in C

The natural transformation $ : L ( ,m) — »( ,m+l) is defined by 

(A) = S : (CN(Aq)<h A)4j— » Z-^AV) * A€ C.

2.^2 There is a natural FD-homotopy equivalence

1. ( ,m) * 0 .

Proof 6 Let A € C 0 It is sufficient to find a natural contraction 

H ^(Ajm) '.'* 0 .

Let D(q)CN(q) denote the subcomplex generated by the images of 

N(fc*) : n(q-l)-»:!(q) for i> 0 « From the argument of [l6;pa59] it is 

clear that

^ (H(q)/D(q)

, qnn q-m— 1

^ A + A , q-m q-m~l t
y\

and that these isomorphisms give a natural representation of N L(A,m) as

the direct sum of elementary complexes of the form •«»() — >A — >A- — ̂ 0 ,«,

So N L(A,m) has a natural contraction .«
•^ 

Propoaition 2.33 Let A G C » The complex Im o , where

: L(A,m)— >K(A,m-«-l) t is the identity component of K(A,m+l). 

Proj>f a In the course of proving 2»22 it was shown that the identity component 

of K(A,m+l) contains Im S . Since L(A,m) is connected, IB
XK

is contained in the identity component of K(A,m+l)»
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k-INVARIAHTS OF FUHCTIOK COMPLEXES .(I)

In § 2 of this chapter we give theorems which are half-way towards 

solving Problems 3*1, 3»2 of Chapter IV « These theorems make the transition 

from FD-comploxes to chain complexes* The transition from ess-complexes to 

FD-complexes was made in Chapter VII, and the transition from chain«oompleze8 

to hoiaology will be covered in Chapter X,XI« This latter step is quite simple 

theoretically, and involves essentially only "coefficient bomomorphlsma11 ; the 

main problem is to put the results in a form suitable for computations*,

The course we adopt here is closely related to, and has the same motivation 

as, the Eilenberg-Zilber Theorem (VII* 3«41)» This theorem, we recall, replaces 

the chain-complex ?!(A&B) , where A,B €r3<3> by the chain-complex 

NA®NB * How the Dold-Kan theorem (VII, 4*2) shows that N(AlB) may be 

written as a functor of HA and NB j nonetheless, the homological algebra 

of this functor is much less readily understood than that of HA&HB , so 

that the replacement of l!(A*B) by NA&NB is indeed convenient*

At this stage there is a choice of working in the category either of 

FD-complexes or of chain complexes; the expositions in the two cases are "dual", 

in the sense that propositions have to be proved about the functor which is not 

natural to the particular category chosen « Thus & is natural to the FD- 

category, but not to the chain complex category^ ® , conversely, is a 

natural construct for chain complexes, but not for FD«-complexes9

We shall work in the FD-oategory, and accordingly we define A$B , for 

FD-complexes A,B, by A®B = R(NAfcHB) • The Eilenberg-Zilber Theorem 

then furnishes an FD-homotopy equivalence A: A$B£ A&B ,



71,

In VIIJ2 we defined, for FD-complexes A,B a map product Aft B 

such that if YO£ then BT ft C(Y)A>B . This functor <h has the same 

deficiency as x , namely that the normalised chain complex if (Aft B) is 

an inconvenient object. Accordingly, ve define in £ 1 a new complex A*)B 

such that A^B* R(ftAfc!9B) f and construct an FD-homotopy equivalence

There is for the f&nctor <h an exponential law which gives an isomorphism 

(AfcBMC — »A/H(BtoC) . To complete the picture of the transition from 

FD-cpmplexes to chain complexes we prove that Ny* is essentially the 

exponential map for chain complexes, and that the equivalences ^ , 2 

preserve the exponential lawa

These constructs are applied in J 2 to determine the compositions

A

where ^ denotes a homotopy inverse of

k : X—» A, ̂  : A—>B d In Chapter XI we define equivalences C(Y)/hA-»Fl Il(Y,A) 

and obtain the cohomological solution^

It should be noted that the procedure we have adopted is essential for

V Vi
.the solution*, If we choose an arbitrary equivalence A——5-» R H(Y,A) a 

then we cannot say much about the composition X ——*—>A —~vR H(Y,A) «

The functors $>*

(l.l) Definition 1»11. Let A,B fc3J> a The tensor product ABB 

is the complex

AfcB a R (NA®I«B) .
t

The tensor product is an additive functor of two FD-complexes; thus if f,g



are two maps in -, then

•Let <f * KR — > 1 be the natural equivalence of the Dold-Kan Theorem
w

(VII, 4»2K For A,B,C£J3> the composition 

fl(NA«HT.(B®C))

is a natural isomorphism A$(B®C)« (A®B)®C by means of which we identify 

these complexes.

Definition 1.12. Let A,B £ 3J) . The horn product A/h B t 3"J? is 

.defined by

( '^<i)^ S 3-(K(q)fcA,'B) q = 0,1,...

P s 3 (0**1» 1) 0 a categorical ess-operatorc

Clearly the horn product is an additive functor of two FD-complexea, 

contravariant in the first, covariant in the second. 

Definition 1*13. Let A,B,C 6 3S> • Th© map

u: ̂  (A®B, C) ————» (A,B(^C) («) 

is defined by

yt\(f)(a) = fCa®l) s f€^(A«B,C), a£A „

Clearly M. is a natural map, and so defines an FD-map

U: (A®B)AC ——>AA(B/hC) 

which in dimension .q is obtained from (*) by writing K(q)« A for A .

(lo2) To prove that the above exponential map is an isomorphism we shall 

relate it with the exponential map for chain complexes. This necessitates 

introducing temporarily two other horn products, which we shall later identify 

with



73.

Definition 1.21 Let A,B £ 33) 0 vfe define horn products 

A<KB, A n̂B €33) and isomorphisms X" J A/h B —* A/K1 B, 

B -» A/H" B

B)q s J (N(q)fcflA, KB),

• 1.1)

= 3

AJ (t ) =

a categorical ess-operator

^ " 9 * * *H 

<P a categorical ess-operator

, KB),

where *f is the Dold«Kan map (VII, £0 2) and M is the exponential map for
1 2 chain complexes. Clearly X * X » are natural FD-isomorphisms»

!ftieorenL 1Q 22 Let A,B,C ^3rJ) « The following diagram is commutative"*

————> 5 (A, B/hC)

N
3 (A,BV c)

•** J, X 
3- (A,B^« C)

(M, C))

, NC) ——

where the maps M. are exponential maps, and we have identified 

(HA, S(HBiKl?O) and $ (MA, HBA\NC) . 

We defer the proof to an Appendix.

Here, and later, we find the following notation convenient, if f la any 
map, then a map induced contravariantly by f is written f* , and a ma] 
induced covariantly by f is written f. or, simply, f

map
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Let A,B,C G3~J> o Then

f C)—— 

is a homotopy preserving isomorphism, and

p.: (A«B)^ C —— 

is an isomorphism,, 

groof«t The first statement follows from the fact that all the other maps
. -\

of the diagram of Ie22 are homotopy preserving isomorphisms© The second 

statement clearly follows from the first statement,

(l<>24) It is now convenient to make the identifications

A/KB s A<h« B e A/h" B for A,B fc&D 

We shall also identify A and RNA (A £33> ), and NRK and

SK (K <& C ) o

The diagram of 1«22 can now be written as a commutative diagram of 

homotopy preserving isomorphisms

, C) ————£————» 3-(A, BrKC)

N 
v

, NO) ———2————*3-(HA,

(1«3) The natural maps of the Eilenberg-Zilber Theorem (VII, 3o£L)

transform under R to maps
3A 3 B '< > A®B _

such that J A = 1 and such that there is a natural FD-homotopy A*l S 1

We now prove

Theorem 1.31 Let A,fl 63*J> « There are natural maps

< 
3
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soon that A3 = 1 and such that there is a natural
A

Proof* The complexes A<hBf AfoB are given
UjhB) * 3(K(q)x A,B), (A<HB) = 3-(K(q)® A, B)q q

Let q= 3 (A, 1)> 5 =JC5f 1) c The fact that A f 5 are

s* ^natural ioplies that A 9 S are FD«aape0 Also 5^ = 1 inpliea

Let II 9 E(l)x K(q)x A — > K(q) x A be the natural homotopy of 
the Ellenberg-Zilber Theorenio Let H9 s 1(1) ^ (A(hB) — >A^}B be defined 
in diioension q

•

q

Since each H8 is natural, the map H1 is an KD«map0 Furtherq
« *);( ^ S1 ® a) = f H(tf VS1 ® ^Sv©a) = f(<^g?® a), 
® f ) ( ipS1 ® a) = f H(sT^, S1 <8> H* S*® a) = f ̂ 3 ( y51 ^ a)

= (^ f) (VS^ 
ThiMfore H 1 sLS^A o

Actoal3y H 1 is the map corresponding (under A) to the nap

(A* B)x A - —— ̂ (A* B)x A —— -» B 

where ̂  10 the evaluation map (defined ty ^(e) = 1)0 However, the explicit 
fcrada for Hf Is relevant to Remark 1*33 belov0



76.

