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A.1,

ABSTARACT,

Thie thesis 9tudies some aspects of the homotopy type of

function spaces. XY where X,Y are topological spaces.

The thesis is in two parts. Part A (Ghapters I - IV) contains
a discussion of some known facts on the homotopy type of function speces
under the heads of homology (Chapter II), homotopy groups (Chapter III)
and Postnikov systems (Chapter IV)., Also, 1in Chapter 1I, a theorem on
duality is given which is useful in determining the low-dinmensional homotopy
type of (Sn)x vhen X =STu o™ (pr + qén). |

Chapter IV contains the statements of the problems _whose solution
is the motivation of f.he theory of Part B. These problems, which occur
neturally in attempting to £ind the Postnikov system of X' by induction
on the Postrdkov system of X , are roughly of the type of determining
k¥ : X5 A  when XY ere spaces, A is a topological abelisn group
and k : X—~»A 1is a map. This problem we call here the "keinvariant
problém"o

It is a commomplace that the most idportant property of funcﬁon
spaces is the "exponential law" which states that under certein resirictions
the spaces LZ‘I. and (X!)z are homeomorpinic. In fact it is usually
the case ‘that the only properties of the function space required are that
as a set XI is the set of maps Y—X , and that the 4eu:ponentia1 law holds,

In Chapter I, as preparation for the work of Part B, a brief
discussion of the e:q;onential law in a general category i3 given. The
rest of the chapter shows how the well-known weak-topologicsl product mey be
used to obtain an exponontial law for all (Hausdorff) speces. The weak
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product is also shown to be convenient in the theory of the identification
maps,

The theory of Part B is given in terms of css-complexes (complote
gemiesimplical complexss) with base point. In Chapter V the uallgﬁnoﬁn
ess-exponential law is extended to ‘the category of css-M-eds, and the
exponentiel law for coﬁplcxes with base point obtaineds The relation botween
the topological and css- function spaces is discussed, and it is shown that
the singuler functor‘preservas the exponential law,

| The further theoretical work of Part B is initially of two kinds,
First, - the function'complax AI where A is an FDecomplex, is related,
by means of maps and functors, with mapping objects in the cetegory of
FD-complexes and chain complexes. This is done in such a vay to preserve
the exponentisl law. OSecond, a generalised cohomology of e complex is
introduced; with the coofficient group replaced by an arbitrary chain complex
(or Fh=complex)., The thcories of cohomology opcrations and of Eilonberg-
Maclane complexes are correspondingly generalised. Using those two sets of
constructions, e solution'of the keinveriant problem 1s given in tarms of
chain comploxes (Chapter'Ix.g‘?).

The rest of Part B is concerned Qith obtaining the cohomological
solution of the keinvariant problem, putting tho results in a form suitable
for computation, and obtaiéing applications,

In detail Part B procaeds, after Chapter V, as follaws, Chapter
vI discusses chain complexes and the functor h of chain complexes, vith
particuler sttention to signs. The exponential map nere is, for chain
complexes A,B,C sn isomorphism M: (A®@B)hC —»AA(BAC) .
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In Chapter VII, an FD-oompIexeé, a map product AQB of
-FD-comp'lcxes A,B | is introduced. The exponential map here is an isomorphism
(Az';B)gl_\ C—o>AAQ(BAC) , where AxB 1s tho cartesian product of A end
B, If Y is a css-complox, and C(Y) is :ssentially the frce FDecomplex
generated by Y , it is shoun that there is en isomorphisa

Y—-) C(Y)4 A which ‘preservea the exponentiel law, and by which these

D : A
complexea may be identified. | .The welleknown properties of the normalisation
| functor N and Dold-Kan func;.or R are given, and the goneralised cohomology
introduced, The fundamecntal classification theorem is proved, and the

theory of operations derived,

Chapter VIII relates the Dold-Kan theory and generalised
Eilenbergeiaclane complexes; the exactness properties of the latter are
disouss'ed.

In Chepter IX products A®B, AMB of FD-complexes are defined
such that A® B« R(NA®NB), AAB=x R(NAMNB) . An exponential map
Mt (A®B)AC—>AA (BAC) is defined and proved to be an isomorphisas by
showing that N Vas is essentially the exponential mep for chein complexes,
Homotopy equivalences & . A®@B—>AgB , a, AdB—3AAB are defined,
and & commitativity relation with the exponential maps esteblished,

Using tWs amount of structurs, im IX§ 2 theorems are given
wvhich ﬁetermine the compositions

ks X " RE I T
g s c(x)as s Bx-z: A 8, cnha ,




Bude
where | X,Y are css-complexes, A,B are FD-complexes, k : X—>A,
" f: B—A are naps and % is a homotopy inverse of A . The deter-
ﬂnation of k! 15 in terms of the evaluaticn map on xt 5.+ the
~ determination of £' is in terms of a kind of generalised suspehai.on
oparatioﬁo
~ Chaptor X.shows how Kiinneth isomorphisms may be constructed
~ and computed, A Kifnneth isomorphism is, in one case, defined for & given
cssecomplex Y and FD-complex A @and, for all cssecomploxes X , naps
n*(xxI,A)z’u*(x, H*(Y,A)) _ naturally with rgsiseé{-.ﬂta meps of X .
. Chapte:i XI, it is shown that such a Kiinnoth isomorphisam
has an associated homotopy equivelence \: C(Y)M'A—>» RHR(Y,A), The
compositions of the maps k?, { ! with such equivalences
A: C(Y)AA —R E*(Y,4), ) '::H¥T,B)— C(Y)4B are determined by
Theorems A and B of XI. §1. The theorems, which solve the k-invariant
‘problem, are obtained from those of IX.§? ny the use of cortain®coefficient
homomorphisms”. It should be emphasised that the thearems of IX.§2 are
natural with re;pect to maps of ‘the complexes concerned, while the thoorems
of x:.;i ére not§ this is one of the reasons wh& the two parts of the
solution are kopt separate.
In the rest of Chapter X1, examples of computations using
Theores B are given, and the modifications of the theory for the non=base
point case discuased.‘
In Chepter XII a generalisation, due to M.G.larratt, of the
Moore-Postnikov system of a fibre map is given, end #his used to describe
knoun techn:lq!ie's for determining homotopy groups of principal bundles with
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- fibre an FDecomplex. These techniques, together with those of previous

chapters, are applied to recover by algebraic'methods most of M.G.Barratt's

results on track groups, together with additional informatioﬁ on k-invarianté.
fhe Appendices contain proofs of various theorems in the taxt,

except for Apvendix 7; this introduces a new product topology which seems

to ﬁave considerable advantages over the wesak product considered in

Chapter I,
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INTRODUCTION,

If <X, Y are topological spaces, the set of 2ll continuous functions
Y—>X may be given the compact-open topology [22] to form the function space
XY  The study of the homotopy type of x¥ and its subspaces has, apart from
its obvious intrinsic interest, the additional merit in the light it throws on
the topological space X or Y , Thus we have that (for reasonable X, Y)
homotopy invariants of x¥ form, as Y varies, homotopy invarients of X
(as for example in Hurewicz's original definition of homotopy groups [28]);
they also form, as X varies, homotopy invariants of Y ( as for example
in cohomotopy groups).

We also note that the study of the homotopy type of XY

includes the
very importaent problem of classifying meps Y—>X Iinto homotopy classes.
Again particular information on x¥ has been found of use in other questions

of homotopy theory (as for example in Barratt - Paechter's proof that
ré (53) = Z.12 [7] )o

In Part A of this thesis we shgll discuss briefly some of the present
information on homotopy invariants of function spaces, under the headings of
homology, homotopy groups, and Postnikov systemsol'Fyrther, in Chapter I,
we suggest for the function space a new definition which we beligve to be
convenicnt in homotopy theory. In Chapter II we obtain a theorem in duality
wvhich has applications to function spaces,

" In Part B we shall be largely concerned with the solution of two problems
which arise naturally in studying the Postnikov system of function spaces., These
problens are stated in Chapter IV,



1, Mapping objects.
In any category C there is the function Mesp assigning to any objects

4,B€€ the set Map (A,B) of maps A—B in € . Some categories also
admit, for each A,B ¢C , an object AMB&E (adopting a notation of E.C,
Zeeman) which "models" the set Map (A,B) 1in the category C . In such case
one expects that a_product Xy should be defined in C so that there is a
natural isomorphism
Mz (axBIAC —AaA(BHC) A,B,0 € €
The existence of such an isomorphism is often called the "exponential law"
for C ; we shall cell p# the "exponential map,"”
This isomorphism usually determines an isomorphism
M s Map (Ax\B, C) —> Map(4, BAC).

If this does happen, then an W s (A‘!\B)XMA*-)B is defined
by the condition # (&€ ) =1 ¢ AAB—PAAB, Then for any Ye¢C a function
M: Map(4,B) ~~> Map(¥hA,  YAB)
" is defined by the condition
M' (k) =M(k€) ,  k&Map(a,B),
where M here is an isomorphism Map((I/hA);LMY,B) —> Map(¥h 4, YAB),
(k) (keHap (4,B)) is often written k',
Example 1,1 Let A4,B,C be A -modules, where /\. 1s a commtative ring
with unit; Then Hom, (4,B), . A@B may be given the structure of /. -modules

and - .
Hom , (4 %B,c) % Hom , (A, Hom 4(B,C)).

In this case ¥ap (A,B) 4s the sbelien group Hom, (A,B), while ANB
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is the A -module Hom, (4,B). |
W ' Let A,B,C be FDecomplexes (Chapter VII), and let 3 (A,B)
denote the group of FD=maps A~>B . In Chapter VII, in addition to the well
kmown cartesian product A XB of FDecomplexes, we define an FD=complex
A’hﬁ; this satisfiee (A4 B) =3(A,B), and we construct an isomorphism

Mt (AxB)AC —> A4d (BAC).
Examples 1,3 Let A,B,C be FD-complexes, In Chapter IX we construct
FDecomplexes A® B, AAB and an isomorphism
p: (A®B)AC—> 44 (BAC),

These products @ , A of FDecomplexes are closely related to the
products ® , N of chain complexes (Chapter VI). The relation between these
products and those of Example 1,2 plays a vital role in Part B,

Example 1.,4 et X, I, g_- be if=ads of css-complexes_o Iﬁ Chapter V we define
Meads XXY, XAY and prove the exponentiall law

pe (XD 22X A (T42) .

Example 1,5 Let i,z,z be Hausdorff spaces. Let XxI i:e the cartesian
product of X and Y with the weak topology with respect to its compact subse
[13,46]. Let YAX denote the set of functions Y =>X which are contimuous
on compact subsets 6f ¥, and let YAX have the wesk topology (2.33)s In the
following section we show that there is a homeomorphism

pi (2RI A x —>2A (TAX),
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§g&, FUNCTION SPACES AND WEAK FUNCTION SPQCES.

2,1, Let X,Y be topological spaces, and let X° be the set of all

continuous functions Y—X, Let the evaluation map €: XI xY—>X

be defined by & (£,x) = f(x). A topology on X is called admissible if,

vith this topology on XY and with the product topology on XI xY, £ is
continuous.
Theorem 2,11 (Fox: [22]) Any admissible topology on I* contains the compact-

open topology. If Y is locelly compact and Hausdorff, then the compact~open

topology is admissible,

Theorem 2,12 (Arens; [2]). Let Y be completely regular. If I¥ (I the

unit interval) has a smallest admissible topology, theﬁ Y is loecally compact.
An immediate corollary of 2.11, 2.12 is that, with the compact-open

)Z a.nd . XZXI

topology on XI, (x* are not homeomorphic in general; they are
homeomorphic if Y and Z are Hausdorff and Y is locally compact [27;
Theorem I1I. 9,9], or if Y and Z satisfy the first axiom of countability,
[273. |

These restrictive conditions are disagreeable in homotopy theory, and
we show how they may be avoided by using a different function space. . All
gpaces are assumed to be iiansdorffo
Definition 2,21 [13,46]c Iet X be a space, The space <X>is X re-

- topologized by the weak topology with respect to its compact subsets, 1.0,
aset A<X is closed in X iff AnC is closed in X for overy compact
get C<X, _

Definition 2,22 [29] A space X is a kegpace 1ff <X> =X, Examples of

kespaces are CW-complex [57], locally compact spaces [29; Theorem 7,13] and
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spaces satisfying the first axiom of countability [ibid,] The kespaces ave
in facﬁ exactly ‘the identification of locally ;:ompact spaces [143;1.8]); 0
any- identifivation of a k-space 18 again a kespace [1431.81],
Defipition 2,23 [46] For any X, the identity 1,5 <X> X is continuouss
For any continuous map £ ¢ X—)Y there is a unique continuous map

< £ : <X)-»<Y’ characterised by commutetivity in the diagrame
. x> 24 0y

W e W
X L= 7
We sey f: X—>Y is weakly continuous if ﬂ-i : <XY->Y is continuous,
Lemma 2,24 (Spanier, [46]) A mep £ : < X>—¥<Y) is continﬁoﬁs if and only if
i,f : <X>—>Y is contimous. |
Gorollary 2.26 A map P 1 X-a< Y is weakly continuous if and only if
iyt s XY s iaeakly contimous..
Definition 2,26 [46] Let X,Y be spaces, The yesk product of X and ¥

is the topological space Xx,X ={X x I), vhere X x Y has the usual

product topology. - Clearly for all X,Y,Z - there is a nastural homeomorphism
(X-qu) Ry ‘*XXW(Y%“Z)‘» |

Proposition 2,27 (Cohen; [13]) If X and Y are k-spaces one of which is.
locally compact, then X x Y = Xx Y,

2.3, In order to obtaln the theorems one would like, it turns out to be
necessary to change the set which 1s to congtitute the function space of
maps Y—>X, and also to change the to;:oloy. That“tha set which occurs
naturally in this context is the set. of weakly continuous maps ! ~>X

is a remark of Kelley [29;p225].
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Definlition 2,31 iat X,Y be spaces. Then y | is the set of all weskly
continuous functions Y-X , Thus YAX =X 27 (as a set).

The following theorem is 7.5 of [29]. The Hausdorff assumption we ere
making is eséential here.
Theorem 2.32 (Kelley). Iet € : (YhX) x Y —>X be the evaluation map.
The comp;cteépén topology is the smallest topology on YhX such that
€ [(ThX)x A is continuous for all compact subsets A of Y , |
Definition 2,33 The wesk topology on YhX is the weskened compacteopen
topology; that isy, a set Ac<YAX is closed in the week topology if and only
if AnC is cloéed in C for every subset Cc YAX wvhich is compact in
the compact-open topology. That the compactQOpen topology on YA X is
Haugdorff is Theorem 7.4 of [29]. |

Opbviously Y&X ={ K<I>> o In genéral the weak and the compact-open
topologies do not coincide; for example if Y is discrete, so that
Y =(Y? , then X' is homeomorphic to the product of disjoint copies of
X , one for each ye&Y¥, So if Y contains two elements and 1‘8 discrets,

x¥

is homeomorphic to XxX ; yet IxX may not have the weak ‘topology even if
X does. |

The following proposition is an obvious corollary of 2.Béo
Proposition 2,34 The evaliation map ¢ : (YAX)x Y —>X is weskly continuous,
and s0 contimemson (ThX)x Y . |

Definition 2,35 Let fe(Zxn Y)AX . We define a function pf: 2—YA X by

(u8) (8) () = 2(s,7) 3¢y yeT.
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Since f£: 2 x Y—>X :is contimuous on compact subsets of Z x Y, so also
is (u£)(e), z&Z. Therefore uf is well-defined,

The notation (Z’ﬁq YA X is slightly redundant (since (Zx; Y)HX =
(2 x Y)AX) but seems more i'evealing as it stands,

Thoorem 2,36 If fe(Zx, Y)AX, then uf: 2 —» YAX is weakly-continuous.
Proof, Ve f:Lrat note that it is no loss to essume Z 1is a k-space and prove
NpE is cont.inuous. Second, by 2.25, it is suff:.cient to prove that uf is
continuous when th has the eompact-open topology.

Let then W = M(E,U)cIhX be a aub-basic open set for the ccmpac‘b-Open
topology of YA X; thus K is a compact subset of ¥, U is an open subset
of T. let p2=g end zeg L(W) |

Now £7M(U) 1s open in ‘Zx ¥ and 80 £ l(U)quw K 1 open in
Zx Ko Sinee Z is a k-space and K 1is eompact, it follows from 2927 that
Zx, K =2 x K, Therefore ‘£ (U)o Z x K 18 open in Z x K, But
z X ch"l(U) , and so there exists a‘aet. v ‘open in Z such that
z x KeV x;K ct~i() . ‘Therefors zch.g"l(W)a Therefore g"l(w) is open
in 2 , Therefore g is continuous, |
W M defines a homeomorphism p (ZxH I)lhx -> ZA (YA\X).

Proof. We prove l“ is continuous, and then define & contimous inverse.
By 2,36, the evaluat:.on map
(2%, T)AX) X Zx, T— X
corresponds to a continuous map
pL s ((qu I)Inx) xUZ - YAX ,
and l" 1tself corresponde to a map
M " 3 (Zx’u A X~ Z4 (Y‘A\X).
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which also is continuous since (waY) A X has the weak topology.
But obvicusly M'=pm . Therefore M is continuous,
By 2,36 the composition

(ZA(TAE)x Zx T E5s (TAX)x ¥ -S> X

corresponds to a .cont:lnuous nap

v i ZA(YTAX) —> (Zx, T A X.
In formulae, if f£&ZA (T AX), z.e.-z, yeY, then (v£)(z,y) =¢(€ x 1)(£,3,y)
=£(z) (y). Obviously m? =1, VM =1, |

Remaplk 2,38 If we give YAX +the compact-open topology, all that may be
proved is that M 1s weakly continuous with a weskly continuous inverseo
But it is not umreasonabkle to regard this as sufficient,

2o4o Lot \l} be the ciass of the‘ class of spaces of the homotép’y type

of a CW-complex, Milnor [35] has proved the useful theorgm that if X &“9'
and Y is compact then &ew , Ve prove this is true for CYAX
Lomma 2,41 If X and Y are of the same homotopy type, then ;'so are

<X and<¥> .,

Proof, Iet f: X —Y, g: Y--)X‘ be continuous functions and

F: fg~l1, G: gf~1l homotopiess The functions <f>: <l'_X) —<I>,
£g> 3 LI> — LX>, defined in 2,23, are continuous, ajsﬁ' are |
<G> : XxI —»<X>, <F> 3 Yx I—»<Y>. Since I is compact,

2,27 implies that <F) , <LG) defi.:xe continuous functions
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F¥ ¢ Y% x I—XY> , G' : (X>x1I —<X>, Clearly F', G' are
homotopies- F' : (£ L ghx1l, G': gd <E£) wl,

Logme 2,42 ILet Y be a k-space, If X=2Y, then <X>2 Y and the inclusion
iy + <X> —» X 1is a homotopy equivalence.

Proof. Let £: X —Y, g : Y—>X be continuous functions such that

fg=2l, gfl, let £ =fi s X>—>Y, g'=<g) :+ Y—»<LX>, By

2,41, f'g'al, g'flel, Let h=g'f: X —>< X>, Then
£
X —Y iy =g'fiy =glftel, iyh = yg'f = gf ¥ 1,

W1 A

<X> Therefore ix :LXIY>XX,

Theorem 2:43 Let X €W and let Y be compact, Then YAX eW ’

and thé inclusion YAX — XY is a homotopy equivalence.

Proof, Since a CWecomplex is a ke-space, the first assertion follows from 2.4
and Milnor's theorem that XY € w s the second assertion Tollows from 2042

and Milnor's theorem,

Remgrk 2,44 The assertions about mnesds corresponding to 2.1.1;. 20429 2.43

are obviously true,
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§3. WEAK IDENTIFICATION MAPS,

3s1c An unpleasant feature of the theory of identification maps 1s that
the product of idemtification maps is not in general an identification map.
Becauss of this certain natural products, such as the join and the smash
product, turn out to be non-associative, even for GW-complei:ea.

If we restrict attention to kespaces, then we prove below that the
veek product of identification maps is en identification mep. It sesums
unlikely that this is true for all speces., However, by modifying the notion
of identification map to that of "weak identification map" we obtain a

theorem valid for all spaces,

302, Definition 3,21 Let X be a (Hausdorff) space and f£: X—5Y
8 functioh ento Y . The eak identification tc

to_f 18 the finest tOpology on Y meking f weakly contimuous. (That
such a topology exists 18 the content of Lemma 3,22)e If Y has this topology,

then £ 18 called a weal ification pap, or, simply, a weak identification,

W For eny £ : X—%Y mapping onto Y , the wesk identification
topology on Y with resbect to f exists end is the set T of all subsets
C of Y such that ¢ J’(G)ﬂA is closed in X for all compact sets AcX .
Proof. The verification that T isa topologr is trivial and is omitted.
But given T 18 a topology, it is obvicmaiy the finest, topology on Y
making £ wéakly contﬁmous.

The following Lemua is cbvious,
Logme 3,23 let £ 1 X—>Y be weskly contimicus end amto. Then £ 1is @
wesk identification map if and only if ﬁxs {X>—>Y 1is an identification

map.
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303. Our nain purpose is to prove
Theorem 3,31 ILet £: P—>X, g: Q —>»Y be weak identification maps,
Then fxwg : waQ«-}Xwa is an identification map.

- By 3623, this‘ theorem is equivelent to
Theorem 3,32 ILet £ : P—X, g: Q —Y be identification map, and let
P,Q be k-spaces. Then fx,g: Px Q—>Xx I is an identification map

Proof of 3,32 The spaces X;Y are kespaces, since they are identifications
of kespaces [14; 1.81].
It is sufficient to prove that ﬁ:wlz PxWQ-—-> X.wa is an identification,

For then equally wag: Xwa —-)Xi‘,lY is an identification, and therefore
so also is (1lxg)(fx,l) = fx g

Let h = fxl 3 waQ . Xwa‘ 5 end let B be a compact subset of Q o
By 2,27, PxB =P xB, By the'clhassicé.l_ result on the product of

identification maps [55 3 Lemma 4], h |[PxB : PxB->»XxB is an
identifications.

Let Zc< waQ be open and saturated with respect to h . We must prove
h(z) V‘ is open in- Xwa", This will be true if for any compact subset B<Q ,;

h(Z)AX xB is open in X x B , But this is clearly true, since
n(Z)nXxB =n20PxB), ad ZoPxB isopen in PxB and saturated
with respw t,o the identification map h| PxB,
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3.4 We give an application of Theorem 3,32,

Definition 3,41 If X, Y are spaces with base points % respectively,
the weak smash product X XX yY 1s the identification space obtained from
Xx,¥ by collapsing to a point the subspace Xxy v xoiw Y.

Proposition 3,42 The weak smash product is associative; i.e., for all spaces
with base poiht X,Y,2, the spaces (x»ﬁ«wz);ss'wz and x;‘gzw(r;‘ﬁfum are
canonically homeomorphic. '4

Proof., By 3.12 the natural naps

£ ¢ X ¥x 2> (X¥Y) X 2
gt X Inz—> (T 2)

are identification 'm‘éps‘; Since fg';l, gf"l are single-valued, they are

continuous, Obviously (fg"l') (gf-l) = 1, (gf"l) (fg"l) =1,

3.5, The weak smash product also Sccurs in connection with function spaces.
e’ X,Y are spaces with base point, let YAX be the subspace of the wesk
function space consisting of weakly continuous functions Y—> X which
respect base point; the base point of YAX 4s the comstant map,

Theorem 3,5 Let X,Y,Z be spaces with base point, There is a (continuocus)
evaluation map £ : (YAX) ﬁ{wY-—)X and a homeomorphism

s (X DA X 2A(TAX)

such that when Z = YAX, then M) =1 INX > AL,
We do not give the proof as the situation is parallelled later in css-theory,
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1. HOMOLOGY OF FDNCTION SPACES,

In this chapter we discuss our present mowledge of the homology of
function spaces. In fact our knowledge is confined to the homology of
YAX when Y and X are spaces with base point (so that the functions of
IAX preserve base points) anﬂ when Y or X is a sphere S©,

When Y = S" s the methods used are speciral sequences or homology
operations (§ 1), When X = S®, the fundamental result is Moore's theorem
(2.1), which gives the low-dimensional homology of YAS® ., In § 3 we obtain
a result on duality which has application to function spaces,

In this chapter and the néxt ve use the function space Y#X instead
of the classical X° , This does not affect results on the usual homotopy
invarisnts, for these‘ depend only on singuler homotopy type. Howevemf, ve
do assume without further comment that certain classical results on X-
carry over t0 YAX; in each case the proof of the result for YAX is
o simple modification of the proof for Xo. An exsmple of the type of result
ve mean is the fibring theorem for function spaces, [27; III 13.1] which in
fact is true more gemerally for IMX than for X .

