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Introduction

THE cohomology theory described in the title is obtained by replacing
the usual coefficient group by an arbitrary chain complex. This theory
satisfies all of the Eilenberg-Steenrod axioms for a cohomology theory
except the dimension axiom. There are other theories with this property,
and among these our theory is probably the least extraordinary. That is
to say, its definition and techniques are very similar to those of the usual
cohomology theory.

The theory is justified by its applications. The first of these is a very
simple construction f of the Kiinneth isomorphism

K:H*{XX Y; G)->H*(X; H*(Y; 0)).

With this construction, K turns out to be natural with respect to maps
of X, and this increases notably the utility of K. This amount of naturality
is best possible: examples show that K cannot in general be chosen to be
natural with respect to maps of Y or homomorphisms of 0.

The second application is to generalize known results on Eilenberg-
MacLane complexes to arbitrary css-abelian groups. This generalization
depends heavily on work of Dold-Kan (3), and is related to other work
ofDold(4).

The third application uses the earlier results to give a generalization of
the suspension of a cohomology operation. This generalization involves
an arbitrary ess-complex Y rather than, as with the suspension, the
1-sphere S1.

This paper is in two parts. Part I deals only with chain complexes,
while Part II deals with the cohomology of ess-complexes. An appendix
gives computations of Kiinneth isomorphisms and an example of the
Kiinneth suspension.

I am deeply indebted to Dr M. G. Barratt for his encouragement to
develop this work, and for his criticism of several versions of it.

| Note added in proof. A similar construction has been given by W. Shih in his
paper, 'Homologie des espaces fibres', Publications Maih&matiques Inst. Haute ficole
Sci.ld (1962) 93-174.
Froc. London Math. Soc. (3) 14 (1964) 545-65
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PART I . CHAIN COMPLEXES

1. Preliminaries

1.1. A chain complex A is a sequence

of abelian groups and homomorphisms such that dn_x dn = 0. The sequence
{dn} is called the differential: we often omit the subscript n on dn, and also
write d as dA if we wish to emphasize the complex to which d belongs.

The cycles Z(A), boundaries B(A), and homology H(A) are defined as
usual.

A chain map f: A^-B of degree p of chain complexes A, B is a sequence
fn : An->Bn+p of homomorphisms such that dBf = (— \)vfdA. Two such
chain maps f,g are chain homotopic, written f~g, if there is a sequence
{Dn : An -> Bn+p+1} of homomorphisms such t h a t / - g = dB D + ( - 1)» D dA.

A chain map / : A^B of degree p induces a map H(f): H(A)^-H(B)
of homology. If f~g, then H(f) = H(g).

A chain map of degree 0 is called simply a chain map. The group of
chain homotopy classes of chain maps A^-B is written (A, By.

1.2. The tensor product A®B of chain complexes is defined as usual.
For the horn product AffiB we take the following definition, which is
now standard.

An element of (Aff>B)p is a map A^-B of degree p of graded groups.
Hence

where Yl denotes direct product. The differential S is given by

(8f)(a) = dBf(a)-(-l)pfdA(a), fe(Arf>B)p, azA.

The p-cycles Zp(ArfiB) are then simply the chain maps f:A->B of
degree p, and / ~ 0 if and only if feBp(AffiB). It follows that

Both the tensor and horn product are functors of two chain complexes.
Let f: A->A', g : B-+B' be chain maps of degree p,q respectively. Let
f®g :A®A'^B®B',ff/^g : A''$B->AijiB' be defined by

{f®g){a®a') = (-iyrfa®ga', aeAr, a'eA';
( L 3 ) (fH)(h) =(-l)m+r)9W, he{A

Then/®*? and frf*g are chain maps of degree p + q.
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1.4. The products ®,</> are connected by an exponential (or associativity)
law. Let A,B,C be chain complexes, and let the exponential map

be defined by

[x(f)(a)(b)=f(a®b), f<=(A®B)rf>C, asA, beB.

1.5. LEMMA. The exponential map is a natural chain isomorphism of
degree 0.

The proof is elementary and is omitted.

r 1.6. A chain complex F is free if each Fn is a free abelian group. The
following realization lemma is standard (cf. ((4) § 3)).

1.7. LEMMA. Let G be any graded group. There is a free chain complex F
and an isomorphism H(F) -» G.

For any chain complex A, free chain complex F, and map

<p : H(F)^»H(A) of graded groups, there is a chain map f: F-+A such that

H(f) = ?•

1.8. The suspension of a chain complex A is the chain complex sA such
that

Then s:A->sA given by s(a) = ae(sA)n is a chain isomorphism of
degree + 1. The^>-fold suspension sp is defined inductively by 5° = identity,
s? — ssv~x.

The chain complex which is G in dimension 0 and is 0 otherwise is
written s°6r, or, when no confusion will arise, simply as G. Thus 2/ will
denote the additive group of integers, and also the chain complex s°Z.

The inverse of s (the functor and the map) is written s~; and s~p is the
inverse of sp.

1.9. Let A,B be chain complexes. We make the identification

(1.10) AjisB = s(ArfiB)

by means of the map

ArfisB l4s~>AfB '—+ s(AffiB).

The natural chain isomorphism of degree 0

(1.11) a' :{sA)fjiB^Arfis-B

is the composition

(sA)fB s~4X>ArtiB Us~ > Affrs-B.

