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1. Introduction

The results described here arose out of an attempt to construct

a 2-dimensional analogue pp(X) of the fundamental groupoid 7X of

a topological space X and such that p, (X) should have the property
of sending reasonable pushouts to pushouts. This property is
possessed by the fundamental groupoid and is the foundation of

its computability [1]. The proof of this property for mX depends
on the fact that X has good subdivision properties; this suggests
that for pp(X) to have this property, it must be defined in terms

of rectangles and have two compositions, vertical and horizontal.

So p2(X) has to be a double groupoid.

The purpose of this paper is to answer some questions on the
algebraic side of this program, namely to show how double groupoids

arise and are classified.

One standard example (due to Ehresmann) of a double groupoid

is that of squares in a group L,

b
(1.1) a d a,b,c,d € L
c
with the obvious horizontal and vertical compositions. A modification

of this example is to consider a sub-group A of L and squares as in

(1.1) with the condition that o =b + a - ¢ - d ¢ A. (It is convenient

in this paper to write various group operations as addition, even
though the groups are not necessarily abelian.) A simple check
then gives the following formulae for horizontal and vertical

composition



v u ut+v
o B = u.o+B
zZ t t+z
x' o' w'
= x' + x a'+w'.o w'+w
X o w

where u.&{=u +X - u, However we also require the interchange

lemma namely that the two ways of evaluating

should give the same answer; for this it is necessary and sufficient

that A be normal in L.

Even this construction is not general enough for homotopy‘theory,
since one expects a square to have many classes of fillers. So
we replace the subgroup A of L by a homomorphism 3 : A - L. A
simple check shows that in order to obtain a double groupoid by
the above construction the exact sequence
C:0>B=~>A 3 L>Q~>0

where B = Ker 3, Q = Coker 9, must be a crossed sequence in the

sense that L operates on A with
(1.2) (i) 3(x.a) = x + 32 - x, xe L, ae A

(ii) B +a =B = (3B).a , a,B8 € A .



The above construction then gives a functor p from the category<§

of crossed sequences to a category ES of double groupoids.

Not all double groupoids are of the form p(C). First of all
p (C) has only one vertex. Secondly, p(C) has a connection T
which is an assignment to each edge a of p(C) a 'face'

a

0 I'(a) a

0
satisfying a reasonable 'transport' formula for T(b+a). Our first
main result on double groupoids (Theorem B) is that p defines an
equivalence between the categories g and Qg!, where 251 is the category
of double groupoids with a preferred connection and exactly one
vertex. This is extended (Theorem C) to an equivalence € x %;i* > QS‘

where 22“ is the category of connected double groupoids with base

point, connection, and tree (the morphisms preserving these structures).

A further aim is a satisfactory homotopy theory for double
groupoids. In §7, we give a definition of homotopy (for double
groupoids with connection) which allows us to prove in §8 a version

of the Whitehead theorem.

An intermediate category between g.and gg, is the category
~g of G-groupoids, i.e. of groupoids which are group objects in the
category of groupoids. We give here a proof (§3) that the categories
Q and\ﬁ are equivalent (a result we have learned is due to J. Verdier
(unpublished) in 1966) and add to this (§4) that E;has a notion

of homotopy so that E and ﬁbare equivalent 2-categories.



An example of a G-groupoid is the fundamental groupoid 7G
of a topological group G. The crossed sequence of 7G has an
associated k-invariant in H3(noG; m1(G,e)) . In §5 we show that
this k-invariant is the first Postnikov invariant of the

classifying space BSG of the singular complex of G.

Part of this research was supported by an S.R.C. Research

Grant B/RG/2282.



PART I ; G-groupoids

2, G-groupoids

A G-groupoid is a groupoid G which is a group object
in the category of groupoids. Thus G 1is provided with morphisms
+ : GxXG ~>G, s ¥9G ( where % is a singleton) and
u: G - G satisfying the usual axioms for a group. It is
convenient to write this group operation as addition (even though
it need not be commutative) because of the ease of writing a-b
rather than ab_1 and because of the clear distinction between

the composition operation o in C and the group operation +.

The condition that + makes G into a group implies that
0b(G) is a group with zero 0: Then 10, the identity in G(0,0)
will be the zero for the group éperation on awwows, Note that
ifa:x>y,a" :x ">y in G, thena +a” : x4+ x* >y+y”’.
Further -a? -x + -y and 1_X = - lx’ because the inverse function

is a morphism of groupoids.

That + : G X G > G 1is a morphism of groupoids implies
the following relation between addition and composition in G.

- -~

2.1 The interchange lemma let a : x>y, b :y>z,a’ : x" >y,

b’ : y* > z” be elements of G; then

boa+b”ea” =((b+>b") o (a+a).