Throughout this chapter, spaces are (Hausdorff) spaces with base point,

and the functions of YAX respect base points,

Sl. lLoop Spaces,

. The W is X =8'%X, vhere m = 051y490) ‘48
the mesphere. The iterated Jooo space SL"X is defined industively by
0% = QL0 x), O =Qx, wow 8%y ;S 18 canonically



homeoxhorphic to Sm+n° Hence
Q% = s'A (5" h 0% = (B sh A Qe 5% Q0

and 8o by induction -0LPX is canonically homeomorphic to S'AX (this is,
in the classical case, due to Hurewicz [28]).

let PX=1IRX, where I =[0,1] has base point 0 . The projection
p ¢ PX— X defined by p(f) = £(1) 1is a contimious fibre map [43] with
pibre <LX , Information on the homology of L X is mainly obtained
from the spectral éecidence o'f this fibring, For example Serre in [43]
salculates the cohomology ring of - L1587, | |

These methodé apply only inconveniently to the study of SLTX (1),
Dyer and Lashof [15] following Kudo and Areki [30], use the fact that .2 X
has a great deal of multiplicative structure to defins homology operations
on H *(.Q.’x, Zp) (p prime); the case p = 2 was covered in [30]. Using
these operations they determine completely H*(Qrsn, Zp) (r<n) and obtain
some information on H,(L2Ps®, z,) end H (LY, Z) .

3_2.o A rem of J,C
In this section and the next, homology and cohomology ere singular,

modulo base point and with coefficients the integers 2 ,
Let 8 ¢ H'(S") be a generator. For any X ,

€ (b ) e BX((XAS") ¥ X), wvhere £ : (XAS")J X35 4s the evaluation
map. For any 2 €H q(th s®) the slant product Q‘(Sn)/z eH™9(x) [3_6,46}
is defined., IlLet

g+ B(XAS) —> BX)
be given by § (3) = €*(8 )/s, Moore has shown [36; Theorem 3]
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Theorem 2,1 (Moore) If X is a compact apace of dimension £ m , and
m<n , then
(a) £ is an isomorphism for 0<q< m{z(n-m), n} s
| (b) Hq(xAs“)- =0 for n¢q<2An-m) if 2(n-m)>n,

o other result, of similar power, on the homology of function spaces

seems to be known,

§3. SPANIER-W.ITEHLAD DUALITY, -

3.1. Spanier-Whitchead duality, originally given in [48], has been shown

by Spanier [47] to have its roots in function spaces and Moore's theorem 2.1,
Spanier's emphesis in [47] is on using the function spaces X s® to détormine
a dual of X (c.f, the last paragraph on p.364 of [47].) We show how, when

X =Sy .er+q) Spaniert's results nay be used to obtéin an explieit nedual

of X and to determine the low dimensional homotopy type of XAS".

3.2, let W  denote the category of finite connccted Gw-complexés with base
point, (In this category we kmay replace X TR 4 ¥ ). According to [47]
a duality pap is a map (in W )

u: X'%X —> s
for some n , such that the slant product u*( Sn)/ 3 ¢H"YX) (s® a gemerator
of Hn(Sn.), s ellq(x ) induces an isomorphism

By + By(x*) —> 57YX)
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Given such a u , X' 4is called an hedual of X by means of u o

3.3, Let u : X% X—S® bve any map (in w ), By I.3.5 u corresponds
uniquely to a map g : X'-VXhS" ; further, the following diegram is
commtative [47; 2,10]

H (Xv) B (xhs?)
q \ ‘/q

B n-q ?

" B¥x) ,

vhere @ is Moore's map (2.1). Let dim X = m¢n » By 2.1 g is iso for
0 ¢ q <min &2(n-m), n} o« S0 if u is a duality map, then g, 18 iso for
0<q<min{2(n-m), n} . If further T (X) =T (XAS") =0, thm
8y T o(X") _..;.-r,-q(xmsn) is 1so for 0<q<min {2(nem), n j, by a theorem of
J.H.C.Whitcheedo Thus information on the low-dimensional homotopy type of
XAS® may be deduced from knowledge of an n-dual X' of X .



17.

| 3.5 Let E :-‘rrr(s") -—»Trrﬂ(sn’l) denote the classical suspension

~ homomorphism (c.f. for mmj)le [27]). Ue prove
Theoren 3,51" Lot X =S w, o3, Then X has an n-dual if
En.r"l(d) € Inm Er+q-1, In particular, X has an nedual if nd) 2 r + q,
or if n¢2r +q and o€iIm E2r+q-n'

Proof, The identifications u sPT-1y ST — Sn"'l, v Sn-r-q% Sr+q~l__) g1

2‘-—-—-;» st represent the

are duality maps (r+qsm). Let £ ; ST 2
homotopy class x » and let £7 : st-T-l__, gn-r-q be a map such that

the following Giagram ir, | homotopy commutative

S'n'-r.-’l % | S'r‘"qﬁl 1% £ 3 Snfr-l )k‘ Sr -
!
£9%1 u
| (")

go=T-q % gr*q-1 go=1

—

By [47; Theorem 6,10], X* = s“"""'uf ™Y is an nedual of X .
Now (*) 18 equivalent to EMT~l(a) = s FF*3~1( B) » where g 1s the homotopy
class of £’ (the sign, which in fect may be recovered from [6], is unimportant
here). Thue 1f E*™ o )eIm E™'*L, then there exists an £' such that
(*) 1is homotopy commutative, |

I have learnt that this result has been given by PeJ.Hilton and E,H.Speméer

in thedr paper "On the embeddability of ocertain couplexss in Buolidean spa.oos".
Proo. Amer. lHath. Soc. (11) 1960’ 523"5260
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Corollary 3,53, Let X =ST u e 9, and let n3»2r+q, There is a map

g1 E-2r=Gy o gB-T-0, Ty ypsh (R = 5%\ X)

such that g :‘n’t(En"zr'qx) —.(XAS") is an isomorphism for

7

2 (ner-q) if 2r+q¢ n € 2r+2q,
0g t< _
n if 2r*2qén °

Proof. If nY 2r+q we may clearly in 3,51 take £' = En-2r-q£b

Thus an nedusl of X 4is X' = E°°F~% . thet is, X is self-dual up to
suspension (this is proved in [48] when X 4is the suspension of the real
or complex projective plame), So the corollary follows from the remarks
of 3.3,

3.6, By an A:-apolyhedron is meant en (r=l)econnected polyhedron of

dimension & r+q. On p.65 of [48] it is stated that n-duals of Az ~polyhedron
may be effectively constructed for n)2r+, (n-dual here is in the a_enée of
[47]). It is clear}?re:m 3.3. that the n-type of XAS" 'may be effectively

computed if X is an Ag-polyhedron and n)2r+4,
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I1il. HOMOTUPY GROUPS OF FUNCTION SPACES.

This chapter contains only classical material (except for the type of
reformulation mentioned at ~l;.he beginning of Chapter II),
5__19 Loop Spacesg,

For eny space X with base point, the homeomorphism sTA LL X x Sr+1/h X
implies that T r(QX)%T\"rﬂ(X)., This isomorphism is due to Hurewicz [28].

The homotopy groups of LLX eare thus completely known.

22, Track gToups,
2,1, If Y,X are spaces with base point, let EY = S* ¥ 4¥» so that
EYAX = (STR T)AX % 5 A (TAX) = O (YAX).
The multiplication of loops in L) (YAX) induces a multiplication in
+, (EY A X) 8o that this set becomes a group, the track group, written
'n',I (X)o Clearly -'\r‘Y(X)x m (ThX)e Mofe generally T z(X) is defined
to be either of T (YAX) or T _(ETAX),

These track groups were first discussed by S, Wylie (unpublished) and
S.T.Hu [26]., It was proved in [26] that TT,Y(X) is a solvable gfoup.,

2,2, Important results on track groups were given by M.G.Barratt in [3].

Theorem 2,21 (Barratt; {3])s Let Y be an Ag-complexr For m+ nd)>l,
Y S | . + n

'n-m(x) is a central extension* of H© Z‘Y, n-mmﬂ(x)) by H (I,'ﬂ’mm(x)),

Tt i.e, a CW-complex (nel)-connected and of dimension & D + 1,

* A group E is a central extension of G by Q if G 1s contained in
the centre of E and Q = /G,



200

Barratt determines this extension for all m + n>1l. This extension
is abelian for m + n)» 2 and is determined if further Y is finite by the

behaviour of the. Steenrod operation Sq‘l

pairing 7 (M ew , (X) —> T

in Y with respect to a certain

pene1X)e [35 po290],

Theorem 2,22 (Barratt; [3])s Let Y be an Agecomplex. For m+ n)> 2,
a1y i(x) is a central extension of A by B where
(X)),

(X)) by a subgroup of

I : | n+2 .
(1) A is a quotient group of H <(Y,T I

(ii) B is a central extension of Hn?%y”“'m+n+l
BT, (X))
Furfher this*quotient group and subgroup may be determined when Y is finite
in terms of certain (primary) cohomology operations acting on Y with respect
to certain pairings of the homotopy groups of X
2.3, Barratt's methods in [3] may be described roughly as induction on the
skeletons of Y . His method of obtaining the extensions is geometric.

We can obtaln by the methods of Part B results equivalent to Barrattts.
The method is the one "dual" to Barratt's, by induction on the Postnikov
system of X o This results in an algebraic description of the extensions

of 2,21, togetﬁer with additional information on keinverients.

§3- ction spaces with and without base points

Jet X bo a space, Y a CW-complex and e&Y a vertex,

We define T : YAX —>X by <T(f) =f(e), £f&YAX . Then T is a
fibre map (c.fe. [27,III 13,1} for example), For any xéX , let

FI(X,x) =7 "1(x); FI(X,x) is the function space of base point preserving



21,

functions, providing X and Y are given base points x and e
respectively. -
Let e FY(X,#) be teken as base point.

Now‘ the components of S A FY(X,x)

= ‘FExy(X,x) (r%1) all have the same homotopy type. Hence for any
space with base point Z , A (F (Xx),Y ) =T (FI(X,x),

= wf.%z(x,x), whére * : Y->X is the constant map with value x .
So the (track) homotopy exact sequence of the fibring F‘Y(X,x)—» YAX = X

-~

becomes

coe 2w B S By A g ) v imAw B L (M

This sequence for Y,Z ~ spheres is due to G.w,whitehéad [53], who expresses
the transgression as a Whitehead product (the correct signs are given in
[58]). It is well-known} that this result may be. generalized to the
sequence (%), giving that the transgression A is (up to sign) the
Whitehead product [ ,V ], where this product is defined as for example
in [4]. |

It follows immediately that not all components of YAX have the

same homotopy type.

,§_4e Federer's Spectral Seguence,
4;1; Let Y be a CWecomplex and X =2 path-connected space which is

nesimple for each n»l. Federer [21] has shoun that thereis a spectral

Sequence whose E2 term is
2 = P(ry (1)

E
p,q
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and vhose E™ term is the graded group associated with a certain filtration
on T(YAX, V) (Ve TAX).

An important consequence is that if the homotopy groups of X and
the integral cohomology groups of Y all belong to a ¢lass C of abelian
groups satisfying axioms (5) and (1IA) of [45], then for all p»2,

L (YAX,v )el .
42, Federer (ibid) also proves the following theorem
Theorem 4,2 Let K(T,m) be anAEi.lenbe‘rg-Méclane space where T is an

abelian group and mY»ls If Y is a finite dimensional CW-complex, then

. -n'*c‘l(m g(7,m)) s Yy, T) a% 0.

Theorem 4.2, was proved independently by A. Hellsr (unpublished) and R,
Thom [51], Another proof is given by Spanier [46]; we shall prove a somewhsat

more general theorem later (IX 1, 32)e
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Iv. POST"IKOV SYSTE.S OF FUNCTION SPACES,

We assume the tl_leory of Postnikov systems [42, 37,38}, These give
a complete description of the singular homotopy type of é topological
space, |

The general problem we are concerned with is the determination of
the Postnikov system of YhX in terms of the Postnikov systems of Y

‘and X,

$€1. Loop spaces.
Lot K(T,m+l) be an Eilenberg-Maclane complex, and k: X9K(7T ,m+1)
a mapy k determines a eohomology class, also written k , in
Hm_l(x,'ﬁ‘). ‘The loop space QK(T,wl) is a space of type (T,m),
and so there is a map f: .Q.K( T,m+l) = K(W,m) inducing an -isomorphism
of homotOpy groups, The map f£(LLk) : LX —»EK(T,m) determines a cohomology
class Le A SLX, 7)., Susuki [50] gives an expression for ( in terms
of k as follows, Let LLX —5 FX —>X be the cenonical fibring, Since

PX 1is contractible, the coboundary
§: B(Q X) —> H™Y(px,Qx)*"
'i8 an isomorphism, Let o be the composition
) 25 5™, 2 e, an —£ Q.
Suguki proves that £ =0~(k). (This result is also a s.pec:lala case of the

work of Part B here).

This result determines inductively the k-invariants of {0 X in terms

of those of X ,
* The (understood) coafficient group is T .



2.1, In this, and the next section, we shall work in the css-category, as

this is the most convenient for the questions considered, The ces-function

complex (c.f. Chapter V) is written XY.

2.2, Let X be a css-abelian group. The Postnikov system of X 1is

compleotely determined by a theorem of J.C, Moore [38] which states that the
k-inveriants of X are zero, Equivsiently X ﬁ; K(‘ﬂ'r(X),r)o
If T is an sbelian group, and m%1, the complex K(w,m) is a
css~abelian grdup. Hence I&(\l‘,m)Y is a css-abelian group for all. Y .
So the homotopy type of Kfr,m)¥ ‘is completely determined by its homotopy
groups, which are given by 1II 4.2.
2,3, Thig simple form for K(Tt",,m)Y suggests that a successful attack on
| determining the Postnikov system of XY may be obtained by induction on the
Postnikov system'of X, Precisely, the Postnikov system of X represents X
by a sequence " . of Pibrations with fibres K(‘E‘m,m) (1" (X)) £l XY
is.répresented by a sequence PY of fibrations with fibres K(T m,rn)Y. This
sequence FY is not a Postnikov system, However, if Y is finite dimensional,
any finite part of tho Postnikov system of X' 1s represented by a finite
section of the sequence Pl
The general problem is then to "re-sort" such a finite section of the

sequence P into a Postnikov system, This problem involves three particular

problenms, which ere discussed in the next section.

,§_2. Statement of Problems,
The following problems arise naturally out of the nreceding discussion,

Similaer problems have been considered by Thom [51]
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Eroblem 3,0 Let k: X—> K(7,mn) be a map, and T a complex,

Determine the map k' which makes the following diagram commutative

k(T sm)

\>TT K(Hr(Y,‘!T )ymer)

vhere f 1is an equivalence.

Problem 3,2 Let R: K(T,m) —>K(G,n) be amapand Y a compléxo
Determine the map Q% which wakes the following diagram commutati_ve
Y
k(w4 S K(G,n)¥

m‘ if g’ . l £

T &(B"(Y,T),n-r) — >TT k(#3(1,6), n-s),
=0 s=0 ‘

vhere f,f' asre equivalences.

[

L]
Problem 3.3 Let k: X —>TL K(TW,r+l) induce a fibration ;E_Fl K(Te,7)

-—3*E— X. Suppoe;ing k and the Postnikov system of X known, determine
the Postnikov system of E

We shall be largely concerned-in Part B with the solutions of Problems
3.1, 3.2, We state 1:.he solutions roughly heré, give an example and make some
comments on the solutions,
Solution 3;4 Let €°¢ x¥ xYI—> X be the evaluation map. We may select
(Y ';Kﬁnneth isomorphism"

kot BT x 7,m) — §0 BT (5, BT, )
r=0

and an equivalence f , such that k! = l(.€"(k), keHm(X,‘lr Yo
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. Solution 3,5 Let A= ] K(E'(Y,w),mr), B= TT K(E(T,0),n-s).
r=0 s=0

n - |
In ;go E* (8,85 (L,7 ) o "fundamental class" W (A) may be defined which

is the ordinary fundamental class on each factor of A . Let £ be the

cohomology operation of type (W ,m;G,n) corresponding to Le Hn(K(\r,m) »G)e
We may select "Kiinneth isomorphisms"

Ky: HY(AxY,T)—=

KT (4, H(Y,T))

~0

p
=0
)

A"%(a, #5%(1,6)),
s=0 '

and equivalences f,f! such that £’ = Ky € K w(a)

Exemple 3,6 That these solutions (particularly 3.5) may be put in e:form
suiteble for computation is illustrated by the following example, Let
¥ = sq™: k(Z,m) —> K(Z,,mtn); end let Y = s“'-uael'*’l . Then £ is given

by the following (self-explanatory) diaéram

K(Z,m)Y ¥ &(Z,m) x K(2,,, mer-1)

K(Zz,m-rn)Y ~ K(22m+n) % K(Zz,m-bn—_r-l) * K(.Zz, M+ Ner)

3.7, A discussion of the relation between 3.4 ahd 305 may il-iuminate’ the
following chspters. We shall prove all the statements made in this subsection,
but not ﬁecessarily in the order given here,

Suppose we are in the situation of 3.2, According to 3.4, we must

caleulate ¢*(2) & Hn(l\i('l'l",'m)-Y x ¥,G)o The following diagram is commutative
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E%(K(r ), ) C L ER(Y Y x 7w ) T2 ey, )

t] {|

BY(K( T ,m);G) s ENE(T,m) x 1,6) <

(£x1)¥
vhere £: K(T,m)*% A and £ is the cohomology operation corresponding to
£, sothat £ (W) =42, vhere w" HYK(¥ ,m),w ) is the fundamental
class. The class we require is that obtained by acting with a Kifaneth
isomorphism on (£ x 1)%)~Le* (2) = ((2 x 1)) Le* (W) .,

The evaluation map R K(w ,m)]r x Y= K(7 ,m) coerSpoixds to the
identity K(¥,m)¥ —s K(w,n)T ; the idemtity A—>A determines the
fundamental class W (A)eré A (A, H°(Y, ¥)). The crux of the ergument is

now bhat the Kfinneth isomorphism X, , which is defined entirely in terms

of chain complexes, is related to the css-expoﬁential map which is used to
define € , Since both € and W (A) correspond to identities, we obtain
that ® ,((£ x )%™ ¢* (W) =w (A) , end so Solution 3.5.

That € and W (A) both co:érespond to the Mentity, and so gre related
as we have described, is the intuition which suggests the follbwing theory,
This theory gives a method of passing from complexes to chain complexes,
and so to homololgyg all the time preserving the exponential map Moo
Actually the only fact about K(v,m) which is used is that K('tr sm) is
a css-abelian group, and we prove the theorems more generally for arbitrary
csseabelian groupse.

The actual steps made in the theory are the following, First, for any
csg-abelian grorn.tﬁ'pee A, 2 1g isomorphic to C(Y)hA , where C(Y) is
essentially the/cs8~gbelian group on Y , and 4 4s a map product
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defined for all css-abelian groups., This turns the problem into one
involving only the category of css-abelian groups, or, as they are usually
called, FD-compiexes.
| There is a functor N assigning to any FDecomplex A its normalised
chain complex UA ;3 the category of chain complexes has a natural hom product,
written A , To meke the transition from FD-complexes to chgin complexes,
we first define a hom product A of FD-complexes such that N(C(Y)h A) is
¢losely related to CN(Y)/I\ NA , and then prove that C(Y)AhA, C(Y)hA are
of the same FD-homotopy typs.

| Each of the above products has an appropriate exponential law, and
we prove that the isomorphism A — C(Y)h A, the equivalence C(Y)h A—>
C(¥)AA, and the functor N, preserve these exponential lawaf' This is
the fundamental pert of the theory, as the final transition from chain
complexes to homology is quite Simpleo Thesoe elements of structure are
sufficient to obtain 3.4; 3.5 above,
308 As regards problem 3,3, the homotopy groups of the total space E
can be determined up to isomorphism by a well-known method (c.f. Chapter XII),
It is not kndwn how to determine the k-invariants of E, even if
1Tr; 0, »# m, though’solutions of some special cases aie easy to obtain,

A special case of this problem is solved in [1; Addendum] as a method of
calculating the value of a secondary operation,



PART B
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INTRUDUCTION,

Part B of this thesis is largely concerned with the solution of
Problems 3,1, 3,2 of Chapter IV, Most of the basic functors and relations
necessaty for this solution are given in Chapters V,VI,VII, Some of the
material is classical, but it has usually been found necessary to éitend

and generalise the scope of the functors to apply them to present problems.

A further purpose of Chapter VII, and also Chapter VIII, is to show
how various parts of the classical theory of Eilenberg-Maclane complexes,
such as.the classification of maps into a K(T,m) , and the theory of
operations, may be derived more simply, and in more general form, using

the theory of Dold-Kan,

The solution of the function eomplex problem is constructed in

Chapters IX, X, XI. Some applications are given in Chapters XI and XII.

- The theory we present is in terms of complexes with base point., The

modifications necessary for the. non-base point case are given in XI § 4,
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GHAPTER V, SEiI-SIMPLICIAL FUNCTION COPLEXES,

In §1 of this chapter, we extend the classical definition of function
complexes in the category of css-complexes to the css-category of lM-ads
(where M is an indexing set), and prove the exponential law in this category.
From this we obtain in § 2 the exponential law in the category of csse~complexes
with base point. In §.3» we relate ess-function complexes and topologi¢a.1

function spaces.

41, Meadg,

(1,1) The definitions of css-complex (complete semi-simplicial complex),
cse-map, product of css-complexes, Kan complex, homotopy, homotopy groups,

as given for example in [31,37] are assumed here, The term csa-complex is
often abbreviated to complex.

(L.2) We recall that the complex of the standard g-simplex, denoted by 4 Q
may be defined as the free compleut- on one generator § 9 of dimension q .
Soif X ise compl--ex and xGXq, there is a unique map £:A9—> X such

that i(sQ) =X o

A categorical css-operator is for each complex X a natural function

g Xq—-) Xr. Any such operator maey be written as a pr'oduct' of face end

and degeneracy operations, If g

xq-» Xr is a categorical css-operator,

AT —» 2%  such thet (&) =g 6%

then § defines a unique map B*

This sets up a l-=1 correspondence between the set of categorical css-oporators

I‘q'—} X, and the set Map (AQ’AI') ,
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Let é denote the category whose objects are the complexes
Al (g2 0) and vhose maps A 21— A" are the cssmaps, LetCbe any category.
We recall [31; I§4] that a css-Ccomplex S inay be defined as ;9. contravariant
functor S : &> — €, and that if T is a css-{=complex, a M S—>T

is a natural transformation of functors,

The complex AL will also be denoted by I .