This isomorphism involves a sign, while the identification (1.10) does not.
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2. The Runneth isomorphism
The following definition is fundamental for this paper.

2.1. DEFINITION. Let K,A be chain complexes. The cohomology of K
with coefficients in A is the graded group

This cohomology is a functor of K and A: a chain map f-.K^-K' in-
duces / * : H*(K'; A)^-H*(K\ A), and a chain map g:A^-A' induces

2.2. PROPOSITION. Let K be a free chain complex and f \ A->A' a chain
map such that H(f) is an isomorphism. Then /* : H*(K; A)->H*(K; A')
is an isomorphism.

This is Satz 3.1 of (4), and is proved in (4) by standard techniques.

2.3. Let L, A, A' be chain complexes, and suppose we are given an
isomorphism

\:H*(L;A)->H(A').
For the rest of this paper, we make the convention

2.4. If A' = Lrj>AorA' = H*{L; A), then A is to be the identity. With all
this as given, we have

2.5. DEFINITION. A Kunneth isomorphism of type (L,A;Ar) associated
with A is an isomorphism

K : H*{K®L;A)^H*{K',A')

which is defined for each free chain complex K, is natural with respect to
maps of K, and which reduces to A under the obvious identifications if
K — Z. It is shown below that such a K always exists.

Special cases of this definition are isomorphisms

(2.6) K : H*{K®L;A)->H*(K;H*(L; A)),

(2.7) K : H*{K;A)->H*(K;H{A)),

natural with respect to maps of the free chain complex K, and reducing
to the identity UK = Z.

It is not claimed that K is uniquely determined by A. Indeed we will
show in §3 that K of (2.7) is in general not natural with respect to auto-
morphisms of A, and it is easy to deduce from this that K is not unique.
This non-naturality shows also that the notion of cohomology with chains
as coefficients is not reducible to cohomology with coefficients in a graded
group—structure is lost in passing from H*(K;A) to H*(K;H(A)).
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We now prove existence of Kiinneth isomorphisms. Let L, A, A' be
chain complexes and

\:H*(L;A)->H(A')
any homomorphism.

2.8. THEOREM. For each free chain complex K there is a homomorphism

K : H*(K®L;A)->H*(K;A')

natural with respect to maps of K and reducing to A if K = Z. Further, K is
an isomorphism if A is.

Proof. The exponential map /x induces an isomorphism

H{(i) : H*(K®L;A)->H*(K;Lrf>A).

Let F be a free chain complex and f: F->Lrj*A a chain map such that
H(f) is an isomorphism. Let g : F^~A' be a chain map such that
H(g) = XH(f). Such F,f,g exist by 1.7.

By 2.2,/* : H*{K;F)-*-H*{K;LifiA) is an isomorphism. Hence

K = gJ^Hdx) : H*(K®L;A)->H*{K;A')

is well defined. Clearly K is natural with respect to maps of K.
If K = Z then, under the identifications Z®X = X and ZflX = X,

fj, reduces to the identity and

K = g+tfHbi) = \H(f)H(f)-i = A.

Finally, if A is an isomorphism so is H(g) = XH(f). Hence, by 2.2,
g* : H*(K; F)->H*(K; A') is an isomorphism, and therefore so also is K.

2.9. REMARK. There is a natural filtration onKrfiA by dimension of K.
This filtration determines a spectral sequence {Er}r> 2 such that if K is free,

Further E^ is the graded group GTH*(K; A) associated with the induced
filtration on H*(K;A). (However, we must define Gr using direct product
rather than direct sum.) So from (2.7) we deduce an isomorphism

H*{K;A)-+GTH*(K;A)

natural with respect to maps of K.

3. Examples
This section contains examples of non-naturality of the Kiinneth

isomorphism. For completeness, we include a well-known example of
non-naturality of the splitting map of the Universal Coefficient Theorem.

3.1. EXAMPLE, K of (2.7) is not natural with respect to automorphisms
of A.
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Let K have only two generators a, b in dimensions 0,1 respectively,
with db = 2a. Let A have generators c, d, d' in dimensions 0,1,1
respectively, with dd = dd' = 2c. Let T:A->A be the automorphism
which interchanges d and d'.

It is easily checked that T induces a non-trivial automorphism of
H*(K;A) and a trivial automorphism of H*(K;H(A)). Hence there is no
isomorphism H*(K; A)->H*(K;H(A)) commuting with T*.

3.2. EXAMPLE. Let G be an abelian group. We prove that there is no
isomorphism

K : H*{K®L;G)->H*(K;H*(L;G))

natural with respect to homomorphisms of G.
Suppose to the contrary that for all complexes K,L, with K free,

K may be constructed to be natural with respect to maps of G.

Consider the functor x(E, F, G) of abelian groups E, F, G defined by

X(E, F, G) = Horn {E, Ext (F, 0)) + Ext (E, Horn (F, G)).

Let K, L be free resolutions of E, F respectively (2); then

HQ{K\H-i{L;G)) = Horn (E, Ext (F,G)),

H-^K; H°(L; G)) = Ext {E, Horn {F, G)).

So K induces an isomorphism

natural with respect to maps of G. Similarly, there is an isomorphism

natural with respect to maps of G. But there is a natural isomorphism
T* : H*{K®L,G)->H*(L®K;G). So we deduce an isomorphism

cp{E,F,G): X(E, F,G)^X(F,E,G)

natural with respect to maps of G. The following example shows this to
be impossible.