For explicit computations with the two structures on G
it is often convenient to represent the interchange lemma
diagrammatically:

An accowr a : x>y in G is denoted by

y




and the composite b o a of b : y> z and a : x >y 1is denoted by

while the sum a’ + a of

b

: x>y, a’: x -*y’ is denoted by

J y

/
a a
X x”

The interchange lemma then

of evaluating

tells us that the two possible ways

ra rab

/
b b

’
2L 3L
g 7

s
a a’

’
X X

give the same aerowr x’ +

One of the basic uses

following, which expresses

2.2 Proposition Let a:

of the interchange lemma is the

composition in terms of +.

x>y, b: y>z in G. Then

a-1 +b=b-1 + a
y y



Proof
The proof is expressed by the following diagrams:
Bi= [P 10 =!b |-1 a
y
a 1 -1 a
J y
b| _ 1 b
| - 2 =la|1 |b
al-1_ | 1 A
bi y
2,3 Corollary Let b € StGO, a € Cost G0. Then

bea=b+a=a+b

2.4 Corollary let a : x>y, b : w> z, Then

a+b=1 +b-1 -1 +a+1
y w y w
Proof This follows from 2.3 which implies that b - 1W commutes

with -1 + a,
y

2.5 Corollary If a: x>y, b :0-+ 2z then

a+b-a=1 +b-1
y y

Proof This follows from 2.4 on putting w = O,

The following corollaries give further applications of these

methods but will not be used elsewhere in this paper.

2.6 Corollary Let a : x> y. Then

alea1l —a+1 =1 -a+1
X y y X

Proof This follows from 2.2 by evaluating a “L a and a © a-l.

2.7 Corollary Leta : 0+ x, b : x>y, Then

bea+a 1 = b,



Proof boa+ a_l =a-1 +b+1 -a+l
— X ) X
=a+ (-a+ lx) + (—1x + b)
since -a + 1x’ —1x + b commute, by 2.3 The result follows.

2.8 Corollary let a : y+0, b : X>7¥. Then

aliaeb=0

The proof is similar to that of 2.7,



3. The comparison of C and G.
3 RS

Let gibe the category whose objects are G-groupoids and
whose morphisms are morphisms of groupoids preserving the group
structure. Let C be the category whose objects are crossed
sequences C : 0~ B i A 2 L > Q >~ 0 and whose morphisms
f : C~> CY are commutative diagrams

o+B3a81L+q~0
W ¥E) VE VE

0> 8> &2 17> Q™ 0

of morphisms such that fA is an operator morphism with respect

to £

L i.e. fA (xq a) = fL (%) » f (a) , xelL, aceclh. It is

A
often convenient to omit the suffixes on the f's.) In this

section we show that the categories giand & are equivalent.

Let G be a G-groupoid. Then the group structure on

G induces group structures on Ob(G),Tro G (the set of components

of G) and on StGO. It also ensures that the group G{0} is

abelian.

Let 9 : StGO +~ 0b(G) be the final point map. Then 3
is a homomorphism for +. Further there is an operation of

0b{(G) on StGO given by
X, a=1 +a-1
X X

for each x ¢ (Ob (G), a ¢ StGO. Clearly 3 (x. a) = x + 23 - x,

and if a, b ¢ StGO, then a +b-a = (3a). b, by 2.5.

So we have (setting e = 10) a sequence:



[O

: j
(3.1) (@) : 0~ Gle} 3 StGng Ob G ~» T G~>0
in which i is the inclusion, . j 1s the projection .
Exactness is easily verified, and so Y(G) is a crossed sequence.
Clearly ¥ extends to a functor G - C.
X X
Now let
C:0—>B—>A§L—>~Q—>0

be a crossed sequence.

3.2 Definition The G-groupoid 6(C) has objects the

elements of L and 6(C) (x, y) consists of the pairs (y, a)

such that a ¢ A and 3 a = y - x. Composition is defined by
(z, b) o (y, a) = (z, b + a) when 3 b = z - 5,

and addition by

(z, b) + (y, a) (z +y, z.a + b),
It is a simple consequence of the definition of crossed
sequence that if 8 b = z - w, then
(z, b) + (y, a) = (z +y, b + w.a)
It is readily checked that o and + are associative; that
(y, a)~! = (x, - a) if 3a =y - x,
and - (y, a) = (-y, (-y). (=a) ).

Verification of the interchange lemma

Z Z,
(z,b) z", ¥)
y y”
(v,a)  |(y",a")
X - %

involves proving that

z. (b+a) +b  +a" =2z.b+b +y.a+a".



But using condition (1.2) (ii), we have

i

b+ y’.a - bv” (3 b7). (y’. a)

from which the result follows.

