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The title of this paper is chosen to imitate that of the paper by van Kampen
[10] which gave some basic computational rules for the fundamental
group TTX{ Y, £) of a based space (an earlier more special result is due to
Seifert [14]).

In [1] results more general than van Kampen's were obtained in terms
of fundamental groupoids. The advantage of the use of groupoids is that
one obtains an easy description of the fundamental groupoid of a union
of spaces even when the spaces and their intersections are not path-
connected ; in such cases, the computation of the fundamental group is
greatly simplified by using groupoids.

To obtain analogous results in dimension 2 we make essential use of a
kind of double groupoid first described in [4]. A major aim is to introduce
the homotopy double groupoid p(X, Y,Z) defined for any triple (X, Y,Z) of
spaces such that every loop in Z is contractible in Y. The methods of [1]
are generalized to give results on p(X, Y,Z). We obtain, as algebraic
consequences, results on the second relative homotopy group 7T2{X, Y, t)
in the form of computational rules for the crossed module

We are grateful to referees for helpful comments.

1. Preliminaries on double groupoids
By a double groupoid we shall always mean a 'special double groupoid

with special connection' as defined in § 3 of [4]. We recall this definition,
adopting a slightly different notation.

A double groupoid 0 = (G2, Gv Go) has, in the first place, the structure
of a two-dimensional cubical complex. Thus there are face maps
df'- ®n-> @n-i (a = 0,1, i = 1,2, ...,n, n = 1,2) and degeneracy maps
ei: @n-i -> ®n (* = !>2>--->n> n = 1,2) satisfying the usual cubical
relations.

Next, for n— 1,2, the pair {Gn,Gn_x) has n groupoid structures each
with objects Gn_x and arrows Gn. The groupoid 'in the ith. direction' has
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initial and final maps d\, d}: Gn-> Gn_v and its identity elements are the
degenerate elements e{y for y e Gn_v The notation we use for these
groupoid structures is as follows. Let a,b e Gn satisfy d\a = B^b. If n = 1
(and therefore i — \) the composite of the edges a, b is written ab, and the
identity edge exy (y e Go) is written ey, or e. If n = 2 and i = 1, the
composite of the squares a and b is written aob, with identity squares
\y = ejy (y G G±); we refer to this as Vertical composition' of squares.
If n = 2 and i = 2, the composite of a and b is written a + b, with identities
% = e2V (y G ^i) 5 *his is 'horizontal composition' of squares. If a 6 Glt

the inverse of a is written a"1, while if a e (r2, its inverse with respect to o
and + are written a"1 and — a respectively. We write ©y for the doubly
degenerate square 1^ = 0Cv (y e Go). We require also that the face maps
G2 -> G± and the degeneracy maps Gx -> G2 are morphisms of groupoids
in the following sense:

(i) if a + b is defined then 8<*{a + b) = {d«a){d%b))
(ii) if aob is defined then d*{dob) = (d*a){d«b);

(iii) if ab is defined then 0a6 = 0ao06 and lab = l o + 1 6 .
The vertical and horizontal compositions of squares are related by the

interchange law, namely, that if a, 6, c,d e G2 then

whenever both sides are defined. I t is convenient to use matrix notation
for composition of squares. If a e G2, a subdivision of a is defined to be a
rectangular array (a^) (1 ^ i ^ m, 1 < j ^ n) of elements of G2 satisfying

U'i—lJ — °lui,j v ^* " ^ "fr» ^ J ^ ' t /»

such that

We call a the composite of the array (&y) and write a = [ati]. The inter-
change law implies that if in the array (a^) we partition the rows and
columns into blocks Bkl and compute the composite bki of each block, then
a = [6&J. We call the subdivision (a^) a refinement of (6&J) in this case.

Note that aob, a + c can also be written , [a,c], and that the two sides

There is one further element of structure on G, namely a connection
F: Gx -+ G2 which assigns to each edge j p e ^ a square T(p) whose edges
are d»T(p) = dlT(p) = p and d\T{p) = dlV(p) = ey, where y = d\p. This T
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satisfies the transport law: if pq is defined in Gx then

We now define a thin square in G to be any element t of G2 having a
subdivision (ty) in which each ty is of the form 0̂ ,, 1̂ ,, T(p), — F(p), F^) - 1 ,
or — F(jp)-1 for some p — p{i in Gv A square a of G2 is said to have
commuting boundary if {<%a)(8{a) = {d\a)(d\a). Since 0 ,̂, 1 ,̂, T(p) all have
commuting boundary, so also does any thin square.

PROPOSITION 1. Let G be a double groupoid and let p,q,r,s e Gx satisfy
pq = rs. Then there is a unique thin square 0 G GZ such that # | 0 = p,
8\e = q, 81& = r, and 0*0 = s.