Let Y€X f and let A €C be such that 
°t * <*» o The htawtopy groups of 1£(A,ia)Y are given !$•

T « * H(Y, A)

T (K^m)) » T^ (0(1)4 K(A,m)) ty VII. 2,22

q

= **" (I,A) „

T be an additive, oovariant functor of two variatQ.es 
froei abelian groups to abelian groups0 Then T may be extended to a 
functor T i 3 J> * 33> —% "3 J> ty setting

T( A, B)q = T(Aq,Bq) A,B

96 a eategorical cea-oporatcr€

There ±B also a veU<4cn0Bn tray of extending T to a functor 
*8T setting, for C,C« e C ,

T(Cf C«) ss S T(C ,C« f *

with differential T^l) + T(l,^ ) (using the sign convention of 7I 
So w may define a functor T 2 33>*'3.D — *3JD ly

T (A, B) = R(T (HAf KB)) A,B 6^J). 
Further, tno^ftuootion oonpleres of type T,» 

i T and/h- may be defined ly setting, fcr A,B € 3J>
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(T(K(q), A), B), 

3-(T(K(q) f A), B) 0

It may be proved, however, that T (A,B) = T(A,B), 

The first of these equivalences is found by recalling (VI« 3.4?) that the 

maps and horaotopies of the Eilenberg-Zilber theorem may be expressed as 

linear combinations of pairs of categorical ess-operators* So the functor 

T (of abelian groups) may be applied to th^se pairs to give maps and homotopies 

relating the functors (of FD-complexes) T, and T 0

The second of these equivalences follows from the first in an analagous 

manner to the proof of l«31c
/V /N

Remark 1»3A.« The naturality of A f ^ implies commutativity in various

diagraias of the type

I a
The fundamental theorem (10 ^1) is now simple of proof 0 The corollary 

is a form of the theorem which is useful in applications later, and which 

shows clearly that we have made the transition from cos-complexes to chain 

complexes in such a way as to preserve AA. 0

Thqorem, ;i«4l Let > A,B,C 63J) • The following diagram is commutative 

3-(A*Bf C)— ̂ —— > 3(A®B, C)

Proof. Let f*3-(AjB, C), a6A . Then
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definition of M

= f (a by naturality of A 

by definition of * , VII, 2«31 

definition of A 0

Corollary 1,A2 Let A,fl,C € 3r J> « There is a commutative diagram of 

isomorphisms

<A*B, C> —————————> < A®B, C>

< A, B&C> < A, BtoO

ion lf A3 Let X,Y €^ , A We define

= H°(X, c(Y)/hA)

to be the composition 

H°(X#Y,A) = H°(K(C(X)KO(Y)),

N(Y), IIA)

H (X, CN(Y)/hNA) o

Corollary l«4ft Let X,Y 

of isomorphisms

H°(X*Y, A) -

There is a commutative diagram

H°(X, C(Y)^A)

H°(X.

H°(X,

Proof? In writing AC : HO(X*Y,A) ~^-> H°(X, C(Y)^A) , we have used the

identifications
H°(X*YfA) s [X*Y,A] -/^[X^1] * [X,C(Y).i A] « H°(X, C(Y),h A) *



The eommutativity of the diagram follows immediately from Io42, the
definition of B , and 1,24,

(lo 5) Theorem 1*41 is a theorem about the dimension 0 of certain function
complexes* We show that this theorem generalises to the whole function
complexes* This result is not needed later, so we defer the proof to an
Appendix*

^heorem 1*51 Let A,B,C fc3^ * There are natural FD-homotopy
equivalences

such that the following diagram is

A*
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ASIC TH£oREMS

(2P 1) Definition 2,11 Let X,Y,Z € . A map

FT : ZX —— > (1? )X

y is defined as follows: in dimension q , F is the composition

Map , Z) °*£ )Map(Aa # XY * Y, Z) —— /i

where 8 s X jjjT Y — >X is the evaluation map 

Let k

Then ^(kX^S^gHv^y) = k(^ S\g(vp ̂ f
In particular, when q = 0 9 identifying A^ X and X ,

FY(k) (g) = kg . 
In dimension 0, .we write k for F^(k) ; it is clear that

FT = (?*) : Hap (X,Z) —— >Map(XT,ZI)

is homotopy preseryingo
Y y y*When Z = A € 3J) 9 ttei» A and (A ) are FD-complexes,

Y Y and P is a homomorphism. We also write F for the corresponding maps

. LX,A] —— > IxV1], H°(X,A)

The following theorem is now almost obvious „

Theorem 2.12 1st X,If3C , A 6 3-D . The folloulng diagram is commutatiTe

H°(X, A) —— - —— > H°(XT#T, A)

o

H (XT, Cf| (Y)ihKA) 

where 9 is defined in
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We consider the following diagram

Map(X# *,Map (X,A) ———5

f i ^MapCz1^1) ^r

3-(c(xY),AY) < — £— 3*(c(xY)£C(y), A)

3-(C(XY), 3(C(XY)<8>C(Y), A)

The top triangle is commutative by definition of F 0 The bottom square is 

commutative by l«41o Passing to homotopy classes, and so to homology, we 

obtain the theorem*

(2A 2) The next theorem has two purposes. First it gives an alternative
ydescription of the (homotopy class of the) evaluation map fc : A &J. — >A • 

Second, it shows the equivalence (up to homotopy) of two possible daflnitions 

of an "evaluation map" (C(lH A) #Y — > A .

heorem 2>21* Let A . The maps of the diagram

H°(AY,AY)

satisfy
1)* & * u)(C(l)(hA) * * (AY)

where to denotes, as usual, the fundamental class of an 

Proof> The following is a commutative diagram of isomorphisms
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H"«C(Y)M A)* Y,A) ^*"\ H°(AY# I,A)———£——> H°(AY,AY)

H°(C(Y)A A, C(YU A)——g;-* H°(AYJC(Y)^A) H°(AY,C(Y)^A) ;

for the left-hand square is commutative by naturality of 8 » and the 

right-hand square is conmzutative by loVU So

jlA,(^^f I) 11 9 U)(C(Y)A\A) « (^*)"*1 ^ U>(C(Y)AjA) o 

But clearly (A^) ^ «O(c(Y)/hA) = U) (AY ) , for the fundamental

class corresponds to the identity map0
Y-* 

It should be noted that a™ tO (A ) is the class of the evaluation

map t : AY # Y -» A 0
M

Corollary 2>22 9 e

Proofo &t w(A) a ^yM^t^CA1 ) by definition of

by 2.?1 

U?(C(Y)/h A) by naturality of

(2o3) Let A,B€j3 t Y€J£ « We def ine a homomorphisa

G1 : (^(A,B) ——— > (^(CCYJ/KA, C(Y)^B)
-» V

VII a § 5 for definition of fr ) « Let k 6 (7"(A,B); then G (k)

is the operation which, on H°(Xf G(Y)/h A), is the composition 

H°(X, G(Y)/H A)-U- H°(X#Y,A) ~^ H

We also write GY for the corresponding maps

[A,B] —— >[C(Y)<hA, 

H°(A#B) —— »H°(C(YUA, 

Theorem 2, Let A,E ^3Ji Y^DS * The following diagram is commutative

H°(A,B) ————— ——— > B°(AV)



where ^^ A » are induced respectively by A* BY = C(Y)AlB ,

AY 1Sc(Y)(hAo

Proof* For clarity, we write £ for the operation in 

corresponding to kfcH°(A,B)* The following diagram is commtative

H°(A,A)

fl°(AY#Y,A)^H°(AY#Y,B) ———/£—•» H°(AY,BY) 

>|* 01* *i^*
+• n^/L^ _ *V A v

H°(AY,C(Y)MB)
/S* ^ ^ ̂  ft

I •*» I *J

H°(G(Y)^A, C{Y)M)-T* H°(C(Y)*A,

for the left-hand squares are commutative, the middle one by definition
y of G (k), and the others by naturality of operations with respect to maps0

The right-hand square ia commutative by 1*44,

How /*£* kuO(A) * Mf*(k) = FY(k) , by definition of FY0

Also GY(k)u)(C(Y)AA) = GY(k) . 
By 2.22,

Therefore &* GY(k) = &* FY(k) .