Clearly 6 extends to a functor C - G.
X
Given a crossed sequence
c:0>B>A3L~ Q~+ 0
an isomorphism TC : C> Y 6 (C) is defined to be the
identity on L and Q and onAby a = (3 a, a). It is easily

checked that T is a natural equivalence 1c - P 0.

Let G be a G-groupoid. An isomorphism
SG : 0 Y(G) —»G is defined to be the identity on objects,
and on arvews by (y, a)m a + l—aa+y’ Clearly SG

is bijective on @rvows so it only remains to show that

SG preserves composition and addition.

For composition we have

it

Sq ( (z,b) = (y,a)) S¢ (z, b+a)

b+a+1 if %a =y - x
X
On the other hand

Sc (2, b) © S, (y, &) = (b + 1y) o (a+ 1)

b+1 -1 +a+1 by 2.2
y y X

b+a+1
X



1L

For addition, we have that if 3 a =y - x,93 b = z - w,

then SG((z,b) + (y,a)) = SG(z +y, 1z +a - lz + b)

1 +a-1 +Db+1
z z w+x

b +(- b) + (1z +a - lz) +bh+ 1+ 1

b+1 +a4+1 by 2.5
W X

SG(z,b) + SG(y,a)

Thus SG : 0¥ (G) > G is an isomorphism of G-groupoids,

and it is easily seen that S defines a natural equivalence

S : 8y > lG.
x
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§4 Homotopies in C and G.

In this section we show that ngith its standard notion of
homotopy [3] is a 2-category in the sense of [7]. We then show
that homotopy can be defined in &ito make it into a 2-category,
and the equivalence 6 of the previous section extends to an

equivalence of 2-categories.

4.1 Definition [3] Let f,g : C + C' be morphisms of crossed

sequences. A homotopy d : £ = g is a function d : L + A' such

that
(i) d(xt+y) = d(x) + £(x).d(y) for all x, y in L,
(ii) 9¥'d(x) = g(» - £(x), all x in L,
(iii) da3(a) = g(a) - f(a) for all a in A.

To show that this gives a structure of 2-category on C, we

work through a sequence of lemmas.

4.2 Lemma Let f,g,h : C + C' be morphisms of crossed sequences.

Ifd: f=~g,dy : g~h then dy +d : £ = h.

Proof The verification of (ii) and (iii) for dy = dj + d being
a homotopy £ = h is trivial. As for (i) we find
dp (x+y) = dj(x) + g(x).d;(y) + d(x) + £(x).d(y)

d2 (x) + £(x).da (y) =d1(x) + d(x) + £(x).d;(y) + £(x).d(y)

But d(x) + £(x).d;(y) - d(x) = 3'd(x).£(x).d; (y)

g(x).d; (y)

from which the required equality follows.



4

4,3 Lemma Letd : f=g:C=>C', d' : f'=g"' :C'" > C" be

homotopies of morphisms of crossed sequences. Then

(i) f'd is a homotopy f'f = f'g,

(ii) d'g is a homotopy f'g = g'g,

(iii) d'g + f'd = g'd + d'f as homotopies f'f = g'g.

Proof The proofs of (i) and (ii) are trivial. For the proof

of (iii) we note that

d'g(x) + £'d(x) = d'(3'd(x) + £(x)) + £'d(x)

d'a'd(x) + £'9'd(x).d"f(x) + £'d(x)

g'd(x) - £'d(x) + (f'd(x) + d"f(x) - £'d(x)) + £'d(x)

g'd(x) + d"f(x)

and either side is a homotopy £'f = g'g by 4.2 and 4.3 (i) and (ii).

It follows easily from 4.2 that the homotopies of morphisms
C > C' form a groupoid, which we write HOM(C,C'). By 4.3(iii)
we have a pairing HOM(C',C") x HOM(C,C') - HOM(C,C") in which
(d:f=g,d" : f'"=2g'Yymwd'g+ £'d : f'f ~ g'g. The associativity
and identities for this pairing are easily verified. So we have

a 2-category C.
(4ol

4.4 Definition Let f,g : G > G' be morphisms of G-groupoids.
A G-homotopy V : £ = g is a natural transformation of groupoid
morphisms such that V preserves addition, i.e.

Vixty) = V(x) + V(y), all x,y in O0b(G).

It is readily verified that the G-homotopies between morphisms
G - H form a groupoid, which we write HOM(G,H). The pairing
HOM(G',G") x HOM(G,G') - HOM(G,G") is defined to be the restriction
of the standard patring for the 2-category Eif. So we have a

2—categoryﬁ§:



iy

Theorem A The categories C and G are equivalent 2-categories

Py A
For the proof of Theorem A we show that the equivalence
8 : C~> G extends to a (strict) functor 8 : C + G and for two
X *® Pors o~
crossed sequences C, C' the morphism of groupoids 6 : HOM(C,C') - HOM(6(C),8(C
is an isomorphism of groupoids. This makes 6 an equivalence of

2-categories in a stronger sense than that of [9].