Proof. For any p, q,r,s e Gx satisfying pq = rs define

Then 0 is thin and, since pq = rs, its edges are as stated in the proposition.
This 0 satisfies the following laws:

(i) ©|e e\ = lp) ®lp p\=0p, ©U e\

I \ I \
(ii) ®[p s + 0 5 v] =\ I \

(iii) @ip sloQU v\ = Qlpt sv\',

(iv) -elp s = 0 5 p);

\ t J \ r1 I
I r V1 / q \

(V) ®lp S\ = 0 U " 1 5-lJ.
The proofs of (i) and (ii) are trivial. To prove (iii) we observe that, since
q = tuv~1, the two sides of equation (iii) have the common subdivision

T(p) 1, lu -lv -T(s)

0t T(t) lu -T(v) 0v

Equation (iv) follows from (i) and (ii), and (v) follows from (i) and (iii).
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Equations (ii)-(v) imply that any square a E G2 having a subdivision
(a^) in which each a^ is of the form 0, — 0, 0"1, or — 0- 1 is itself of the

I r \
form 01 p s i , where p, q, r, s are the edges of a. From this and (i) we

/ ' \
deduce that all thin squares are of the form 01 p s\ and are therefore

\ <1 I
uniquely determined by (three of) their edges.

A morphism f:G->H of double groupoids is a triple of functions
fn: Gn -> Hn (n = 0,1,2) preserving all the structures, including the
connection.

PROPOSITION 2. Let G, H be double groupoids and let / 2 : G2 -> H2 be a
function satisfying

(i) f2(aob) =/2(a)o/2(6) whenever d\a = d°6,
(ii) f2{a + b) =/2(a)+/2(&) whenever d\a = S|6, and

(iii) / 2 maps thin squares to thin squares.

Then there exist unique functions A : #i->-Hi, fo'-^o"^^ suc^ ^ia^
(/2, fv /0) is a morphism G -> H of double groupoids.

Proof. Condition (i) implies that there is a unique function/J: Gx -» H±

such that (/2, f{) is a morphism of the vertical groupoid structure. This
function satisfies f\(dfa) = d^f2{a) for all a e G2. Putting a = \pq = 1̂  + lg,
we deduce that f\ preserves composition of edges and therefore sends
identity edges to identity edges. Similarly, by (ii), there is a unique
morphism (/2,/i) of the horizontal groupoid structure. The function
fl'-G1-> Hx satisfies fl(d%a) = d^f2(a) for all a e G2 and also sends identity
edges to identity edges. Condition (iii) now implies that /2 sends

and therefore (f\p){f\q) = (flrfifls) whenever pq = rs in Gv Since both
f\ and fl send identities to identities, this implies that f\ = f\ = fv say.

/ p \
Hence f2T{p) = / 2 0 l ^ e\ = T(f1p), and the rest of the proof is

\ e /
routine.

We now recall from [4] the relationship between double groupoids and
crossed modules. A crossed module (A,B,d) consists of groups A,B, a
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morphism of groups d: A -»• B, and an action of B on A, written (a, b) i-> ab

(ae A,b e B). These must satisfy the laws (i) d(ab) = 6~1(9a)&, and
(ii) a~xaxa = a\a foi a,axe A,b e B. A morphism

of crossed modules is a pair of morphisms/: A -> A', g: B -> B' of groups
such that gd = d'f and f(ab) =f(a)<>{b) foTaeA,beB.

Given a double groupoid 0 and a vertex x e Gowe define groups A, B by

A = {ae G2; d\a = #>a = 8\a = ex},

and a morphism d: A -»• B by S(a) = dja. The action of B on A given by
a6 = — lb + a+lb makes (A,B,d) a crossed module which we denote by
y(G,x). If G has only one vertex, we write y(G) for y(G,x). We quote
from Theorem A of [4]:

THEOREM A. The rule G \-> y{G) defines an equivalence of categories from
the category of double groupoids with one vertex to the category of crossed
modules.

2. The homotopy double groupoid of a triple of spaces
Throughout this section X = (X, Xlt Xo) will be a triple of spaces, so that

Xx is a subspace of X, and Xo is a subspace of Xv We shall construct a
double groupoid p(X) provided that each loop in Xo is contractible in Xv

First we construct R = (R2, Rv RQ) where Ro = Xo, R± is the set of maps
(/, 7) -+ (Xlt Xo), and R2 is the set of maps (72, P, i2) -> (X, Xv Xo), where
jf2 is the set of edges and I2 the set of vertices of the square 72. Then
R = R{X) has the structure of a two-dimensional cubical complex.

The set Rx has its usual composition of paths in Xx with end points in XQ.
The set R2 has two similar compositions. In more detail, for positive
integers m,n let (pmn: P -> [0,ra] x [0,n] be the map (x,y) h-> (mx,ny).
An m x n-subdivision of a square a: I2 -> X is a factorization a = ex' o <pm n;
its parts are the squares a^: 72 -» X defined by

We then say that a is the composite of the squares â -, and we write
a = [a#]. Similar definitions apply to paths and cubes.