Let E = Zm (where p\q), let F = Zp = G2, Gx - Z, and let O-.G^G^
be epi. Since Horn (E, GJ = Horn (F, G^) = 0, we have

X(E, F, Gx) = Horn (E, Ext (F, GJ),

X(F, E, Gx) = Horn (F, Ext (E, G±)).

Now 0* : E x t ^ G ^ E x t ^ G y , and hence

But 0; : Ext (E, Gx) -> Ext (E, G2) has kernel p Ext (E, Gx); hence
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has kernel Horn (F,p Ext (E, Gx)), which is non-zero since p\q. So

contrary to hypothesis.

3.3. EXAMPLE. The Kiinneth isomorphism of (2.6) does not in general
preserve cup products.f For let K = L be the singular chain complex of
the Klein bottle. In H*(K®L;Z) there is a (— 3)-dimensional class whose
cup products with two linearly independent ( —1)-dimensional classes
are non-trivial ((9)186); no such (— 3)-dimensional class exists in
H*(K;H*{L;Z)).

3.4. EXAMPLE. Let K be a free chain complex, and G an abelian group.
The universal coefficient theorem ((2) II § 3) states that there is a natural
short exact sequence for each n,

(3.5) Ext (Hn_x(K), G)^H-*(K;G)-*Ii.om (Hn(K), G),

and that this sequence splits non-naturally with respect to maps of K.
Before giving an example, we remark that the splitting map is obtained by
choosing a chain map K^-Z(K) which is a left-inverse to the inclusion
Z(K)^-K. Hence the splitting map does not depend on choices with
respect to G, and is natural with respect to maps of G.

Let G = Z, let K have generators a, 6 in dimension 0,1 respectively,
with db = 2a, and let L have one generator c in dimension 1. Let
/ : K->L be denned by f(b) = c. We put n = 1 in (3.5) and obtain a
commutative diagram

' •

in which/* is epi. Clearly there is no natural splitting map.

PART II . .FD-COMPLEXES

4. The normalization functor
An FD-complex is simply a css-abelian group (8), and an FD-map

f-.A-^-B of FD-complexes A,B is a css-homomorphism. The abelian
group of J^Z)-maps is written 3F(A,B); the category of FD-complexes and
.F-D-maps is written SFQ).

f This contradicts 9.4.16 of (7).
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The JD-complex K(q) (q = 0,1,2,...) is the free i^D-complex (free with
respect to both the jFi)-operators and the group structure) on one
generator 89 of dimension q.

The cartesian product (3) of .FZ)-complexes A,B is the #Z)-complex
AxB with (A x B)q = Aq®Bq and with basic .FD-operators dt® di} s^®^.

An FD-homotopy (3) F : / 0 - / i of .FD-maps / 0 , / j , : A->B is an .FD-map
x ^ -+B such that

^ ( V ^ S 1 , ^ ) =/> f f ) (aqeAq; i = 0,1; q = 0,1, ...)•

The group of i^-homotopy classes of .FD-maps A->B is written <^4,,B>.
This notation coincides with what we have used for chain complexes.

Because of the close relation between .F-D-complexes and chain complexes,
we write ^{A,B) also for the group of chain maps A-+B when A,B
are chain complexes. As shown in 1.2, !F{A,B) = Z°(A;B), where
Z*(A; B) = Z(ArjiB) is the group of cocycles of A with coefficients in B.

The category of chain complexes and chain maps is written *$. The full
subcategory consisting of chain complexes A such that Ai = 0, i < 0, is
written ^0.

We recall J. C. Moore's definition (8) of a normalization functor
N : J^i^-^Q. This functor is shown in (3) to be equivalent to the
normalization functor of Eilenberg—MacLane (5).

4.1. DEFINITION. For any A in 3^2, the chain complex N(A) in #0 is
defined by

N(A)q=

with differential d0\ N(A). If / : A ->B is an FD-msup, then fN(A) cN(B),
and/defines a chain map N(f) : N(A)->N(B). So N becomes an additive
functor $F®->%.

In particular, the chain complex N{q) is defined by N(q) = NK(q).
Any FD-comjplex A may be regarded as a ess-complex by forgetting

about the group structure. Then A becomes a Kan complex, so its
homotopy groups are defined. The following is proved in (8).

4.2. THEOREM. There is a natural isomorphism of graded groups

The next propositions give additional information on this isomorphism.
(These are probably well known, but do not seem to be in the literature.)

4.3. PROPOSITION. The functor N : &'3> ->% is exact.

Proof. Let A'—-> A-?-+A" be a short exact sequence in ^Q}. Let
i' = N(i), j ' = N(j). Certainly %' is mono and^'i ' = 0.
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Let a in N(A)Q be such that j'(a) = 0. Since N(A)cA, there is by-
exactness an a' in A'q such that i(a') = a. By the definition of N, and since
i is mono, a' GN(A')q. This proves exactness at N(A).

Let a"EJV(^")g; then d4a" = 0, *>0. By Proposition 1 of Expose* 1 of
(1), any epimorphism of ess-groups is a Kan fibre map. Hence there is an
a in Aq such that j(a) = a" and d^a) = 0, i > 0; thus aeN(A)q, and hence
j ' is epi.