4.5 Lemma Let d : f =g : C-> C' be a homotopy of morphisms of

crossed sequences. Then 68(d) : x P (g(x), d(x)) is a G-homotopy

B(f) = 8(g). If further d; : g = h, then 6(dj;+d) = 6(d;) o 6(d).

Proof To verify naturality of 6(d) we have to prove that if a € A,

and d9a =y - x then

(8(y),d(y)) » (£(¥), £(a)) = (g(y),g(a)) ° (g(x),d(x))
i.e. that d(y) + f(a) = g(a) + d(x). This is an easy consequence

of d(y=x) = d(y) = £().(-f(x)).d(x).

For additivity of 6(d) we have that if x,y € L = 0b(8(C))

8(d)(x) + 6(d) (¥) = (g(x),d(x) + (g(y), d(¥))
(g(x) + g(y), d(x) + f(x).d(y)) Since d(x) = g(x)-f(x)

8(d) (x+y).

The final part is immediate from the definition of composition

in 6(C'").

This lemma implies that 0 extends to morphism of groupoids
6 : HOM(C,C") - HOM(B(C), 6(C"))
which by the results of the last section is bijective on objects.

That 6 is an isomorphism of groupoids follows from
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4.6 Lemma Let f,g : C > C' be morphisms of crossed sequences

and let V be a G-homotopy 6(f) = 6(g). Then V is of the form

x ¥ (g(x), d(x)) where d is a homotopy f = g.

Proof Since V : f = g, we have V(x) = (g(x), d (%)) where
0d(x) = g(x) - £(x). The additivity of V implies that

d(x+y) = d(x) + £(x).d(y), while naturality of V implies that
d(y) + f(a) = g(a) + d(x) when 3a =y - x. On putting x = O,

we obtain dd3(a) = g(a) - £(a).

Finally, to prove that 6 is a strict functor of 2-categories,
we have to prove 8 preserves the pairings of homotopies [8].
This follows easily from the obvious equalities (using the notation
of 4.3)

6(f'd)

8 (£') 6(d)

8(d'f) (') o(f) .

There seem to be results related to the above in [Qﬂ §1.4.
The 'catégories de Picard strQCtement commutatif' defined there
in 1.4.2 are more general than commutative G-groupoids in that
associativity is required only up to coherent homotopy, and that
for any x € Ob(G) the functor G - G such that y» x + y is not an

isomorphism (as in our case) but an equivalence.
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§5 The fundamental groupoid of a topological group

A crossed sequence C : 0 * B> A+ L > Q>0
determines an obstruction class or k-invariant k e H3(Q ; B) t'a/"]
which {oe{ree L classifies the crossed sequence up to homotopy
equivalences which are the identity on Q and on B. It follows that
G-groupoids, and connected double groupoids with base point, also

determine a similar 3-dimensional cohomology class.

A particular example of a G-groupoid is the fundamental
groupoid m X of a topological group X - the rule 7( X x X) = X x X
([1] p.189) implies that the group structure on X induces a group
structure on mX. The crossed sequence derived from 7X is

)
(5.1 : 0> 1(X,e) > St > X-> 17 X~ 0.
) CX ( ’ ) ﬂXe o

The object of this section is to prove:
Theorem 5.2 The k-invariant of the crossed sequence CX can be

identified with the first Postnikov invariant of BS the classifying

X’

complex of the singular complex of X.

In this theorem, the singular complex SX is a simplicial group

and so its classifying complex is a simplicial set.

Let K = BS . By Li], the Postnikov invariant of K is the
X
k-invariant of the crossed sequence
1 1

(5.3) CK : 0 ~» WZ(K) - ﬂz(K,K ) > wl(K ) »> ﬂl(K) -+ 0
where K1 is the l-skeleton of K. The k-invariants of CK and CX are
related by constructing a morphism ¢ : CK > CX of crossed sequences.

The set Ko is a point, and K1 consists of the points of X.
So ﬂl(Kl) is the free group on X\{e}, and a morphism ¢1 : nl(Kl) > X

can be defined by extending the identity map on generators.



&

2 o1 32 ; :
Let p, = ﬂZ(K ,K7), Py = FB(K ,K”). Then according to [ig
adapted here to the simplicial context, or else applied to the
geometric realisation, o is the free wl(Kz)-module on the non-degenerate

3-simplices of K, and there is a morphism d = wl(Kl) such that

g " Py TPy

is the free (pl, d,) - crossed module on the non-degenerate

Py 2

2-simplices of K.