Such a subdivision determines a cell-structure on 72 as follows. The
intervals [0,m], [0,n] have cell-structures with integral points as 0-cells
and the intervals [i, i + l] as closed 1-cells. Then [0,m]x[0, n\ has the
product cell-structure which is transferred to 72 by <p^n. We call the
2-cell <p-£J[i- 1,»] x [j-1, j]) the domain of ay.
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We use the same notation for degenerate squares as in § 1. There is also
a 'connection' T: Rx-> R2 given by

Clearly Sjr(a) = d°2T(o) = a and d\T(o) = dlT(a) = eoy where y = d\o.
Also F satisfies the 'transport law' (1).

If a e R2, then a"1, — a denote respectively the elements of R2 defined
by {x, y)\-+oc(l-x)y), (x, y) h> oc{x, l-y).

The double groupoid p = (p2, plt p0) is given as cubical complex by
pi = TTQ^ (i = 0,1,2) where Blt R2 are given the compact-open topology.
Thus PQ = TTQXQ and the elements of pv p2 are respectively homotopy classes
of maps ( / , / ) ->• (X1}X0), {P,ftyP) -> (Z .Z^Zo) . We write = for this
relation of homotopy on Bx and JB2, and call it f-homotopy (or filter homo-
topy), to distinguish it from homotopy of maps I -> Xx or I 2 -> X which
we write ~ . The class in pi of an element 6 of Rt is written 8.

PROPOSITION 3. Assume the following condition:

(*) each loop in Xo is contractible in Xx.

Then the operations on R{X) induce on p(X) the structure of double groupoid.

Proof. Multiplication in px is defined as follows. Let d, f 6 px satisfy
d\d = SJf. Then we may choose a path A in XQ so tha t if/ = [aXr] is
defined and put of = $. Under the condition (*), this multiplication is
well defined and px becomes a groupoid.

We next define addition on p2. Let a,fiep2 satisfy d\a = Ŝ jS. Then
there is a square H in Xx with y = [a H jS] defined and with ^Ht d{H paths
in Xo. We let a + J3 = y and prove this addition to be well defined.

Let y = [a' H' j8'] be alternative choices. Then there exist f-homotopies
ht: a = a, kt: jS = j3'. Let K: I x ft -> Xx be given by (x,y, 0) i->- H(x,y),
{x, y, 1) t-> H'(z, y)} (x, 0, *) \-> ht(x, 1), (a;, 1, *) \-> kt(x, 0). Then

By (*) there is a map {0} x P -> Xx extending K to five faces of 73. By
retracting P onto these five faces we obtain a further extension K: P -»• Xv

The composite cube [h K k] is an f-homotopy y = y' as required.
I t is now easy to see tha t this addition makes (p2, px) a groupoid with

initial and final maps d£, d\ and identity elements 0s, where s e pv A
similar procedure gives the other groupoid structure.

The verification of the remaining laws for a double groupoid is straight-
forward.
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PROPOSITION 4. Let X = (X, Xv Xo) be a triple satisfying (*) above, and
let p = p{X).

(i) If a is a path in Xo then 5 is an identity ez in pv

(ii) If a is a square in XQ then a = ©s in p2 for some z.
(iii) An element of p2 is thin if and only if it has a representative square

lying in Xv

The proof is straightforward.

The next proposition is one of the keys to our work. I t shows that double
groupoids allow a convenient expression for the homotopy addition lemma
in dimension 2.

If h: P -> X is a cube in X, then its faces are, as usual, given by
dfi = hor}'?, where Tft{xvx2) = {yvy2,y3), the yt being denned by yj = xi

for j <i,yi = «, and yj = Xj_x foTJ > i. Also let iff (#!, a;2) = (a,#2,#i).

PROPOSITION 5 (the homotopy addition lemma). Let X,p be as in
Proposition 4. Let hbe a cube in X with edges in X± and vertices in Xo, and
let the elements aa, 6a, ca of p2 represented by its faces be respectively the
classes of hoijf, hovfe, horfe(a = 0,1). Then in p2

— i a0 i

- T ax T

where each Y stands for Y(p) for an appropriate edge p.

Proof. Consider the maps <pQ,<px: I2 -> I3 defined by

<Po =

-r vl
o

- r
o
r

Then <p0, <px agree on ft and so, since Is is convex, are homotopic rel ft.
Hence ho<p0 = hocp-^ in p2. But ho<p0 is the composite matrix given in the
proposition, and ho<p1 = cv

A map / : X -> Y of triples clearly demies a map />(/): p(X) -> p(Y) of
cubical complexes, and p(f) is a morphism of double groupoids if X, Y
satisfy (*) of Proposition 3.

PROPOSITION 6. If f:X->Y is a map of triples such that each of
f:X-+Y, fcX-y-t-Yi, fo:Xo-*Yo are homotopy equivalences, then
p(f): p(X) -> p(Y) is an isomorphism.



200 RONALD BROWN AND PHILIP J. HIGGINS

Proof. This is an immediate consequence of (10.11) of [9]. (In fact the
maps B{{X) ->• B^Y) are then homotopy equivalences, as is not hard to
deduce for i = 1,2 from the coglueing theorem of [3].)