4.4. PROPOSITION. Lei E \ A'-+A->A" be a short exact sequence in
fFQl. The isomorphism £ of (4.2) gives an isomorphism between the
homotopy exact sequence of E and the homology exact sequence of
N(E) : N(A')->N{A)->N(A").

Proof. The only non-trivial part is commutativity with the boundary
operators. This is easily checked from the definitions of the boundary
operators and of £. We omit the details.

REMARK. Theorem 4.2 is proved in (8) for arbitrary ess-groups. The
two previous propositions also generalize to the non-commutative case.

5. The Dold-Kan functor
As stated in Theorem 4.2, the homotopy groups of an _FZ)-cornplex A

may be determined from NA. An important fact about JPZ)-coinplexes is
that A itself may be recovered from NA. This result, which is due to
Dold-Kan (3), is stated more precisely below. For certain applications,
it is convenient to generalize slightly their definition.

5.1. DEFINITION. The Dold-Kan functor\ R : yt-^lFQ) is defined on
each C in c& by

), q = 0,1,2,...,
with the obvious J^Z)-operators and values on maps of C. The restriction

Q is written RQ (Ro is the functor considered in (3)).

5.2. THEOREM. There are natural equivalences

the respective identity functors.

Let C,C'e%, A,A' eSFQ). An easy consequence of Theorem 5.2 is

5.3. COROLLARY. The functors N, Ro induce isomorphisms

N :

f This functor is denoted by a Gothic K in (3). As the letter K is already overused
in this subject, we have preferred to translate ${ as R.
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5.4. THEOREM. The functors N,RQ preserve homotopy ((3) 2.6) and so
induce isomorphisms of groups of homotopy classes

5.2, 5.3, 5.4 are due to Dold-Kan (3).

These results are not valid for the functor R. To describe the properties
of R we need an additional functor.

5.5. DEFINITION. The additive functor T : tf^tf is defined by

(Ca, q > 0,

T(C) = lzo(C), q = 0, CeV,

[0, q<0,

with differential and maps induced by those of C. The natural inclusion
T{C)->C is a natural transformation t:T->l. We also regard T as a
functor ^-^^Q.

5.6. PROPOSITION. For each C in %, R{t): RT(C)->R(C) is an
isomorphism.

Proof. Since t: T{C)->C is mono, so also is R(t).
Any chain map N(q)^»C factors uniquely through T(C) (since

>
0). Hence R(t) is epi.

5.7. PROPOSITION. The functor NR : ̂ - ^ ^ is naturally equivalent to T.

Proof. By 5.6, R(t) : RT-+R is a natural equivalence, and hence so also
is NR(t) : NRT^NR. But NRT = NR0T, which is naturaUy equivalent
to T by 5.2.

5.8. REMARK. In (5), Eilenberg-MacLane construct complexes K(tT,m)
belonging to SFQ) for each integer m ^ 0 and abelian group -n by setting
(in our notation)

Now Z-m(N(q);7T) =Z°(N(q);smrr) = S^(N(q),sm7r). Hence there is a
natural isomorphism of -FD-complexes

K(7r,m)xR(sm7r);

that is, the Dold-Kan functor may be regarded as a generalization of the
Eilenberg-Maclane complex in which the abelian group is replaced by a
chain complex.

We now consider how known properties of Eilenberg-MacLane
complexes generalize to the Dold-Kan functor.
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5.9. PROPOSITION. R is a left-exact, and Ro an exact, functor.

Proof. For each q>0, ^r(N(q),C) is a left-exact functor in the chain
complex C of $\ Hence R and Ro are left-exact.

Now let j:B—*C be an epimorphism of chain complexes, where
£ , C G ^ 0 . The proof is completed by proving that Rj:RB-+RC is
epimorphic.

Let D = Coker(J?j). The functor N is exact; so by Theorem 5.2 there
is a commutative diagram with exact rows

NRB-^NRC^UND—^o

in which / : RC^-D is the projection. By the 5-lemma, ND = 0, and
therefore DxRND = 0.

5.10. REMARK. The previous proposition suggests determining the
right-derived functors RmR : %' ̂ -fFQ). However, these are not very
interesting, for there is a natural isomorphism

RmR{C)-*K{H_m(C),0), CEV, m>0

(we omit the proof); thus RmR(C) is essentially just a discrete abelian
group.

There is a well-known functor W : SFQ^-S/'Q) which assigns a
classifying complex to each i^Z)-complex (8). This functor is such that
WK(-n,m) is naturally isomorphic to K(7T,m+ 1). More generally we have

5.11. PROPOSITION. There are natural equivalences

RSN^W.

Proof. Let Ae&2, and le t / : sN(A)^NW(A) be defined by

f(a) = [a, -d0a,0,...,0], ae(sN(A))q+1.

Then / is a natural isomorphism of chain complexes, and so defines a
natural equivalence / : sN^-NW. Hence R(f) : RsN -> RNW is a natural
equivalence, and so also is Q>oR(f) : RsN^-W.

To conclude this section, we give a short proof of a well-known theorem
of J. C. Moore.

5.12. THEOREM. For any A in !FQ), there is a (non-natural) css-homotopy
equivalence

r=0
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Proof. Let F in ̂  be a free chain complex, and let

be chain maps inducing isomorphisms in homology, where TT*{A) is
regarded as a chain complex with trivial differential.