(1.3) L,M,N will denote indexing sets, possibly empty. An Mepd will mean
a particular sort of carrier [3,49] X = (X;l4) consisting of a complex X
and a family (X,) vy OF SQi:-_complexes; (X; #) will mean the samo as X o
These are the objects of the csg-categog of M-é.ds, vhere a map f: X —>%
will mean a csgemap f: X—>Y such thet f£(X,)< Y, , MM , Clearly the
category of P-eds is the usual css=-category, For all M, A% ‘denot-es .the
Mezd (A9 ) in which each indexed subcomplex of A% is empty; the exact
interpretation of Aq is to be understood in each case:',frpm' the context,
m It is convenient to allow the indexing set to be replaced by an

isomorph  at will,

(1.4) The jintersection XnA of an Mead (X; M) and complex A will mean

the Mesd coneisting of XnA and the fanily (X\0 A4), ' -
If LeM, f,he réstriction of an M-ad X to L t.lill meen the Le-ad
conaisting of X and the family (XX)M-L ° 4Thus the restriction of an Me-sd
to # 1is the complex X o
The product KxY of an Mead X and Nesd. ¥ is the L-ad % , where
Z=XxY, L is the union of disjoint copies M' of M, N' of N and

2y =X>‘x Y(’)&M), Z_v/ ‘-'K"‘Yv (veRN) .
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The pmgsh product X ¥ I of two Meads is the Mwad consisting of

XxY and the family (Xyx TuXx ), .0

(1.5.) The function complex X+ of M-ads X, Y is the compléx K
defined by |

Kq=Map (A%\Xlgz,) | q=.0sl:°f°.

g =Map (£%%1,1) : R K, P*euap(a”, A7)

(where Map denotes the set of maps of M-ads.)

Obviously the restriction of the M-ads X, Y to Leads 2_{0, g-o (for L< M)
will induce & embedding of X+ in X %o . In particular, on taking
L=# , we have sn embedding of X in X' , The following lemma is
obvious, |

Lommg 1,51 - E'I' is the sub=complex of x* cc:on'cai.n.’n.ng1 precisely those

£ :AY% T—>X  such that £(a%x7Y,)cX,, (\eM) .

(1.6) The following theorea is due to Cartan [10; Exposé 3, § 2]

Theorgm 1,61 (Cartan) If X, Y, Z are complexes, there is a natural

isomorphism
w xz"’f_;.(iy)z,
given by the formula
Yx
w) = Wxl (X we{ A% 2)
AR (W) =2 (@x1)  , re@™), weakaz)
Definition 1,62 Let X, I be M-ads, We define the M-ad IAX (called the

M-ad of meps Y —>X) ; the totel space of IAX is Y- and the family

of subspeces is ((Xn X’*)X)Aem s ombedded in the obviocus way.

Let X, ¥, Z bo M-ads and let J4 be as in 1,61, Then we prove
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Zheorem 1,62 M induces en isomorphism

M EERIME —ZAI AL
Proof. The complexes of the left-hand M-adv are in XZKI, and those in the
other are in (XY )Zo It is therefore necessary to show that thé isomorphism
M maps the indexed subcomplexes on the correct images, That is we must
prove

OpEE) = @an? 10 p @0 08T = ((ZaDa Kag)DE,  ren

It is obvious that
(IADA Eax)E = Ia(XaX) , NeM,
So (ii) follows from (i),
Now £:8%x2T =X isin EFL & £(Alx (Ba¥y 2xT)) X,

for all A\e M . So, by the formula for M 5 and lemma 1,51,

s&&f) (r,2) € gg- for all (o,z) ¢ &'x3Z
" and

(uf) (oy2,)€ (X0X,)E for all (my2,) € Lxz

/4 95y, 4N A or ’Z)‘ X -

re Xt

so £e XL o ure (TABDE.
Let us define a homotopy between maps £, £,. XY of M-ads to be a map
F: IXX =Y of lM-ads such that

F(st; 8, x) = fi(x) , xe-Xq, i=290,1,

Then 1,62 clearly implies

Corollary 1,63 /u induces a homotopy vreserving isomorphism
Mt Yap (ZRT, X) —> Map(Z, LhX) .

We can now make the important

Definition 1,64 The gvaluation msp & : _}gg— XL—>X, for leads X, I, is
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. XY Y

defined by the condition m(e) = 1: I 5 X=,
Explicitly, £&(f,y) = £(shy) , pe (x%) g e Toe
82, Base Points,
(2,1) The category %X of complexes with base point* is a Subcategory of
the cssecategory of 2-ads. So we have |
Theorem 2.1) There is a netural isomorphism of complexes with base point

. .

W ;I)‘% z_ (x )Y

(where X,Y,2€3 ) which yields a yhomo\topy preserving isomorphism

A+ Map (YK 3Z,X) — Map(Y,X°),

-

Here the base point of XY is ;Z , where » 1is the base point of

Y

X and xg is embedded in X' in the cbvious way for all subcomplex\X < X,

Definition 2,12 Let X,Y denote complexes with base point, The
evaluation mep & : XA Y->X is that defined by m(€) = 1: XX —> X'

2,2, In 2,1, Y%2 is a 2-ad but is not an object of ¥ , However, if
X&X , then Map (YRZ,X) may obviotsly be identified with the set of maps
from ¥Yx z /Y xw%w v #¥xZ to X , where the former complex has base poifr_b

{I X% v %X Z}. It is convenient, then, to abuse our present language and
make the 4

Definition 2,21 The gmagh product Xﬁ( Y of complexes with base points is
the complex XxI/Xxwvxx Y with base point the collapsed complex

{X X% U R Y}. Since & has no base pbint, the smash product N ¥ X

is the complex A'x X/Ax% with base point i&" *} .

# The base point » of an X €3 ig the sub-complex of X generated by a
given vertex, also written %, of X,
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If X,YeX , then we identify (X%) q vith Map(A¥ 1,X), the st
of maps of complexes with basepoint.
Clearly §2.1, with these interpretations, remains valid as it stends,

(2,3) For reference, we state oxplicitly the notions of homotopy in %

If £,: X—Y (i=0,1) are two maps in ¥ , then a homotopy
F: f,% £, isamap F: &% X —>Y such that

F(sg Y ¢ ,x) = fi(x) i= 0,1‘, xqu° The set of homotopy |
classes of mups X-»Y 1is definéd for all X if and only if Y is Kam, and'
is written [X,Y] ,

Amap f: X-—»Y 1is en gquiyalence if it has a homotopy inverse, that
is amap f': Y—X such that ffPel, f'fx 1, Then X and Y are said

to be equivalent, These are written in symbols [F Xao¥, XIxY,

$3. Relation with topological function spaces.

(3,1) The solution of problems 3.1, 3.2 of Chapter IV, which is our chief
concern, will be given entirely in the css-category. The purpose of this section
is to show that the topological and csséfunc_t.ion spaces are sufficiently closely
related for such a css-solution to be translatable into a solution of the
~eorresponding topological problem, |

The results of this section may be well«known for the classical function

space, but even there do not seem to be in the literature,

(3.2) Let T be the category of topological spaces with base point,
Let S: T—X sl 12 X2—=T e respectiirely the singuler and
realisation functor [33]. These funcii®fs are adjoint in the sense that there

is a natural isomorphism
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® : Map (IK|x)o>Mep(K, 5(2)), KeX, xeT (3.21),
vhere Map denotes the set of maps in the respective category.
We let j: [S(X)|—>X, i: K—S (|K|) be the unique maps such that
®(j) =1 , 1=8(1), where the first identity map is on S(X) , and the

second on |K|.

(3.3) A gingular homotopy eguivalence* f£: X—»Y (X,YeT ) , which ve
write f: X s Y , 1is a mep of spaces with base point such that

S(£): S(X) = s(Y) 4is a homotopy equivalence in X , For all Xe¢T ,

j: IS(X)]~>X is e singular homotopy equivalence [33], and is an ordinary
homotopy equivalence if and only if X 1is of the homotopy type.of a

Gw-complex (with base point).

(3.4) If X€T , the map i :{X> = X (c.f. Chapter I) induces an
isomorphism S(<X7) = S(X) , by which we identify these pomplexes [46,2:2],
If K, L € XX , there is a natural homeemerphism |ExL]= lK‘mILI .

by which we identify these spaces [465 3.5] This homeomor;;?‘nism induces a

‘homeomorphism |K}XL| % lKH’KWILl o

(395)‘ For X,Ye T , let YAX denote the subspace of the weak function

space of maps Y—> X consisting of maps respecting base point.

Theorem 3,51 If Ke&X , Xé T s there 1s a natural ieo?norphism
Nes(lElAD = s(o)f,

Proof s(IK|ax) = Hap(| &'], [K|AX)

~ ap(| & | ¥ |K[,X)

= Map( | AW K|, X)
~ Map( &% K, S(X))

- K
= (8(2)7) o

* Because of the definitions in Chapter I, we avoid the term "wesk homotopy
equivalence »
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Corollary 3,52 If YE€T  is of the homotopy type of a CW-complex, then
there is a homotopy equivalence S(YAX)zx ‘S(X‘S(Y)o
Proof  For then j: |S(Y)|«Y induces j': ¥a X % |S(Y)|AX.
Therefors AS(§") S(Yd\i)'y. ;S(Xr)s(y),
Corollary 3,53 Let K, L&) and let K be Kan. i‘here is a singular
homotopy equivalence
|&P| o IL] & Ik

which is a homotopy equivalenece if L 1is finii:e‘»
Broof By 3.51, ||+ Is(Jx)*lxfs (ILIAIED)] . Also
§oIstLlAlkD ] g Ll nlkl .

NSince K is Ken, i : K->S(|K|) is a homotopy equivalence; so i

L 5s(ik[)Y. The composition

induces a hdmotopy equivalence iL s X
i I H.LI is a singular equivalence IKLl o L hK]| . |

If L is finite, |[L|A|Kk| is of the homotopy type of 2 CW-complex
(I, 2.43)o So the singular equivalence lKlele( hiKkl 1is a homotopy

equivalence,

(3.6) The following theorem shows that S preserves /w e We leave the proof

to an Appendix,.

Theorem 3,6 If K,LeéX , X&T , there is a coﬁmﬁtative disgram
(] & L1 X) e s(x)k XL
S(w) lg | ~J./k
(il (IL1h0) —%—> (sBH*

where )z’ is the composition

SCKIA (LA ) =2 sCizia 0K 2 5Dk,
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VI, CHLAIN COMPLEXES,

5;3 Graded Groups,

(1.1) It is convenient to follow several authors and vary the usual
definition of a graded group. By a graded group A is meant a femily of

indexed by the integers 2 ; ang

disjoint (abelian) groups .(Ar)re.z

eloment of A 1is a member of any one of the groups A r 0 If a is an
element of A , we write acA, IfeSA, we write r = deg(a); the degree
of & o The (distinct) zeros of the groups A, are all written 0

Associéted with A is the (weak) direct sum rZGZ A, s which is the
more usual notion of a graded group: the groups Ar are embedded in the direct
sum, and their elements called the homogeneous elements of the sum, Our

definition readily permits us to use the associated direct product where

convenient, and to refer without qualificetion to the degree of an element.

(1.2) A map f: A—>B of degree p of graded groups A,B is a family. of
homgomorphisms (fr: A, —>B r+p)re g 3 1t is tpivipl if each £ ié -the trivial
homomorphism. The maps A—>B of degree p form a group which will be written
(A B)p, where the group operation is defined by addition of values; the maps
A—>B of all degrees therefore form a graded group AMB , sometimes called
the map or hom product of A and B . Composition of suitsble maps f; g
of degrees p,q forms a map fg of degree p + qo The trivial map of any
degree will be written O
(1.3) Let f£: A'—>A, g: B—>»B' be maps (of graded groups) of degrees r
and 8 respectively. A map (fhg) : ANB— A*HB' of degree r + s is
defined by ) |

(£ he)(B) = (-1)T(P*S) gne he(ahB) ) .
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The sign given here is determined by the convention of Milmor [34] that when
o terms of degrees “,p ére interchanged, a sign (-a)“’F is introduced,
This convention soems easlest to apply and to lead readily to a consistent
system of signs.*

If f,g are as above, and f's A" > A',g' : B'—> B' are of dogrees
r',s! respectively, then

| r(s+rt)
(f'he') (Ehg) = () - (E£'he'g) _

(3.4) The w of graded groups A,B is the graded group A®B
such that (A@B) Z A®B,

A pairing o (Arh B)@(A'm B*)—> (A®A')h (B®B!) is defined by setting
& (fog)(a®@at) = (-J.)'Psfaaga' s TEAMB, ge(A-'lhB')s, deAl;, ale 4!
% (f®g) 1s written fxg and is called tho gartegian product of £ amd g .
If h: B®B'—> G is any map, then the garteslan product of £ omd & yith
remect to b 1s h(fxg); this is ususlly vritten fug , the pairing being
understood, |
(1.5) There is a natural umorph;sm of degree 0, T 3 A®B ——— BOA

defined by

T(a®b) = (1)’ boa , ac A DBEB

'(1.6) There is a matural isomo¥phism of degree O P (A@B)AC — AA(BAC)

defined by
Iv.(f) (a) (b) = £(a® D) ’ fec (A®B)hC, ach, beB,

The following lemme will be useful in the proofs of two them of
Chapter X ,
* This system differs from that of [11; IV55] ,
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Lempa 1,61 Let A,B,C be graded groups, In the composition
(AhB)®(Chz) 25 (a®C) h(892) — D15 (coA)NB-E> Gh (ahB)
we have identified' B®Z and B . Let feAAB,ge€ChZ , and let

g'e C be the unique element such that g(g')= 1, Then

{m(rh) a (roe) | (g0 =2 .

The proof 1s easy, and is omitted,
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(1.7) Let A be a graded group, The groups Y 4,77 A and the maps
N:A—=>nA, N7: A — 7°A of degrees +1, <1 respectively are defined

by
(QA)p; =4 | 1 ple) =ee(ga) .,
(Q‘A)r_l = Ar’ ' r[r(a) = 8t ('[A)r__l 0

If £: A—>B 4is a map of degree p , then P€in A—>1 B 1is a map of
‘ - o
degxf_ee p defined by ('2 f)zj_-rl = (.1)FP erfr Nrs1 © Thus ? becomes
a functor and so .similarly does 7.
The maps and functors ¥ ,Y” are inverse to each other:
1M =1 and 9°) =1, Also the functors ¥, )~ ere sdjoint; that is,

there are natural identifications (W AJAB = AAQB, (9A)AB = AATB .

(1.8) Let G Dbe an abelian group. The graded group G is defined by

- G r=0
G"i_o r#0 .,

Therefore the graded group QPG satisfies
P _{G r
(rl G)r B { 0 r

If A is a graded group, the graded group which is Ap in degree p and

p
P o

N

herwise is n PA_ .
0 otherwise _'2 P
For all graded groups A ‘there are natural identifications

ZOA =4, ZhA =4, A®Z =A . Ve also identify (3PZ)®A end yPa
by the mep sending 1®a — ac@FA), , aea, 1e @F2), .

(1,9) If f: A—>B 4is a map of degree p , then Kerf, Imf, Coker f,
Coim £ will denote the graded groups given by
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(xer f)r = Ker(fy: S Br-t-p) »

(Im i:‘)r ===Ixn(£'r.p rp

(Coker £). = Coker(fr_p: Ar_p-—-) Br) »

(Coim f)r = Coim( 'f, 3 A, —> Br+p) 0

Thus f admits. a factorisation

A——f—vB

ol l J{ 3
coim £ ——Im

f2

in which £, £7 are of degree 0 and £° is of degree p o Let us say
that £ is anX -morphisn (where & =epi, mono or iso), iff each f, is an
o« «fmorphism, Then in the avove diagram, fl is an spimorphisnm, f3 is a °
mono-morphism and f2 is an iso~morphism, The expression
* £ 43 an o -morphism” is usually abbrevi#ted to "f s ".

If 41 : A—>B is an inclusion, i.e, if each ir: A, —> B, is an

inclusion, then we write B/A for Coker i,

§_._?._,_ Chain Complexes,

(2.1) A chain complex (A, ), or, simply, A, is a graded group A together
with e "differential®™ 9, 1,0, a map O : A=? A of degree -1 such that

22 =0, The group of cycles of A is the graded group 2Z(A) = Kerd,

the group of boundaries is B(A) = Im ¥, Clearly B(a)aZ(a) , and we define
the homology of A to be the graded group H(a) = z2(a)/B(4),
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Usually Z(A,)p, B(A)p, n(A)p are written Zp(A),Bp(A), l{p(A) o

(2,2) If a,B are chain complexes, a chain map f : A—>B of degree p
is a map of graded groups of degree p such that ¥f = (1) Pr3 . The
graded- group of chain maps A—>B is written 3, (4,B) (for reasons given
later), the group of chain maps of degree p being writtcn 3‘, (A,B) .

As usual, if f¢ '3P(A,B), then f induces a map f£,: H(A) —>H(B) of

degres p o

(2,3) The group N A forms with the differential 99 , a chain complex;

thus

B =0T s A, > Q). .

r+l
Then M1: A— NA is a chain map of degree +1, Sinﬂ.larly, N~ A

has differential ¥~ O , end §~ is a chain map inverse to 7

(2.4) The tcnsor product A®B of chain complexes A,B is made into a
chain complex by giving it * the differential 981 + 1@ $ i, in
accordance with the convention of 1.4,

(0® 1 + 1@ ){a®Db) = da®b +(—1)r a®db, aeAp, bPEB .

It follows that if f,g are chain meps of degreesw p,q respectively,
f®g 1is a chain map of degree p + q o Thus the tensor prodi:.ct. is a

covariant fumetor of two chain complexes;

(2,5) The hom product AMB of chain complexes A,B is made into & chain
complex by giving it ¥tho differential § = 1ho - Dt 1.

Thus - (8£) (a) =0fa +(-1)PF'Ll ¢y, . aea, £e(ahs) .

* That is, the tensor or hom producf of the underlying zraded groups,.
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Repark ~ AMB is more usually given the greding opposite in sign to
the present conventions, so that it becomes e co-chain complex, hence
the use of the treditional ‘& , This usual grading has been changed
to avoid awkwerdness in considering the natural isomorphism (& 1.6)

m: (A®B)AGx A A (BAC) which is fundamental to our treatment of
function spaces; The effec£ of the change, of course‘, is to make the
eohomology of a (css) complex mto homology which is non-zerc only in
nonpositive dimensions., This convention has been used previously by
So Lefschets [30a] and V.K.A. Guggenhein [24a] ;3 we are using the
differential for AMB given in [24a] .

It follows at once that if f,g are chain meps of degree
psq respectively, then fhg is a chain map of degree p + q » Thus
the hom product is a functor of two chain complexes, contravariant in

the first, coverient in the second.

If A,B are chain complexea, the conomology of A with
coefficicnts in B is defined to be H*QA,B) = H(AAB) ;that is
B°(A,8) = B _(AhB).

(2.6) m_g‘é pus (A@B)AC & AA(BAC) is a chain isomorphism
if 4,8,C are chain complexes.
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. . s defined in 1.6, is en isomorphism of degree O
of the underlying graded groups. The proof of the lemma is trivial
and is omitted, |
(2.7.) Lemma 2.7 let A,A' , DB,B* be chain comploxes, The nap
o: (AhB) ® (a'AB')—— (A®4') K (B®BY)

of le4y is a chain map of degree O .

The proof is easy and is also omitted,
Corollary 2,71, If fe€ (Af\sB)p, g€ A M B' , then
S(exg) = (6f)xg+ (-1)PLxsg -

The corollary follows immediately from 2,7 since f£xg.= X (£®g)

§ 3. Chain homoto

(3.,1) Chain maps f£: A—»B are divided into equivalence classes

by the relation of chain homotopy. A chain homotopy
D: £% g, where f, ge}}p(A,B), is an element of (AAB) 1

such that
£ -g=Dd+ (-1)P3D,
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This is obviously an equivalence relation in }p(A,B) such that if also
Dt s f'2xg, then D+ D? ;: £+ fl¥g +g¥, =D ;~fxwpg , Thus the
chain homotopy classes of chain maps of degrece p imherit a group structure

fromB-p(A,B). When p =0, this group is written <A,B>, It is clear that
if £ =g, them f£x = gs s H(A) — H(B),

(3.2) A chain map f: A—>B of degree O is called a ghaip equivalence
if there exists a ghalp homotopy inverse f' %o £ ; that isy a chain map
f* : B—>A of degree 0 such that f£f' =1, f1£ =1 , the appropriate
ldentity maps, Then A,B are said to be equivalent, Those are written in
symbols f3 A= B, A¥B,-

(3.3) The following proposition is essentially Exercise 5 of Chapter IV
of {11],
Legmg 3,31 For chain complexes AyB
AB) = Z (AAB
3‘p( #B) p( )

and BP(M} B) 4is the subgroup of chain maps of degres p homotopic to the
trivial map, Therefore there is an isomorphism
¥'s < 4,B> = H(AhB)

Eroof, The proof is obviouss fora'P(A,B) < (A A\B)p and for any
£&(AhB), S£=0 if and emly if df = («1)P£d, in which case

fe?yp(A,B). Similarly, £= Sc if and only 1f (1)Yc: £2=0,
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Eropogition 3,32 If A,B,C are chain comploxes, then
P (48B)AHC—>Ah(BAC) induces a homotopy preserving isomorphism
M a‘p(ﬂ ® B,C) "9‘3?(11934\ Cly

and so an isomorphism
/M : <A ®B,0>—><4,BAC>

The proposition follows immediately from 3.31 since /u is an isomorphism
of chain complexes,



470
YIL, ID=COMPIEXES,

In8§1 we give some of the basic notions of Dacomplexes, In
§ 2 we define far FDecomplexes A,B an FD-complex AAB which is a. Ymap
product"® of A and B ; the "exponential law® for ( is proved, In § 3
we discuss the normalisa.tion functor, and we mtroducé the . important notion
of homology of a cas~complex with coefficients in a chain complex, In§ 4
we recall the properties of the Dold-Kan functor, and use these properties
to prove the fundamental classification theorem (£.7)., In4§5 we give. the
theory - of operations, extending the classical theory to the more

general coefficients we are using,

(1,1) An FDecomplex is a css-abelien group [31; 4], An FDemap is a
csg-homomorphism, The category of FPecomplexes 18 written 32 s the get
of mps A—>B.in FOD being written F(4,B), Ve regard I as a
subcategory of X , +the category of css-complexes with base point, the base
point of any 4 € 3D - boing the subcomplex O of zeros of A ,

(1,2) There is a functor A from the category of sets to the catogory of
free abelian groups, assigning to a set S the free abelian group on the
elements of S , and to a set transformation £ the homomorphism with the .
same values on the gencrators, This induces a functor B from the cas-category
to the category JJ) such that (B(x))q = M%), P =A$) for ay
categorical ess-operator ¢ , and 13(1')q = A(fq) for any css-msp f31 X—> Y.
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We define K(q) = B(A') . Tt is clear that K(q) 1is the free
css-abelian group (fr'éevith regpect to the ceswoperators and the group -
structure) on one generator 9 in dimension q ., So if A is an FDecomplex,
and a€ly, there is a unique map 4 3 K(q)->A such that 8(s%=a ,
This defines an isomorphiem . Aé% F (K(q),4).

(1.3) For any cas—complex with bese point X there is an embodding
Bie)= B(X) . So there is a fumctar C : XX —> 3D  guch thst

C(x) = B(X)/B(x) . This functor C 1is one of the standard functors nsed
throughout,
(1.4) [18] The
AxB such that

A,B 1is the FDecomplex

(A X B)q = AQQ Bq ] q= 0.1"000

$ =¢ O . ¢ a categorieal css=operator,
Clearly 1s an additive covariant functor of two variavles,
loma loil If X,Y€ X, there are isomorphisms
C(XAY) ~ G(X)x0(¥), ©(ad% X)~ K(q)x C(X)*
by which we identify these czample:ces° |
The proof 1s obvious, |
(1.5) [16] Two FD-weps £, f, : A—>B are MD-homotopis, written
£, & £;5 if there ig'an FD=map Fs K(1)xA—>B such that

P32, 5'®a) = f(a) , F(s3 ), @) = f1(a), sed,

* We recall that &%x: A“XX/A‘X%‘ °
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The notions of FD-homotopy invorse, FD=homotopy equivalence are defined
in the usual way, and we use, aa for chain complexes, the notatioms
£: A¥B, A%B, |

The relation of FD-homotopy equivalence is an additive equivalence
relation en 3(4,B), So the FD=homotopy classes of FDemaps inherit, from
J(4,B), a group structure, and this group is written <A,B> ,

The following Lemmz is obvious,
lemga 1oSka et X, Y€X , If £, 2f5 XY, then
C(£,)%C(f;) s C(X) —>C(Y) . Thus C induces a function
C s [X,¥]—> <C(X), C(T)> .