From the homotopy double groupoid p(X) we obtain, according to the
procedure of § 1, a crossed module y(p(X), £) for each £ e 7TQX0. I t is well
known that, for each £ e Xo, the homotopy boundary

and the operation of 77-1(X1, £) on 772(X, XV £) give a crossed module, which
we write fj,(X, Xv £), or JM(X, X±) if the base point is clear.

PROPOSITION 7. For any £ e Xo, the crossed modules y{p(X), £) and
fi(X, Xv £) are naturally isomorphic.

Proof. Let (A,B,d) be the crossed module of p(X) at £. I t is easy to
check (using (*) of Proposition 3 again) that B is naturally isomorphic to
Tr1(Xli £). Now the elements of 7r2(X, Xlt £) are homotopy classes of maps
(72, {0} x / , J2) -^ (X, X1} 0 where J2 = ({1} x I) u (/ x / ) . Clearly each such
map determines an element of B2{X) and so by passing to homotopy
classes we obtain a morphism 6: TT2(X, XV £) -> A. We omit the proof that
6 is an isomorphism and commutes with the operations.

3. The union theorem
In this section we write X for the triple (X, Xv XQ) of spaces and we

assume the condition

(*)x each loop in Xo is contractible in Xv

We suppose we are given a cover ^l = {J7A}AeA °f -^ s u c ^ *na* *n e

interiors of the sets of % cover X. For each v e An we write

JJV = Unn...nUv»

and we also set Uv
t = ^ n ^ . We write Up = (Uv, Uv

v U
v
0) and shall assume

that for all v e A2 each loop in UV
Q is contractible in U^. This, with (*)x,

implies that the homotopy double groupoids in the following p-sequence of
the cover are well-defined:

u P(U") = | * u
P6Aa b AeA

Here U denotes coproduct in the category of double groupoids, a, b are
determined by the inclusions

a- U*nUe-+ Ux, b-
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for each v = (A, /n) G A2, and c is determined by the inclusion cA: t/A -» X

for each A e A.

THEOREM B (the union theorem). Assume the following conditions for
every finite intersection U" of elements of °U:

(t)0 the maps TTO{TJV
O) -> TTO(C7J) and ITO{U£) -» TTO(UV) are surjective;

(X)± the map ^(C/J, TJV
Q) -> 7T1(U

V, UV
Q) is surjective.

Then, in the above p-sequence of the cover, c is the coequaliser of a, b in the
category of double groupoids.

Proof. Suppose we are given a morphism

/
AeA

of double groupoids such tha t / ' o a =/'<>&. We have to show that there
is a unique morphism/: p(X) -»• 0 of double groupoids such that /oc = / ' .

Let#A: B(\JX) -> p(UA) be the projection and let Fx = / ' °# A : i2(UA) -> 0.
We first define / on p2(X) and to this end first construct F: B2(X) -> 0.

Suppose that 9 in B2(X) is such that 9 lies in some set Ux of fy. Then 6
determines uniquely an element 0A of JR2(U

A) and the rule f <>a =f'ob
implies that

F(d) = i^(0A)
is determined by 9.

Suppose we are given a subdivision 9 = [9i:}] of an element 9 in i?2(X)
such that each 9y is in B2(X) and also lies in some Vv, for v e An. Then 9^
also lies in some E7A, with A e A, and since the composite [9^] is defined it
is easy to check, again using/'o a —fob, that the elements F{9ii) com-
pose in 0 to give an element g = [F(9i:j)], which we write as F(9) although
a priori it depends on the subdivision chosen.

We next wish to construct F(ot) for an arbitrary element a of -R2(X).
This construction is based on the following result.

LEMMA 1. Let a G B2(X) and let a = [a^] be a subdivision of a such that
each ay lies in some U^, a finite intersection of elements of °U. Then there is
an f-homotopy h:a = 9, with 9 e B2(X), such that, in the subdivision
h — [hi:!] determined by that of a, each homotopy h^: a y ~ 9^ satisfies:

(i) hi:f lies in Uij;
(ii) 9tj belongs to B2(X);

(iii) if <xy lies in Xx or in XQ, so also does 9tj.

Proof. Let K be the cell-structure on P determined by the subdivision
a = [ay]. Let Lm = KmxIuKx{0} and X2 = X. We construct maps
hm: Lm -> X2, for m = 0,1,2, such that hm extends hm_1, where h_x = a.



202 RONALD BROWN AND P H I L I P J . HIGGINS

Further we construct hm to satisfy the following conditions, for each
ra-cell a of K:

(am) hm | a x {1} is an element of Bm(X);
(bm) if a maps a into X,., then hm(a x I) <=• X,.;
(cm) if a is contained in the domain of ay, then hm(a x / ) c TJli.
The construction of hm from hm_1 is as follows. We consider an m-cell a

of K, and let r be the smallest integer such that a maps a into .X,.. If r ^ m,
then hm_1 can be extended to hm on a x / by means of a retraction
a x I -> a x {0} u d x / . If r > m, let £7°" be the intersection of all the sets
UV such that a is contained in the domain of ay. The restriction of hm_1

to the pair (a x {0}u d x / , a x {1}) determines an element of irm(U^t ?7m-i)-
(Here m ^ 1 and 27^ is taken to be 0.) By (J)m, ̂ ^ extends to .̂m on
a x 7 mapping into £/£ and such that a x {1} is mapped into Z7* •

COROLLABY. Zef ex G i?2(X). Then there is an f-homotopy h: a = 6 such
that F(d) is defined in G2.