&. KENNETH ISOMORPHISM^

It is well-known that if 0,0* are free finitely generated chain 

complexes, bounded below, then for any graded group G, 

H* (CfcC«, Q)«J H* (C, H*(C J , G#ft This isomorphism is sometimes caned 

a KShneth isomorphism0

The usual construction of this isomorphism is via the Universal 

Coefficient Theorem and the RCCnneth Theorem (c«f« [25; Chapter 5, Exercise 

5]) 0 However the.direct sum forms of both these theorems are non-natural* 

so that the naturality properties of a Kunneth isomorphism constructed in 

this way are unclear 0 In fact, it is not difficult to give an example 

to show that a KSnneth isomorphism fi*(C®0«, G) fa H*(C, H*(C»,G)) 

cannot be natural with respect to maps of C* •

In £1$ a simple construction of a Kunneth isomorphism K* is given,, 

This construction is carried out at the chain level, and satisfies three 

conditions (i) naturality of K* with respect to maps of C is assured 

(ii) it is possible to discuss the behaviour under K, of elements of 

H^CCdC 1 , G) , given for example as co-cyies (iii) there is, when 

C 1 = CW(Y) , G = NA , a related ess-equivalence C(Y)fc A —> R H (I,A) „
W i

These three conditions on K/ are in fact essential for a complete
4

discussion of the function complex problem*

The construction of k given here is related to a construction of 

Bott and Samelson in [8], who there construct a KSfoneth isomorphism in 

homo-logy when the coefficients are Z •
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In f 2 we give formulae for 1^ when G * 2 (n^O) and C 1 is 

elementary*

Applications to function complexes ore given in Chapter XI•

A Construction of Kunneth Isomorphisms, 

(l«l) In this section, Proposition 1 0 11 is of standard type, while 

Proposition 1»12 is well-known,

Proposition 1»11Q Let A 6 C0 be free0 If f : B >-»C is any map in 

such that f*: H(B)» H(C) , then

It is sufficient (and in fact necessary) to prove that for all 

9 H(X) = 0 =^ II(A^X) = 0 o For suppose this is true« Let Mf 

be the mapping cylinder [.19] of a map f : B-*C in C 0 There is an 

exact sequence 0 —>C —»M-——»B—>0 whose homology boundary coincides 

with f« ; since f« is iso, R(M-) = 0 0 Also, since A is free, 

0-*AAC —^A .-h M^ ->A«HB —^0 is exact and the homology boundary of this 

sequence is (l^\ f )* « Since, by assumption, H(A^l^) s 0 , it follows 

that (l/Hf)a is isoo

Let therefore X 6t satisfy H(X) = 0 « Let fcZ (A& X) ; we prove 

f is a boundary by constructing inductively an element ga (AtoX) ^ 

such that S g = f o I^t gL « 0, r < 00 Suppose gy has been defined for 

r<s to satisfy fp « (-i)P6r»i^ *^gp *

^ A5 Th«i

o.
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Since . H(X) e 0 and A^ is free, there exists g^ : A «—>X . . n such
S ' °S 8 8+p+l

that gg * fs - (-

So we have proved f is a boundary 0 Hence Il(AAiX) « 0. 

Proposition 1*1^ Let A,F fc C 0 Let F be free and let

» H(A) be any map0 There is chain map g : F-> A such that

If G is any graded group, there is a free complex F fcC such that 

H(F)» G ,

(Io2) Theorem 1»2^, 0 Let L,A,B €C and let K 6- Co be free0 

Let 7: H(L/f\A}£ H(B) be an isomorphism^ There is an isomorphism

*. : H(K®L,A) » H(K,B)

defined for all free K € C0 9 natural with respect to maps of K and 

coinciding with $ (under the canonical identifications) if K s 2 0 

|roofa Let F € C be a free complex and f ; P — £ L J\A a map such 

that ~'f* : H(F) %> H(LA;A) 0 Since F is free, there is a map g : F— » B 

such that g* =$f* : H(F)-»li(B) 0 So if K £ C0 is free, there are 

isomorphisms

H(K*L»A) -l^H(K,L^A)«i^- U(K,F) 1^ H(K,B) .

The composition of these isomorphisms <. : H(K^L,A)» H(B) is clearly 

natural with respect to maps of K « Further, if K = Z , then

*"" = 9 0 

1»22« Let L, Af B 6 C 0 A K^n^th Isomorphism of

reduces to the identity and Jc * (1* g)« (14f )«""1 * g«f""

type (L»At B) is an isomorphism
^^^^^^^^P«i^^^^^^^^^^^^^^ >^

K. : H(K^L,A) •% H(K,B)

which is defined for all free K eC0 > and which can be constructed 

as in the proof of Io21«»



87.

OlearJy if such an isomorphism exists then (putting K = Z) 

K,: H(L,A)«iH(B) 0 If B B L<fvA or H(L/hA) it win always be assumed 

that K,: H(L,A)a H(L,A) is the identity*

The isomorphism C is said to be associated with the triple 

(F ; f,g) , where F,f,g are as in I021t and with the isomorphism ? 0 

A simpler construction of Kx is obviously possible whenever a map 

h : LtoA — > B exists which induces an isomorphism in horaology; such a 

map exists for example if L(hA is free*

If K, is constructed by means of such a map h , then 1C is 

said to be associated with h 0

If Y fe3£ 9 then a KHnneth isomorphism of type (Y,AjB) 

where A,B tC , is for each X £3£ the composition

J^ H(X;B)

where K/ is a Kiinneth isomorphism of type (C..(Y) 9 A;B) , and A is 

the £ilenberg-Zilber mapp

If Y 63£ , AfB e"3-«D , then a Ktinneth isomorphism of type 

(Yf A; B) is simply a Kiinneth isomorphism of type (Y,NA;NB) « 

Remark lt 2^ Each part of the above definition is essential for our purposes*

(103) Definition 1.31 Let Y €3£ , and let *C», K-z be ifllnneth isoaorphisms 

of types (Y,A1J BX) , (Y, A?; B^) respectively,

or

A homomorphism



la defined as follows : if k€ A^A ) t then ica (k) is, as a

function on H(X,B.,) (X £X ) the composition

H°(X,

AifBi e ̂ " * t&en we regard fc,*. also as mapping

Remark Ia 32 The determination of ^ in general is difficult. In 

particular cases, in order to evaluate K^(k) for a given k we 

shall simply use Definition 1 6310

Theorem 1034 does determine one part of *w (k) in general 

Proposition^ 1& 33 Let C be a KQnneth isomorphism of type
\

(I, A 5 H(Y,A)) o The composition

coincides with the suspension <r~' (VII, 5* 3) »

The proposition is immediate from the definitions. 

(1*4) let now A,B €rC , Y eD£ « Let K^ ,K.^ be Kfinneth 

isomorphisms of types (Y,A; H(Y,A)), (Y,Bj H(Y,B)) respectively, so that

f^: (9^(A,B) ——— > ^"(H(Y,AiH(Y,B)) 0 According to the discussion of 

VII 5o^,5»5 there is a projection

£,: (^(H(Y,A), H(Y,B)} —— » (^(rtV(Y,A),^ Hm(Y,B)) 

and (^(rttt B^Y^A). rf B^fY^)) » (^ (ijm H°(Yf rj-°A)^° H^Y,^0 B)) . 

But by a classical argument, if m> 0

m -" Horn (^(Y, A), H°(If
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Let us write fa : <9lH(Y,A), H(Y,B)) ——— 5>Hom(HO(Y,tfmA), H 
for the composition of those maps*

For m=0, we have

#"(H0(Y,A) , H°(Y,B)) * Map(H°(Y,A), H°(Y,B)) , 

the latter set being the set of functions H°(Y,A) — > H°(Y,B) 

which preserve 0 0 So for m = 0 , we take fb as a map

/°o •' <9"(H(Y,A), H(Y,B)) —— »Map(H°(Y,A), H°(Y,B)) C 

Theorem 1,^. Let k e (5^(A,B) , and m>0 , Then

the m«fpld suspension of k (VII 0 5«,3)o

Proofy To evaluate P*Mk) it suffices to evaluate lt« (k)

on H°(Sm, H(YpA)) d The following diagram is commutative

H°(Sm, Il(YsA))-^H°(Sm^Y,A) -*-» H°(Sm ^Y,B) -^ H°(Sm,il(Y,B))

1* 

H°(Y,B)o

The top row is K, »^ (k) acting o& Sm 9 the bottom row is ^ fc,x (k) » 

So K« (k) - <^ k o

2y Determination of Some Kunneth Isomor^hisins,

The presentation and results of this section owe a great deal to a papa] 

of Ne Palermo [39]«

First we give an "additivity lemma" „

(2,1) Lemma 2.1ai) Let A,L±, B± € ̂  and let K^i be a Kunneth 

isomorphism of type (L., A ; B.) (i = lf 2) o Then

is a Kflnneth isomorphism of type . f. -
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(ii) Let JL, L, B. 6C, and let {£.1 be a Kunneth isomorphism 

of type (Lt A±; B±) (i = 1,2 } 0 Then

- H(K®L,

is a Kunneth isomorphism of type (L^ AI •»• A j B + B ) 0 

The proof of the lemma is obvious 0

(2 02) In discussing Kunneth isomorphisms of type (L,Aj B) explicitly, 

an obvious simplification is to suppose A,B have trivial differential,
s

so that B*H(L,A) « If further A 9 L ere finitely generated in oaoh 

dimension, and L is free, then the "additivity lenaaa11 2 el implies 

that it is sufficient to consider the case A - 2 (n^O) s 

H(L) = 7 *Zt (t> 0) .