Thus to define a morphism 52 - StTT e it is sufficient to

specify 52(6) for each non-degenerate 2-simplex § of K in such a way

that a$2(6) = $,d,(8).

The elements of K2 are pairs (A, u) such that u € X and A is a

path in X. The edges of (XA, u) are then given by the diagram

2
u+i (1) u
(A yu)
0 / 1
A (0)
where + is given by the group structure in X. We define
¢2()\’ u) = = l)\(O) + [)\]

where [A] denotes the class in 7X of A ( if (A, u) is degenerate then

52(A, u) is 0). We have to check that ¢,d,(A, u) = 352(x, u) = =2 0)+r(1).

At this stage there arises the question of orientatiom. Because
of our convention‘that we are working with stars in a groupoid, rather
than costars, it is necessary to reverse the usual orientation of 2-cells,
so that with (A, u) as above

d, Ay w) = -[x@) 1 = [ul + [u+r(1)]

where [y] for y € X denotes the corresponding geherator of ﬂl(Kl). Hence

- 2(0) - u + u + A1)

6,d,(h, W)

BEL(K, u) .



So 52 extends to a morphism of crossed modules

bt S ;
figt By + ST, g8,

There is a morphism d3: p3 -+ Py such that

1 . 1
— . - t
IZ(K, K ) = 02/\'1303 . So to define ¢2. Z(K, K ) S Xe

we prove that 52 annihilates d3p3.
Each non-degenerate 3-simplex k of K determines a free

2 . 3
ﬂl(K.)-generator Kk of such that with our present conventions

3
d3(K) = (83K) + (BlK) - (BZK) - (—a).(BOK)

where a is the element of ﬂl(Kl) determined by BBBZK.

In the present case K = , & 3-simplex is a triple (o,A , u)

BSX
where u € X, A is a path in X and ¢ is a singular 2-simplex

in X. If the faces of o are given by

Z

A
Y7{/5
/

X o y

then o,B ,y are paths in X whose classes in X satisfy
[yl = [8] o [al. The formulae for the face operators in BSX

now give the following (unfolded) diagram ((.{_ [02]).
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for the faces of (o, A, u), where A(0)=s, A(l)=t:

0 X 1 X 4]

(ays) {v,ust)
sty u+t+z

\’s, s /" - u+t

\\\ /
\\ / (A, u) //
\ / /{
.

2 AL

\ F
'\ Z
\\ (A+B,u) ff

/

§

s+y v u+t+z
s

So in X we have

<1

2d3(!<) = 52(0t, s ) + 52(A+B, u) - EZ(Y, utt) -(-x). 52(%11)

-1+ (o] - 1S+y + [A] + [B] - (—1X+ LyD) - (-x). (—ls+ (Al

-1 +[fal -1 -1 +[A]J+[R1-[1+1 -1=[A]J+1 +1
X y s X X s X

-1 +[al -1 -1 +AJ+[RI-(RJ+1 -[al-[A]J+1 +1 by 2.2
X y s y s X

PR CRE W T [A])+ ( 1, - [al) = A1+ 1+ 1

1+ [al - 1y + (1y - [al)+ 1, +DD) - DI+ 1+ 1 by 2.3
= 0.
2

®%, kb - St @

It follows that $2: Ty X

induces a morphism of crossed modules
1 1
0 > ﬂZ(K) — nZ(K,K ) e ﬂl(K ) Q. ﬂl(K) —> 0

b, :
v

0 _>n(x,e)-33t“xe — X > Tk -2 0

2




2)

Now ¢O: ﬂl(K) - noX is an isomorphism. It is also true that
¢3: nz(K) + m(X, e) 1s an isomorphism since it is easily checked
that it is induced by the standard map !SXI -+ X (under the
identification WZ(BSX) = wl(SX)) and this is known to be a weak

homotopy equivalence.

It follows easily that if ¢0, ¢3 are regarded as
identifications, then the k-invariants of the two crossed

sequences coincide. This proves Theorem 5.2,

We have not been able to find an example
of a Lie group X for which this k-invariant is non-zero.
The next proposition gives a family of groups for which the

k-invariant is easily shown to be zero.

Proposition 5.4 The first k-invariant of BX is zero if X is

any quotient of O(n) by a normal subgroup.

Proof We examine the construction of the k-invariant, as

described in L], p.43, for the crossed sequence
v
0 — ZOL——> StTrO(n) I—>0m) > 22 -0

where v is the determinant map and Za = Z for n=2,

Za = ZZ’ for n > 2, As a section f for v we can take
_1 T
£(0) =1, £(1) = 1.0
0 1

whence f£(q)f(q”) (f(q q'))_l =1 for all q, q~ ¢ 22. It
follows easily that O is a representative cocycle for the

k-invariant, which proves the result for X = 0(n).
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If X = 0(n)/F where F is a normal subgroup of 0(n), then
either X is connected (in which case the k-invariant is 0) or
WOX = 22. In the latter case, a section of X + WOX can be

chosen to be f”= pf where f is as above and p: 0(n) > X is the

projection. It follows as before that the k-invariant is O.