Proof. Choose a subdivision a = [a^] such that each â - lies in some set
UV of <%. Then apply Lemma 1.

This element F(6) of the corollary we write F(a, {hy)) and prove first
that it depends only on a. Accordingly, let h': a = 8' be an alternative
f-homotopy satisfying the conditions of Lemma 1 with respect to a
subdivision a = [a^] in which each ajj., lies in some set Vu of °U. Since any
two subdivisions have a common refinement we may assume, without loss
of generality, that [akl] is a refinement of [a^].

For each (kl), let Wu = Vu n TJV where U** is such that 4 , is a part of o^.
By Lemma 1 there is an f-homotopy W = [hH\ from a to 6* such that each
Wkl lies in WM. The f-homotopy H = K'W: 6' = 6* (where K' is the reverse
of h') has the subdivision H = [Hkl] where HM: 6'kl ~ 8^ and Hkl lies in VM.

Let 8fj be the composite of those 0J., such that akl is a part of ay. Then
we also have a subdivision W = \h*j\, where hff. oci:j ~ 6$ lies in Uy. So
H* = Jfth: 8* = 8 is an f-homotopy with subdivision H* = [#*,], where
Hfj: dfj ~ ^- is a homotopy lying in U1'.

I t will follow from Lemma 3 below that

and

However [^(^)] = [-^(^j)], since the latter is a refinement of the former.
Hence [-F(0jy)] = [Ftfy)] and so F(<x, (h^)) depends only on a.

LEMMA 2. Let 8,8* e R2 and suppose we are given an f-homotopy
H: 8 = 8*. Let H = [H^] be a subdivision such that each B.ii lies in some set
Uli of <M. Let 8 = [%], 8* = [0g] be the subdivisions of 8,8* induced by that
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of H, and suppose that 9y, 6y are in R2 for all (i, j). Then H is homotopic
rel end maps to an f-homotopy B: 9 = 9* such that for all i, j ,

(i) By has its edges in Xv

(ii) By lies in U*.

Proof. The proof is similar to that of Lemma 1. The subdivision
0 = [6^] induces a cell-structure K on I2, and the homotopy H ~ B is
constructed on KmxIxIuKxlxIuKxIx{O}bj induction on m.

NOTE. We do not claim that By is an f-homotopy 9y = 9y.

LEMMA 3. Let 9,9*, H, (Hy) be as in Lemma 2. Then in G2,

Proof. We replace H by the 6:9 = 6* given by Lemma 2. Let
F(9ij) = cip F(9fJ) = c^. Since Sif has its edges in Xx and vertices in Xo,
the homotopy addition lemma (Proposition 5) gives, on applying F, a
relation in 6?a of the form

J.

-r

• & J

Hi

(2)

where the a's and 6's are images in G2 of certain faces of the By.
The interchange law for G allows us to refine the subdivision c* = [c^]

by the substitution (2) and to compose the parts in any convenient fashion.
By cancellation of pairs bij} — b^ and aij} a^"1, by composing thin elements
and absorbing 0's and l's, and by composing border elements, we can
obtain a new subdivision of c* of the form

-b0 (3)

where c = [cy] and the elements ait bt are composites in G2 of the images of
squares lying on the boundary of B. Since B is an f-homotopy, these
squares are in Xt and so, by Proposition 4(iii), the ai} 6i are thin. Similarly,
Proposition 4(i) implies that each corner element in (3) is 0 . I t now
follows that the ai are l's and the b{ are 0's, and therefore c* = c.

With the proof of Lemma 3 we have completed the proof that F(ot,
depends only on a.

LEMMA 4. jP(a, (hy)) depends only on the class of a in p2.
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Proof. Let K: a = a' be an f-homotopy. Then there is an (m x nxp)-
subdivision K = [Kijk] such that each Kijk lies in some set of °U, say U^k.
Let a = [ay], a' = [a^] be the induced subdivisions of a, ex'. A simple induc-
tion on p reduces us to the case where p = 1, and so we may assume that
the subdivision of K has a single layer K — [i£y], each K^ being a homotopy
oty ~ oty lying in Uij. Then we choose h: a = d, h': a' = 6' as in Lemma 1.
Let H be the composite homotopy Kkh': 8 = 6'. Then by Lemma 3,

We have now proved that there is a well-defined map / : p2(X) -*• G2,
given by/(5) = F(cx, (h^)), which satisfies/oc = / ' at least on 2-dimensional
elements of p.

The remainder of the proof is straightforward. I t is easy to check that
/ preserves addition and composition of squares, and it follows from
Proposition 4 of §2 and (iii) of Lemma 1 that / preserves thin elements.
Now Proposition 2 is used to extend / to a morphism / : p(X) -*• Q of
double groupoids, and clearly / satisfies foe = / ' and is the only such
morphism.