We make the identifications
oo

BN(A) = A, RMA)) = n K(7rr(A),r) = B, say.
r=0

Let F' = R(F), f' = R(f):F'^A, g' = R(g): F'-+B. Then/ ' , g'
induce isomorphisms of homotopy groups (by 4.2, 5.2) and so are css-
homotopy equivalences ((8)1, Appendix C). Let f":A^F' be a
homotopy inverse of/'; then h = g'f" : A ->B is a homotopy equivalence.

6. Css-complexes

We deal with the category 3£ of css-complexes with base point, as this
is the more convenient for discussing suspension. The set of maps X -> 7
in 3C is written Map(X, 7).

The smash product of complexes X, 7 belonging to SC is
X % Y = X x 7/(X x * u * x 7),

where * denotes the base point of a complex.
The complex A3 is the free ess-complex on one generator S9 in dimension

q. This complex has no base point, and it is convenient to define A9 ^ X
for any X in 9E by

A« * X = A« x X/A* x *.
With this definition, a homotopy rel base point is simply a map (in SC)
F : A1 ^ X -»• 7. The set of homotopy classes of maps X -»• 7 is defined
if 7 is a Kan complex, and is then written [X, 7] .

There is a natural embedding !F3)<^SC, the base point of any FD-
complex being the sub complex of zeros. If A E!F3) and I e 5 then both
Map(X,^4) and [X,.4] obtain an abelian group structure from that of A.

If I e J , let C(X)q be the quotient of the free abelian group on Xq

by the subgroup generated by s0
Q*. The ess-operators on X induce

.FD-operators on C(X) = (J C(X)Q, and a map f:X^-Y induces

C(f):C(X)-+C(Y). Thus C becomes a functor 9£^2F®. Clearly
Ĉ A1 * X) = K(l) x C(X) and C(X * Y) = C(X) x C(Y) if X, Ye%.

Nowlet^leJ^, Xe&.

6.1. PROPOSITION. There is a natural isomorphism of groups
D : Msiv(X,A)->&r(C(X),A).

Further, D is homotopy-preserving and induces an isomorphism
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If / : X-+A, then D(f) is obtained by extending / linearly from the
generators. The proof of the proposition is obvious.

7. Cohomology and cohomology operations
7.1. DEFINITION. Let l e f . The normalized chain complex of X is a

free chain complex in #0 defined by

CN(X) = NC(X).

Let A e *€. The cohomology of X with coefficients in A is the graded group

H*(X;A) = H*(CN(X);A).

The graded group of cocyles of X with coefficients in A is

Z*(X;A)=Z*(CN{X);A).

The following theorem generalizes a well-known theorem on maps into
an Eilenberg-MacLane complex.

7.2. THEOREM. Let I G J , AESFS). There is a natural isomorphism

y' : Map(X, A)->Z°{X;NA)

inducing a natural isomorphism

y:[X,A]->H0(X;NA).

Proof, y is the composite of the natural isomorphisms (5.3, 6.1)

M&v{X,A)^$f(C(X),A)^&r(CN(X),NA) = Z°(X;NA).

Each of these maps is homotopy-preserving, so y induces an isomorphism

7.3. PROPOSITION. LetXe^,Be^. Themapt* : H°(X;TB)-+HQ(X;B)
is an isomorphism.

Proof. This follows easily from the fact that CN(X)e%.

7.4. COROLLARY. There is a natural isomorphism

Proof. [X,RB]xH°{X;NRB)xH°(X;TB)xH°(X;B).

7.5. DEFINITION. Let Ae^Sd, BEW. We define fundamental classes
OJ(A) in H°{A;NA), CJ(B) in H°(RB;B) by

where ix in [^4,-4] and i2 in [RB, RB] are the homotopy classes of the
identity maps.



558 R. BROWN

In the case A = K(TT, m) we have

NAxsmir, H°(A;NA)zH-m(K(7T,m);7T),

and u){A) corresponds under this isomorphism to the classical fundamental
class.

An immediate consequence of naturality of the maps y is that they are
given by

f*"(A), [f]e[X,A],
[] = g*a>(B), [g]e[X,RB].

7.7. DEFINITION. Let A,BG^. A cohomology operation of type (A,B)
is a natural transformation

where these cohomology functors are taken as functors from 2£ to the
category of abelian groups and set maps. The set of operations of type
(A, B) is written Op(^4, B), and this set is given the structure of an abelian
group by addition of values.

These operations do generalize the classical cohomology operations.
Let G,H be abelian groups, and m,n positive integers. Then classically
(10) a cohomology operation of type (O, m; H, n) is a natural transformation

6:H-m( ;G)^H-n{ ;H),
where the cohomology functors are functors as above, and we have used
our conventions as to grading. However, the natural identifications
H~m( \G) = H°( ;smG), H~n{ ;H) = H°( ;snH) imply that such an
operation is exactly an operation in our sense of type (smG,snH).

The following theorem is therefore a generalization of a famous theorem
of Serre (Theorem 1 of §4 of (10)).

7.8. THEOREM. Let A^Be^. There is a natural isomorphism

Proof. The proof is the same as that of (10), and we merely indicate it
here.

For 6 in Op (A,B), we set 0(0) = d(oo(A)). An inverse 0 ' to 0 is denned
as follows. Let <peH°(RA;B), and let xeH°(X;A). The composition of
the homotopy classes y~x{(p) in [RA,RB] and y~x{x) in [X,RA] is an
element y of [X,RB], and we set 8'(<p) (x) = y(y)eH°(X;B).