$2. The functor &
(2,1) The pap product AAB of FDecomplexes A,B, is the FDecomplex
defined by | |

(a4B), = I (K(q) x4, B) a = Oylye00

® = F($Ms1, 1) b a cé.tegorica‘l. css=operator,

Clearly M is an additive funotar of two FD«coﬁplexes, contravariant in the
firgt, covariant in the second, We identify (AdB), and F(A,B) in the
obvious way,

(2.2) Let XeX, 2€¢3D . Let Map (X,4), tho set of css-maps
I->A of comploxes with base point, be given the structure of an abelian

group by addition of values, This addition includes an addition im [X ],
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Leoma 2,21 There is an isomorphism of groups
D s Map (X,4)—¥0(x), 4) ,

Farther D preserves homotopy and induces an isomorphism

- D [X, A]—><0(X), &>,
Broof. If £3X—A, then D(f) s C(X)—>4 is the umique map whoge
value on each generator of C(X) is exactly £ , The first part of the
lemma is obvious,

ftie second pert follows from the first by the definitions of

homotopy and 1.41.

Bropositdon 2,22 If X€X, 2 ¢3D , thore is an isomorphim
D: AXsc@)aa |
by means of which we identify these complexes,
Here A 1is also regarded as an objéct’:' of X , The proposition
follovs immediately from 2,21, 1,41 and the definitions, |
(2.3)' We now prove the "exponential law"® for the functor A s closely following
Cartan's préof in the casecategory [10; Expose 3,§ 2],
First we prove
Eropogition 2,31 ILet A,B,0 € 3D | There s a natural isomorphism
m 3 F (458, C)>3(A,BdC) , |
Brogfe let fe3J(aAx B,C), aeAq"‘, He define an FDemap
(p£) (2) s K(q)xB—C by (pf) (a) = £(a51),
An inversse V to Pl defined by.sett:lng
Pe)sod) = gla) (5'® b), ge3(a,B40), ach, be B
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It is trivial to show VM =1, /w? =1,

The naturality of /A is obvious from its definition,
Ihegrem 2,32 Let 4,8, €3D . There 'i8 a natural isomorphism
M (AxB)hC —> Ad (BQ_C) o
Proof, In dimension q s M is the isomorphism
I (K(e)s2xB, ¢) =>F (K(q)x 4, BAC)
of 2,31, That this-isomorphism is natural implies that /4 is en Femap,

Corollary 2.33 The isomorphism /U\ of 2,31 is homotopy preserving and

induces an isomorphism.
| /4: <AxB, C? —>¢a, BACS .,

We must also show that the isomorphism D preserves Moo
| E;opgsgtj,on 2.34 Let X,Ye& )€, A €3D. The follom.ng is e commtative
diagram of isomorphisms

Map (XK Y,4) —2>J(c(x)x c(¥), 4)

rl Ly
Map (X, AY) —5—He(X), c(T)ha4) .

The proof is trivial and is omitted.

€3, The N sation Functor N .

(3.1) The category of chain complexee in which the maps are the chain maps

of degree O 4is written C . The group of meps A=>B in ¢ is written
JF(a,B) . The fuld subcategory of C consisting of chain complexes A such

that Ai

(3.2) Definition (J oC.Moore; [37]). The pormalisgtion functor is the
additive functor N : D —> €, defined by

=0, 140, is written C_
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( N(A)q s iQ o) Ker(bi H Aq"‘" Aq-l)’ q= O,lj oos At}\D
{ d =bo'lu(a)q : I\I(A)q-—) H(A)q_l )
L N(g) = £(N(a), £ : A>B ,

Classically [18] the normalised chain complex of A€ 3D is formed
by taking the boundary ? = 1§0(-1)i3 g on the complex A/D(A) , where
D(A) is thé su!;complex of degenerate elements. In [16] Dold proves that’
there is an isomorphism of ‘chain complexes N(A) ¢ A/D(4) .

The chain complex 1(q) is N K(q) 3 q = Oslyece
(3.3) We now make the important
Defip_j,t;on.,'i..z If X€X , the normalise 2in_conmpl . |
Cy(x) =no(x) . If aeC , the cohomology of X with coefficients in A
is H® (X,4) = Ha (Cg(X)h4) o If B € 3D , the W

geefficjents in B is H*(X,B) = H*(X,N B),
The introduction of this cohomology is essential for the theory. It also

leads to a gain in conciseness. For example, if A is a product of Eilenberg-
Maclane complexes, the classical theorem on the clessification of maps of &
complex X into A reads, in our notation, [X,A] = H2%(X,4) (cofolo?)o

This conciseness is very useful when dealing with complexes such as AI.

(3.4) For later purposes we will need a classical theorem of Eilenberg-
Zilber [ 20],
Theorem 3,41 (Eilenberg-Zilber)., Let A,B EB’D o There are natural

chain maps
N(Ax B) ——é__i.—_:z"l\s(AMN(B)
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such that
ATX %1,

SAQ =1, end such that there 1s a natural chain homotopy

The theorem that N(Ax B) H(A) ®N(B) im a natural manner is given in

[20]o Actual formilae for maps A , ¥ i
by Eilenberg-ldaclane, in [18]0

are g:l.vén

(3.42) The naturality of the maps in 3,41, end of the homotopies, is
important, The naturality of A , ¥  means that if

f :A—2A% g ¢ B~—>B! gare FD-maps, then there is a commtetive diagram

"N(AgB) —3—H(A) ® N(B)—2 5 1(ax B)

H(f!g.)l ‘ l H(f)aﬂ(g) j{ N(f‘-‘g)

N(A'53')-§—>N(A’)®N(B‘) ———>NAarxBY) . '

An implicetion of naturelity is that the maps A ,X , and the komotopy
AT % 1 nsy bo entirely expressed in terms of categorical css-operators;

that is, these maps and homotopies are given in each dimension by formulae

of the type

L] > L
where ¢", \P" are categoripal css-operators,

(This remark is due to Eilenberg-liaclane [18])? |

§ The Dold-Kan Functor.

In this section we give the results of Dold-Kan [16] which furnish an
equivalence between the categories Co and ?r:D o Using these results we

prove the Classification Theorem 4.7.
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- The original Dold-Kan functor in fact maps Co —> 3D » For our
purposes, we require this to be extended to a functor C — JJD o
Information on this extended Dold~-Kan functor is given in Chapter VIIIL,
Definition 4] (Dold-Kan; [16]) The additive functor R: C—> 3D ia
defined by

R(A), =3(1i(q), A) q=0,1,000, AET
¢ =Fip*), 1) & %e Map(a, &)
R(f) =3'(f,1) £ amepin C

The restriction RI Co 48 written R,
;_99_1'___4_,_2 (Dold-Kan) There are natural equivalences
fl—-»RN, Y : Rg—> 1., |
__;g;;mz (Dold-Kan) (a) Let A,A* €3 , Then
| wo:F(a, 4) 2 F(ma, war) .
(b) Let B,B*eC, . Then
R : F(B,B') F(R,B, R,B') &
Theorem 4s4e (Dold-Kan), The functors N, R, preserve homotopy, 1.e.

(a) if £1,f, are two maps in 3D , then £ £ £, & Nfy 2 VM, ,

(v) if gl,g2 are ‘bwq ‘maps in fo , then gl'.:_: g2 &= Rog]_ % R

Corollary 4,5 (Dold-Kan), The functors N R, induce isomorphisms
N : <A,A'>% {NA,NA'D> , R :<B,B'> % (RSB, R,B'>
for all AA'E%D s B,B'€C, o Also A A < TAZHAY,
BxB!' < R,B 2 RB' ,
Remark 4,6 The results 4e2 - 4o3 give the reason for the parallel notation
that has been adopted for FD- and chain complexes'.
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It might be thought convenient to go fur'bher and identify the
categeries (, and 3D o This course is not adopted here, one reason
being that such a course would mean regarding T, as a subcategory of X ;
and this seems umnatural,
(47) The following theorem generalises (as we shall seey c.fo VIIIS1) a
‘classical theorem on maps into an Eilenberg-Maclane complex.[9; Expose 143§ 2]
Thegrem o7l (Classification Theorem) Let X €3 , A¢3ID
Then there is a natural isomorphism
Y s [X, A] = E°(X, NA) = HO(X,A),

Irgefy This isomorphism is the composition of the natural isomorphisms
UI

[X,A] > <6(X), 8 —» <Cy(X),08> —s H(X Ha),

where D is given by 2,21, and & ‘ 1 the isomorphism of VI 3.31.
Definition 4.72 Iet A €¥D . The fundamental class w (A)eHO(A,A)
1= the class corresponding to the homotopy class of the identity A-—>A

under the isanorphism. ¥ of 4T, |
4273 The isomorphism ¥ of 4,71 satisfies

¥£1 = e*w(a) £:X—>A ,
The proof is obwlous.
$5._Oporations.
(5.1) Definition 5. Let 4,Be€ or 3P . An gporation O of
type (AB) 1is a function assigning to each X & X a function
8,3 HO(X,A)—> H°(X,B) such that for any map £ : X—>Y in x,

the following dlagrem commtes



“H°(x,4) - B°(X,B)

N Te

HO(I’A) ) — HB(Y,B);
N .

that is, 0 1s a netural transformation 0°( ,A) —> H°( ,B)
vhen these are regarded as functors from X to the category of abelian
groups 'and set maps,

B is additive if 6 x 1is a homomorphism for all X ,

Usually BX is written simply O
The set of operations of type (A,B) is written & (AyB) , and this
get is given the structure of an abelian group by addition of‘vﬂuegc
Striotly, that (F'(A,B) is a set, is & corollary of 5.2 below,
(5.2) Theorem 5.2 Lot A,B € 3D | There are natural isomorphisms
G (2,8) = [4,B] = H(a, WB) ,
Eroof. The proof is exactly the sams (using the fu.miaxgental clasa of 4,72)
as the clagsical case, (Serre [43]).
Sopollary 5.2 let A,B€ C o There is a natural isomorphism
G (a,B) % ®°(Ra, B)

Proof. If X €X€ , we prove in VIII 1,34 that HO(X,A) = H (X,HRA) ,
" B°(x,B) = H°(X,liRB) . Therefore
& (8,8) = O (mma, 1ms)

= (J(ra, nB) by definition,

= H(RA,MRB) by 5,2

= H°(RA, B) .
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Corollary 5.22. Operations preserve zero. I.e. if 4, B EJ:D, k € &(A, B)

XeX and 0is the zero of HO(X, A), then k(0) = 0 & HO(A, B).

Proofs This follows easily frou the isomorphism (9 (4, B) ~ [A, B] and the

fact that the maps of [A, B] preserve base point,

Remark 5.23. It is clear that muny theorems on [A, B] may be stated equally
anc\ convertet

in terms of H°(A, B) or G (A, B),\and we shall in any glven case use whichever

of these is convenient.

(23) Definition 2,31, Let - = 41/A! be the 1-sphers, so that Cy(s!) = nz

tet AeC ,xeX, e suspension isomorphism ¢ : KO(S' ¥ X, A) 2 H(X,n A)
is defined to be the unique map making the following diagram oomsutative

8

(s x,4) 3 H((C (s @ 6 ()AL 3 B ((n2 & Gy (X)) An)

g 1

B (X,08) ¢ B (Cy(X) A np) «——= 8 (n oy(x) b 4) .

&

Let A, B eC ; the suspension o : G, B) » & (n"a, n'8)

is defined by letting ok be for each k € (7(A, B) the operation which for
each X €)€ makes the following diagram commtative.



BO(S W X,A) T —— B2(X, 7" 4)

Dl 10‘9

HO(S' % X,B) X > H°(X, 1™ B)

a—l
Thet 0 is alwaye an additive’operation may be proved as in the
claapical case,

(5.4) We wish now %o. say something about the relation between these
operations and the: classical cohomology operations, This is nmozbeasily
expressed. if we first give some additivity lemmasg,

M Let A, B eC for ieI , There is a notural isomorphism

G, T Y & J0MW,5
fel iax
Proof. The lemma is immediate using the definition of addition in & ,
and the fact that HO(X, S 8l) ~ I m°(x, Bl) .
i< i€
Lemme 5,42 Lot AJ,Be€  for JeJ . Thero is en injection

1: 5, & () —O(% A, )
3ed | 5ed

and e projection
J >, J
s Ay B A’%,B
P (9(5% » B) !jgl( »8)

such that pi 1s the injection of the direct sum into the direct. product,
and p 1s onto,
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Proof. Let us identify, for esch X€3€, the groups
Bo(X, 'J%xj) and 'EJHO(X,AJ) ; wewrite kJ = mo(x,ad) ,

K = 3?.1 kK, 1ot fe Jze’.r & (ad,B) have components B9 , Then we

define 1() to be J on the component K° of K ,

Let @e Ve ( j§:AJ,B) o Then we define the jth compponent of ?‘/’
to be on K3 s thc composition

g %> 1°(x,B)

It is clear that pi is the injection of the direct sum dnto the direct product.

Let h be the composition
T ip ¥ 1,8 L 3
e @'(A 4B) .____-)&/( }IJA $B) — 9’(3%, AJ,B)

in vhich 4' is defined analagously to 1 above and i" is induced by the
injection of the direct sum into-the direet product, Then clearly ph =1,
Therefore p 18 onto, and in fact }2;9'(1\3 sB) 1is a direct summend of

&(jz}? AJOB)Q
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In general p has nonstrivial kernel, For exsmple, when J has
two elements, this follows from the isomorphism

O(n + Ay B) X H(4) + &, B) .

505; Theorem 5.5, If X , 2€C , there is an isomorphism
Nz EO(X, A)—HE°(X, H(a))

vhich is natural with regpect to mapg of X
Erogf, Let F be a free complex and £ s F—> A a map such that
e+ 3 H(F)~ H(A) ; 1let 3 F —> H(F) be a (chain) map such that
g* s H(F) ~ H(TF) : that maps such as f and g exist is well knowne
By X111, f and g induce isomorphisms

HO(X, A) <—-—- 1°(x, F) 25 BO(x, H(F)) 2225 HO(X, H(A)),

Clearly \ = £ux gu(fn ). is natural with respect to maps of X

gorollary 5.52. If A,B &€C s there is a (nonenatural) isomorphism
N t01a,8) = G'@®(M), B(EB)) .
It follows from 5,52 that, at the expense of naturality, we may
consider ©&(A,B) only in the case wvhere A and B are chain comploxes
with trivial differontial, In this case we may write. (c.f, VI 1,8)

Asrzz’lp% ’ B= ZG:'ZQ’SBG‘

Now classically an operation of type (Ar’ r; Byy 8) 1is a natural
transformation in the category of abelian groups and set maps
-8
#¥(x, A) —> B (%, B))
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(ustog our present comventions as to grading), But N (x,4.) = P(5,N'A,) ,
H=3(x, B)) = Ho(x, 'szs)-s. So an operation of type (Ar’ r:B, 8)

in the classical scmse is exactly an operation of type (rL"Ar o7 B.)

in our sense,

From 5,41 it follows that

G (a,8) = 2(9'(11;2‘ Bs )
geZ

Clearly @’ (A,ff Bs) # Il-z @r (Q" Ar,vf Bs) o However there is a projection

Prs :@ (a,8) — © (0" 4 ,7¥B)

which will be of use later,
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VIIL. THE FUNCTOR K( ,m)

In this chapter we show the relationship between the Dold-Kan functor
and the classical construction of the ilenborgelMaclane Complex K(r,m) 3 in
fact K(r,m) = R(™7T) , More gemerally, by replacing T by a chain complox,
we obtain a functor ’IE( ,m)t € = TP suoh that K(4i,m) = R(Q"A) .

In § 1 we define ﬁ( o) and prove a number of simple propositions
about ’ﬁ( sB) o and so about R , vhich we need elsewhere, We also relate
these constructs and the W construction, and give a simple proof of the welle
known fast that any FD-donpla is of the homotopy type of a product of Eillenberge
Maglane complexes,

In §2 we discuss the exactness properties of K( sf1) 3 ‘tho situation
here is not as simple as for the clagsical K(r,m) since ®( ,i) 13 only
left-exact,

§1, eLlin s _and Bagle Properclog.
(1.1) Definition 1 Let A€€  The complex K(a,m) €FP 15 defined by
B(ayn) = Z7(8,4) = 2_4(W(q)ha) qQ = Oy1yc00
é=0* h1 @ a categorical csseoperator,

Clearly R( ,m) , wvhich ve also write K™ , is an additive functor &— I
(1.2) Prongsitionl.2 K° =R ; E— 3D
Eroof, By VI3.31, 1f A€C 5 Zo(ila)ha) =3 (Wa), 4) = R(A), .
(1.3.) Definitlon 1.3, The additive functor S 3 C —Co is defined by
A, r>0

z () r=0 , 4 ¢C ,
0 r<o

S(a)p



vith differentisl induced by that of A

Ve write s | for the natural inclusion of chain complexes
s: S(A)=A,
Proposition 1,32 If aeC , then R°(s) : KO(sa)= E°(a) .
Progof. If C ¢ C, » ‘then any chain map G —> A factars uniquely
through s 3 SA< A, Since N(g)¢ C, , the proposition follows.

W IR = K° 43 naturally equivalent to 5 ,
Proof, Let A €€ , Then

Rk°(a) = MR%(sa): by 1.32
- HR(SA) by 102
% SA | by VII 4.2, since sae G,

Gorollary 1.34 Iet X€X , A€ , There is a natural isomorphism
H°(x,a) H°(X,HRA), |

Proof, Clearly (as in 1.32) H°(X,A) S HC'(X,SA)° By 1,33,

H(X,8A)x HO(XHRA).

A

Propoeition 1,35, There are nmatural equivalences K- % k% ™= ag
NE® x s,

Broof. The Pirst equivalence follows from the isomorphism

2 o (M(a) A 2) Z,(4(@Ag®8) (ouF, VI 2.3 for our canventions an ) ) .
The second eqnivalence follows from the first and 1,33,

Eroposition 1a36, Iet by, hys A->B be maps in €
Then b2 h, = X(h)2¥'(h,) o I further Ay = 0, 1 <n,

®(n ) ¥ B%hy)=> n% hye
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Broof, Iyhy & by x q"hp = Sy'my & S'z“hg‘ & RSy = BSyy,

)£ 4 A= 0, 1< -m, then ?mA"“ MA ¢ go S'lmh1~ 81%2 =§th1~ thz
Garellary 1,37 Let A,B eC . Then A%B —> ¥0(a)z R9(B) .

(1.4) There is a walleknown v construction assigning a classifying space

to any cssegroup [18,37]c The notation of [37; 2,17] is used here,

Theorem 1,41 Let 2€3D o There is a naturel isomorphism WA %E(¥, 1),
Progf. Let a= [a _.1,..0,8. ]G-(NWA) Then

215 0 = [b q-2 .,3’“9’_30] =0

= aq_3=.°.=a°=0 and 'Bea'.l-raq'_a:o, Soai§=0,1>03

impliea .‘. [a’ 3.,&,0,0",0] vhere aG(NA) .1 o Turther
% (80 = 34;3.0,...,0] = [= 3, a.O,o.o,O] a ‘ Hence the map £39 HA — m{A

given by
f(a) = (-,1)q[a, oao_a‘.,O’o“oo:’o] | | f) a € (?HA)Q"']-

18 en isomorphism of chain complexes,
So
- - P
W« R(wia,0) = R(qma,0) = K(ma, 1).

Corollary 1o42. Lot A €C satisfy A, =0, 1<m, r.1‘hen. ’;!ﬁ(A,m)z ﬁ(A,ml)

Proef, We have MIR(A,m) % qM(Am)% 98 4" . By sséumptlon
3{™ = P4 , and 80 HHR(A,n) = ¢ S EETLE TS (LN
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(1.5) ZTheorem 1.5l Iet Ac(C , XeX ,, There 1s a natural isemorphism
[, R(a,m) = E9(x,A),
Bxoof [x, B(4,0] = BO(X,H(4,m)) by VII, 470
= H%(X, SyMA) by 1.35
% (X, qP4) since Cy(X) € C,
~HB(X,4) .
Qorollayv 1.52 Let A&C, There 1s a natural isomorphism

~
« 3 ‘ﬂ'qK(A,m) A q_“m»(A) o

Gorollaxy 1,53, If £: A->A' dsamapin C such that %3 H (A)m H.(A)
for r»m, then ﬁ(f,m) is a homotopy equivalence ﬁ(ﬂ,m)z f(A' ol )o
Broof. By 1,52, EK(f,m) induces an isomorphism of homotopy groups, |

It should be noted that we camnot assert ?((f,m) js an FD<homotopy
equivalence, - N
(1,6) We conclude this section by giving a simple proof, without the theory
of Postnikov gystems, of the well<known fact that any FD-complex‘ is of ‘the .
homotopy type of a prodnct of Eilenberg-Maclane compiéxeso
Theorem 1,61 Iet A€3ID . There is en equivalence

hed® 2 K (A)r)
r=o

Broof, ‘Let F bo a free chain complex and £ ¢ F—IHA a éhain map such
that £,s H(F) & IH(HA) is an isomorphism, Let g s F—» H(HA) =T(a)
be & chain map such that g,z H(F)« H(FA) is an isémorphism,

By 1,53, Rf ¢ RF —> A 1is a homotopy equivalehce, and so has a homotopy
inverse (R ) : A—>FF , Clearly h = (Rg)(R£)! : AR(w%,(A))

is a homotopy equivalence.
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Stnce T,(A) bes trivial aifferential, T,(A)x2 7T (4),

o

emd  R(W(4)) % & R(PTL(A)) = ZK(W (A),r), by1.35

The results of this section are not used elsevhere in this thesia,
(2.1) Proposition 2,01 (Carten) et E s 0—>P 2er_JM%0 bo an
exact sequence of css-groups, Then j 1s a fibre map,
Proof, Clearly [’ 4s a prinocipal fibre bundle with structural group
in the sense of [10; Expos€ 1], the group r’ acting on ' ly acting on the
cosets of I" in I e So j is a fibre map [10; Expose ], Propos:l.tign 2]
Proposition 2,02 * Let T:0»r'_ilsp _ipo beanexactsequencé
of ces-groups, The homotopy sequence of I coincides with the homolog
sequence of NE : O—>HM 1 NP § ,wr> 0, |
Ergef. Since j 1is o fibre map with filre I, and ,0, 7Y are
group complexes, and so Kan, the homotopy sequence of E is well-defined
[31; Theorem 14].

Phe functor N is Moore's normalisation functar [37; 2.,6], The comploxes
Rl"', B, §M’  ere in general non-abelian chain complexes. However, thay are
poxmel in the sensc of Frohlich [23], so their homology groups are defined,
These homology groups are the same as the homotopy groups of the respective

cssegroup [373 2.7].

* This proposition is probably welleknown, tut does not scem to be in
the literature, ’
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We prove that the sequence NE is exact» Clearly 1i? 4is mono
and j';'t' =0, Let ¥e NP ar;d suppose J¥ =0, Then ¥ =1Y' for
some ¥‘¢l . But i is zono and (Blr')qa1 xgraig 80 (’em-{)
and ve have proved axactness at' N , Let ¥Y%c¥{’ .. Since jJ is
a fibre' map, there is é ¥e [  such that j¥=¥" and O iX =0, i 03
so¥eNP, and j is epi |,

It is proved in & of (23] that eny exact sequence of normal chain
complexes has gn exact homology sequence.