It -will clearly be convenient to have a canonical system of 

generators and relations for Il(K®L, Zn) Q Such a system is given in 

£39 ] 0 To describe this, we need some notations * 

flofratfon 2^21^ [56, 39]
,.f r . - • *

Let X ^ C be a fi?ee complex,

If xfeXihZ is a cycle mod n , i0 e0 S x = ny for souse

-ttien (xj or x denotes the homology class of hxfcKtoZ ,

where hux is the image of x under the map induced ty the projection 

2 — > 55^ 0 In particular, (x) or XQ denote the homology class of 

a cycle x o
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The Bockstein boundary & is that associated with the exact

sequence 0->Z-£* Z-> Z — »0 j i.e, S na: a ( ££x) f if x** u a no
is a cycle mod n •

Let m > 0, n>0 he integers* The coefficient homooorphism 
: H(X,Zffi) — >H(Xf Zn) is defined Jay

for x a cycle mod m , Where (n,m) is the HCF of n and m 

(if m s 0, then (n,m) = n) . The composition h S is written

The maps hR ffl , Sn satisfy the following relations L 56] 

m,P ~ (m,k) (m,n) ' Tc,n '

r n ... n 
«Q mfn ~ (n,n)

If XC X/hZn , yt Y* ZQ (n> 0) f then xx y<r(Xfct)rh 2ft

denotes the cartesian product (VI. 1.4) of x and y with respect to

the ring pairing Z $Z —— *Z , The cartesian product induces ao f v n n n
pairing « Q : H(X, Zn)® H(Y,Zn)— ̂ n(X^Y,Zn) , and « n(xn^yn > is

written x x y «

The following two theorems are essentially theorems 3.1, 5«1

of [39],
CPaUrW

Theorem 2.22 \Jf X,Y are finitely generated, free chain cooplexee, 

then B(X$Y,Z) ia generated by elements of the form
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for d ranging over the integers (s,t) , where 
are torsion coefficients of X,I respectively. Further, on 

H(X*XfZ) the following relations hold

(U) S -t at *xo * gi (ai 

(iii)

where c is (~l) in dimension p .
..*• . tPnUo»*)
Theoren 2.^3 \ Lot X,7 be. finitely generated free complexes, and let
n>0 o Let c range over the integers n,(n*s), (n,t), (n>s>t) f and 
let d range over the integers (n>89t) 9 uhere s,t are torsion 
coefficients of X,? respectively* Then H(X$T,Z ) is generated by- 
elements of the form h. (ax x) h . (a,xx,) . Further inh. ^ (a^x x^) f g h . (a,xx,) n,c c c * w n,n n,ct a a

>O the following relations hold

,3 aj x «1> = hn, J UJ x "j,!*^ l'* |n ' *•

The relations given in 2.22, 2.23 are complete sets of relations, 
bat we shall not need this fact*

(2o3) Let K. be a KOnneth isomorphism of type (L»A$ B) , 
It is found, in describing K. on the generators of 2.22, 2.23, that 
the signs are more convenient (c,f, V. 1*61) if we take K, as mapping
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H(L$K,A) & H(K,B) , that is if we precede K, by the twist auto= 

morphism TVH(L&K,A) s H(K®L,A) (Vl 0l0 5} 0 We shall accordingly, 

in this section, and in f 2,3 of Chapter XI, write *. for K. T* c 

(2«4) Let L be free and finitely generated and let H(L,Z)s ifiZ (t } 0) 

If K, is a Kunneth isomorphism of type (L,Zjh1Zt ) , then, for each 

free complex K £- C0 y© have in dimension m

,Z) -^-*

Let K ^ t 0 be free and finitely generated0

^or^ 2^ There is a Kunneth isomorphism of type 

\riiich on H(L®K, Z) is given ty the formulas 

(i) 

(ii) K

The proof is tedious and is left to an Appendix0

(2 e5) Let L be free and finitely generated and let 

0 s H(L,Z)ft.^Zt (t > 0) . Let n > 0 , and let H = (jq 2^* ̂  Zd, 

where d = (n,t) 5 then H(L,Zn)£N 0 If ^ is a Kunneth isomorphisia 

type (L,Z ; N) , then for each free complex K <=• £o we have in 

dimension m the maps

(K, N)

, zd) *
The composite of these maps is also written K/
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Let \>6 £&(L9Z) be such that *(l^) = I^Zt 0 Since t>0,

l* IT- «- * *. Hq(L,2) 5 let a* be the unique eleaent such that

at = bo •

Tfoeprem 2^61 Let *, ̂  be Integers such that « n *$ t = (n,t)=«/ Let 

KG £„ be free and finitely generated. .There Is a Kunneth isooorphisn 

ic of type (L, ^j H) «hioh on H(L® K, %n) IB given by

(1) ic 

(ii)

We may also cover the case t = 0 ty omitting (i) and (iii) 

above and taking f = 0 in (ii) 0

The proof is tedious and is left to an Appendlx0
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k-IWAtllAIgS OF FaHGTTOK COMPLEXES 

Determination of

Theorems A and B give the solutions to Problems 3*1, 3<»2 

of Chapter IV0

(lol) £et Y. £^ , A,B £3->I> and ^ a Kunnetfc isomorphism of 

type (Y,NA« HB) associated with (Ff f,g) e We construct an 

equivalence Xs AY «sB as follows j sine© f s 

g s P — HIB induce isomorphisms in homology, the maps R* : 

Rg i HP — > B induce isomorphisms in horaotopy and so are hoiaotopy 

equivalences (but not necessarily FD-hcmotopy equivalences )<» So the

composite
Y & , % A1 ————— » C(Y)JKA

vhere we write <f>' for a homotopy inverse of a map fi 9 is an equivolence
Y X i A « B 0 We say X is associated vith K^ 0

With these constructions given, we can now easily prove 

A Let X G">£ 0 There is a commutative diagram

H°(Xf A) ——— —— > H°(X^ Y,A)

H0(XY#Y, HA) 

H°(X*,B) = H°(XYg HB) o

Prooyr We consider the following diagram
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H°(X,A)

H°(X*,<;(Y)/hA)

BP)

H0(XY fl B)

, IIA)

, F)

H°(XY, IS)

The top rectangle is commutative Tqgr 3X0 2 012, and the bottom squares are 

obviously commutative,, The theorem follows immediately 0

(102) Let Aj, B^^^ jY^j andic^^boa Kunneth isomorphism
y

of type (I, A.; B.) with associated equivalence \t A^3! (* = 

A map is defined in

Theorem ^ The following is a comnntative diagram of homomorphisms

Proofn Let let H^^^Ag) 0 For any X tlS.yta (k) is defined as 

an operation Toy the following diagram, in which we assume iCj is

associated with ±f (i = 1,2)
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k

H°(X,CN(T)<h

'1*

H°(X, H°(X,

H°(X,
(k)

The map written <j> is simply G (k) (DC0 2»3o).

In the following diagram

$

/v
<V

A

B,

tht top avuM 10 hflMtOf? eoMrtatiT9 ty 1X^2.31, aad the bottom

is hoootopy commutative by the definition of *u (k) c The theopea 

follovs immediately from the definition of X, »
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The evaluation c

(2,1) In this section we are primarily concerned with computations using 

Theorem B$ let us for tho moment use the notation of this theorem,,

In order to determine *Cxi(k) 6 H°(Bj,B ) 9 we calculate, using the 

definition of K-IT. » the class t^ (k) u> (B.) 9 where
V

vO (B^)frH (B^B^) is the fundamental class, that is, we determine the image 

of tv(B) under the maps

Because of the following theorem, the class fc^<^ (B..) is called the •

Theorem 2*1^ Let APB t3J> 9 Y € 0 I*t *O be a Kunneth isomorphism
Y of type (I, A; B) , and \ : A 'ii B the associated equivalence* The maps

of the diagram

H*(B, B) H(A, A)

satisfy £*u>(A) = (>* D* K."1 >°(fl} o

teooff tet X=^^ » where ^ s C(I)*A 5i B „ He consider the

follwiing commutative diagram, in which all maps but £H are Isomorphism

H«(A,A)

H°(AT, C(I)(H A) *- —— H°(C(I)A A,C(I)A A)<- —— H(B, C(lW» A)

^"' -, U, 
^ ———— ,_ ——— H°(C(Y)AA, B) < ——— y- H°(B, B)
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According to XXa 2022 , 9 g*ia(A) = A*W (C(Y)A A) 0 Therefore 

<X*D* C* *>(B) = (X* I)**"1

= 0-*L&MG(Z)A A) 

= € **(A) 0

Using the results of X0 $ 2, we now give explicit formulae for 

the evaluation class vhen H(Y,Z)«. V^t ° Jt is olear f*051 X. 

Lemma 101 that from these formulae ve may determine the evaluation 

class for all finite Y 0

For reasons of signs, in this and the next section we take the 

evaluation class to be in II°(Yij;B,A) (using the notation of 2.11), 

so that |0 s H°(Y#B,A) « H°(B,B) «

One trivial point must bo made; if IT finitely generated, tut 

not finite r then Cjf(K(T»i&)} is not finitely generated 0 However the 

results of Xe i 2 still apply since there is a free finitely generated 

chain complex A(ir,m) which is naturally chain equivalent to 

C,j(K(Tfm))

(2«2) Let Y e3€ be finite, and let ^ : H(Y,Z)^ ^2 (t ^ 0)
*Let K. be the Kunneth isonorphism of type (Y,({B Z;

m DHT .associated with fl n * : H(Y,^ Z) * ij 7.fc, vhich is given jfe20 41

Let b € H^tY^Z) be such thet ^ Vs 1 e V If * >

then 8* * tf** (Y,Z^)^H^(YfZ), and i/e let a^lT (Y^) bo
U ' **

the unique element such that
'I 

be the fundamental class; here K(Z^9 &-*)* K(2,m) 6
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lOOp

The evaluation class l is

(i) i = b0 xu> 

(H) * =St (at V

if t = 0 

if t > 0 0

We have simply to find & such that K, (|) s u> 0 Siase 

is a class mod t-.f the theorem follows at once from X0 2.410

(2o3) Let T €rX be finite, and let ? s H(Y,Z)* ^"*Z (t > 0) 