The next proposition shows that abstractly the structure of Op (A, B)
depends only on H(A) and H(B).

7.9. PROPOSITION. For AjBeff, there is a (non-natural) isomorphism
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Proof. By (2.6) there are isomorphisms for each X in SC,

\ : H0(X;A)->H»(X;H(A)), A2: H°(X;B)^HQ(X;H(B)),

which are natural with respect to maps of X. Hence for any 6 in Oip{A, B),
an operation A(0) in Oip(H(A), H(B)) may be denned by the requirement
that for each X in 3C the following diagram is commutative:

)-±+ H°(X;H(A))

This obviously defines an isomorphism A :

7.10. PROPOSITION. Cohomology operations preserve zero; i.e. ifde O~p(A, B)
and x = 0EH°{X;A), then 6{x) = 0EH°{X;B).

Proof. Let d' = y1 ®{6)e[RA,RB]. The class y-\x) in [X,RA] is
the class of the constant map, and hence so is 6'oy~x{x) in [X,RB].
Therefore 0 = y{d'oy-^x)) = d{x)eH°{X;B).

8. Suspension and Kunneth suspension
Classically, the suspension homomorphism o assigns to each operation

6 of type (G,m;H,n) an operation a(6) of type (G,m—l;H,n— 1). This
notion generalizes easily to a homomorphism

o :

for any A,B in *€. We shall present a further generalization, the KUnneth
suspension, whose construction uses in an essential way the naturality of
the Kunneth isomorphism of § 2.

The Kunneth suspension has an application to function complexes,
generalizing the application of o to loop spaces, to be dealt with elsewhere.

We first place the Kunneth isomorphism of § 2 in the context of ess-
complexes. This requires

8.1. THEOREM (Eilenberg-Zilber (6)). Let X, 7 e J . There is a natural
chain homotopy equivalence

A : CN(X)®CN(Y)^CN(X * 7).

Let Y in 2£ and A, A' in ^ be such that there is an isomorphism

\:H*(Y;A)->H(A').

Let K be a Kunneth isomorphism of type (CN(Y),A;A') associated with
A as in §2. We recaU that if A' = CN(Y)ffiA or A' = H*{Y;A), then A is
assumed to be the identity.
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8.2. DEFINITION. Let Xe&. The composition

H*(X * 7;A)-*-+H*{CN(X)®CIf{7);A)-?-+H*{X',Al)

is called a Kiinneth isomorphism of type (Y, A; A') associated with A. This
is an isomorphism, also written K, natural with respect to maps of X.

As a special case, let Y = S1, the 1-sphere defined by S1 = A1/A1. Then
= sZ, and by 1.9 there is a chain isomorphism

(sZ)rf>A-^->Zfs-A = s-A.

For any X in 2£, let a be the composition

H*(X * ffl;4) Htlt)A\H*{X\CN(S1)^A) m<T>) >H*{X;s-A).

Then a is a Kiinneth isomorphism of type (S1,A;s~A) called the
suspension isomorphism. I t is natural with respect to maps of both X
and A.

Now let K1} K2 be Kiinneth isomorphisms of types (Y, A; A'), {Y,B;B')
respectively, where FeS* and A,A',B,B'

8.3. DEFINITION. The Kiinneth suspension homomorphism is the
homomorphism

such that for each d in Op(^4, B), and X in ££, the following diagram is
commutative:

As a special case, let Y = S1 and let KV K2 be suspension isomorphisms.
Then K is the suspension homomorphism

a :

Another example is when A' = H*(Y;A), B' = H*(Y;B). Then K is a
homomorphism

OV(A,B)->Ov(H*(Y;A); H*(Y;B)).
There remains the question of computing K. This is most conveniently

done by computing the composition

where 0 is as in Theorem 7.8. We first give

8.4. DEFINITION. Let K be a Kiinneth isomorphism of type (Y, A; A').
The evaluation class of K is the cohomology class e in H°(RA' ^ Y\A)
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such that K(e) = a>(A'). The reason for the name given to this class is a
connexion with the evaluation map of function complexes to be discussed
elsewhere.

Now suppose we are in the situation of Definition 8.3. Let ex be the
evaluation class of KV Let K' : Op (A,B)-+H°(RA';Br) be defined by

K'(d) = K26(e1), deOv(A,B).

Then 0K(0) = K(6)(OJ(A')) = K2dK^(oj(A')) = ^ ( e ^ . So 0 K = K'.

In the Appendix we give formulae for Kiinneth isomorphisms and
evaluation classes which are useful in computing Kiinneth suspensions.
We conclude this section by showing that one part of K is reducible to the
suspension homomorphism.

Let A,B be chain complexes with trivial differential. Then

Therefore Op (̂ 4, B) contains as a direct summand

n sop^M^s^).
p=0g=0

In particular, there is a projection pp : Oip(A,B)^-O'p(s'pAp,s
pBp)

(p ^ 0), and the latter group is (as is well known) Kom(Ap, Bp) Up > 0, and
is the group Map(J.o, BQ) of functions preserving 0 if p = 0.