Let 2" be a g-cycle of NI™ , The homology boundary D, [2"]
is found as follovs‘: an element Ye NI is chosen so that jly = 2" ,
and 3,. La"] ‘isv“de_fined't.o be the homolozy cle=ss [ ¥'] , where ¥’ is a
(q-l)-cyclé of NP such thaﬁ i'8" = 08 ., But this process is exactly
| ti;e same as finding the homotdpy transgression of z" wifth respect to E ,
vhen 32" is r.egérded as a represenf;ative of an element of ‘rq(!‘ ") So
fh_e boundary opez;ators of E and NE coincide; the other maps of the
exact sequences obviously coincide,

(2,2) Broposition 2,21 K" : C — 3D is left-exact.

‘Proof, If A€C, then 'K(A,'m)qx Fc (A1), ") o Since 7 1is exact
and 3‘ is lefteexact, .the’pro;;osition Tollows,

Theorem 2,22 Let E : 0 —>A? 2,4 4" 0 be an exact sequénce

in C . Let ‘?=I? (j,m) - Then (i) Im ? contains the izientity

component of ?(A",m) (ii) for each >0 , there is a commtative

diagram



Proof. That X zTi(Im’j\)——) Hq_m(A") is defined ‘a.nd is an isomorphism
follows from part (i) of the proposition and 1.52; the cotmitativity of
the diagram follows from 2,12, So it is surficient to prove (1),

To prove (i), it is sufficient to prove that if ¥é& K(A“,m)
= z"””(Aq A") is in the identity componentx R(A%,n); then ¥ 1s a
then

boundary : for if ¥ =§en ,» where c"g (CN(Aq)A\ A") ey 0

c" = j'¢ for some cS(CN(Aq)_’I\ A)__mﬂ ;3 so ¥=j'§ ceIm/J’b °
How z'f‘(Aq,A") = 2%(a%y" a") = J (cy(aY), p"a"),

and undér these equalities a boundery corresponds to a chain map
homotopic to 0. So the theorem follows from the following general
lemma on FD-complexesg ;

mma 2,23 Lot BE3D , and 1ot & : % F(cy(ah, m) be
the isomorphism of VII 4.2. An element zre B, is in the identity
cémponeht. of B if andonly if PV % 0 : CN(Aq)-—é MB

Pi-gg; An element Y& B, is in the identity component of B
4# $%0:4%9 B<=-_>D9"-!O°C(Aq)—->8 (VII 2.21) &
XD¥RO0: C (A‘l)-—;ma (vix 4041)0 Since ND¥= §(¥) [16;p.59], the

lemma is proved.
Remark 2,24 Proposition 2,21 suggests determining the right-derived
functers R” i » These derived functors exist since C hes encugh

injectives [24], and are given by the next proposition,
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Proposition 2,25, There are natural equivalences for n»> 0
uan | Sl { i p.a q=0
0 q>0

Proof, Let A eC s and 0-—->A—-% 1——3-;14——»0 be an exact sequence
where I €C  is an injective object, Let M' = Im K%(§) ; then

Rl’ﬁm(A)z oner T j) 5 so there are exact 'sequAences

0 — B(a) L ®(1) 5w — o0 | (*)
0 —-sm'i,»’ﬁ‘“(m) —éRl'ﬁm(A)——, 0 (**)

Since I is injective, H(I) = 0 . So from the exact homotopy sequence

of (*) and 2,22 | |
’R'q(M‘) = iﬂq-m-l(“ 1> 0
0 - q=0,
By 2.22, i T (1) = Trq(?c“‘(m)), Q>0 . Therefore from tue exact
sequence of (**)

s | ==l
0 q>0 0 q> 0

v pE®

o K2(id) q=0 H () q=0
q (a) =

The proposition follows by induction,

(2.3) In [9, Expose 14) Cartan introduces a complex L{T,m) which
is a contractible fibre space over K(W,m+l) . This construction

also has a place in the present theory.
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/N
Definition 2:31 The sdditive functor L( ,m) : C —> 3D

is defined by
P ’ ‘
L (am) = Cylahh v aeC
$= Al b e catégoriéal cssgeoperator
'i(f,m) = fAl f amap in C

The natural transformation § T ( ,m)-——-)ﬁ( ,in+l) is defined by
*‘ %(A)..;- 8 & (c(ah)n A) — z7™Na%) , aecC.
Proposition 2,32 There is a natural FD-homotopy equivalence
1 (,m) %0,
Proof. et A €C . It is sufficient to find a natural contraction
¥ ’I:(A,m) 20, |
Let D(q)cN(q) denote the subcomplex generated by the images of
N(B;_") : N(gml)—>1(q) for i>0 . From the argumént of [16;p.59] it 1is
clear that
¥ La,m) % (W(q)/D(a) D)
) ZMq.m + qu-m-1
= Aq—m * Aqom-»l )
and that these isomorphisms give a natural representation'of it ?.(A,m) as

the direct sum of elementary complexes of the form ¢.c0 — A, —A;— 0 400

So N'L(A,m) has a naturel contraction.
N

Proposition 2,33 Let A€C . The complex Im S, where

2 : L(A,m) —>K(A,m+1), is the identity component of K(A,m+1),
Proof. =~ In the course of proving 2,22 it was shown that the identity compoment
"N

- A ~
of K(A,m+1l) conteins Im . Since L(4,m) is connected, Im $

. Py
is contained in the identity component of K(A,m+1).
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IX, k-INVARIANTS OF FUNCTION COMPLEXES (1)

In & 2 of ‘this chapter we give theorems which are halféﬁay tovards
_adlving Problems 3. 1, 3,2 of Chepter IV, These theoreams make the transition
from FDwcomploxes to chain complsxes., The trans'ition from cssecomplexes to
FD=complexes was made in Chapter VII, and the transition from chainycompla;cés
to hoiology will be covered in Chapter X,XI, This latter step is quite simple
theoretically, and involves essentially only "coefficient homomorphisma™; the
main problem is to put the results in a forﬁx suitable for computations.

The course we adopt here is closely related to, and has the éame motivation
a8, The Eilenberg-Zilber Theorem (VII, 3.41). This théorem, we.recall, replaces
the chainecomplex H(AXB) , where A,B €3D by the chain-complex
'FA@NB . Now the Dold-Kan theorem (VII, 4.2) shows that N(AxB) may be
written as a functor of NA and IB ; nonetheless, the homolégical algebra
of this functor is mich less readily understood then that of NA®NB , so
that the replacement of H(A%B) by NA®NB is indeed convehiénto

At this stage there is a choice of working in the category either of
FD=-complexes or of chain complexeé; the expositions in the two cases are "dual",
in the sense that propositions have to be pro;ed about the functor which is not
natural to the particulsr category chosen, Thus x is natural to the FD=
category, but not to the chain complex category, ® , conve_rsely, is a
natural construct for chain complexes, but not for FD-complexésq |

We shall work in the FDegcategory, and accordingly we define A®B , for
FD-complexes A,B, bty A®B = R(NFA®HB) . The Eilenberg-Zilber Theorem

then furnishes an FD-homotopy equivalence D ARBY AAB,
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In VII§ 2 we defined, for FD-complexes A,B & map product A4 B

such that if Y€X then B '« C(Y)AB . This functor A has the same

deficiency as X , mnamely that the normalised chain complex M(A43B) is
an inconvenient object. Accordingly, we define in €1 a new complex AAB
such that AA B2 R(NA ANB) , and construct en FD-homotopy equivalence
A: ADB—>AMB .

There is for the functor AN an exponential law which gives an isomorphism
M3(A®B)AC —3AA(BAC) . To complete the picture of the transition from

,FDacomplexes to chain complexes we prove that N M is essentially the

7
exponential map for chain complexes, and that the equivalences & , &

preserve the exponential law,

These constructs are applied in 8§ 2 t6 determine the compositions

Y /x
X5 T 25 c(v)ha,
Al Y A .

a Q" A
o(T)h A ——=> A —— 58’ > C(Y)A B ,

Al A
where £ denotes a homotopy inverse of A ; XY €X¥X , ABE€ D

k: X—yA,d: A—>B . In Chapter XI we define equivalences C(Y)hA-2 L(Y,A)
and obtain the cohomological solution,
It should be noted that the procedure we have adopted is essential for

Y h
the solution, If we choose an arbitrary equivalence YA ———> R 1(Y,4) ,
' | . Y Y h
then we cannot say much about the composition X x > A R H(Y,A) ,

§1. The:functors ®, A of FD-complexes.
(1.1) Defimition 1,11, Let A,B €3D . The tensor product A®B ¢3D

is the complex
A@B = R (NA®NB) .

The tensor product is an additive functor of two FD-complexes; thus if f,g



ere two maps in JD, ‘then
£f®g = R(Nf®Ng) ,
Let P: BR —> 1 be the natural‘ equivalence of the Dold-Kan Theorem
(VII, 402); For 4,B,C€3D the conposition
R(ma@xfsec)) N18¥), R(FAGMB®IC) — R“@ﬂ_; R(m'(ms)azzc)

is & naturel isomorphism A®(B®C)x (A®B)®C by means of which we identify

these complexes.

Definition 1,12, Lot A,B€3D . The hom product ahBeFD 1s
defined by .
(ahB) =J (K(q)® 4;B) Q= 0,1y000

$ = I (¢gte1, 1) ® a catogorical csseoperator.,

Clearly the hom product is an additivé functor of two FD-complexes,
contravariant in the first, covariant in the second, |
Definjtion 1513, ILet A,B, €3] . The map
/A: 3 (a@B, ¢) —— (4,BAC) (%)
1s-defined by
| MMe)a) = 2(G61) , fej-(s.es,c), acA .

Clearly - M is a natural map, and so defines an FD-map
P (A@B)AC —>AA(BAC)
vhich in dimension .q is obtained from (*) by writing K(q)® 4 for A .

(1.2) To prove that the above exponential map is an isomorphism we shall
relste it with the exponential map for chein complexes, This necessitates
introducing temporarily two other hom products, which we shall later identify

vith A .
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Definition 1,21 Let 4,8 €3I | e define hom products
AAB, AN'B €¢3D and fsomorphisms X : AAB — A B,
M 1AM B — AA"B by
| {(Ar\\' B), = F (n(q)®na, 1B), | Q= 0y1y000
¢ =F (g%, 1) @ a categorical ésé-o_perator
g(Am" B), = 3 (n(q), MAAIB) = R(WAMNB) q = 0,100

b= F(¢5 1) ® a categorical css-operator

M) =meE T, reI(k(@@a,) 5 AXg) =u(g) , ge3(N(q)@1a, 1B),
vhere \_F is the Dold~Kan map (VII, 4.2) end /Jl is the expénentiai map “or
chain complexes, 'Clearly )\1; )\2, are natural FD-isomorphisms,

Theorgm 1,22 Let A,B,0 €3D , The following diagram is commutative *

3(a®B,0) 4 > 3(a, BAC)
ARy
3 (a,BA* C)
N|® =R
F (a,BN\ C)
F (w(28B),NC) 3 (na, N(BA" C))
\P'ch N | %l J.
J (waewB, NC) /’; > 3 (NA, WBANC),

vhere the maps m are exponential maps, and we have identified
3 (§a, S(FBAKC)) and F (NA, HBANC) .
We defer the proof to an Appendix,

% Here, and later, we find the folldv:lng notation convenient, if f is eny

map, them a map induced contraveriantly by f is written f° , end a map
induced covariantly by £ is written £, or, simply, £ .
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Corollary 1,23 lLet 4,8, €EXD . Then
p:3(a88, ) —> F(4, BAC)
is a homotopy preserving isomorphism, and
| }L:‘ (A@B)hC——)Ad\(BhC)
is an.isomorphismo
Proof, The first statement follows from the fact that all the other maps
of the diagram of l 22 are homotopy preserving isomorphisms. The second

statement clearly follows from the first statement.

(1.24) "It is now convenient to make the identifications
AbMB= AN'B = AA" B for A,B ¢3D .,
We shall .also  identify A and RNA (A €3D ), and MRK and
SK(KEC ) .
The diagram of 1,22 can now be written as a commtative diagram of

homotopy preserving isomorphisma

F(ae8, 6) —~—— }(s, BAC)
le “IN
3 (Na@NB, NC) — /’: 53 (WA, FBAXC) ,
(1.3) The natural maps of the Eilenberg-Zilber Theorem (VII, 3.41)
transform under R to maps |
AXxB ;::%%::j» A®B

such that YA =1 and such that there is a naturel FD-homotopy A% ¥ 1.

We now prove
Theorem 1,31 let 4,8 €3D . There are naturel maps
a
AGB —— ARB

N
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guch that AT =13 and such that there s a natural FD<homotopy
Sdz;,
Exoof. The complexes AhB; AAB are given by
(44B) = F(K(q)x 4,B), (AhB) = F(X(q)®4, B) .
q q
et 2= 3(4,1), §q =3(Ss 1) o The fact that O ,§ are

netaral dmplies that A , S  ove Femaps, Also 54 =1 imliss
A% =1,
Let I3 K(1)x K(q)x & — K(q)x A be the natural hamotopy of
the Edlenberg-Zilber Theorem, Let H' : K(1)x (AdB) —>AAB be definsd

in dimension q hy

n; ($5'e2) (v5%a)=£ H(WPS @v§*@a) £e3(E(q) 5 4,B)
ac bsb*e Map(alah)
Ve Map(a P09

Since esch H' is matural, the mep H' 4s an FDemsp, Purther
q

B (5205 @ £) (W& ®a)=rH(<E®S ©¥soa) = 2(w5'® a),
B'(s32,8' @ £) (s @ &) = £ H(sS2, ¢ @ ¥5%a) = £ AX (y$'@ a)
= (32 1) (v§®a).
Therefore H' 31 2 JA o
.Ac‘liual‘ly H' 1is the map corresponding (u:ﬂer/k)tothomp

E(1) x (a4B)xa —2 5 (aaB)xa £ 4B
where € 15 the evaluation map (defined by m(€) = 1), However, the explisit
formlas for H' is relevant to Remark 1,33 below,
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Sorallary 1,32 Iet Y€X , andlet A cC  bo such that
4, =0, 1<n, The homotopy groups of i(A,m)Yaregivenw

wq(K(I;m)I) ~ g7, 4) .

m T q(K(A,m)I) = T, (c(X)d K(a,m)) by Vi, 2;&
x T (C(T) A K(A,m)) ty 1,31
® B (OASPM) v, 135
=  HYI,Sq™) |
= Rz, ?mA)o since Sp=A =M
= 8% (,3)

Remexk 1.33 Let T be an additive, covariant functor of two variables
from abelian groups to abeliasn gro&pa,‘ Then T may bo extonded to a

functor T 3 3Dx3D— ID ty setting
{g( 4 B), = T(A,B) 2B €3D | gq=0,1,0.0
o = ™(¢,P) @ a categorical css-operater,

There 18 also a well-known way of extending T to a functor
T Cx€—C . by setting, for C,Ctc C .
T(C, C') = . (G ,0°
(6, 00), = 2 (0,01 )

vith differential T(9,1) + T(1,% ) (using the sign convention of VI, 1),
Sommaydefinsafunc‘bm"l“z 3Dx3ID — 3D Wy

T (4, B) = R(T (NA, ¥B)) A,B €3D.

Further, two"function comploxes of type T,"

d .. andh, may be defined by setting, far A,B ¢ 3D

T T
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(A‘LTB)q = 3 (.?.(K(Q)s A)o B)s
(AngB), = F(T(K(Q), 4), B) «

It may be proved, however, that T (A,B) = T(a,B), AdB ¥ Amra'i,
The first of these equivalences is found by recalling (VI. 3,42) _thaf the
maps and homotopies of the EilenbergeZilber theorem may be expressed as
linear combinations of pairs of categorical css-operators. So the functor
T (of abelian groups) may be applied to theose pairs to give maps and homotopies
relating the functors (of FD-complexes) T and T ,

The second of these equivalences follows from the first in an analagous
manner to the proof of 1,31, .
Remark 1,34. The naturality of A » ‘E implies commutativity in various
diegrams of the type

ep)nc —3AL 5 (e 224, (wes)ac

2| S
(A@B)A4 C FE — (A2 B)AC "ZTI’ (A@B)MAC .

{1:4) The fundamental theorem (1.41) is now simple of proof, The éorollary

1,44 is a form of the theorem which is useful in applications later, and which

shows clearly that we have made the transition from css-complexes to chain

complexes in such a wey as to preserve /u

w Let . A,B,C €3 D o The following diagram is commtative

F(ax B, C) ——9:——9 3(a®B, C)

s )
3 (A,B&C) '—'T—) B(A,Bd\ C)
Proof, Let f£€ JF(AxB, C), a€hA . Then
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(k&1)(s) = (K1)(Bo1) by definition of
= £A(a®1)
=f (axl)A by naturulity of A
s ()‘Af)(a)A by definition of//\ s VII, 2.31
= {A.ut](a) by definition of A
W Let 4,B,C €3 D » There is a commutative diagram of
isomorphisms
{AxB, C> 3 —> < A®B, C>
Al |
{ A, BAC> = y <A, BACD
A,

Definjtion 1,43 Let KLY EX ,A€3D . Ve define
b:H (xﬁtx,a) ~ 1 (x,c (Y)Ahia) = HO(X, c(Y)h A)

to be the composition
RO(X¥Y,A) = HO(N(C(X)x c(¥)), wa)

%

- H°(cN(x)'s GN(Y), NA)
£~ B (X, G(T)ANa)

Corollary 1,44 Let X,T€X , A€3D .- There is a commtative diagram

of isomorphisms

RO(XK Y, A) b > HO(X, Cy(T) ATA)
pl |
1°(X, C(Y)hA) y Y HO(X, c(Y)hA) .-

m In writing j ¢ BO(X XY,4) — Bo(x, C(Y)QA) s we have used the

~ identificetions
EO(XAY,A) = [X&Y,a] Pv[x,aT] = [X,0(1)2 4] = B2(X, C(D)a 4) .
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The commtativity of the diagram follows immediately from 1. 42, the
definition of B , and 1.24.

(1.5) Theorem 1,41 is a theorenm about the dimension O of certain funct.ic;n
complexes. We show that this thec;rem generalises to the whole function
complexes. This result is not needed later, so we defer i;he proof to an
Appendix. |

Ihgoreg 1,51 Let 4,B,C € 3D ., There are natural FD-homotopy
ecnlu'ivalences:

A (axB)AC ¥ (A@B)AC, & : AM(BAC) X AA(BAC)

such that the following diagrem is commigesive

Al.
(AXB)hC ——— 3 (A®B)AC

e =] 2

‘AA(BAC) ——5—> ah(BhC) .
A
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82, THE BASIC THEGREMS,

© (2.1) Defipition 2,11 Let X,Y,2€X  , A mep
FI : Zx——> (2 )XY
is defined as follows: in dimension . q ’ F* 18 the composition
vep (A X, 2) ¥ ety Ty 1, 7) A >hap(L' X7, 2%),
where £ : XI;{( Y —X is the evaluation map

ot ke (2, (B6h,0) ¢ Wrr), (v8,p) ¢ (Axm,

Then Fy(k)(M&,g)(w %.y) = klyg ,elw & ,3))e
In perticular, when q =0 , identifying AX X and X,

| P'(k) (g) = ke
In dimension O, .we write k' for F (k) ; 1t is clear that
= (I"Y.)o : Map (X,Z) ——»Map(XY,ZY)

is hbmotop_y preserving.
Y ,
Ween Z =4 ¢3D, then AX end (AY)X are FD-complexes,

Y Y

and F~ 1is a homomorphism. We also write F~ for the corresponding maps

1x,8) — [x5,27],  B%(x,a) —E°(x%,aT) .

The following theorem is now almost obvious.

Theorem 2,12 ILet X,I¥ eEX , A €3ID , The following diagram is commtative
. * )
Bo(x, a)—F EO(XCRY, 4)
o1 L |

1o, aY) HO(X kY, MA)

A.\L"' z{o
°(x’ C(Y)hA)=—=8H (x C,(¥)hEa) ,

vhere § 1s defined in 1,43,




8l.

Proof, We comsider the following diagram
Map (X,A) > Map(x Y,A)
Map(xx a¥)

/
i

F(c(xh),aT) 2 — J(e(xN)x o(y), 4)
z.l \J/A.
F(e(xh), c(y)aa) - Do), A) .

_The top triangle is commitative by definition.of F', The bottom squere is

commtative by l.4{l. Passing to homotopy classes, and so to homology, we

obtain the. theoren.

(2.2) The next theorem has two purposeé. First it gives an alternative
descrilption of the (homotopy class of the) evaluation map €3 Alxy —>A .
Second, it shows the equivalence (up to homotopy) of two possible d2finitions
of an "evaluation map" (C(Y)AA)¥Y —A .

Theorem 2,21, Let A €3D , YE&€X , The maps of the diagrem

A ¥
Ho{(C(Y)hA) ¥Y,A) (Axn), H(AY4Y,4)
b l"' | p
BO(C(T)A A, C(T)hA) 1o(a¥, )

satisfy .
MAX 1) BT wemas =w@h

vhere W denotes, as usual, the fundamental class of an FD-cqmplex,

Proof, The following is a commutative dlagram of isomorphisms
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A ¥*
EPG(D)A A)p T,8) BB, o, Ty 4y sy oY T,

0 le lA.‘

HE2(C(Y)A 8, C(T)A A)-—-z-,—; HO(AI,G(Y)MA) 1o(aT »o(Y)h4)

for the leftehand square is commtative by naturality of § , end the
right-hand square is commtative by 1l.,44. So

pBAr et weman = (AT 27 wEman .
But clearly (At A’ 0 (c(Y)ha) = w (aY) , for the fundamental
class corresponds to the identity map.

It should be noted that /A.-l w (AY) is the class of the evaluation
map & 3 AI)‘(I Y- A,
Corollary 2,22 6 eﬂw(A) = A w(C(D)ha) .
Progf, B € w(a) = b ,u"lw(AY) by definition of €

=p(A%1)" 0 L w (cmha) by 2.21

= 2\&“ W(C(Y)A ) by naturslity of § .