Let n >0, d = (n,t) 5 N = ^ a"*Zd * ^ nwP*lZ . then

N <, Let b0*at be as in 202 (and as in X«2.5) and let 

be the Kunneth isomorphism of Xe 2 a 51«

How K(Zn,m)1 ^ K(Zd,E«p)xK(Z4,ia«r+l) = Q gay. Let 

pl • Q — ̂ K(Zd,io-r), j^s Q -^K(Zd,o*r*l) be the projections, and 

let vO "•* e if*1 {Q^d )t w"11**1^ IP*"1 (Q,Zd ) be the images of 

the fundamental classes *

i = hn,d

the maps ?» p *
J» • ^* *

The evaluation class 

* ^ hn,d

is given

X« 2051, since »o 

class i satisfies

are mod^classea, the given

K> »*

8tooe
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These examples are entirely applications of Theorem B, using 

the results of the last section* All of these examples seem to be new, 

except for Example 3.3, in which the case n = 2 has been obtained 

other methods of P0P«Peterson (private communication) 0 

foapole 3»1 Lot k = Sqn: K(Z2,m)—»K(Z2,m+n) 9 and let

Y = Sr~ u2 e** (r < m) - 0 Then kY is given ty the diagram 

_\Y s**>

The calculations are covered by 2 031 and X0 2 0 51 

d = 2,o(=:l, /j = 00 The evaluation class is

and Sqn £ = Sq1

the Gartan forinulao But 

*LSqn £ =

gxflmp^e B3 r^ Let k = Sq j

Then ' k^ is given ty the diagram

K(Z,m)y c:

ky

Q n . % Sq u>

so qy X0 2 0 51

, and let Y = S < m)
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The evaluation class is given ty 2021 with t = 2 5

So Sqn £ = Sqn S

= Sqn (Sq1

X0 2 0 51 *K,Sq £ Sqn * Sq11"1 8^)10

and let

s Sr Ue1 (r < Q ) o Then IT is given ly the diagram

As 1^3*2, ! a

and

= ̂  (a
2 ^

t b x
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By X 0 2e£L ic S 23q\=: Sq^q1 2̂" * h2,0 6 2(Sqn *

* Sq^Sq" «• fl,*** V*

/ -\ /„ n a (n+1) (Sq «- Sq Sq

K(Z,2m) , and let
TsS'ueue be complex projective 3-space. Then kY is given by 
the diagram

K(Zp m)Y * K(Z,m-£) x K(Z,m«4) * K(Z,m-6)

1

where Y = 0 or 2 according aa m is odd or even0

aj, generate H (T,Z) for i = -2, -4g -6« Then the evaluation
*i~ 0 « c - . N-o»2 . .m«4 ..m-6 0class c s a0 ytO * ay y>u> * ax xtO e So<c & O

Ei-2\2 / m-2

§ 4*. ?he no^base point ncase0

(4ol) The preceding theory runs perfectly smoothly if we are in the 

ess-category without base points, except on questions of suspensions* 

Also VII 5o22 is false« The evaluation class is slightly more complicated, 

but the extra terms added are always cartesian products «



The major points of translation are: (a) for <££ read x 

(b) C(X) was defined in VII 1.2 to be B^/&(*) ; we must now define 

C(X) = B(X) (c) homotopy in the ess-category now means free bomotopy, 
and [X,Y] means the set of f--ee homotopy classes of maps X-^I 0

(4,2) The calculations of the previous section are not much changed in the
non*>base-point case provided we keep to additive operations* One such

example was given as IV0 3&o We give one example for a non-additive

operation*

Example A»21 Let k s (iom) 2: K(Z,m) — » K(Z, 2m) , and let I = S? u e*
y be the complex protective plan^o Then k is given by the diagram

* K(Z,m) %

K(Z,2m)X ~

. , . / m\2 / m-2\2 A \s.A&/1J&-2 . J&-4 \ \-_fO m °^ where - k' «(*)"+ fo ) + ^^ .(«* +KT ), ir =} 2 m even

Prpofft This follows si ply from

Remark 4B22 A result similar to that of 4,21, but 

for real cohomology and for m = 6, has been given t<y Thorn in [5l]o However 

there is a gap in his argument which seems difficult to fill except by the 

sort of method we have given here*

We say no more on the non-base point case*
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XII* Homotouy Groupa of Fibre Spaces and Track Groups «

In this chapter we shall apply the previous theory to obtain 

M.G.Barratt's results on track groups (c.f0 Chapter III) except for the 

description of the extension in the low dimensional case«* This will 

also illustrate how other applications may be made.

It is clear from Chapter IV that we shall need to determine 

the homotopy groups of a fibre space whose fibre is a css-abelian group* 

This involves describing the homotopy transgression of the fibre space 

and then finding the extensions involved., The general procedure is due 

to G«W« Whitehead in an American Mathematical Society Notice [5 A] 5 as

further details have not appeared, we describe the procedure in §1^3.
aIt is convenient at one point to use^generalisation of the Moore-

PostnikovYof a fibre map due to M.G.Barratt ( unpublished ) 0 This general* 

isation is of independent interest, and I am grateful to Dr. Barratt for 

permission to give his results here (c.f, $2),

The homotopy transgression^ 

(1*1) We recall that there is a canonical identification, for any 

AfeiD, I nr«(A)»H»(NA) [37] « The identity 1 : A->A induces 

I s D(l) : C(A)— >A (m. 2.21), and so (.' = (»Pl)«: H»(CH(A))— »H«(l!A) 0 

Let W>'iTii(A)- —— ̂HufA) = H!,(CH(A)) be the Hurewics map. The following 

proposition is easily verified.

• I have not yet completed the calculations in this case.
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Proposition l»ll The following diagram is commutative

T«(A)*S
H*(A) - t' 

An immediate eorollary is the following proposition.

Proposition 1.13 Let X £^€ f A fc33>and k:X—>A . Then the following 

diagram is commutative

HT ,,(X) ——

H,(X) ——— —— » H«(KA)

where k« = (BDk)« 0

In particular, let A = K(f ,m) t so that RA s£mv, and 

let k : X — ̂ A be regarded as a cohomology class in H^X,""" ) 0 Then 

the map sending k— > k 1 is the projection iT^tX^-r) — vHom
D̂l

of the Universal Coefficient Theorem* So 1«12 implies the veil-known 

proposition i

Proposition L.13 Let X^X and k:X — ̂KCT^m) a map* Then 

k«iirm(X)— ̂ Vm(K(tr fm)) - T is the composition

ir (x) — £-* Hjx) -JLl> ir .
m ~*

(1,2) These propositions apixly immediately to give the homotopor 

transgression A of a bundle A—> E — »X induced by a map k t X—j-WA 

(A6^J> 9 Xf^) , For the transgression of the bundle A— *HA— >WA 

is an isomorphism 1T»(WA) « 9 ir,(A) f and A is the composition
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32« The Barratt«Jfoore yogif^ikov System of a fifo*^

The results of this section are due to M.G.Barratt0
(2.1) Definition 2-1. Lot E, Be3£ and let p:E— -}B be a map. 
A ess-equivalence relation 5»5 is defined in E as follows : if

Ml 'Vft

x»ys E^t *nen X'>^y^:===^x,y have the same m-sections and px,py 
have the same n-sections,

Let E * = E/'-v*^ ; if it is necessary that the map p should 
be referred to, we -write FEm»n rather than Em'n 0 Vfe write p* for any 
projection E — » Em»n 9

If x,y fe E t then x-5»5 y =^x 2»5 y for any o 4: m ^ m 1 , 
0^ n^ n 1 o So if m^ m 1 , n ^ n* there are canonical projections 
p" . Em »** —— ̂  Em*n 0 The whole collection of these projections for

^n'^oo is called the Barratt«Moore Poatnlkov System 
of the map p 0

If X is a ess-complex, let p : X — »* be the unique map, 
The Mbore^Posfotfcov flratom of X [37] consists of tho complexes

projections X— > X(n) (0 4 m

If p : E —> B is a ess-map^ then tho system of projections 
° (0 ^ m 4 rn 1 ^<»o) constitutes the Moore^Qqtnikov system

of the map D f38l.
(2.2.) The fonowing theorem may be proved by the methods of [37,33].
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?** ** P— *EJUB be a css-fibration with p onto and

E,B Kano Let ̂ T^B)—*'^?) be the hoootopy tranegresaioa of
the f ibrationo

(2,21) The projections En*n- —— * E*'n

are fibre mapse

(2022) If m < n , the fibre of En»?— » E0-1'11 is of type

(^(P),*) , whilo the fibre of En>n .> E0"3"11 is of type (Cok

(2023) If m < n - 1 , the fibre of Em»^ —— » Em>n-'a' is of type

, the fibre of E"»- —— ̂E'* is of type(Kor*n,n) ;

the fibre of E*-— >E* (k ^ 0) is trivial.

(2e24) There are natural identifications E°»n = B^n^ f En»n =

The set of maps Ent *nt > En»n (0 ̂  n 4 nf ^°°) constitutes the Moore.