REMARKS. 1. An examination of the above proof shows that condition
(|)m is required only for 8-fold intersections of elements of °U. However,
it has been shown by Razak [13] that in fact one need only assume (J)o

for 4-fold intersections and {%)x for 3-fold intersections. Further, these
conditions are best possible.

2. There is, alternative to p(X,X1,X2) as defined here, a version in
which the homotopies of maps (/,/) -»• (X1}X0), (72,/2,/2) -» (X,XltX0)
are taken rel 1, rel i 2 respectively. I t is this version which includes the
groupoid 77 YZ of [1,2]. Both versions are special cases of the double

P 0.groupoid p(X < Y < Z) discussed in [13].
3. Theorem B contains 1-dimensional information which includes

most known results expressing the fundamental group of a space in terms
of an open cover, but it does not assume that the spaces of the cover or their
intersections are path-connected.

Of especial interest (but not essentially easier to prove) is the case of
Theorem B in which the cover °U has only two elements; in this case
Theorem B gives a push-out of double groupoids. In the applications
below we shall consider only path-connected spaces and assume that
Z = {£} is a singleton. Taking £ as base point, the double groupoids can
then be interpreted as crossed modules to give the following 2-dimensional
analogue of the Seifert-van Kampen theorem. We do not know how to
prove Theorem C without using double groupoids.
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THEOREM C. Suppose that the commutative diagram of based pairs of
spaces

(4)

satisfies one of the two following hypotheses:

HYPOTHESIS S/: the maps i, f, I, f are inclusions of subspaces,
W = UnV, X is the union of the interiors of the sets U and V, and
Vx = Xyn F, Ux = Xxc\U, Wx = Xxn W;

HYPOTHESIS 03: the maps i: W ->• V, ix: Wx -> Vx are closed cofibrations,
Wx= W nV1} and X,XX are the adjunction spaces Uuf V, C^u^Pj.

Suppose also that all the spaces are path-connected and that the induced maps
^(K) ""*" niiV)* ^lC^i) ~̂  ""i(^)> ^1(^1) -^ ^ICW) are surjective. Then the
induced diagram

(5)

is a push-out of crossed modules.

Proof. In the case where (XyXj) is a based pair with base point £,
p(X, Xv )̂ is abbreviated to p(X, Xx). That p applied to diagram (4) gives
a push-out of double groupoids under Hypothesis s/ is simply a special
case of the union theorem. That diagram (5) is a push-out is immediate
from Theorem A and Proposition 7.

The corresponding result under Hypothesis S3 follows from that under
Hypothesis stf by standard techniques using mapping cylinders (see a
similar proof in [2, 8.4.2]).

4. Push-outs of crossed modules
The usefulness of Theorem C lies in the fact that, given a push-out square

(-40,00,00)

(6)

(A2,G2,d0) (A,O,d)
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in the category <df of crossed modules, one can write down generators and
relations for the groups A and G if one knows generators and relations
for the groups AitOt (i = 0,1,2) and one knows the various actions and
maps between them. The computations are conveniently described in
terms of induced crossed modules.

For a given group G, let ^G be the category of crossed ^-modules
(A, G, d); the morphisms of ^G are morphisms of crossed modules inducing
the identity on G. As for ordinary modules we shall often refer simply
to the crossed Cr-module A. Let A: G -> H be a fixed morphism of groups.
If B is a crossed H-module, let A be the pull-back

°-irH

in the category of groups. Then G acts on A <=• BxG by the rule
a° = ((fia)Xa, g~1(da)g) for g e G, a e A, making A into a crossed (r-module
so that (j8,A): {A,G, d) -> (B,H, d) is a morphism of crossed modules.
This morphism is universal for morphisms from crossed (^-modules to
(B, H, d) which induce A: G -» H. Writing A = X*B we obtain a functor
A*: &H -»• 9oa called restriction.

There is also, for any crossed ^-module A, an induced crossed If-module
C = A* .̂ and a morphism (i>,A): (A,G,d) -+ {C,H,d) which is universal
for morphisms from A to crossed #-modules which induce A: G -> H.
This gives a functor A*: #G -*• <€K which is left-adjoint to A*. I t can be
described as follows.

PROPOSITION 8. Let A he a crossed G-module and let A: G -> H be a
morphism of groups. Then the induced crossed H-module G = X%A is
generated, as a group, by the set Ax H with defining relations

(i) (a1} h){a2, h) = {axa%, h),
(ii) (aP,h) = {a,(\g)h),

(iii) (av hj-1^, h2){ax, hj = {a2, hJi^Xda^hJ,
for av a2,a e A, hv hz,h e H, g e G. The morphism d: C -> H is given by
d(a, h) = h~x{Xda)h, the action of H on C by (a, hj)11 = (a, hji), and the
canonical morphism v: A -> C by v(a) = (a, 1).