(2.3) 1Let ABE3D, Y€XE . We define a homomorphisn

oY : & (a,B) —> F(c(m)AA, c(1)hB)

(cofs VII.§ 5 Por definition of O ) « Let ke (F(a,B); then G (k)
is the operation whiéh, on H%(X, G(Y)4 A), dis the composition
52X, c(Y)A A)—-gjé BO(XHT,A) —S—> H°(x;m,3).——i——> 12(X,C(T)A B) o
We also write G! for tue corresponding maps

[4,8] —> [C(¥)A 8, C(DAB],

#0(a;8) ——HO(C(T) AL, C(DIAB) .
Theorem 2,34 Let A5 ¢3) Y €)X . The following diagram is commtative

5°(4,B) P, put,sh

GYl lA*

BO(C(Y) A A, C(T) A B)—— BO(AT, C(D)hB)
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where Am A s 8re induced res;)ectively by ﬁ B® 2 C(Y)AB,
A al ==c(1r)z|\1a°

Proof. For clarity, we write k for the operation in e'(A,B)
'correSponding to kéHO(A,B). The fdllwiﬂg aiagram is commutative

Ho(f,A) —3L> HO(A,B)

c*

BO(AL *Y,A)-)Ho(A *1,B) s 8°(a’,5Y)

8 l«. - 91 % LA*
oY

Ol,c(Y)ha ) S ¢y o(a¥,c(x)h B)
A* T - - zT A*
B2(C(Y)AA, C(Y)AA) Ho(C(T)A &, C(T)AB)

6¥K)

for the left-hand squarés are comautative, fhe middle one by definition
of G (k), and the others by naturality of operations with respect to maps.
The right-hand square is commutative by le44. |

How /u\e* kw(a) = /&6*(11) = 7 (k) , by definition of F.,

Also G (k)Q(C(Y)AA) = Gy(k)‘ °
By 2022’

B¢ wia) = 2 W(c(DA 4) .
Therefore 3* GY(k) = ﬁ* FY(k) o
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L. SQMQRPHIS

It is welleknown that if CyG' are free finitely gemerated chain
complexes, bounded below, then for any graded group G,

H* (C®C', G)=~ H* (C, H*(C!, G)), This isomorphism is sometimes called
a Kinneth isomorphism,

The usual construction of this isomorphism is via the Universal
Coefficient Theorem and the Kiinneth Theorem (c.f. [25; Chapter 5, Exercise
5]) However the direct sum forms of both these theorems are non-natural,
go that the naturality properties of a Kilnneth isomorphism constructed in
this way are unclear, In fact, it is not difficult to give an example
to show that a Kilnneth isomorphism H*(C® C!, G) & H*(C, H*(C',G))
cannot be natural with respect to maps of C' ,

In {1, a simple construction of a Kiinneth isomorphism & is giveh,
This construction is carried out at the chain level, and satisfies three
~ conditions (i) naturalitj of K. with respect to maps of C is assured
(1i) it is possible to discuss the behaviour under K of elements of
H*C@C', G) , given for example as co-cyles (iii) there is, when
ct = GN(Y) s G = NA s & r?lated css-equivalence C(Y)MA — RkH’(I,A) 0

These three conditions on K are in fact essential for a complete

discussion of the function complex problem,

The construction of K. given here is related to a construction of
Bott and Samelson in (8], who there construct a Kilnneth isomorphism in

homology when the coefficients are Z .
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In § 2 ve give formulae for &k, when G = zn(nw) and C! 1is
elementary,
Applications to function complexes are given in Chapter XI,

ilo Construction of Kilnneth Isomorphismg,

(1.1) In this-section, Proposition 1,11 is of standerd type, while
PrOposiiion 1,12 is well=known,

. Proposition 1,11, Let A ¢ C, be free, If f : B—C 4is any map in 64
such that f£a: H(B) =~ H(C) , then

(IN£)s : H(AAB) = H(AAC) ,
Proof, It is sufficient (and in fact necessary) to prove that for zll
xe€ , #(X) = 0 => iI(ARX) =0 ., For suppose this is true, Let My
be the mapping cylinder {19] of amap £ : B»C in € . There is an
exact sequence 0 —C ——)Mf--—>B——>O whose homology boundary 'c‘zoincides
with f4 ; since fx is iso, - B(Mf) =0 . Also, since A is free,
0->AAC — A A Mo >AAB —0 is exact and the homology boundary of this
sequence 18 (1A £)s o Since, by assumption,. H(Ak M) =0, it follows
that (1A £)sx is:iso.
Let therefore X €C  satisfy H(X) =0, Let f& zp(mh X) ; we prove

f is a boundary by constructing inductively an element g¢ (AMX) p+l
such that dg=f . Let g =0, r<0, Suppose g, has been defined for
r<s to satisfy £ = (-1)Pg ;0 +dg .

SAs p Then
3s - ‘ . _(-1)Pe .9
K s J’ fs &8 )) 8-l 3£§g~(-tf3,_‘a) = ("’P;'gqb"b"f)Sg..a
) d > xg«rp » > Xsepat =t-\f((—l)?3g.-@ +33,.,)Q '-(:'\‘r )3‘_.

= 0. :
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Since H(X) =0 and A  is free, there exists gy ¢ A such

xs-i-p-*l
that g, =f_ - (-1)Pg, 32 .
So we have proved f is a boundery, Hence H(AAX) = O.
Proposition 1,12 Let A,FeC , Let F be free and let
¢:8(F)—> H(A) be any map, There is chain map g : F— A such that
gn =P . | N
If ‘G is eny graded group, there is a free compl;ax F €C such that
BF)® G,
(1,2) Theorem 1,21, Let L,A,B €€ and let K € Co  be free,
Iet v : H(LAA)x H(B) be an isomorphism. There is an isbmorphism
| X : H(K®L,A) = H(K,B)
defined for a1l free K €&, , natural with respect to maps of K and
‘coinciding with V (under the canonical identifications) if K =12 .
I_’r_?gg_i;o Let F € C ‘be a free compleé and £ : F—3 LAhA a mgp such
that £, : H(F)a H(LAA) ., Since F is free, there is amap g : T—B
such that gx =V f« : H(F)->H(B) . Soif K& C, is free, there are

isomorphisms

H(K@L,A) —2—> H(K, L &) e “ Mh ik, F) ‘—'z"\_’):; (K,B) o
The composition of these isomorphisms K H(K® L,A) = H(B) 1is clearly
naturel with respect to maps of K o Turther, if K =2 , then M
reduces to the identity and k = (14 g)x (1Af)a L = guta™ = ¥ .
Definition 1o22a Let LyAy B €C . A Kilnneth jsomorphism of
{ype  (L,A3 B) is an'isomorph}ém

K¢ H(K@L,A) = H(K,B)
whieh is defined for all free K e &, , and which cen be constructed

as in the proof of 1.21,
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Olearly if such an isomorphism exists then (putting K = Z)
k: H(L,A)2H(B) . If B=LhA or H(LAA) it will elways be essumed
that W : H(L,A)=~ H(L,A) -is the identity,

The isomorphism X is seid to be associzted with the triple
(F; f,g) , where F,f,g are as in 1,21, and with the iéomorphism v
A simpler construction of k. is obviously pdssible whenever a map
h s LhA —> B exists which induces an isomorphism in homology; such a
map exists for example if LhA is free, |

If x 1is constructed by means of such a map h , then k is
said to be associated with h

If Y &3X , then a Kilnneth isomorphism of type (YV,A;B_)
where A,B €C s is for each X €2 the composition

HXkY,8) ~Ss H(Gy(1)8 y(1),8) —s B(x3B)

where K is 2 Kiinneth iscmorphism of type (GN(Y)’ A3B) , and A is

the Eilenberg-Zilber map,
If YE€X , a,B €3D , then a Kiinneth isomorphism of type

(Y,4; B) is simply a Kiinneth isomorphism of type (Y,NA;¥B)

Remark 1,23 ‘Each part of the-above ‘definition is essential for ovr purposes.

(1.3) Definition 1,31 Let Y €% , and let ¥, 2 be Kiinneth isomorphisms
of types (T,A;3 Bl) s (X, A3 Bz)v respectively, where
Ai,Bj.GC'or FD i=1,2.

A homomorphism
K’lz :0’(A13A2) '—_ﬁ@’(albaz)
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is defined as follows : if ke (J (4,,4,) , then K, (k) 1s, as &

function on H°(X,Bl) (X€X ) the composition

| a
B%(X,B,) ——» n°(xa<!,al) R H°(_mz,A2) <2 gO%(x, B,)
If Ai.’B:l e3ID s ‘then we regard K,y also as mappj.ng

. ' i o) 0
[Al,Azj -_..> [51,132] , I (Al,A2)-—-__._;H (31,82) o

Remark 1,32 The determination of K3 in general is difficult. In
particular cases, in order to evaluate K\,. (x) for a given k we
shall simply use Definition 1.31, |
| Theorem 1,34 does determine one part of ¥\ (k) in general,
Prbgs;tigg 1,33 Let K be a Kiinneth isomorphism of type
(T,A ; H(Y,A)) . The composition |
(sh% v,8) X m(s?,u(1,4)) =1 H(Y,4) —>B(T,7"4)
coincides with the suspension ¢ (VII.5.3),
The proposition is immediate from the definitions.
(1.4) Let now 4,Be¢C [, YeE , Let¥,,K; be Kiinneth
isomorphisms of types (Y,A; H(Y,a)), (Y,B; H(Y,B)) respectively, so that
Ko & (a,8) —— O (u(Y,M,H(Y,B)) . According to the »discussion of
Vi1 2043505 there is a projection
Pt T(B(T,4), 1(1,8)) —s G "E™1,4),q" BY(Y,B))
wd Ol B%(x,0), 0" BYT,8)) = & (4" B3, q™"W)0" 11T, B))
But by a clessical argument, if m) O
& (p " B2, 4),0 ® BAL,g" B) » Rom (H2(3,0™ 4), BO(Y, 9 B)) .
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Let us write R, :OTH(Y,4), K(Y,B)) —>Hon(H(Y,q "), H °(1,97"8))
for the composition of these maps,

For m=0, we have
& (1°(1,a) 5 B%(Y,B)) « Map(#®(¥,a), HO(Y,B)),

the latter set being the set of functions H%(Y,A) —> HO(Y,B)
which preserve O . Sofor m=0, we *t;ake f’o as a map

o O(T,0), 5(Z,8)—s1ap(8°(1,4), HO(1,B)).
Theorem 1,44, Let k & O'(4,B) s and m>0 , Then

| /"m Ko (k) = q_m(k) 9
the m=fold suspension of k (V11.5,3),
Proof, To evalué.te Pm iz (k) it suffices to evaluate kg (k)

on Ho(Sm, H(Y,A))' o The following diagram is commutative

'H°(s“‘, H(Y,4)) — n°(s“‘,gz Y,4) X5 nO(sP xv,8) K2y 1O(s®,i(Y,B))
R L
n“‘(z,a) HO(Y,p” A)—;———é HO(L,0™8) =— | H™(Y,B),

The top row 18 Kia (k) acting op S” ; the bottom row is pfu ki (k) .

SO fm&lt(k)za.'ak')

§ 20 Degg:mingtion of Some -Kﬁnneth Isomorphisms,

The presentation and results of this sectljl.on owe a great deal to a papea
of N, Palermo [39].

First we give an "additivity lemma",
(2,1) Lemma 2,1{1) Let A,L;, B; €€ end let X ; be a Kfnneth
isomorphism of type (Li’ Ay Bi) (i =1,2) - Then

Wy +K, S H(KG}(L1 + L2),A) % H(K, B, + 32)

1

is a Kilnneth isomorphism of type (L, + LA 3 By +B,) .
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(1i) Let A, L, B, €C and let iy be a Kunneth isomorphism

of type (L, Ass Bi) (£ =1,2). Then
Xy K, s H(K®L, A+ Az)c:.H(K, Bl + B2)

is a Kunneth isomorphism of type (L, A.l + Ay Bl + B2) °
The proof of the lemma is obvious,

(2,2) In discussing Kunneth isomorphisms of type (L,4; B) explicitly,

an obvious simplification is to supposse A,B have trivial differential,

so that B=H(L,A) , If further A ,L ere finitely gonerated in oach
dimension, and L 1s free, then the "additivity lemms® 2.1 implies

that it is sufficiont to comsider the case A = Zn(n >0),

H(L) =?qzt (t>0) .

It w.ﬂ.'!. cloarly be conveniaﬁt to have a canonical system of
generators and rolations for H(K®L, Z,) o Such a system ig given in
35 ]c To deseribe this, we need some notations.
~ Notatdon 2.2k, [56, 39]

Iet X ¢€C  be a free complex,

If x¢XhZ isacyclemodn, ie, §x=ny Ffor some
y6XhZ , then (xa or X denotesthe homology class of h xeKhZ ,

vhere h x is the image of x under the map induced by the projection

%2 -—%,, In particular, (x) o OF X, denote the homology class of

a cycle x o
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The Bockstein boundary & = is that associated with the exact
sequence 0—~>2->» 2—2,—0; 1.e.$nxn = ( %gx)o s if x
is acyclemod n,

Let m 320, n>0 be integers. The coefficient homomorphisn
hn’ﬁ: H(X,2,)—>H(X, Z,) 1s defined by

b, o(x) = (Gﬁﬂ x),

for x a cycle mod m , where (n,m) is the HCF of n end n

(4f m = 0, thed (nym) =n) , The composition h. _G_ is written Sn
. ]

ne,o ’n n °

The maps b, . » o, satidfy the following relations .56)

hk,ﬂ hmsﬁ = r;ﬁ(.‘ﬁ%};r hksn '
Sm hm,n = rm_:‘-xﬁ 5 n ¢

If x¢ XAZ, , y¢ YAZ (n30) , then x«ye(X®T)hZ,

denotes the cartesisn product (VI. 1.4) of x and y with respect to
the ring peiring Z,®Z—»2 . The cartesian product induces a
pairing X 3 H(X, 2,)@ B(Y,2 ) —0(X@Y,2 ) , and a(n(xneyn) is

written XX Ty o
The following two theorems are esaentially theorems 3.1, 5.1
of [39]. .
* (Palerma)
Theorem 2,22 \If X,Y are finitely generated, free chain complexes,
then O(X®Y,Z) 1s generated by elements of the form
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8, xX ,S‘(a xxd) for 4 ranging over the integers (s,t) , where
syt are torsion coefficients of X, Y respect.ively. F'urther, on
H(X®Y,Z) the following relations hold

(1) 51( {4 J"xi) = j(a xhj’i xi) il§ or Jli-

(1) S-j;aixxo =6, (a,xh 1,0 o)' 1>0
(114) (wa Wgx, =86, (b .2, xx) 1>0

vhere W 13 (=1)? in dimension P .

W?ﬁ;@) X,Y be finitely generated free complexes, and let
n>0 . Let ¢ range over the integers n,(n,a), (n,t), (nys,t), and
let d rsngo over the integers (m,s,t), where 8,t are torsion
coefficients of X, respectively, Then H(X® 'I,Zn) is generatee; by

elements of the form hn,c (acx x)s § n,n hn,d (adx X3) « Further in
H(x® ¥, Zn) the following relations hold

(i) b 1( ,j j"xi) =h, 4 (‘J"hj,ixi) 1,5ln 3 4,350

(1) § g nlagxxy) = (6, adxx, + (@a)xs . x .

The relations given in 2,22, 2,23 are complete seote of relations,
but we shall not need this fact.
(2.3) Let X be a Kiinneth isomorphism of type (L,A; B) .
It 1e fama_, in desoribing I on the gemerators of 2,22, 2,23, that
the signe are more convenient (c.f, V. 1.61) :lf we take K, e3 mapping
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H(L®K,A) = H(K,B) , that is if we precede Xk by the twist anto-
morphism T': H(L®K,A) ~ H(K®L,A) (VI,1.5), We shall accordingly,
in this section, and in § 2,3 of Chapter XI, write « for « T°,
(2.4) Let L bo free and finitely generated and let H(L,Z)« 99z (£ ) 0) ,
If « 4a a Kuoneth isomorphism of type (L,Z; 2qzt) » ‘then, for each |
free complex K €Co  we have in dinension m
B (L®K,2) —~— Hm(Ks"(qzt) = HM(KsZt) °
Let K €C; be free and finitely generated.

Zheorem 2041 There is a Kunnsth isomorphism of type (L,23¢%2,)
vhich on H(L®K, Z) is given by the formlae
(1) wlagm,) =z,

(ﬁ) K—Sd(adxxd) = ht,d xd .

The proof is tedious and is left to an Appendix,

(2,5) Let L be free and finitely generated and let
Vs H(L,Z)x9%, (£>0). Let n>0, andlet N= 0 Zge 1 ¥ Z3s
where d = (n,t) ; then H(L,Zn)zl;l“"o 'If K is a Kanneth isoﬁorph:lam.
'type (L,2,; W) , then for each free complex K ¢To we have in
dimensionm the maps

B (LOK,Z)

LN
H? (K, N)
© BO(K,q%,) " (g "2g)

a.
BUE, 2) + B (K,Z,)
The composite of these maps is also writtem K o
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Let b, cBY(L,Z) be such that %(by) =1eq %, , Since t >0,

St‘ Hqﬂ (LyZy) x Hq(L,Z) ; let a, be the unique element such that
4 8, = by o

0

Theorem 2.51 et *,p be integers such that a n +ft = (n,t)-d Let
kK¢ € be free and finltely generated. .There 1s a Kunneth igsomorphism
i of type (L, 2,3 N) which on H(L®K, Zn) is given by

(1) b s (ayxx;) =hy g %5 »

(13) wby (by xxp) = by By 5% + (DT By §:3

qﬂx S

(111) 5 nynPn, 1(81 %) = By, iy, g%y (1) By f, X

We may also cover the case t = 0 by omitting (1) and (1i1)
above and taking f = 0 in (11) .
‘The proof is tedious and is left to an Appendix,
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XI, koINVARIANIS OF FUNCTION COMPLEXES 5223

$§1, Determination of K
Theorems A and B give the solutions to Problems 3,1, 3.2

of Chapter IV,

(1) Let Y €€ , AB €3] and w a Kunneth isomorphism of
type (Y,NA; NB) associated with (F; £58) « We construct an
equivalence A AXeB ag follows ¢ gince f s F— GN(Y)MNA,

gs ¥ — 1B induce 1somorphisms in homology, the maps Rf:gp..;c(f),t, A,
Rg 1 RF— B induce isomorphisms in homotopy and so are homotopy
equivalences (ut not necessarily FD=homotopy equivalences), SQ the

composite '
X8 L swyna &m@ (—RE-)-»,B
where we write ®’ for a homotopy inverse of a map ¢ , is an equivelence
A AYC-"- B, We say A 1s assoclated with K ,

With these constructions given, we can now easily prove

Theorem A. Let X &3 , There is a commtative diogram
HO(X,4) £ mo(la1,a)
| ll
HO(xY, AT ) H°(xzi Y, NA)
b =l
1o(x¥,B) P, 1) ,

Broof. Ve consider the following diagram
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*
H(X,A) £ > (X% Y,4)
F
Ho(xX,a¥) HO(XIX ¥, 1A)
8& x - )
A\ 4
B (x%,C(1) A A) HO(X" ,Cy(T) 4 HA)
(Rf)*/[ = T f4
(X, RF) mo(x¥, F)
(Rg) .
. *\l - ,J, Ex
2, 3) (%", 1B) .

The top rectangle is commtative by IX, 2,12, and the bottom squares are
obviously commitative, The theorem follovs immediately,

(1.2) ILet Ay, B, €3D ,YeX , and K, be a Kunneth isomorphism

I -
of type (¥, 4,3 Bi) with associated equivalence N3 BBy (1=1,2) 6
Amep ka5 I°(A, A,) —E(B,B)) is defined in r3.3:1,

Theorem B, The following is a commtative diagram of homomorphisms

B8y A,) —F— > B, &)
2 l Q‘ l\au
B(Baly) — > K(8,)

Proof, Iet k& H°(Aj,A)) . For any X €X ,ka (k) 1s defined as
an operation by the following diagram, in which we assume Kj 1is
assoc:lated with (Fis fi’ gi) (i = 1.2) °
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k - .
B2(X XY,4,) > H°(xm,A2)
b \[ Y4 n l b
n°(x,c.ﬂiyr) AV, ) ¢ n"(x,cﬂ(z)m NA,)

IN
fl*T"‘" 25 fz-«
8%(x, Fy) B(X, F,)
gl-xJ% ~ gz»

o _ : ’ v
H(X, ¥B,) > B%(X,¥B,)
’ 1 LIPY (k) ‘ 2

The map written P is simply G (k) (IXo 2.30)s

In the following diagram

Y .
Y P (k) Y
Al b A2
~ A
A lﬁ A S YA
C(jl)(k A > C(Y) ha,
(re))*| x| (Re)
Jr
RF]_ RF2
Rey J"’-" ’-‘-’l Re,
B s B, ,
1 kyelk) 2

the top squere is homotopy commtative by 1X.2.31, sad the bottom rectangle
is homotopy commitative by the definition of k3 (k) o The theorem

follows immediately from the definition of M, 5 My o
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_$2: The evaluation clasa,

(2.1) In this section we are primarily concerned with computations using
Theorem B; let us for the moment use the notation of this theorem.
In order to determine Kaa(k) € H°(BI,B2) , we calculate, using the

definition of K.z , the class  ta (k) W(B,) , where

\

W (B,)€& H-°(Bl,131) is the fundamental class, that is, we determine the image

Of W(Bl) under the maps
. ©
1(By,B,) 5 EO(8 1 ¥ Tidy) —E 5 BB T,A,) —2— 10(B,8%) .

Becsuse of the following theorem, the class 5w (B;) is called the.

gvaluation clasg,
Theorem 2,1); Let A,B€3D , Y €X ., Let K be a Kinneth isomorphism

Y

of type (Y¥,A3 B) , and \ s A" & B the associated equivalence. The maps

of the diagram "
B2(BAY,A) ()"f{l) s B°(aT41,4)
x,lz T 2l
1%(8, B) ' £°(a, A)
satiefy  g*w(a) = (MK D* " W(B) .
Proof, Let A= A , vwhere V :C(Y)AA 2 B ., We consider the

following comzmtativé diagram, in wvhich all maps but ¢" are 1gomorph1m.

l::(:’k) * *

H:(A’:k T,4) & (M') H°((C(Y)A\'A;§Y,A) RULE H°(B§:.A)
1

1°(Y, c(r)h 2) e————— BO(C(T)A i.c(t)r\ e B°(B.Lc;(!)d\ A)
l¢ l’g o

T, B) ——— B(CDAL, B) 5 BB, B)
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Acoording to IX, 2,22 , pgtw(A) = A*W(C(Y)AA) . Therefore
OFD* ' w(e) = ok #6790, Do (s)
=0 =L AM(G(Y)h a)
= ¢ *d(4) ,

Using the results of X.§ 2, we now give explicit formilae for
the evaluation class when H(Y,2)x ¢ Z, , It is clear from X,
Lemma 1,1 that from these formlae we may determine the evaluation
clasa for 211 finite Y

For reasons of signs, in this and the next section we take the
evaluation class to be in H%(Y¥ B,A) (using the notation of 2,11),
8o that I : HO(YXB,A) ¥ RO(B,B) .

One trivial point must be made; if T finitely geﬁerated, et
not finite, then GN(K(T s1)) is not finitely gencrated, However the
results of X.§2 still apply since there 1s a free finitely generated
chain complax A(W,m) wvhich is naturally chain equivalent to

cn(x(w,m)) [18].

(2.2) Let Y €3¢  bo finite, and let ¥ 3 H(Y,Z)x- T2 (650) .
Let K be the Kunneth isomorphism of type (Y,Q" 2; o™ %),
associated vith 9BV : H(Y," 7) 2 g % vhich is giveniX,2.4
Let Soe H(X,3) be such thet Vh=1€ %, If t>0,
then §, 3 B (7,2,)0H7(1,2), ond ve lot ay €H 'L (T,%,) bo
the unique element such that Seat= b, . Let weg r(K(Zt’M)’Zt)

Y
be the fundamental class; here K(Z,, mer) % K(Z,m) s
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Theorem 2.21 The evaluation class _gea‘“(x(zt,m.rm Y,Z) is
given bty
(1) [ ='bbxv0 ',5->'_ | if t.=0‘
(11) 5=$‘b (a.bxv) ), If+>0,

Ergof, Ve have simply to find € such that % (§) =W , Since

W is a classmod t , the theorem follows at once from X. 2,41,

(2.3) Let Y &€ bo finite, and let V : H(Y,2)% 9™Z (¢t > 0)
Let n>0,d=(nt), N= 0¥ « 1z then
H(Y,0™n)2 N . Lot byay be es in 2,2 (and as in X.2,5) and let
X ‘be the Kunneth isomorphism of X, 2.5
Now K(Zpom)' & K(Z;,mer)x K(Zs,merl) = @ say, Let
Py : Q—> K(zd',m.r), P Q —?K(Zd,moﬁl) be the projsctions, and
1et w T g (Q’Za)swm-rﬂe pr=tnel (Qy24) be the images of

the fundamental classes pnder the maps r;, _[; o

Thecrem 2,31 Tho ovaluation class £eH(TRQ,2Z,) 1is given by
E=hy 4 (agxw T4l + o b, a (Bgxw °F) +BS, nhn,alagad™™) .