This projection pp is made explicit as follows. Let Sp = Ap/Ap be the
2>-sphere. Then CN(SV) = spZ and by 1.9 we have an isomorphism

P'p = H(*'*) : H*(8*;A)-+ HQ(Z^s-pA) = Ap.

For any 6 in 0p(.4,.B) we define pp(d) :Ap-+Bp by the commutative
diagram

Pv\ Pv
V

A ^ »
P Ppi0) ^V

Let KX, K2 be Kiinneth isomorphisms of types (Y,A;H*(Y;A))f

(Y,B;H*(Y;B)) respectively. We identify H*{Y\A) with HQ{Y\s~pA),
and Hv(Y;B) with H°(Y;s~pB). The Kiinneth suspension is now a

then PpK(d) is a map H0{Y;S~PA)->H°{Y;S-VB).

8.8. THEOBEM. For each 6 in 0^>(A,B), and p>0,

ppK(6) = OP(6),
the p-fold suspension of 6.

5388.3.14 Mm
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Proof. We consider the following diagram, where T : Sp %. Y->Y %. Sp

is the twisting map:

H°(Y*SP;A) °—^ H°(Y*SP;B)

T*\ \T*

H°(SP * 7 ; A) —> H°(SP * Y;B)

H0(Sp;H*(Y;B))

P'v\ \Pv
i («. v

uo( V • Q-P A \ Pi> > TJO( v • Q-P R\

The top square is commutative since 9 is an operation, and the other
squares are commutative by definition of K(0) and PPK(9). The theorem
is proved if we show that the two vertical compositions are simply a'p.
This is shown by routine calculations which we omit. (The assumption
that each of K1} K2 is associated with the identity is essential here.)

APPENDIX. COMPUTATIONS

In the first section of this appendix we give formulae for Kiinneth isomorphisms,
and these formulae are used in the second section to obtain formulae for evaluation
classes, and so to give an example of a Kiinneth suspension.

Section 1
In this part, we wish to describe Kiinneth isomorphisms of type (L, A; A'), where

L, A, A' are chain complexes. It turns out that the signs are simpler if we regard
such a Kiinneth isomorphism as a map H*(L ® K; A) ->H*(K; A'); that is, if we
precede K by the isomorphism T* : H*(L ®K;A)^- H*(K ®L;A) induced by the
twisting map T : K® L -> L® K. We shall accordingly write K for KT* throughout
this appendix.

The description of K in general is reduced to that for simple cases by means of the
following additivity lemma.

LEMMA (A.I), (i) Let /<, be a Kiinneth isomorphism of type (L{, A; A^), i = 1, 2.
Then KX + K2 is a Kiinneth isomorphism of type (L1 + Lz, A; A[ + A'2). (ii) Let K{ be a
Kiinneth isomorphism of type (L, At; A'f), i = 1,2. Then K1-\-K2 is a Kiinneth
isomorphism of type (L, Ax + A2; A[ + A'2).

The proof of the lemma is obvious.

We assume that K and L are free, finitely generated, and bounded, and that
A = s° G, where G is an abelian group. This is the case of most interest in the
applications.

We shall use the maps Sn, hn<m, 8n>n of the cohomology spectrum of a chain
complex K as defined in (9) and (11). If G is an abelian group, we write Gn for
Zn®G and identify Go with G. The homomorphism hn>m : H*(K;Zm)-+H*{K;Zn)
extends in an obvious way to a homomorphism hn>m : H*(K; Gm) -+H*(K; Gn). If
y e H*(L; Zm) and x e H*(K; Gn), we write yxxe H*(L ® K; #,,„,„,) for the cartesian
product of y and x with respect to the tisual pairing Zm ® Gn ->• Gimitl).
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(A.2) By Lemma (A.I) (i), it is sufficient to find formulae for K when there is an
isomorphism

v : H*(L;Z)-+s«Zt, t^O,
and this we assume. Let a0 = v~1(l) e HQ(L;Z). If t>0, the coboundary
8t : HQ+1(L;Zt) -+HQ(L;Z) is an isomorphism, and we define bt in HQ+1(L;Zt) by
8t(bt) = a0.

(A. 3) We first consider the case when G has no elements of order t (this includes
the case t = 0). Then the isomorphism v determines an isomorphism

v :H*{L;G)->s°Gt.

If K is a Kunneth isomorphism of type {L, G;s"Gt), then in each dimension K maps

Hm{L ®K;G) -+Hm(K; s" Gt) = Hm~"(K; Gt).
Let t> 0. Since G has no elements of order t, the sequence

E : 0 -> G - U G-*Gt->0

is exact. The associated Bockstein coboundary is written Sjg. (If t = 0, we take
8E = 0.)

It is well known that H*(L ® K; G) is the direct sum of subgroups A, B such that
(i) A is generated by cartesian products a0 x k0, all k0 in H*(K; G), (ii) B is generated
by the elements Ŝ &j x kt), with kt in H*{K; Gt). Hence it is sufficient to describe K
on elements of these types.

THEOBEM (A.4). There is a Kunneth isomorphism K of type (L, G; s" Gt) which on
H*(L® K;G) is given by the formulae

(i) K(a0 x k0) = hti0(k0), k0 e H*(K; Q),
(ii) K8E(btxkt) = kt, kteH*(K;Gt).

The proof of this theorem is straightforward, and is omitted.