Proof. One verifies directly that this recipe defines a crossed U-module
and that (v,X): (A,G, d) ->- (C,H,d) is a morphism of crossed modules
with the required universal property.
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Some special cases are worthy of note. First, G is itself a crossed
(2-module with d: G -> G the identity and action by conjugation; it is the
terminal object of 9oO. The corresponding induced crossed jET-module X%G
is called the free crossed module on A: G -» H. In this case the relations
(ii) are consequences of (i) and (ill), so X*G has generators GxH and
defining relations (gi,h)(g2,h) = (g^h) and

If G is a free group with free generators {#J then A ^ is determined by
H and the elements yi = X(xi) of H, and it coincides with Whitehead's
'free crossed ^-module' [16, p. 455], as can be seen by comparing the two
presentations. We refer to the elements v{xi) G X*G as the free generators
of this crossed module.

Next, when A: G -*• H is a surjection or an injection the induced
crossed module X*A has a simpler description which can be either deduced
from Proposition 8 or proved in a similar way.

PROPOSITION 9. If X: G -> H is a surjection and A is a crossed G-module,
then X*A — A/[A,K], where K = KerA and [A,K\ denotes the subgroup of
A generated by all a~xak for a e A, k e K.

PROPOSITION 10. //A: G -* His an injection and A is a crossed G-module,
let The a right transversal ofX(G) in H, and let B be the free product of groups
At (t e T) each isomorphic with A by an isomorphism a i-> at(a e A). Let
h e H act on B by the rule (at)

h = (a°)u, where g e G, u e T, and th = (Xg)u.
Let 8: B -> H be defined by at i-> f~1(A da)t. Then X%A = B/S where S is the
normal closure in B of the elements 6~1c~16c56 (b,c e B).

REMARK. Since any A: G -s- H is the composite of a surjection and an
injection, an alternative description of the general X%A can be obtained
by a combination of the two constructions of Propositions 9 and 10.

Now consider an arbitrary push-out square (6) of crossed modules.
In order to describe (A, G, d), we first note that G is the push-out of the
group morphisms G1 •*- GQ -» G2. (This is because the forgetful functor
(A,G, d) H> G from crossed modules to groups has a right adjoint
G h-> (G, G,id).) The morphisms Â : Gi -> G (i = 0,1, 2) in (6) can be used
to form induced crossed (r-modules Bi = (A^)*^. Clearly A is the push-out
in ^Q of the resulting (r-morphisms Bx <- Bo -> B2 and can be described
as follows.

PROPOSITION 11. Let B{ be a crossed G-module for i = 0,1,2, and let A be
Q O

the push-out in WQ of G-morphisms Bx < Bo > B2. Let B be the
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push-out of fir and j82 in the category of groups, equipped with the induced
morphism d: B -> G and the induced action of G on B. Then A = B/S,
where S is the normal closure in B of the elements 6~1c~16c36/or b,c e B.

In the case when (A2, G2, d2) is the trivial crossed module (0,0, id) the
push-out (A, G, d) in (6) is the cohernel of the morphism

{A9tQ9tdQ)-*[AvQltd1).

Cokernels can be described as follows.

PROPOSITION 12. The cokernel of a morphism (/?, A): (A, G, d) -> (B, H, d)
is (B/A,H/G,d) where G is the normal closure in H of X{G), and A is the
H-subgroup of B generated by fl(A).[B, G].

5. Applications to second relative homotopy groups
We illustrate the use of Theorem C for determining TT2(X, XX) in some

cases in which the computations are straightforward.

PROPOSITION 13. Let U, V, W,X be connected based GW-complexes, with
W a subcomplex of V and X the adjunction space X = U u, V, where

f:W->Uisa cellular map. Let U1, V1, W1, X1 denote the l-skeletons of
*7,F,TF,X. Then

/*

is a push-out of crossed modules.

Proof. Under these assumptions, Hypothesis £8 of Theorem C is
satisfied and the induced maps v^U1) -»• TT-^U) etc. are all surjective.

COROLLARY. Let W be a connected subcomplex of the connected GW-
complex V and let X = V/W. Then TT2{X, X1) = TT2(F, VX)/N where N is the

O/TT2(F, V1) generated by

and [TT2(F,

Proof. Take U = U1 = {*} so that p{Ut U1) = (0,0, id) and p{X, X1) is
the cokernel of t # : fi{W, W1) -*• /x(F, F1). Apply Proposition 12.

We observe that Proposition 13 also throws light on a problem sug-
gested to us by Saunders MacLane: if the connected CW-complex X is the
union of connected sub-complexes U, V with connected intersection W,
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determine the relationship between the first Postnikov invariants ofX, U, F, W.
This invariant for X is an element k(X) of HB(TT1(X))7T2(X)) which is shown
in [11] to be the obstruction class associated with the crossed module
/x(X, X1), where X1 is the 1-skeleton of X. Proposition 13 shows that k(X)
is determined, if not by k(U), k(V), and k(W), then certainly by the
morphisms of crossed modules fi(U, U1) <- /x(TF, W1) -> /u(F, F1).

The following special case of Theorem C is particularly convenient, as
it contains and extends a number of known results.