Let Y be a connected finite simplicial complex with non-trivial
k-invariant in H3(my () m2(Y)). Let G(Y) be Milnor's topological
group model of the loop space of Y [13]. Then BG(Y) is of the
homotopy type of Y, and so mG(Y) will be a G-groupoid with

non-trivial k-invariant.

Note that there is a general problem here. If G is a
topological group, and Go is its identity component, then we have
an exact sequence

1> GO +>G>F~>1
so that F is discrete. This extension is described by an element
k2 ¢ H2(F; G,)  (since F is discrete).

Problem Relate k? and the obstruction class k3 € H2(F; m1(G,,e)).
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PART II : DOUBLE GROUPOIDS

§6. Double groupoids

In this section we introduce a category.gg of double groupoids

and consider the relationship of DG to C and G.
> ® x

Double categories have been considered by Ehresmann [6] and
Wyler [1;] as a class with two commuting category Struchures and of
course this idea specialises to that of double groupoid. However
such a definition is too general for the present purposes, and we
adopt a different one based on semi-cubical theory. This seems
to be a useful definition for some, but definitely not all, of the

applications of double groupoids.

Our definition could also be generalised to n—tuple groupoids,
and even to w-tuple groupoids. So there are arguments for using
a notation for double groupoids which extends easily to n-tuple
groupoids. We shall not adopt this course as this would only

further obscure some of the formulae.

A double groupoid G consists in the first place of the part

in dimensions < 2 of a semi-cubical complex. Thus G consists of
sets Go’ Gy, Gy and certain face operators G; -~ Go’ Gy >~ &

and degeneracy operators Go +> Gy, G; > G, satisfying the usual

relations. In order to fix the notation the faces of a in G; are
given by
e
2'a da

while if o is in Gl its faces are

0

W

3'a / a  Ado




W

The degeneracy operation Go + G) is written xw» Ox’ and the two

degeneracy operations Gj; - G, are written a #» Oa’ aw 1a

as specified by the diagrams

0 a
y
a 0 a 0 1 0
a b4 a y
0 a
X

where 3'a = x, 3a = y.

The further structures we introduce are
(a) a groupoid structure written + with G; as elements,
G, as objects, and 3', 3, x¥ 0, the initial, final and unit maps
respectively;
(b) two groupoid structures written + and o with Gp as
elements, Gj; as objects and
', 3, a H'Oa the initial, final and unit maps for +
e', e, av 1a the initial, final and unit maps for o.
These structures are related by the rules
(1) €, ¢' : (Gp,+) = (G1,+) are morphisms,
(ii) 9, 3" : (Gp,0) —» (G1,+) are morphisms,
(iii) if b + a is defined in Gy, then O i ™ 0,0, 1 =1

b+a b a

(iv) The interchange lemma in Gy

(B'"+a')e (B+a) = (B'=B) + (a'°a)

whenever both sides are defined.



S
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It is convenient to represent the structures +, o on G by

composition of squares as follows:

a B =| B+a = o'oq

where of course B + o is defined if and only if 3'g = d0, and

o' oo is defined if and only if €'a' = ea . The interchange lemma

can then be expressed by a diagram in the same way as for G-groupoids.

The inverse for + on G, or Gy is written a » -a; the inverse

for o is written a H—a_l. So if o in G, has faces given by
b
al o |d
d

then those of -0 and a_l are given by

-b c
-1

d -a | a and -a o -d
-c b

It is a consequence of the interchange lemma that if o e G2 then

-(a_l) (-oc)—1 .

Also if x € Go’ then

1 =0
o o
X X

and so both are written 0x or ambiguously O.
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Morphisms f : G - H of double groupoids are defined in the
obvious way as given by functions f : Gi - Hi’ i =0, 1, 2 which
preserve all the structure. So we have a category g((? of double

groupoids.