Postnlkov system of E 0 The set of maps E°'^ —— > E0>n (04 n^ n1

oonstitateitho lloore-Postnlkov system of B 9

(2*25) If p : E — »B is a minimal fibre map, then so la

This theorem is conveniently represented by the following diagram
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Here *r = * r (X) , and we have written in the non^zero homotopgr 

groaps of the fibre of each map rather than the fibre itself0

What this theorem gives is a method of building up the fibre space 

£ by patting in the tiomotopy groaps of the fibre and base one at a time,

We shell wish to apply these results to principal bundles (15] &(10^

By amap^sfl—»B C of principal bundles BjP-^E-^BeB'sp!—>E«—>B e is

meant a commutative diagram of maps
P 
t 
P

where f is a oss-homotnorphismf and, if P acts on E« through f 

then H/ is-a T -map 5 i.e0 the foUowing diagram comnutes

Tx E

V'x E 1



where IT , if « are the maps giving the actions of P ,P « on E,E«
„»

respectively. Let k ; B-» W P, k» 8 B« -»\? p • bo classifying maps 

for B , B« 0 Let f k^ denote the homotopy class of a map k « The 

following proposition is readily verified*

*11 If $ : £—»# is as above, thon

Let B. : P — > E JL*B be a principal bundle, and let T :Px E — »E 

give the action of P on E 0 Now P 'n' is a group: for 

(P *P )(n = P (n '% P ', and so the group multiplication

determines a group multiplication p' ̂ f i — > r.'JSlmllarly the action

of P on E determines an action of P on E^) 0 Let f1 <n> 

be the quotient of P ty the suljgroup of p'n' acting trivially on

Proposition 2.32 The action of P ̂  on E'n ' determJnes a principa
XWS

bundleo Also Ev"'/ P^^ is naturally isomorphic to Bv"' in such a 

way that the projection F/n2—» E'nyp <n> corresponds to the projection 

)—-^B^n^ of the Barratt-Moore-Postnikov system of E 0 

Proposition 2.32 implies that ve have a map of bundles

E ——> B
I (2,33)

Let k^ : B^_>WP<n> be a classifying map for the bundle

B^n^ 1 p <n> ) E^n^_vB^n)0 Then by 2031, there is a diagram coomitative
i^^

up to homotopy
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1 I

k<n>

in vhich tho vertical maps are the natural projections

of o

(3*1) Let Q :P— - > E —— >B be a principal bundle, with classifying map 

k : B — >W P 0 The homotopy sequence of B breaks up into short exact 

sequences

where A s TQ (B) —^n-l^ ̂ ) ^s <fche ^onotopy transgression, which 

has been described in terms of k for abelian \ in § 1« We shall show 

how the extension j^ may also, for abelian P , be described in terms 

of k o

It is clear from (2.33) that the extension J^ is also derived from 

the fibration ^n^ induced ly k<n> : B^l-^WP 4^1 0 Let us assume 

B is minimal. Then the fibre of the projection a^l—^B^^'is a complex 

K(r (B),n) , and so there is a natural inclusion i s K(^n(B),n) —»o(n)0

There is also a natural inclusion i': K(KerA n ,n)—>K(T n(B),n) . Let

<n> /
p<n> ) E^_^ K(Kor ^n>n) be the bundle induced by k i i .

Suppose now P is abelian, so that r<a> is abelian. There is a 

map h : W^ > K(Cok ^n+i» n+:L) inducing an isomorphism of

0 Let K(GokA .n+l)-> E"_>K(Ker^n, n) be the bundle induced
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h k<n>

There are naps of handles

«• ] j
I •' ^ E •.— *

h i J- I 
KtOok^pn+lHE"————^KfeerA t

A check of. the maps of homotopy exact sequences shows that we have maps 

of extensions

0-»Cok

So it suffices to determine the extension for the bundle B n -^K(Ker/L. 9n) 

The extension in this case is given by classical theorems, (3«21, 3»22)«

Before giving these theorems, we note one useful fact0 The map 

k<n> i s K(rn(B),n)-» wP<n> induces a bundle over K(rn(B),n) , and 

it is obvious that the homotopy transgression of this bundle Tn(B)-yrn.1( P 

is the same as A n <> Hence v;e have

nlH The homotopy transgression A n is determlnod by

K(r n(B), n) . 

*20) Let k ; K(A,n) -T>K(B,n-i'l) (n ^rl ) correspond to an element

(K(A,n),B) 0 Let K(Bfn)-> B — ̂K(A,n) be the principal handle



induced ty k and let G = 1f n(B), so that G is on extensionn 
Cr : 0-> B-» G

When n = lf G and A may be non«abelian« However, the bundle 

is principal, so that A operates trivially on B , and hence the 

extension .G is a central extension,

yheorem 3«21 (Eilenberg - Maclane)0 The equivalence classes of central 

extensions of B by A are In 1 - 1 correspondence with H (K(A,1),B) 

in such a way that the class of the extension £ corresponds to k 0

Let n > 1 o The Universal Coefficient Theorem and the nurouicz

theorem imply that there are isomorphisms
••31.WL 
H (KUjnJjB^ExtCH^KtAjn))^)*: Ext(A,B)

The group Ext(A,B) is naturally isomorphic to the group Extabel (A,B) 

of equivalence classes of abelian extensions of B ty A0 So no have 

a natural 1-1 correspondence between Extabel (A,B) and

3«22 (GJJ.lJhlteheadj [54]) o Under the above correspondence,

the class of the extension G^ corresponds to k

taandle.flu.

W.1) Let X€^, Afe"3-3> and k : X— ̂WA a map inducing a bundle 

A->El>X o Let YSX and let XfcXY be the image of p1: E?— > 

The following is the ess-analogue of a proposition well-known for

topological spaces*
is a principal bundle over X« with fibre A*

Proof The action A*E-»E of A on E determines an action

A1 on E* o Odiously X« is the orbit space of



under this action. The only extra condition necessary ([I0jp.l010]) 

is that if *f * A1, xeEY , then f.x = x implies f = 0 9 since this 

condition holds for the action of A on E , it obviously holds for 

the action of AY on EY «

From the bundle A— »WA — »WA we obtain a bundle A*— > (HA)Y— > V 

where V is the image of wY : (WA)Y — *((m)Y ) . Since (WA)1 is

contractiblo, V is simply the identity component of 

Clearly we have a map of bundles 

A* —— * EY ——

I I I *'•
AY ——

where k« =

Propositon LA2. EY — > X f is the bundle induced from

Proof We may represent E as the subcomplex of the product XxVA

consisting of elements (2:* ^) such that kx = wa « Hence IT is the
v 

subcomplex of the product X*x (WA) consisting of elements (f,h)

such that ^(f ) = «*(h) «,

(4.02) We novr wish to replace AY ty a minimal complex0 Let T = R5T»(V) 

and let f : V* T be a homotopy equivalence^ Then T is connected and 

T^WU, where U = R^r*(AY ) = R«T1T #(T). • The map fk« : X« — ̂t induces 

a ban£Lo U-^E 1 — >X' , and the map E 1 — >X f is of the same homotopy

type as the map E — ̂-* X* 0
To determine the homotojy type of E« it is necessary to determine 

X« and fk':Xf -»WJ 0 The elements of (X«)q are those maps
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such that kg 21* ; so tho determination of X1 is 

essentially an obstruction problem* The theory of the previous chapters
u*

enables ̂ bo choose f so that fk 1 may be ovaluated0

In f 5 we shall restrict attention to the component X* of the 

base point of X* • cloarly X*cX« 0

I»et now X = B €J"P c Then VQ may chooso equivalencos 

f : V 2: T, and an equivalence f 8 : RTT (E?) £ B? , such that
*% '

fk f • = GY (k) : R1^(B )-» T = R^(A*) a where G* is defined 

in Chapter X0 By X0 1«44> the induced map of homotopy 

GI(k)^:iri(Bz ) — > ^i 1̂ ) ** the ±tb suspension, cr^k , of the 

operation k « (This result is due to Thom0 [51] when B,A are 

Eilenberg-J-laclano comploxas).

The extensions which give ^,(P>) are determined ly the operations

Pi i+i®

We have no general formula for those operations, although they may be 

determined in particular cases «

j 5 ft Applications tp track

(5ol) We now consider the problem of determining the track group

T. T00=ir (XY,#) , when Y is an A* -complex^
W» J»

We proceed ly induction on the Postnikov system of JL o Olear3y
_ • . •»

K(ir,r)T = »for r<n , and K(lT>n)x is a set of points* So if 

X( is the fibre of the projection X~»x(n) of the Ifoore-Postnitor 

syatem of X 9 tho injection X(n) -^X induces a map &
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which is a homotopy equivalence of components of the trivial maps* 

So we may suppose from the start that X is it-connected* 

Let X have Postnikov system

Here k, I are maps k : Kdr^, n+1) -> K(T^2, n+3),J?:

where X1 = X^n* 2^ Let us write f(a} for H"r(Y,r ) e Then k*s

is given by a diagram

where in the right-hand side ̂  we have written in only the identity 

component of the complexes 0

Tho maps ki(i = 1,2,3) determine a bundle A -4 E 

with homotopy sequence

By 4.3, the transgression A is <r(k) . Hence
n(5.12)'. V0(B') a lT(Y,ir J „ and ^(E"11 «

is an extension

(5,2) The niapJ? 1 » (X1) 1—>K(ir n+3,n^)Y is determined lay a diagram

IS'
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The maps jf . (i = 2,3,4) induce a bundle B -4E~»ET part of whose 

homotopy sequence is

Let h = ^|K(rn+2,n*2) : K(lT n+2,n+2)-» Kfir^nH) , where 

K( T^^n-*^) is, as the fibre of the projection X1— » K0r n+1»

a subcomplox of X » The transgression A is then given by the 
following proposition*

gropositioa 5«21 £± = ^(h) o
.'

j>roof By 3 » 11 the transgression ^ is determined by the restriction

, 2) <» We consider the following Siagram

I

where £ ± is an evaluation map and X i a homotoKr equivalence as given 
in Chapter n. (i = 1,2,3). Let i, i', i" be the injections shown in 

(*) . Let fc-be-a Kunneth isomorphism of type (Y,'[ ir n+3 I H*(T»t

The class we require is (by XI. Theorem A)

by naturality of

«) 

(h) e



Hence 2 \£(l(*+2) , 2) is the map of Tg induced \yy h 9 So,

Xc 1.44* A' = <r*(h) .