4 ‘
Proof. By Xo 2,51, since w™%, WY are modyclagses, the given
clags £ satlsfies

e i o it o
k() =T & by By g0+ Bl By g 0

. t - ]
= BTty (I , since %;?;) + '(ﬂn—;{) =1.
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23, Ezamplos,

These examples are entirely applications of Theorem B, using
the results of the last section, All of these examples seem to be new,
except for Example 3.3, in which the case n - 2 has been obtained by
other methods of F,P,Peterson (private communication),

Exapple 3. Let k = SqP: K(Z 5sm)—>K(Z,,mén) , and let

Y=5"0u, 6 (r<m) . Then k¥ 1is given by tho disgram

Y A
K(Zz,m) = K(Zz',mer) % K(Zz,mar-rl)
kY l Sqn J/ Sqnal l n
Y
K(Zzgm-ﬂ-n) oy K(Zz,m-l-ner) % K(Zz,mn-r+1) o

Proof. The calculations are coversd by 2,31 and X, 2,51 with
n=t=d=2,=1, '[3 = 0, The evaluation class is

= & M+ =y
Sq n»l De=r+1

*beq wt

and Sq® £"Sq a,%x5q +a2xS By

by the Cartan formila, But Sqla, = by; 80 by X, 2,51

K_Sqn &= Sangx-ﬁi,i, Sqnwm-r . Sqn‘”lw Me+1, .

T=l
Example 3.2 Let k = Sq"s K(Z,m)—> K(Zz,,m-rn) , and let Y = s’ uye®(r < m)

Then - kX is given by the diagram
K(Z,m)T & K(Z, m=r)

kY J/ S qn.,., SQV \l/ Sanql

K(Z,pmen) 2 K(Z,pmtner) X K(Zz,m*naﬂl) °
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Proaf.. The covaluntion class is given by 2,21 with t =2 ; thus

&= S, (ax ™ ).

808" & =8q" 5, (ayud®T)
= 8qh Sq]f(ézxwm'r)
= 8q" (sq¢* ayxd* T+ azxsqlto_m)
= Sqn(bzxwzo“"’r + 8,x Sqtw i )
= B,x 8q™0" T+ byx 5™ 5¢M0" + a,x 8° Sqt0 "o

By X, 2.51 4k 8% = (Sq%q + Sq® + 5g* sgh )™ .

Bxample 330 et k= § Sq K(Z,m) —K(Zmnel) , end let

Y= Sr"luz'er (r<m ) o Then K is given by the diagram
K(Z,m)® x K(2, 1)
k‘l l(mn)(sq"*l + 8q"q")
K(Z,men)" s K(Bymemer+l)

Proof. As in 3.2, & = 8,(g,xw ™),

i 5 50 = § ey 4750w yx(sd v 8™ 800"

o =Sz(agx3q°3qlw“‘”) tbx % (S + Sg™ Vs ) "y x.2.2(114),
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By X, 2‘,‘1 K SZSqna_&‘ Sanqlwm“r + hp,0 52(Sqn + Sqn.lSql)wM
- Sanql OB T Sql(Sqn + Sqn°18q1)wm°r
- Sanqlw =F + (n+1) Sqn-#lwm-r + Sqnsqlwm-r

3 n+l n 1 Mer
=(n*1) (Sq  +Sq8Sq)w .

W Let k = (w™)? ; K(Z,m) —> K(Z,2m) , and let
Y= S"'3 ] el’ U e6 ba complex projective 3=-space, Then kY is given by
the diagran |

K(Z,m)7 ¥ K(Z,me2) x K(Z,ued) x K(2Z,0-6)

" 1’ . l(wm.z)zwwmzzwm-a

Y
K(Z,2m)" =~ K(Z,2m2) =x K(Z,2ne4) x K(Z,2m~6)

where ¥ =0 or 2 according as m is odd or even,

. i '
Froof, Let a, gemerate H'(Y,2) for 1 = =2, -4, -6, Then the vvaluction

class £ = azxw'nhz + &4$wm-.4 * ag xwm-G o 90
kg = (&)
= a5 (@72 0 agn (RS ¢ gy (4 D)

=8,y ()% +ragy ™2 W54

2 4o The popsbase point case,

(401) The preceding theory runs p‘erfectly; smoothly if we are in the
css—category without base points, except on questions of suspensions,
Also VII 5,22 is false., The evaluation class is slightly more complicated,

but the extra terms added sre always cartesian products,
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The major points of translation are: (a) for W read x
(b) C(X) was defined in VII 1.2 to be BX)/B(%) ; o must now define
c(X) = B(Xx) (e) hombtopy in the css-category now means free homotopy;
and [X,Y] means the set of f-ee homotopy classes of maps X—9Y

(4¢2) The caleulations of the previous section are not much changed in the
nonobasefg;bint case provided we keep to additive operations, Une such
example wés given as 1V, 36, We give one example for a non-additivé
operation, |

Examglg"éﬁl Let k = (w") 2, K(Z,n)—> k(2, 2n) , ond let Y = s’ u ot
.be the complex projective plane, Then kY_ is given by the dia.gram’
B(Z,m)Y & K(Z,m) x K(Z,m-2) x K(Z, m-4) |
]

K(z,zm)I ~ K(Z,2m)n K(Z,2m=2) x K(Z,2pe4)

vhere " k* = (»(»m)‘2 + (v»)""f"?)2 + X2 4t )s ¥ =gg :; :Sgn

Proof, This follows si ply from
. m 2 mel,
k€ = k(aoxw + azxv:)m- ta,xw )

- -», 2
- (aok“‘om + azxwm 2 + aax“)m 4 )

= a %72 + 2 x W22+ ¥ a, x (@ Ww™?) + a,x (0w ™)
Remark 4,22 ' Aresult similar to thet of 4,21, but

for real‘ cohomology and fér n = 6, has been given by Thom in [51]., However
there is a gap in his argument which seems difficult to fill except by the
sort of method we have given here,

We say no more on the non<base point case.
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XII, Homotopy Groups of Fibre Spsces and Track Groups.

In this chapter we shall apply the previous theory to obtain
M.G.Barratt's results on track groups (c.f., Chapter III) axcept for the
description of the extension in the low dimensional case.* This will
also illustrate how other appliqgtions may be made, | | _

It is clear from Chapter IV that we shall need to determine
the homotopy groups of* a fibre space whose fibre is a css-abelian group.
This involves describing the homotopy transgression of the fibre space
and then finding the extonsions involved. The general procedure is due
to GoW. Whitchead in an American Mathematical Society Notice [54]); as
further details have not- appeared, we describe the procedure in § 1,3.

It is convenient at one point to uaefgeneralisation 6f’ the Moore-
Pbatnik:tyr;g?a fibre map due to M.G.Barratt (unpublished). This generalw
i8ation is of independent interest, and I am grateful to Dr. Barratt for

permission to give his results here (c.f. § 2).

§1. _The homotopy transgressiop,

(1.1) We recall that there is a canonical identificetion, for any
4€3D, 1 s (a)=Hye(ma) [37]. The identity 1 : A—> A induces
L=D(1) ¢ C(A) —4 (V11, 2,21), and o U = (ND1)ws Hu(Cx(a))—>Ba(ra)
Lot W3 T,(A) —yH,(A) = H,,(ON(A)) be the Hurewicz map., The rollowing

proposition is easily verified.

* I have not yet completed the calculations in this case,



106

Propositiopn 1.1l The following diagram is commutative
. 1ral4)

ZRRN.

Hu(A) —'—T;-—> #(2A)
An immediate corollary is the following proposition,

Proposition 1o12 Let X €3, A€3Dand k : X—A , Then the folloving
diagram is commutative |

MlX) — X2 5 ey(a)

W l \:l]?

Ha(X) o> Ha(MA)

vhere k' = (NDk)s . |

| In particulsr, let A = K(# ,m) , so that NA =9"7T, and
let k ¢ X—>A bo regarded as a cobomology class in H XX,T) . Then
the mé.p gending k—> k' 1is the projection H'-n(X, v)— Hom (Hm(X),r)
of the Universal Coefficient Theorem, So 1.12 implies the well-known
proposition s
Proposition 1,13 Let X€X and k : X—>K(T,n) a map, Then
ksl m(x)--) Tl‘m(l{(w o)) = T is the Qomposition

T, (1) —25 H,(%) SN ™.
(1.2) These propositions apoly immediately to give the homotopy
transgression A of a bundle A—) E —X induced by a map k¢ X—WA,
(13D, XeX) . For the transgression of the bundle A—WA— WA
is an isomorphism Ta(WA) 22 q Ty(A) , end A 1s the composition
M o(X) =251, (WA) ——Ta(A) .



The results of this section are due to M,G,Barratt,
(2.1) Reofipition 2.]. Lot E, B¢ X  andlot p:; E—3B be a map,
A ces~equivalence relation ~° is defined in E as follows : if
X,¥ € E‘l s then x Myegx,y have the same mesections and PX, py

have the same n-gections,

myn | |
Let B’ =L5/-U8; if 4% is necessary that the map p should
be referred to, we write PEDsD rather than gt o Wewrite P for any
projection E — ER
myn’ myn
If x,yeEq, then x~ L y=—2x~L y for any 0 ng n',

0{ngnt, Soif mg m'y n{n' there are canonical projections

P Em"l?-'—-—a E™® | The whole collection of thgse projoctions for
0 {mgm {og 0 ngn' {oo is called the Barrattel ogtn
of the msp P o

If X 1s a css=complex, let p : X—sx be the unique map,

The Moore=Poginikov gystop of X [37] consists of tho complexes

@) _ Px™™ and the projections x(ml) , x(m) (0K mg m* =),

If p: E—-»>B 1s a css-map, then tho system of projections

Y g™ (o & m § m' eo) constitutes the Moore=Pogtnikov gvateg

of the map p [38],

(2,2,) The following theorem may be proved by the methods of [37,38].
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dheorem 2,2 Iet F—E-B3B bo a cgs-fibration vith p onto and
E,B Ran, Let & : T (B)—sT, (F) be the homotopy transgrossion of
the fitration,
(2,21) The projeoticns E’““" E?" (0K mg m' €50, 0& ng n? )

are fibre maps,

(2:22) If m<n, the fitre of EMZ_,E™M® 45 of type
(1, (F)ym) , whilo the fibtre of E2= _y EB=" 35 op type (6°kAn+1’n) .

(223) If m<n-1, the fibre of E™L 5y p™0=l 44 ;¢ 4ong

Nel,n  _Del,nel

(TT‘(B),') 3 the filre of [ -—————)E is of type(KorAn'n) 3

) .
BR g 2,k (k 3 0) is trivial,

(2.24) There are natural identifications EC#B = p(n) , EP2R = g(n)

the fibre of E

The set of maps ° . gP'aR ——-—-—) E»? (o £ n < n' £°) constitutesthe Moore=
Postnikov systam of E The set of maps Eo,_xL_) g0sn (0£ ng nt Koeo)
constitutes the Moore-~Postnikov system of B

(2.,25) 1f p: E-—B 15 a minimal fibre map, then so is

'EsEm' Em,n (0 nm £, 0& ngnt {=9) ,

This theorem is convenicntly represented by the following diagram,
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J
B, ... \E(n) = > 1-;(“).___:__)
{ | CokA ..
fn-l,___ ” y gr=lon ~ ;(nel) =
n
F )
-1 *n-1 L Cok A& d l
2%, R gR=2,n .- ' 2,001 g(n=2)
'!’ l "n l KerAn~-1 l\
S @ e
IB xB
n n=1

Here xﬁ =3 r(X) ', and we have written in the nonezero homotopy
groups of the filwe of each map rather than the fibre itself,

What this theorem givées is a method of building up the fibre space
E by putting in the ho:i_aotop;} groups of the fibre and base one at a time,
(2.3) we ‘sh.nll wish to apply these results to principal oundles (5] (20,
Exposé 1,84 ] ). '

By a map$s8—>B° of principal bundles B:I'5E-—B,B'iPl— k'3 B" is

meant a commutative diazram of maps

vhere ¢ is s cssehomomorphism, and, if " acts on E¢ through ¢ ,
then W is.a T emap 3 1,98, the following dlagram conmites

Px E ¥ SE

?uvl l‘l’
Mx EY
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where T ,¥ ' are the maps giving the sotions of [ o on E,E!
respectively, Let k3 BV Py k' : B*5W[' bo classifying maps

for B, B' , ILet {k\ denote the homotopy class of a map k , The
following proposition is :;eadﬂy verified,

Droposition 2,31 If 3 B-—>B! 1is as above, then f*gk.\ = (ﬁ?)aik’].

Let B:M— ELLB ve o principel tundle, and 1ot T f'x E—>E
give the action of "' on E , Now i (n) is & group: for
(Pl )(n) _ pl) r.(n)

x = % » and so the group multiplication

determines a group multiplication p(n) w« 0 (El_.) (‘Sn)Simﬂarly the action
of N on E determines an action of [ (8) oy g(n). o Let V<>
be the quotient of [ () by the subgroup of () aoting trivially on
E(n)
W The action of © ™ on E(M) gotermines a princi.pal
bundle, Also E(BY/ P<“> is naturally isomorphic to p(n) 4y such a
vay that the projection E(R)_y E(R)/P<®>  corresponds to the projection
g(2)_3p(R) of the Barratt-Moore-Postnikov system of E .

Proposition 2,32 implies that we have a map of bundles

LT ﬁ’i (2.33)
ko b

Lot ¥ , (@) W< 1 4 classifying map for the bundle
< n n
@) ;p&> , g(n) ,5(®), Then by 2,31, there is a disgram commtative

up to homotopy



(3.1) Let B:l*> E—-B be a principsl. bundle, with classifying map
k:B —u o The homotopy sequence of B breaks up into short exact
sequences |

Bn s 0—Cok An+1

> Tp(E) —Ker 8, —>0

where An : ¥, (B)—>T,9(") is the homotopy transgression, which

has been described in terms of k for abelian \' in §1, We shall show

how the extension B, may also, for abelian [ , be describad in torms

of k . o .
It is cloar from (2,33) that the extension B, 4s also derived from

the fibration B®) indueed ty k< ; B(nl_7 W< | Let ug assume

B 1is minimal, Then the fibre of the projection B(EL__,B(d<L)ig o comprex

K(w_(B)yn) , and so there is a natural inclusion 1 : K(?n(B),n)——;B(n),

There is also a natural inclusion %’ s'K(KerAn o) —> K(Tn(B),n) . lLet

’ : | <n> /
o2, g5 K(Kar & ,n) be the tundle induced by k11,

Suppose now I is sbelisn, go that T is abelian, There is a

mep h g WK K(Cok A, n+l) inducing an isomorphism of

o Let K(CokA . ,ntl)— E®>K(Kerd , n) be the bundle infuced

Tpi
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There are maps of bundles

P2y g )
I T
hz <o ;Ij/' —> K(Xera, n,n')

K(CokA | 1, n+tl)->E" — — 3 K(xera )

A check of the maps of homotopy exact sequences shows that we have maps
of extensions
"&‘",’,(E)

\

0-Cok Aml___ﬁ T u(E) — KerAp - 0

\l/

ar (Eﬂ

So it suffices to determine the extension for tho bundle EM —§K(Kerah,n).
The extension in this case is given. by classical theorems, (3,21, 3.22),

Before giving these theorems, we note one useful fact, The map
¥ g, K(«'n(B),n)—eﬁl"<n> induces a bundle over K(T,(B)en) , and
it 1s obvious that the homotopy transgression of this bundle % (B)-yw, (I <)
is the same as & , . IHence we have
Preopogition g,n The homotopy transgression 8 , 1s determined by
% | k(x ,(B), n) . |

(342,) Let k ; K(A,n) —>K(B,n+1l) (n 3
keH 2 (x(o,n),8). et K(B,n)—> E—»K(4,n) bo the principal tundle

>»1 ) correspond to an element
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induced by k and let G = (B), so that G is an extemsion
G30>B>G>A>0,

When n=1, G and A may be noneabelian, However, the tundle
is prinelipal, so that A opserates trivially on B , and hence the
extension G 1is a central extension,
Theorem 3,2] (Eilenberg - Maclane), The equivalence classes of central
extensions of B by A are in 1 =1 correspondence with H%K(A,l),B)
in such a way that the class of the extension G corresponds to k .

let n>1l  The Universal Coefficient Theorem and the Irowvics
theorem imply that there are isomorphlsme

5 (k(4,n),B) = Ext(H{K(A,n)),B) = Ext(4,B)

The group Ext(4,B) is naturally isomorphic to the group Extabel (4,B)
of equivalence classes of abelian extensions of B by Ao So we have
a patural 1 - 1 correspondence between Extabel (4,B) and
o l(k(a,m)B) o .
Theorem 3,22 (G.V.Uhitohead; [54]) o Under the above correspondence,

the class of the extension G corresponds to k .

(hl) Let X€¥, Ae3D and k: X—> WA a2 map inducing a bundle
AERX . Let Y€X and let X'cX' be the image of pls ET—3X ,
Thé following is the cas=analogue of a proposition well-known for

topological spacess
Proposition dl. EY 1s a principal bundle over X! with fibre ¥,

m The action AxE—E of A on E detormines an actlion

;IxEI"___',EI of Al on gl , Obviously X' 1s the orbit space of EY



under this action, The only eéxtra condition necessary ([10;p.1.10])
is that if42cA’, xeB' , then f.x=3x implies £=0, gince this
condition holds for the action of A on E , it obwiously holds for
the action of A* on EY R

From the tundle A—>VA —WA we obtain a tundle A'— (MAY vV,
where V is the image of UI: (WA)E-I——-»((EA)Y-) . Since (I»IA)I is
contractitlo, V is simply the identity component of ((Wa)%) ,
Clearly we havec a map of tundles

A—s Bl x

l J, l kt

A—s )l —v

vhere kv' = kYiX' °
Proposition 4412 E'——> X' 1s the bundle tnduced from (Ma)X >V by
k' .
Proof We may reprosont E as the subcomplex of the product X« VA
consisting of elemonts (i, g) such that kx = wa . Hence E 1is the
subcomplex of the product X*x (WA)Y consisting of clements (£,h)
such that lg(f) = x-rY(h) o
(4.2) Ve now wish to replace A' by a minimal complex, Let T = R¥(V) ,
and let £ : V™ T be a homotopy equivalence, Then T 1s connected and
T‘#-TIU, wvhere U = R%‘*(AY) = Ry ,(T) o The map fk* 3 X'—T d1nducos
a bondle U->E!—X' , and the map E'—5X' is of the same homotopy
type as the map By X!

To determine the homotopy type of E! it is nocessary to determine
X' and fk' ;3 X'—> W0 , The elements of (1(')q are those maps
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st AR Y—>X such that kgx* ; so the determination of X' is
esgsentially an obstructi.bh problem, The theory of the previous chapters
enablesyto choose £ so that fk! may be ovaluated,

In §5 we shall restrict attention to the component X* of the
base point of X* 3 cloarly X*cX' ,

(403) Let now X =B € 3D o Then ve may choose equivalences
£:VxT, and an equiﬁalence £e R‘lr*.(BY) ~ BY s such that
fic £ = G¥(k) s RT, (B )—> T = RyT,(AY) , vhere GY 1s Gefined
in Chapter X, By X, 1.44, the induced map of homotopy
6¥ (k) ™, (8%) — tr, {#%) 15 the 1% suspension, olk , of the
operation k (This result 1s due to Thom, [51] when B,A are
Eilenberg=Maclane complexes),

The extensions which give T j_(E) are determined by the operations
Py, 128 00) € O (T,0), B m)) = O™, ©e,qm) .

We have no general formula for these operations, although they may be

determined in particular cases.

(5.1) Ve now consider the problem of determining the track group
Y
v, (£) =% (Tpe) , whem Y s en K ~complex,

We proceed by induction on the Postnikov system of X o GClearly
l{(‘\r,r)I =% for r<n > and K('l'(,n)I is a set of points, So if

( ) is the filre of" the projection x_ax(n) of the Moore~Postnikov
gystem of X , tho injection X,) ~—3>X induces a map (x(n))l—-.)xI
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vhich is a homotopy equivalence of components of the trivial maps.
So we may suppose from the start that X is neconnected,
Let X have Postnikov system

Pt ™1 5w 2, k5w w305 00 )

Here k, £ are maps k : K(‘lrw_l,, n+l) —> K(Trm_z, n+3), 4 : xl.., K(fr'n+3, n+l),

where X' = X2 1ot e write H (s} for ET(Y,¥ ). Then K

is given by a diagranm

KT 0y sne1) K& (av1),1)

(5.11) < l 'k3/ 2 L \kl )

R(T 1y omt3)T ¥ K(™(0+2),3) % K(H™H(nr2),2) ¥ K™ X 2),1)

where in the rightehand side:4g we have written in only the identity
component of the complexes.
Tho maps k; (i = 1,2,3) determine a bundle A-> E'—» K(H (n+1),1)
with homotOpy sequence
n H.n+1 e A Hn+2 .
0> H (a+2)>T,(E!)~» 08 “(n+2)— T{E')-1 (n+1)> (n+2)9¥ (E')—0 ,

By 4.3, the transgression A is (k) . Hence

(5.12) w (&) = EXY,v ,.) , and T(E') is an extension

n+2

o> (1, ) — Ty (E') — Eer o(k)—>0

nt2
. Y .
(5,2) The mep X.Y : (xl)I—-> K(1r n+3,n+4) is deterained by a diagram

(xn¥ = o

arl | M\/w

KO, ponwd) % K(%(23),4) x K(H™ (143),3) k(1™ 3(03),2) .
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The maps Ii ( = 2,3,4) induce a bundle B ->E2—>E1 part of whose

homotopy sequence is

coo '—9172(32)—) H®(n+2) -;A:)Hm2(n+3) —»ﬁTl(E?) -)’\'l'l(El)—.)O .

let h= flx(n'mg,mz) ¢ K(W_, »0+2) > K(W_ _,n+4) , where

n+3
K(T,,»0+2) 18, s the fibre of the projection X'—3 K(T .., mel) ,

1

a subcomplex of X~ . The transgression 4  is then given by the.

following proposition,
Proposition 5.21 & = o-2(n) .
/7
Proof By 3.11 the transgression A ig determined by the restriction

£ 2-|K(H“(n+2), 2) o We consider the following diagram

N 2
ARY YK(ay, ,ont2) KT £ — K(a,,n2)
ﬁ"l , LA , i)
Ely Y A x1 s () Txy £ > xt (%)

| l l

*' 3 3
k@) ) gt — 22X g )Y £ k(e nn)

A
ntl

where ¢ 1 is en evaluation map and ) i homotopy equivalence as given
in Chapter XI, (1 = 1,2,3). Let 1, i'; 1% be the injections shown in

(*) . ILet Kk be & Kilnneth isomorphism of type (I,'lmérm:,’ 3 H*(I,le’frms))o

The cless we require is (by XI. Theoren A)

g (W 1)me2® (0) =w(tB1)* (CF 1)*'6’** (¢) by naturelity of ¥_
= (N RI)F (ErE1)* R * Q)
=i (R LI E * 1% (()
=i (K 1) €2 (n) .
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Hence ¢ 2|K(I]n(n+2),2) is the map of ¥

o induced by h , So, by

,
Yo Lobdy A =a*(n) ,
Repark 5,22 Although we do not know how to determins Fz’ 73, FA’ in

general, in perticular cases information msy be obtained from the diagram (*) ,

(5.3) - The ebove results can be expressed vhen Y is finite in terms

of squaring operations.
+ .
Let ?é 1Tn+ 2(Sn 1) be a non-zero olement containing maps
of Hopf inveriant one if n =1 ; the compesition J9A defines for
: : .
n>1 & homomorphism ¥ :Trml(x) - 1l"w.:z(x) such that 2¥* =0,

and for n =1 it defines a transformation § *: T,(X) — T,(X) such that

¢ W) ) - ¥%(p) = [p] «,pe T (x)
where [ot,p] is the wmf,ehead product of andF (c.fo [59]). Thus X*
defines homomorphisms
12T, (0825 (1) a1,
1ut P (0,(0)— T 00,
where P‘(G) - is defined in [59] for any abelian group G .
It is well-knoun that there are factorisations