Let ]%g* be the category of double groupoids H with base point
e € Ho’ and morphisms preserving base point. Then we may describe
two functors
Wi, Wy Dg* ~ G,
where if H is a double groupoid with base point, then W, (H),

@) (H) both have object set Hy{e}, while if a,b € Hjy{el,

then
WwiH)(a,b) = {o € Hy : ea = b, e'a =a, 3'a = Ja = Oe}
W, (H) (a,b) = {0 € Hy ¢ ea =b, 3'a =a, €'a = €a = Oe}
(6.1) b Oe
0] o ] a a b
e e
a 0
e
w, (H) W) (H)

The composition and addition in W; (H) are defined by restriction
of those of H; while W, (H) is a groupoid under + with a group structure
given by e! |

There are also two functorsWj, W) : S;{ - ]%(2*. If Gis a
G-groupoid then for i = 1,2, (Ji’(G)o consists of a single element,
e, say, W;(G)l = Ob(G)‘ andu)é(G)z = G. If a € G, then
diagrams (5.1) define 8', 3, €', € for Ww{(G),wJ(G) respectively,

where Oe = 0, the zero in O0b(G).
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Inw](G), the composition ¢ and addition + are determined by
¢ and + in G as in §2. In wj(G), the composition and addition
are determined by the addition and composition in G respectively.
Notice that® ] (G) is isomorphic to G, whileWw,w](G) is simply

the group G{O} with its two equal and abelian group structures.

It is easy to check thatwi : $T—>22* is a left adjoint to
Wi, Our object now is to put extra structure on double groupoids
so as to make W an equivalence of categories, This structure
will introduce also an extra symmetry into double groupoids

ensuring for example that the G-groupoids w;(H) and W, (H) are isomorphic.

First of all we define a functor p : g - gg*. Consider the

crossed sequence
€:0+B>A3L>q1.
Then a double groupoid p(C) is defined by: p(C)O consists of a
single point e, say; p(C); = L with its structure of group under
addition; p(C)2 consists of quintuples o = (a; x,y,z, w) such
that a e¢ A, x, ¥y, 2, w € L and
da =y +x-2z -Ww.

The boundaries 3, 8', €, €' are specified by the diagram for «
(6.2) ~ y

X a l w o

Z
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while addition and composition on p(C)2 are defined by the diagrams

u u+y
(6.3) (1) x a W f: b v =x|u.a+b v R+
z L t+z
y” _r oy
(ii) x” a“ w” =x"+x a’ +wla W +w a” e o
37 z
X a W
2

If x € L, then Ox = (0; x, 0, x, 0) and 1X = (0; 0, x, 0, x) provide
the zero and identity for x with respect to + and ° in p (C)2 .
Associativity for o and +, and the Interchange Lemma, are straightforward

to-verify, as are the existence of inverses for © and +.

So pe;‘+ ggf -is defined on objects as above, and p is

extended to morphismsm in the obvious way.

Next we impose conditions on a double groupoid H with base

point so that there is an isomorphism n : pyw(H) - H.
6.4 Definition Let H be a double groupoid. A connection for H

is a function T' ¢+ H, - H, such that if a : x > y in H, then T(a) heas

1 2 1
boundaries given by the diagram
a

Ox | I'(a) | a

0
X

Further if b : y > z in Hl’ then

‘6;5) I'(b + a) = (I'(b) o Oa) + I'(a)
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Condition (6.5) can be expressed as: I'(b+a) is given by

the diagram

(6.6)

Q. 1& (b) 5

and so the interchange lemma gives us that

r(b+a) = (I'(b) + 1a)° r'(a)

Remark The word connection is used because of a relationship

with the connections of differential geometry;  this relationship
the

will be discussed elsewhere. However forAponnections of

differential geometry a more general notion of double groupoid has

to be used, and the face I'(a) is represented by a diagram

0 rca) | y(a)

still satisfying the condition r'(b+a) = (T'(b) + 1a)° r(a), but
allowing for the additional structure of a morphism a v y(a)

of groupoids, called the holonomy of the conmdection. Continuing
the analogy with differential geometry, we describe (6.5) as the

transport property of the connection.
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By tramsport we have for x € Go (remembering that 1o = Oo
x x
is abbreviated to 0)
T = =
. (OX) T (OX+OX) T (OX) o0 +7T (Ox)
so that I‘(OX) = 0. Then applying transport to I (—a+a) we may obtain
various identities relating I'(-a) and I‘(a)—l(which for convenience

1§ written I‘—l(a)) for example I'(-a) = I‘(a)-1 = la = —(1a° T'(a)).

The following are other useful faces provided by T:

-a 0 0
X y
a Ox 0X -a a Oy
Ox a a
- Ka) ra)t -1 (=a)~!

Not all double groupoids admit connections. For example
if G is a G-groupoid, then w" (G) clearly does not admit a

connection. However we have:

6.7 Proposition If C is a crossed sequence, then the double

groupoid p(C) has a connection.

Proof Let C :0~>B~>A-L~>Q~>1. For a € L, set

r¢(a) = (0; 0, a, 0, a). Then (6.5) is easily verified.

Suppose now G is a double groupoid with connection T and

f : G> H is a morphism of double groupoids which is isomorphic
-1
i
on G; -~ Hj. Then the composite H; _f-—‘.» G — G2 —g—>H2
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is clearly a connection for H. In particular, if H is isomorphic to
p ¢ w(H), then H admits a connection.