Remark 5»22 Although we do not know how to determine 1 1 ^
general, in particular cases information may be obtained from the diagram (*) 0

(5»3) The above results can be expressed when T is finite in terms
of squaring operations e

Tt+i Let ? € ^n+ofe ) be a non-zero element containing maps
of Hopf invariant one if n = 1 \ the composition y^A defines for
n>l a homomorphism y* : /%l+ n(x) -> ^ +?(X) such that 2y* = 0,
and for n = 1 it defines a transformation V *: ^^ — * ^W euch that

TT

where [*,p] is the Whitehead product of * and & (c.fo [59])o Thus if* 

defines homomorphisms

where P(G) is defined in [59] for any abelian group G 

It is well-known that there are factorisations

where Sq2, J*. are respectively the Steenrod and Poatrjagin squares,

The first of these factorisations is essentially due to Steenrod 
the second to J«H.Whltehead [60] 0



If we use these determinations of k (and also of h } in 
the discussion of (5.1), (5*2) we obtain, the following theorem, which 
is due to M.G.Barratt [3]«

Theorem 5.31 (Barratt) If Y is an A^-complex, then IT^X) is
^ 0 -1 given by a diagram of exact sequences 4>

I
Hn(n+l)

"
I

in which Er(s) = H-r(Y,r(X)) , ands

k , =

where >0 = <r ( "J^) is the Postnikov square.

The extension giving G of 5a31 is determined by the map 

k? of 5 olio We have 

Theorem 5.32 If n>l, Y is finite and ^* 9 ^" ««> finitely

generated, then

(a) k2 is the composition

),2)

(b) kj = 0 .

The proof is left to an Appendix.
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Remarfc 5«33 (a) The determination of the extension giving the group 

G of 5.31 in terms of Sq is due to M«G.Barratt [3]«

(b) The fact that k- = 0 in 5*32 is because h^ is Sq2 (with the
p correct pairing) and Sq is zero on 1-dimensional classes. That

o 
is real^r Sq will be clear from the proof of 5*32,

The calculations of k- and k~ for the case n = 1 ore 

more complicated and are not yet complete*

The main outstanding problem is now the description of the
yextension giving IT, (X) « This description must involve secondary 

operations , both in cohomology and homotopy*
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Appendjbc 3,ff Proof of

We recall the notions of [33] « The torological space 

is the space of the standard q-s implex: some convention is made so that

the spaces | £^| (q = 0* !»»»») are disjoint* Any ess-map

i & r ——— » A*1 induces a continuous map fi : I A r | _ >| A q i

If K63£ » a point of ||ftj is an equivalence class 

, x I of pairs (k . x ) such that k €• K . x e I Aq | 9
^ HL " ^ ^d M ^

*
the equivalence relation being

-q' *-fr»jr~q' r T9 Xq

The hoHaorohism r: |KK«——^K* w K is given

' xq]) V V kq6Kq ' V

The isomorphism $ : Map (|K|, X) * Map(KpS(X)) is given by

= f |kq, xq | ,

Lemma The isomorphism X* S(|fC|/hX)a: S(X)K is given by

Proof,, in dimension q , X is the composition

Therefore
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To prove V.36, let f : |A| —— ̂ (|K|^ W |L|)* X , Then, 

with the obvious notation

On the other ha&d

(f) (^^q,

Appendix 2; Proof of IX.

We recaU that if K € C » then

and the isomorphism

$ : N E K —— ? S K

is given by $ (f ) = f ( S q) f fc 

For any k €> (3K) , $ ^(k) is a map n(q) — •» K vhich we write fi .

Thusi' is charaoteriaed (as an element of (KiiK) )by the equation
i

« <iq) = k .
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With this notation, the isomorphism 

(AfB 6 3D ) is given by

* A^B —— * A<h ' B

HA

The isomorphism \ : Afo1 B — > Ato* B is given by

a€»A 0

Let maps fJ", K2, M3, M^, be defined by the diagram

^ BMC)

where A*is defined in Iel3 by

1 2 3 We calculate in turn /A ,^ 9 f* > •

(1)

. f 6j(A©B,C) 
a* A

(Na^l) WSb) ty naturalily of 

where a* = (Ha) (Sq)
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(3) (g)U) *q)( = ab g£(fl(A$B), EC)

(4) (h)(a)(b) = &*3 'ha h «(»A*?:Bf NO)
( 
\

= h(a®b) «

This last formula is that for the exponential map for chain 

complexes* So the theorem is proved*

Appendix 3^ Proof of IXa

In the following diagram

* * > C)I
A, B&C) —— A— *3(K(q)i A> B*\C) —— rr-*3 (K(q)» A,

the loft-hand square is commutative by 10 41 and the right-hand square
1 is commutative by natural! ty of A 0 We define A : (Ax B)JjC — *(A9B)fo C f

A2 : Ai(B4lC) — >A/K(B^C) to be in dimension q respectively

A* 9 A &• o Since A , A are natural, £^ 9 ^S are 

FD-mapOo That A*, A2 commute with ^ is obvious, so we have only 

to prove that /$ , £? are FD-homotopy equivalences^

let f S (A»B)^C— >(A^D)jhC , ^2 : A«H(l3*vC) —— *
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be defined in dimension q in a similar way to

Then ^A = 1, &5 =1 implies & S1 = 1 ^ V - 1x ^ j>, ^ — j. ,

^a 1 lilies that if f *3- (K(q)jj AA B, C)>g 63(K(q)i A,B* C) ,

A4 B-»C , (g) ? g . K(q)i A-*B(b C .
3. 2 Let us write D (f), D (g) respectively for these homotopies*

Then maps

B,C)

2 
-q5 ——q

are defined by
" lt ^ (**y

Since the hoootopies D*, D2 are natural, 0 9 g ( q = 0,1,. o 

define natural FD-homotopies

*1 : (A2iB)/KC —>( 
AC) —^ A

Appendix t*o Proof of Theorem X., 2a Al

By X* 2«1, if t> 0 , it nay be assumed in constructing 

that L«KZ has only two independent generators a,b in diomsions 

q •«• 1, q respectively with boundary S a = tb . The case t = 0 is 

also covered in what follows simply by omitting mention of a o
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Let h : L4 Z — > tfit be defined by h(a) = 0, h(b) = 1 J

then h is a chain map indacing an isomorphism in homology. Let to 

be the associated KSnneth isomorphism of type (L,Zj tf qZ.) ; that is,

let 10 be, for each free K €• C0 , the composite

Since K^ is natural with 'respect >jnaps of K , which is 

given to be a free, finitely generated complex, it is sufficient to 

prove the theorem when KA\Z has only two independent generators x,y 

in dimensions p + 1 , p respectively, with boundary Sx = sy ( s > 0) „ 

In this case the group H(L$K,Z) is zero except in dimensions 

p+ q+ 19 . p + 4t t when it is given by

(L®K,Z) a Z ( t) [( Ju_ S
' '

(Here Z^[u] denotes a cyclic group of order X generated by u )« 

Let x', y 1 denote the unique elements of K such that 

respectively x(x«) = 1, y(y') = 1 • Then, by VI. Leone 1,61,

=h(b) =1

Clearly y) • \ » 7O> < ~ S (a " 4= S ( s.t^ »,t)' x( 8,t) J '
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Therefore = ,t

This proves 2.A1 (ii) for the case d = (s,t) .

In order that a be a cycle mod d , it is necessary 

that d\t . In this ease d = (d,t) . So 2.41 (ii) is proved for all d

Proof of X. 2.51

It is given that L^\Z has two generators a$b in dimensions 

q + .1, q respectively, with boundary S a = tb (t> 0). The elements 

/hZ are also written a,b • 

The first step in the proof of X* 2,51 is the construction

ha, h

of a Kfinneth isomorphism of type (L.Z : II) wheren - :
n t) Z ( n t) * T° thiS end' let F be the free comPlex» 

whose generators and boundary are given by the top part of the following 

table.

dimension

generators

boundary

cycles

homology

f, F->U>zn
g* F — ¥K

q
u

d u = 0

u

Z(n,t)M

fu = b

*u = \

q * 1

V, W

^ v=tu, "^ ¥ = nu
rfe) 3 z

z(n,^r*T » • J
fv = af fw = 0

gv^l^gw^l^

q* 2
z

^z = n v - tw

-

**

f 2 a 0

gz = 0
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The bottom part of the table defines maps f: F— 

g: F—»N ; in these definitions, 1 , 1 +1 are the units of tf , N _

respectively, and X , jS are integers such that <Xn +flt = (n,t) • 

It is easily checked that both f and g are chain maps inducing 

isomorphisms in homology. Let C be the associated Kiinnoth isomorphism 

of type (L»Zn : N).