The above formulae show that K may be chosen to be natural with respect to maps
of groups G such that H*(L;Z) and G have no common torsion. If H*(L; Z) and G
have common torsion, we cannot expect such reasonable formulae. However, when
G is finitely generated, we can, by Lemma (A.I) (ii), recover K from the case G = Zn.

(A.5) Let v : H*(L;Z)xs<>Zt (t>0); let n>0, and let C = s"Zd + s"+1 Zd, where
d = {n, t). Then H*(L;Zn)xC. Let a0, bt be as in (A.2), and let

)> bt = hM(bt)eH*{L;Zt).
It is proved in (9) that H*(L® K;Zn) is generated by the elements /in,,(at- x &,-),
hnii(b{ x &,), 8n,n hn,i(at x kt), for kt in H*(K;Zt), i&O.

Let K be a Kunneth isomorphism of type (L,Zn; C). The composition

Hm(L®K;Zn)

is also written K.

Hm(K;C)

•I
Hm{K; s« Za) + Hm(K;

Hm~"{K ;Zd) + Hn-o-^K; Zd)
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THEOREM (A.6). Let a, jS be integers such that an+fit = (n,t) = d. There is a
Kiinneth isomorphism K of type (L,Zn;G) which on H*(L® K;Zn) is given by the
formulae

(i) Khnti{at x hi) = hM kt,
(ii) Khnti(btxkt) = &„,„/&„,,-fc,• + ( - I ) 9 ^ d , 0 M , - >

(iii) K8n,n/in,l(alxfc

for all k{ in H.*{K;ZX), i

The proof of the theorem consists in constructing K by the method of proof of
Theorem 2.8, and checking that it has the stated values. The integers a, jS enter
at the stage of constructing a chain map F ->G inducing an isomorphism in homology,
where F is a free chain complex such that H(F)xH*(L;Zn). We omit further
details.

Section 2
In this section we find formulae for the evaluation class in H*(Y >& RA';A)

when H*(Y;Z) xs"Zt ( ^0 ) and A = smG. We suppose T to be finite.

(A.7) We first consider the case in which G has no elements of order t, so that
H*(Y; G) ~s" Gt. Under the identification (1.10), the Kiinneth isomorphism of
(A.4) determines a Kiinneth isomorphism K of type (Y, sm G; sm+Q Gt). Let
X = R(8m+Q0t). Let co, in H°{X;sm+<1 Gt) = H-m-"{X; Gt), be the fundamental
class. The evaluation class of K is a class e in H~m(Y ^ X; G) such that «:(e) = a>.
We use the notation of (A.2), (A.3).

THEOREM (A.8). The evaluation class e of K is given by
(i) e = a0 xw if t = 0,

(ii) e = SE(&< X W) if t > 0.

This follows immediately from Theorem (A.4).

(A.9) We now consider the situation of (A.5). Let X = R(smC). Then X is the
direct stun Xo + X1, where X° = R(sm+QZd), X1 = R(sm+"+1Zd). Let p° : X-+X0,
px : X -+ X1 be the projections, and let cv° in H°(X; sm+" Zd) and OJ1 in H°(X; sm+<1+l Zd)
be the images of the fundamental classes of X°, X1 under p0*,^1* respectively. Under
the identification

H0(X;sm+"Zd)+H0{X;sm+''+1Zd) = H°(X;smC),

we have o»° + a»1 = a», the fundamental class of X.
By (1.10) the Kiinneth isomorphism of (A.6) determines a Kiinneth isomorphism

K of type {Y, smZn;s
m G).

THEOREM (A. 10). The evaluation class e of K is

e = K.d&a x w1) + oJi.n,d(ad x to0) + jSSn,n hn,d(kd x to0).

For, as is easily checked, /c(e) = a>.

EXAMPLE (A. 11). We use this last formula to compute a Kiinneth suspension.
Let Y = Sr~1 u2 e

r be the (r — 2) -fold suspension of the real projective plane, so that
H*(Y;Z) xs-TZ2. Let 0 = Sqn, in Op(smZ2, s

m+nZ2), be the Steenrod square.
Let K be the Ktinneth isomorphism of type (Y,Z2;s~rZ2-\-s~r+1Z2) given by

Theorem (A.6) with q = —r, n = t = d = 2, a. = l,j8 = 0. The evaluation class of
K is e = 62 x co1 + a2 x co0 (with the notation of (A.9)) so that

£gn(e) = 62 x Sqn cu1 + a2x Sq"-1 co1 + a2 x Sq11 to0,
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by the Cartan formula and the relation Sq1^^) = a2. Hence

KSqn{e) = (Sqn + Sqn-1)co1 + Sqnco°.

That is, K Sqn, as a map of .FD-complexes, is given by the diagram

K{Z2,m-r) x K{Z2,m-r+l)

lSqn

We could also have taken a = 0, /3 = 1 in the above. In fact, since two Kunneth
isomorphisms are involved, there are four possible answers, namely,

(i) (Sqn + Sq"-1) co1 + Sqn a)0 (as above),
(ii) (Sqn + Sq"-1) co1 + {Sqn

(iii) ((n+l)8qn + Sqn-1)
(iv) ((n + 1) Sqn + Sq"-1) w1 + ((n + 1) Sqn+1 + Sqn) oo°.

(We have used the relation Sq1 Sqn = (n+ 1) Sqn+1.) This demonstrates clearly the
non-canonical nature of the Kunneth suspension.
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