KT, om01) 5 K(F  ,m+3)  K(T7,,2) ¥04)

qu\ /m. ,P\ / 1yx

K(%" 1e1® Zpe*3) k(T (% ,),4)

where Sq2, ;Pl are respectively the Steenrod and Pontrjagin squares,

The first of these factorisations is essentially due to Steenrod [49s],
the second to J.H.Whitehead [60],
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If we use'these deterninations of k (and also of h ) in
the @iscuééion of (5.1), (5.2) we obtain. the following théorém, vhich
is due to M.G.Barratt (3],

Theorem 5,31 (Barraﬁt)A If Y is an A?-complex, then T Y(X) is

given by a diagram of exact sequences | '5
B Y(p+2)
. +2 '
H(n+2) .’:isﬁ_._, (n+3) --.)'n‘{(x) 3G S0
HB(n+1)
k! l
Hn+2(n+2)
in which E (s) = H-r(Y,’\TS(X)) » and
Kt =§ix3q2 n>1
i*;Po n=1

where ';P‘,: o (‘7"1) is the Postnikov square,
The extension giving G of 5,31 is determined by the map

k, of 5,11, We have
Theorem 5,32 If n>l, Y is finite and Watl @ Tpep are finitely

generated, then
(a) k, is the composition

K(HXE, T, ), 18K (E (T, T, ), 2) S0 ) > KEN, T )02)

ABue s g™y, 1, , ),2)

(b) k3 =0 °
The proof is left to an Appondix. |



120,

Remark 5.33 (a) The determination of the extension giving the group
G of 5.31 in terms of Sq- is due to M.G.Barratt [3]e

(b) The fact that ky = 0 in 5,32 is bocause k, is Sq2 (with the
correct pairing) and Sq2 is zero on l-dimensional classes. That ky
is really qu‘ will be clear from the proof of 5.32,

The calculations of k2 and 33 for the case n =1 are
more complicated and are not yet complete,
The main outstanding problem is now the description of the

extension giving 1TII(X) o This description must involve secondary

operations, both in cohomology and homotopy.
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Appendix 1, ‘Proof of = V. 3,6
We recall the notions of [33]. The torological spece lAql
is the spece of the standard qesimplex: some convention is made so that
the spacas | Aql (q = 0;15040) &re disjoint. Any css-map
# ' it
g : AT — 3 A? induces a continuous map p 1| a1l ad.
If KEX » & point of |K] is an equivalence class
qu, qu‘ of pairs (kq’ xq) such that kqe Kq, xqe | A%,

the equivale'nce relation being
: . ]
(B k., xq)"’(kr,gﬁcq) k €K, x¢€ la?, g :A% 54

The ho@mornhism- n: k¥ K| — IKI)}SWIK'! is given by

91k ,k?,

= | x| K, k!'eK! ¢ | A,
q* “q xl (lkqa xq|; lkq: xq‘) keK, € q:xq l l

q qQ 9 q

The isomorphism ® : Map (|K|, X) = Map(K,5(X)) 1s given by
§(f)(kq)€xq) flkq, qu , £€Map (|K|,X), rqu K $%o€ |ad|

K
Lemma_ The isomorphism \: S(|k|hX)= 8(X)" is given by

2: |AY—iklhX

| | o | .
M) 6 %k ) x) = (g x,) (e 1) gele (%), p

| kpS Bor € A%
Proof, In dimension gq , )\ is the composition 5

Map( |Al{, IKIAX)R=D Map( | A1, 1K1,X) 2, Map(|ad ¥ k|,X)—=>Map(ad ¥ K,5X) .

Therefore

A)(B8 %k )(x ) = (' xR BSHE), )
= (’A-l £)( |¢$qsxp|9 lkp’xpl)
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= 2(185%x (I, 3, 1)
= 10 8'5)( iy, )
To prove V.36, let £ : |45 (|K{¥ LA X . Thes,
vith the obvious notation
(MADB 8L )y 6P, 0 ) (x)
= (A)Ye s, L0)(x)
= 2%y ') (i ,n 10, ])
On the other haacd
)\23('m) (£) (¢§q,kp)(\{/8§,lr)(xr)
= (Ns@(e)(@ §%5) \ (¢ ) (14, =_I)
= 5()(£) (" *x, )iy 751D (1o )
=f(¢*1’*§-)(|kpv‘y*xrls ”raxr“ U

Appendix 2; FProof of IX, 1,22

We recall that if K € , then
(RK)q = 3‘(N(q), K) q = 0515c00

and the isomorphism
' iP s NREK—> S K
1s givn by P (£) =£(89) £ (3K),
For any k G-(SK)q ) \} -l(k)‘ i§ a map R{q) — K which vo urite B

Thus £ is characterised (2s an olemeat of (N:iK)q)by the equatiom

£ (59 =k .
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With this notstion, the isomorphism )\1: AAB—> AML'B
(4, B€3D ) is given by
1 , /\
X(2)(#s%a) =ne(d¢%0a) , £ (ahB), $8%eac Ma)@HA.
The isomorphism Wi ANB —3 ANB is given by
R (e)($59(s) = gld$%0a) se(ahip), ¢ € Ha), acMA

Let maps )Al, /\«2, [«3 ’ /Aj*’, be defined by the diagram

3 (a®3,0) A5 (s, BAC)
\& “L\]'
- 3 (1,BN C)
2 25\
3(a®B,0) ———H——> I(4,BAC)
Vi~ 3 &N
3(x(a@D), 1) A s F(ua,k(BAC))
Q. = zl‘ 9. |
 "3(ae1B, KC) ,"‘" y Hua, BHIHC) ,

where Mis defined in 1,13 by
w(2)(a) = £(de) , £ ¢3(A®B, C) a€A.
. 1 .2 3 4 ‘
We caloulate in tarn M-y Moy M aft = . £€3 (A®B,C)
1) Ao gsler) = R{@oa] ¥sier) { a€, ¢5% ben(Q)@!
= R{e(aen)] (#%ev)
= n(e) Ma) P L @$%eb)
= w2 (vie1) @s%@b) by naturelity of P
- W)L (gob)  where o = (§E) (5%
i o
= N¢£) (da ®b)
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(2) A ) (a) (g5 () = M (£)(a) (@59 D)
—*/N\
= N(f) (Pa'®b)

(3)  ARle)a) 45Dy = gw/w\b)‘ {863(!1(AOB). C)
' ' ' - {aelkA
(4) /M?(h)(a)(b) :?/«3\; (h)(a)(b) {h GS‘(NAQ?IB, 5iC)
acli , belB
= Wy (h)(a)(Sq)(b)
= 1’ (b) (a@b)
"= hi(a®b) .

This last formuls is that for the exponential map for chain

complekes. S0 the theorem is proved.

Appendix 3, Proof of Ii. 1,51,
In the follawing diagranm
J(K(g)x Ax B,C) ————->3(K(o)u)®a c) ————L.}(K(q)Q A®B, C)

Al Ly Ly

F(k(q)xa, BAC) ——> 3&(a) x 4, BAC) TJ(K(«;)@A. B C)

the left-hand squere is commutative by 1.4l and the right-hand square
is commtative by naturality of /A o We define A (Az B)AC —(a@B)h C ’
28 ¢ Ab(BAC)—> AA(BAC) to be in dimension q respectively
(a®1) s , & A4, . Since & , A are natural, &', £ gre
FDemaps. That Al, Az‘ commute witl; /A 18 obvious, so we have omly
to prove that &, /Af are FD-homotopy equivalences. |

Let §': (4@B)AC —> (4xB)aC |  F2: AN(BAC)— AA(5AC)
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be definod in dimemsion q in a similar way to Al, &2 by

T gz, ¥=85.7.
Then ¥4 =1, A3 =1 implies & §l =3, ¥ ‘, while

A2 1,34%1 implies that if £e3T (kK(q)x Ax B, C), ge€3(k(q)x 4,B40) ,
thenylal(f)x; K(q)x 4x B—C , P&(g)yg : K(q)x A—>BAC .

Lot us write Dl(f), D (g) respectively for these homotopies,

Then maps | |

D K(1) ®F (K(a) s 42 B,C) —> F(K(q)x Ax B,C)

D2 K(1) @3 (K(q)a &, BAC)—> 3(K(q)x 4, BAC)

q
are defined by
bt (85", £) (vi%0aob) = DHe) (vOSOWEbae) [ 1 P < P
b (v§%) ¢ (AQ)
9:(4’81, g)(v63@a)  =D3(g)(ves @ vEey) (¢51)6(A1)

Since the homotopies Dl, D? ere natural, glq, 2q (@ =0,1,e00)

define natural FD-homotopies

pDY: XA %1 : (AxB)AC —3 (AxB)AC
D% A 1 : AA(BAC) —> AA(BAC) .

L 1]

Appendix 4, FProof of Theorem X, 2
By X. 2,1, if %> 0 , 1t may be assumed in constructing x,

that L&Z has only two independent generators a,b in dimemsions
a+1l, q respectively vith boundary § & =tb. The case t =0 is
also covered in what follows simply by omitting nention of a .
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let h:LAZ —>9%, be defined by h(a) =0, h(b) =1 ;
then h 1is a chain map inducing an isomorphism in homology. lLet .

be the associated Kilnneth isomorphism of type (L,2; Yqzt) s that is,
let X, be, for each free K eC,, s the composite

H™(1® K,2) AT Bk, Lhz) QARM g7, 0% ) = B™YK,2,) . -

Since K is netural with 'respectfmaps of K , which is
given to be a free, finitc:zly generated complex, it 1s sufficiont to
prove thc theorem when KAZ hes only two independent generators x,y
in di;z:ensions- p+1l, p respectively, with boundary éx =sy (s»0) .
In this case the group H(L®K,Z) is zero except in dimensions
P+a+l, p+q, ubenitis given by

Hrq(LQK,Z) = Z( ‘,t)[b x ¥ ] »

gl (18 K,2) = z(s £) [( )S (axx)), ]

(Here Zy[u] denotes a cyclic group of order \ generated by u ).
Let x', y' denote the unique elements of K such that

_respectively x(xt) =1, yly') =1 . Then, by VI. Lemme 1,61,
(1AM T (0r 7)) (7)) =h(b) =1 (Lez,)
{(aBAT ( Lfar))) = Lo 5_n(a) =0,

Sy

(2 S (axx)(xt) = t_n(d)= X_gl
{(LAR)AT ((s’t) axx }(") vy (9 t

Clearly (b, y)o = box YO, (T]:,_;) S (a xX))oz S(S,tsa(s,t)x x(a’t)) °
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Therefore K.(box¥,) = Tt 4 K (s, 4(a(5, 4 X(g5,t) = ((sf%')“ L= By (o,48(s,t)

This proves 2.1.1‘(11) for the case 4 = is,t) o
In order that a be acyclemod 4 , it is necessary

that dlt-. In this case d = (d,t) . So 2.4 (ii) is proved for all d .

Appendix 5, Proof of X, 2,51

It is given thet LMANZ has two gencrators a,b in dimensions
qQ + 1, q respectively. with boundary $e = tb (t3 0). The clements
hoa, h b€ Ld\Zn are also written a,b ., |
- The first step in the proof of X, 2,51 is the construction
of a Kiinneth isomorphism of type (L,Zn : ) where

[ = q*l ' F .
N = 'qu(n, t) + Y| Z(n, t) o To this end, let be the free complex,

whose generators and boundary are given by the top part of the following

table.
dimension Q q+1 q+ 2
generators u Vs W z
boundary du=0 |dv=tu, d¥=nu Yz v -ty
| 1 93 _
cyg_:les : u m .
9 -
homology | Z(p, )[u]} Zn, 75,57 ° = ]
f!F—)Lﬁ\Zn fu=b | fv=a fwu=0 £z =0
gs F—N =1 @ =l eV =Py, | 83=0




128

The bottom part of the table defines maps f£: F— Lc\\Zn ’

g: F—Y ; in these definitions, lq, 1 are the units of Hq, N

q+l q+l
respectively, and &, f ere integers such that «n +Pt = (n,t)
It is easily checked that both £ and g ere chain maps inducing
isomorphisns in homology. Let K be the associated Kiinneth isomorphism

of type (L,2 : W),

Since X is natural with respect to maps of K , it is
sufficient to prove the theorem when KMZ has two generators, x,y
in dimensions p + 1, p respectively with boundary $x =3y (s20) »
Let x', y'&@K be the unique eiements of K such that
x(x') =1, y(y*) = 1. 'The>relation 8x = sy implies dy' ~1Psx! .
We use the following notation : for any complex C, and eny

& C, the elements (x'O')J(y'O' )€KNC are the unique maps such

that
(xte) (x!) = , (x'¢) (y')=0

(o) (y*) =0, (y'o) (') =

The homolégy H(L®K, Zn) is zero except in dimensions
p + q, ptqtl, ptq+2 , where it is given by
HPYLeK,z ) =2, (bxy),] , ¢ =(nys,t)
BP'TLOK,Z) =2,(( 2 am) ] .

AT (LoK,z ) =2+ 2, .
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This last group has as generators the elements

(s,t)

- .

<

n
(c ax x)n

Q= hny (n, t)(a(n: 'b)x y(n:t) )'

S(axx)) ’

_/_n
= (Taiy xx)

In terms of the generators of X, 2,23 these elements are given by

hn,c: (ac X xc_) ’

(o - g

n,n n,c

(bxy),

(axx)

Q:( I axy
Zn,ts n

= bn" Ty »

R= hn,(n,s) (b(n,s)x x(n,s)) ’

Tho following table gives the generators and boundary of

KhF , eond also the values of the maps 1A g, 1A, (/4'1")'1 (1ht).

It should be noted thet the elements in columa 4 are all mod (m,t),

and those in colums 5 and 6 are mod n, Ve write 1qe (vl qu)‘l,

1.2€ ¢ (pTiz) g1 for the units of these groups ((n,t) =d) .
-asr}.ggn 5?3?_5" | boundaxry ihg 1h s (,Mf')’:’l(lﬁﬂj
p*q (v'u) 1O y“]_) (y'b) bxy
(yev) [t(y°u) u(yl ) {(y'a) axy
q*+l
pta+l | (y'w) |n(y‘u) B(x'1 ,)|0 0
(xtu) [(-1)%s(yiu) (x°1 ) (x'b) bxx
@) [ TG el ) (@0 [ e
prat2 | (x*w) |n(x‘u) +(-1)" a(yow) %B(xﬁcllqu) Y 0
(y'=z) |nly’v) =tly‘w) 0 0 0
prat3 | (x'z) |n(x'v)-t(x'w)+(-1)Is(r'2) L0 0 0
mod d mod n mod n
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The values of XK. on the generators of H(L® K,Zn) can now

be checked. In the following table colum I gives cycles of (L®K)AZ ,

: : T weaadi e
Column II gives cycles of KAF waich map to the cycles of column I 3- )1ng)

while column III gives the images of the cycles of Cblumn II under lAg .

Clearly we may identify y with (y'lq) and (y'lqﬂ),x with ('x'lq)

and (x'lq-l-l)' No confusion results from this, since a count of dimension
shows in which group elements lie,

I 11 111
cycles of cycles of cycles of
(L@ek)hz, KAF KhZ,

bxy - {y'v) y
Lo S, - ¢
(a.t) oY ‘(%‘;;')(.Y‘V) m(y W) y
n l8

o) bxx Tg-:;)(x‘u) +(-1)q+ Tos (y'w) '(3'9'5) x +(-1) pzn,s) y

By § () | gy HATER G | ) < +(-1) ety 7
%(dxx) %%(x“z) ag-x-»ﬁé'xam x

c c
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From this table we dsduce

= ¢ {net) -
K'hn,c (acx J"'c) = ¢ x)a "hd,c Koo

kh g (egx 79) =745

o q ’_
By Tt (L hy 8 5, (sincebyy, = 0),

Kb = =
’(n“yn) yd h ,0°n'n

d,mn
" o, (2,8)P0,)* Xm,0)’ = (e ot DT (5T V) 4

= hd:nhn; (ﬂ:B)x(nas)+ (elﬂphdyoa(n’s)x(n’s)

L ) E +l
K S, nbn,e (8% 7,) =2 %)+ (1) (8 y),
=h, ,h, x + (_1)q+l h. § x
d,t t,cc « d,o“c "¢ °

These formulae confirm 2,51 for particular values of i . But for

(a5% %3)s (b, x x) to be defined we must have iln,t (for the case of
aixxi) or iln (for the case of b, xxi) . So the cases we have covered

are in ‘fa_c't sufficient for the theorem.
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Appendix 6, Proof of XII, 5,32

Since the oporations considered are additive, and by the"additivity
lemma" X.21, it ‘1; sufficient to consider the case Toe1 =2, (20),
T oo = Zg (22 0) o Mow the theorem is trivial if ¥* =0, Let us suppose
then J¥* f 0 ; psince ¥* is a homomorphism such that 28 = 0, this implies

thet p,q = 0(2) , that ¥*(1) = q/?&Zq , and so that 1 =h
] d A

H (!’T n...l® Z?) — H (Y, rn"?) %

We choose a.canonical basis for (Cu(T)h2)_ consisting of.

elozents a' guch that Ha' = 0 and elements a such that $a =ub (uy0),

whers the elements b form pert of a canomical wasis for (CH(‘I)&, Z)-n 1 °

we write r = (u,p).
'Tb the elements a', a correspond fundamental-classes

“w'e H"l(x\(l.p,l), z.p.) ’ooeil'l(l\‘(zr,l), zr) dy X1 2,31, the part of the

evaluation class in the component of the bzse point is-

€ = %. a;, x’ + 22 hp,r(%"w) o
’ 1l

We consider first the term a'p,,m) o Yow Sq a'p-: 0, soince

9a' =0, end Sq?u)' =0, since dimw' =-1 , lisnce the Cartan formla

inplies ng(a'pxw.') = qua'p % h2 pﬂ' s this term contributes only to kl »
. 3

which has already beecn determined.

i«e now é'onsider

i Sq?hp’r(irxca) =B, o qu (arxoo )

]
= sats x Sa¥ ?
= by (S97ax5q¥ W + 5q"a x hz,;-“’) since

8¢¥.0n0
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The terni h _( Sq?a « h, W) contrivutes only to k, , which has already
q’?. b o 2,1‘ 1

been deterained, The tern h ,(5q7a_x 5q"w) deteruines k, o
It is cleul&-sqfficient to vrove the theorem wisn c“(Y)hz
hes only two (independent) gen;eratrors .8sb with §a =ub (u>0) , If
u # ?(4) s then bq 8 =0 , and the theorez is trivially proved,
If us 2(4) » then bq a, =b, , and (by X. 2.51) we may choose e Kiinneth
isompi'phism K, such that
| ¥ hq,g(bzx‘sélvo) = hy_qbg, 2 Sqt w (Since sszuo =0)

Clearly h, . q Q2 :l. , and so k 2 is the composition
. §qt Lus
k(2 1) =9 K(Z5, 2) _——n((zqz) o

In the above _Sq? is taken as an operation of type

(? rG, ?r+1 G®2,) , for G an abelian group, whereas for the statecent of

the Theorez in _eneral it is more convenient to take Sq1

as an operation
of type (? G, ?r lG) o If this is done, then the t.heorem follows

immoediately.
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Appendix 7, A pew product topology.

In this appendix we introduce a new product topology which
seens o have many advantéges over the weak product considered im Chapter I,
Definition, [lot X,Y be spaces * and let X xY be the (usual) topological
product of X and Y. Let XxY be the set XxY with the topology
that a set € <Xs8Y is closed in Xx Y 4if and only if CanAx Y,‘ Ca X*B
are closed in Ax Y, Xx B respectively, for 211 compact subsets A of
X, Bof Y, | |

Obviously if one of X,Y is compact, then Xy Y = XY , '
and in fact the advantage of Xx Y over Xa, Y stems precisely from this
fact. More generally, we have |
Proposition 1. XaY = XaY if
(a) one of " X,Y is locelly compact,
or (b) both X eand Y satisfy the first exiomof countability,
or (c) X end Y are Cl~complexes such that XxY is a CW-complex.
Proof. (a) Sﬁppbse. Y is locally compact, lLet W be a'set opén in
XgY and let (#,y)ew « lLet K<Y be a compact neighbéurhood of ¥y o»
Then XxK =XxK, and 8o w nXxK is open in XxK . Hence there are
gets U,V oéen in X,Y respectively such that (x,7)e UxVeWaXx K ,
Hence W is open in XxY .
(v) Since ) 4 4 satisfy the first exiom .f countability, so also does’
XzY , Hence XxY is a kespace, and 8o XxY =Xx Y, Since the t°P°1°GY

of X}.I 1ies between those of XaxY, Xn“ Y, we must have XY =XaYX,

% In this appendix, tha tarm space will always mean Hausdorff
topological space.
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(c) In this cese also XxY¥Y=Xx Y , and hence XxY =XxY,

W
Let X% be the (usual) function space of all contineag functions

Y—>X with the comp;act-open topology,

W The éprnential map M ¢ X z 5_1_.., ()(I)Z

(ODtO) °

is a homcomorphism

The proof is similar to that of I, 2,37, end is omitted,
Corollary 1gl' The exponentiﬁl map ng__) (XY)Z (with the classical
product) is a homeomorphism (onto) if
(a) [22] one of Z,Y is locally=-compact, |
or (b) (Fox; [22])both Z and Y- satisfy the first axiom of countability,
or (o) (BarcusBarratt ; [29.]) | Z and Y are CW=complexes such that
ZxY is a dw-compléx.

Eroof, The ©rollary follows immediatély “rom Theorem 1 and Proposition 1,

Corollary 1.2 (Jackson; [29a]) For all X,Y,Z, the exponential map

M :”XZ‘-!—-» (XY)Z  (with the classical product) is a homeomorphism into.

. 4
Proof. Since ZxY has a larger topology tham ZxY , X ¥ is 2 subspace

of XZ‘-Y o 90 1.2 follows from Theorem 1.

Theorem 2, The product of f£xg of identification maps f,g is an

identification map,
The proof is similar to that of I.3.,32 end is omitted.

Gorollary 2,1 Let f : P—X; g: Q=Y be identification meps. Then
£y g : P3 Q<5 XxY 18 an identification map if

(a)} (Cohen; [ll.]) one of F,Q, and one of X,Y , are locally compact.
(b) each of P,Q,X,Y satisfy the first axiom of countability.
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Proof., The corollery follows immediately from Theorem 2 and Froposition l.
Gorollary 2.2, The product Xz Y of CWecomplexes X,Y is again

a CW-complex, |

Proof, This follows from Theorem 3 in the same way as H of [57] follows
from [55; Lemma 4]

Gorollary 2.3 (c,‘ii,Dowkor) If X,Y are locally countable CW=complexes,
then Xx7Y i_s ‘a CW=complex,

Proofs Since X,Y are locally counteble CWecomplexes, they satisfy the
 pirst axiom of countability. Hence by

provosition 1. Xx¥Y =XyY , and so, by Corollary 2.2, XY is a

CW-complexe

Remgrk, Certain results may be obtained with a smaller topology than thet
~of XY o ‘Thus let X xp Y be the set} XxY with the topology that a
set CeXx, Y is closed in Xx», T if and only if Ca Xx DB is closed in
XxB for all compect subsets B of Y o Then from the‘proofs of the
theorems of Chapter I we nay abstract ‘the following results.

(a) if £ :ZxpY—X is continuous, then sc is.the map mf 3 Z-—-;XI .

Y

(b) if g : 2K

is cgntinqug, then so is ,.a"lg : Z*R Y—X o

(¢) if £ 3 P—X is en jdentification map, then so, for any Y ,

is fxp 1:Pxp YT—Xxg Yo
Of course, Xg is not an associative product, so the proof

of the exponential law for x does not apply to xa .
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