Since K- is natural with respect to maps of K , it is 

sufficient to prove the theorem when K<hZ has two generators, x,y 

in dimensions p * 1, p respectively with boundary $ x = sy (s £, 0) 0

Let x' f y f fc-K be the unique elements of K such that 

x(x f ) s 1, y(y') ~ 1. The relation Sx = sy implies "^y 1 sK-lfsx 1 «,

We use the following notation : for any complex C, and any 

fl"fc C , the elements fx'cr) (y«tr)eKtoC are the unique maps such

that
(y«) =0

(y 1 ) ^ 

The homology H(L^K, Z ) is iero except in dimensions

p + q, p+q+l> P^q^S , where it is given by
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This last group has as generators the elements

n

)bxx, n 0

In terms of the generators of X0 2.23 these elements are given by

(ac x = V ̂ •

= ha,(n,t) (a(n,t)X 'r(n,t) ) ' « hn,(n, fl ) (b(n,s)x x(n, S ) )

Tho following table gives the generators and boundary of
—1 L. KtoF , and also the values of the maps IrK g* lftf» (/AT") (l/nf),

It should be noted that the elements in column 4- are ail mod (n,t), 

and those in colimns 5 and 6 are mod n0 We write 1,

q+1 for the units of these groups ((n,t ) =

dimen*.} sion
p+q

(x^u)
(x»v)

Jpundj«j

n(y flu)

mod d

(y 8 «)
0 
(x'b)

0
0

mod n

bicy

axy
0
bxx

0
0

mod n



The values of *C on the generators of H(L#K,Z ) can now 

be checked. In the following table column I gives cycles of (L®K)<V\Z .

.

Column II gives cycles of K/HF which map to the cycles of column I jj^t- 

while column III gives the images of the cycles of Column II under

Clearly we may identify y with (y'l) and (y»l +. )^x with (x'l )

and X|^Q+I« N° confusion results from this, since a count of dimension 

shows in which group elements lie«

cycles of

bary

Jtt"*)

II
cycles of

III 
cycles of

y 

y

to



From this table we deduce

*- V <*o * V - < x>d = V v

ya) = yd = b d>n hnjn yn + (.1)^ hd>o S nyn ( Sinoe^n = 0),

hn,(n,s)< b(n,a)'< x(n

= hd,nhn,(a,s)X(n,s)+

n,nhn,c < V S

= hd,tht,oxo + t-1 * hd,o S c xc

These formulae confirm 2*51 for particular values of i 0 But for 

(a. x x.)f (b. x sj to be defined we must have i|n,t (for the case of

a.KX.) or i|n (for the case of b. xx.) 0 So the cases we have covered 

are in fact sufficient for the theorem0
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60 Proof of XII 0 5«3?

Since the operations considered are additive, and by then additiTity 

X«21, it is sufficient to consider the case 1T +1 = 2 (p^O) , 

n4? = Zq (q> 0) . Now the theorem is trivial if * * = 0 <, Let us suppose 

then &* / 0 ; since £* is a horaonorphism such that ?fl* = 0 , this iniplies

that p,q « 0(?) , that &*(l) = q/?62 , and so that i = h ^ :y

We choose a canonical basis for (C1,(?}rh2) consisting of
Av ^*O

elements a 1 such that Iba 1 = 0 and elements a such that Sa sub (u>0) , 

where the elements b form cart of a canonical basis for

We write r = (u,p).

To the elements a', a correspond fundamental-classes 

- M^fl^UU >!)> I* ) tOfcir^UU ,1), Z ) 3y n 2,31, the part of the

evaluation class in the component of the base point is

"" a i P a 
We consider first the term a'_ >to' :* Now Sq a 1 = 0 , sine*

fca 1 = 0 , and SqP vO» = 0 t since dimtO 1 =-l 0 Hence the Cartan forwila 

Implies Sq2(a« xv>«) = Sq2a» x h2 ti" ; this tern contributes only to kx ,

which has already boon determined*

We now consider

s h ?
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The term h ^Q *r* n2 r *° ̂  contributes only to k, , which has already

been determined* The term h -(Sq1** Sq1^) determines kA o^ * n ' *

It is clearly sufficient to orove the theorew.yh->n C

has only tvo (independent) generators .a,b .with S a « ub (u>0) 0 If 

u j£ ?(4) » then Sq a, = 0 , and the theorera is trivially proved*

If u = 2(4) . then iJq^ = b^ , and (by X0 2.51) we may choose a Kfinneth 

isomorphism ^ such that

Clearly hp qh^ 2= *• » and so kA is the composition

2) ——»K(Z 2)

In the above Sq is taken as an operation of type 
r+1 G®zp) » ^or 6 an abelian group, whereas for the statecont of 

the Theorem in general it is more convenient to take Sq as an operation

rof type (^ G, o^) « If this is done, then the theorem follows 

immediately*
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Appendix 7B A new product topology.

In this appendix we introduce a new product topology which 

seems to have many advantages over the weak product considered in Chapter I • 

ftefinition^ .Let X,Y be spaces * and let XxY be the (usual) topological 

product of X and I o Let X 2 1 be the set XxY with the topology 

that a set C eX&Y is closed in XxY if and only if Cf\A* Y, CnXx B 

are closed in Ax Y, X* B respectively, for all compact subsets A of 

X, B of Y ,

Obviously if one of X,Y is compact, then X^ Y « XxY , 

and in fact the advantage of X* Y over Xx^Y stems precisely from this 

fact. More generally, we have 

Proposition !• X *Y s X * Y if

(a) one of X,Y is locally compact,

or (b) both X and Y satisfy the first axiom of countability, 

or (c) X and Y are CW-comploxes such that XxY is a CW-complex. 

Proof B (a) Suppose Y is locally compact* Let W be a set open in 

X^Y and let (x,y)6W « Let KC-Y be a compact neighbourhood of y » 

Then X * K « X * K, and so W oX * K is open in X x K 0 Hence there are 

sets U,V open in X,Y respectively such that (x,y>6 U^Vc Wo Xx K 0 

Hence W is open in XxY .

(b) Since X,Y satisfy the first axiom -f countability, so also does
«r »

Xx I Hence X » Y is a k-space, and so X *Y a Xx^ Y , Since the topology 

of X&I lies between those of X^T, XftyY, we must have

* In this appendix, the torn space will always 0«an Hausdorf f 
topological space*
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(c) In this case also X* Y = X* WY , and hence X* Y = X A Y 0

yLet X be the (usual) function space of all continwwl functions 

y— *X with the compact-open topology*
s

*• « 1 »

Theorem !• Tho exponential map M : X &I. _ » (X ) is a horaoomorphism 

(onto)o

The proof is similar to that of I 0 2,37, and is omitted* 

Corollary 101 The exponential map fA : X2** > (XY)Z (with the classical 

product) is a homeomorphism (onto) if 

(a) [22] one of Z,Y is locally-compact,

or (b) (Fox; [22]} both Z and Y satisfy the first axiom of countability, 

or (o) (Barcus-Barratt ; [2a]) Z and Y are CW«-complexes such that 

Z * Y is a GW-complexo 

I^rpof. The <x>rollary follows immediately from Theorem 1 and Proposition 1»

Corollary I* 2 (Jackson; [29a]j For all X,Y,Z, the exponential map 

« j ZxY T Z x - —— >- (X ) (with the classical product) is a homeomorphisn into
ZnY . Since Z^Y has a larger topology than ZxY , X is a subspaco

of X p So 1«2 follows from Theorem l e

Theorem 2» The product of f^g of identification .Tiaps f,g is an 

identification mapa

The proof is similar to that of I«,3o32 and is omitted, 

Corollary 2,1 Let f : P--»X, g: Q r+* ^ identification maps. Then 

f * g : PA Q-^X&Y is an identification aap if

(a) (Coheni [U]j one of Pf Q, and one of X,Y , are locally compact,

(b) each of P,Q,X,Y satisfy the first axiom of countability.
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The corollary follows immediately from Theorem ? and Proposition lo 

Corollary 2^r The product X^ Y of CW~complexes X,Y is again 

a CW-complex*

Prooff This follows from Theorem 3 in the same way as II of [57] follows 

from [55; Lemma 4jo

Gprollary 2«3 (C.iUDowkor) If X,Y are locally countable CW-complexes, 

then XjY is a CW«coaplex»

Proof* Since X,Y are locally countable CW~complexes, they satiafly the 

first axiom of countability0 Hence lay

Proposition 1. Xx Y = X^Y , and so, by Corollary 202, X*Y la a 

CW-complexo

Remark^, Certain results may be obtained with a smaller tojoology than that 

of X&Y o Thus let X *R Y be the set X*Y with the topology that a 

set CcXxR Y is closed in Xx^Y if and only if Cc^X^U is closed in 

X^B for all compact subsets B of Y o Then from the proofs of the

theorems of Chapter I we aay abstract the following results0
Y

(a) if f s Zx R Y— »X is continuous, then so is^,the map /*f : 2— >X •

(b) if g : Z— >XY is continuous, then so is p* g : Zi< R Y— >X •

(c) if t i P—^X is an identification nap, then so, for any T ,

is f* R l « P x R I -fcXx R I tf

Of course, *« is not an associative product, so the proof

of the exponential law for & does not apply to
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