THEOREM D. Suppose that the commutative square

f
W U

of based spaces satisfies one of the two hypotheses:

HYPOTHESIS sf: the maps i, f, i, fare inclusions of subspaces, W = Un F ,
and X is the union of the interiors of U and V;

HYPOTHESIS 33: the map i is a closed cofibration and X is the adjunction
space V uf V.

Suppose also that U, F, W are path-connected and that i%: n-^W) ->• ^ ( F )
is surjective. Then TT2(X, U) is the crossed ir^Uymodule induced from
rr2(F, W) by the morphismf*: TT^W) -> TT^U).

Proof. Under these conditions we may take

X1 = U1 = U and Vx = Wx = W

in Theorem C. Writing G = ir^W), Jff = 7r1(F), A=ir2(V,W), and
B = TT2(X, U) we find that

(0,A)
(0,0,0) (0,H,0)

is a push-out of crossed modules, and this is equivalent to the assertion
that B is the induced module A*.4.

REMARKS. 1. Induced crossed modules arise under more general
circumstances. In Theorem C, make the additional assumptions that
5388.3.36 O
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^{WyWj) = ^(VyV^ = 0\ then ir^X^X^) is the crossed
induced from 7r2(F,l^) by /* : v^) ->• rr^Xj).

2. Theorem D implies the homotopy excision theorem [9, p. 211] in
dimension 2. For suppose the based space X is the union of subspaces
U, F, with U, F, and W = UnV all path-connected. Assume either
Hypothesis J& or Hypothesis 38': U and V are closed and i: W -> V
is a cofibration. Let X: ̂ (W)-> TT^U) be induced by inclusion. If
TT^V, W) = 0, then TTX{W) -> vr^F) is surjective, and by Theorem D,
TT2(X, U) = A5J.7T2(F, W)\ this gives an algebraic description of the excision
map e: TT2(V, W) -» 7r2(X, U). If also ^(U, W) = 0, then A is surjective
and we obtain from Proposition 9 the surjectivity of e which is one part
of the usual excision theorem; but we can also, by Theorem D and
Proposition 9, state the further result that if K = KerA, then K acts on
A = 7r2(F, W), and Kere = [A,K\. Suppose further that

is trivial (for example if TT2(U, W) = 0); then A: TT^W) -» ^(U) is an
isomorphism and hence so also is s. This is the final part of homotopy
excision under hypotheses slightly weaker than the usual ones.

Other uses of Theorem D are illustrated by the following examples.

EXAMPLES. 1. Let A,B,U be path-connected based spaces. Let
X = UUf (CA x B) where GA is the (unreduced) cone on A and / i s a map
A x B -» U. I t follows from Theorem D that TT2(X, U) is the crossed
Tr-^t/J-module induced from M = {TT-^A),™^) X ir-^B),^) by

/ * : 7^(4) X T T ^ ) - * ^(tf)

where, in the crossed module M, TT^A) acts on itself by conjugation and
TT^B) acts trivially on v^A).

2. Let A = Sp,B = Sa (p,q^ 1) in Example 1. Then it is easily shown
from the above that (a) for p ^ 2, TT2(X, U) = 0, (b) for p = 1 and q"^ 2,
7T2{X, U) is the free crossed ^(C/J-module on one generator x which is the

h /class in TT2(X, U) of the disc CA > GA x B > X, and (c) for
p = q = 1, TT2(X, U) = F/N where F is the free crossed ^(f/J-module on
one generator a; as in (b) and N is the ^(^/J-submodule of F generated

i f
by x~xxv, where y is the class in TT^U) of the loop B > AxB > U.
(These results may also be deduced from results of [15, 16].)

3. Returning to Example 1, suppose next that B is a point. Then
X = UufCA, M = (ir1(A),'rr1(A),i) and therefore TT2(X,U) is the free
crossed module on /^: ^(^4) -> TT1(?7). We know no other method of
proving this result.
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4. Any space U obtained from the path-connected space U by attaching
2-cells is homotopy equivalent, relU, to a space X = Uuf CA where A is a
wedge of circles. In this case, TT-^A) is a free group, and Example 3
specializes to Whitehead's theorem that 7r2(U, U) is the free crossed TT^U)-

module with one generator for each 2-cell attached [16, p. 493]. (Applica-
tions of Whitehead's theorem are given in [5, 6, 8, 11, 12, 16, 17] and a
simpler proof of a special case of the theorem is given in [7].)

5. Let A, U, X be as in Example 3, and suppose that f*: TTX{A) H» TT^U)

is surjective with kernel K. An application of Proposition 8 to the con-
clusion of Theorem D gives TT2{X,U) = TT1{A)/\TT1{A))K], and it follows
that there is an exact sequence

TT2(U) -> TT2(X) -> K/MA), K] -> 0. (7)

It is easy to deduce from this exact sequence, applied to the case where
A = K(G, 1) and U = K{Q, 1) the well-known result that an exact
sequence 1 -> K ->• G -» Q -> 1 of groups gives rise to an exact sequence

H2(G) -* HZ{Q) - • K/[G,K] -> H±(G) - • HX(Q) -> 0.

As another application of (7) we note that if rr^U) = TT2(U) = 0, then
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