Our next objective is to prove a converse to this.

6.8 Theorem Let H be a double groupoid with connection T.

Suppose that H0 has exactly one element e, say. Then there is an

isomorphism n: p ¢ w(H) ~ H,

Proof
— Let K = p ¢ w(H).

Define n to be the identity on K0 and Klband on K, by

n(a ; %, y, z, w) = TI'(w) - 1W + a + 1W+Z - T(x)

-X w+z V+X—Z~W -Ww W
x | -T'(x) 1w+z a —lw I'(w) w
1 : wtz 1 -w 1

Clearly n is a bijection K& > H2, so that it suffices to prove

that n 1is a morphism for +, ° on Kz.

For + we have
n( ; w, u, £, v) + (a; x,y, z, W))= n(u.a + b; x, u+ty, t+z,v)

- I'(x) (*)

= T(v) - 1v + u.a +b + 1v+t+z
On the other hand

n ; W9u,tiv) + n(a H X,Y,Z,W)

=T(v) -1 +b+1  -T@W +TW -1 tat Lo, = T (x) (2

But b = u + w - B - v, so that u.a +b =b + (v + t - w).a.

The equality of (*) and (**) follow easily.
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For o we have

\

-

n(@a” 3 x* , 5y ,y,w )e(aj; x,v, 2z, w))

=n (@ +wl a; x" +x, 957, z, w +w)

- - - - - - - (] ’
= T'(w” + w) 1w’+w +a’ +wla+ lw’+w+z r(x” + x) M

On the other hand

- -

n@” ;3 x, vy ,y,w) en(a; x, 9, z, W

=@ - et + L TE) W) - L rarl  STG)) (D)

The following diagram‘with the interchange 1emma/exhibits the equality

~of (!) and (!!

CIPIN il W U I L S l L. ja -1t =1 1 1.1 TG
. - -1 |r
0 reaf1, |1, a } 1. 11, L1 -1 150G o
8.9 Definition Let DG! be the category whose objects are pairs
P

(G, T) consisting of a double groupoid "G and a connection T on G
with the further condition that G, is a singleton. The morphisms

1
f :(G, T) ~ (H, A) of 25' are morphisms f : G -~ H of double groupoids

such that the following diagram commutes

£
¢, 5 H,
iy
r A
‘ |
G ——> H;
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1]
Theorem ® The categories G and DG’ are equivalent.
w P

1
Proof We define A : QE' +‘E to be the composite of
1 f
the functors DG" —> DG -95 G, where the first functor
> > e .
is (G, I) » G. We define u : G - DG to be p ¥ where
the <
p ¥(G) is equipped withAFonnection given by Proposition §.7.

Clearly Ay =6 ¢ : G+ G, which is naturally equivalent to
X
the identity by §3.
On the other hand, the isomorphism n :ifuo(H) -+~ H

of Theorem 6.8 is easily seen to preserve the connection, in the

 sense that
n(0; 0, x, 0, x) = I'(x).

This completes the proof.

According to Theoreﬁ B a double groupoid with connection and
exactly one vertex is isomorphic to a double groupoid obtained from
a G-groupoid or equivalently from a crossed sequence. We now show
how to model in terms of crossed sequences any connected double
groupoid with connection. This will facilitate the proof of general

results on double groupoids with connection.

6.10 Definition A double groupoid G is connected if the groupoid
Gl.is connected., Let 29“.be the category whoge objects are qua&ruples
(G,e,T'yv) where G is a connected double groupoid, e ié a preferred
base point, V' is a connection and v : Go - StGle is a function such
that v(e) = Oe and v(x) € G;(0,x) for all x in Go' (Thus the choice
of G, is equivalent to the choice of tree subgroupoid of G;.) A

morphism £ : (G, e, T,v)—> (H, e', A, u) in DG" is a morphism £ : G + H

of double groupoids such that f(e) = e', fT ='Af; fv = uf.
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Let Ens* be the category of sets with base point.

Theorem C The categories C x Ens* and DG are equivalent,

~ -
el o -

Proof By Theorems A and B it is sufficient to prove the categories
Pq! x Ens* and quequivalent. Given an object (G,I') of 291 and

a set S with base point e, we define &(G,I',S) to be the quadruple
(H, e,A,u) where H =8, H (x,y) = {(y,a,x) : a € G} and

Hy = {(a;%,y,2,w) : o € Go}. If a e G, has edges given by

b

a o d

c

then the edges of (aj;x,y,w,2z) are given by

(a,b,y)
y 2

(y’a:x) (OL;X,Y,W,Z) (z,d,w)

X (wyc,x) w
The double groupoid operations + and ¢ are inherited in the obvious

way from G; thus if Boq is defined in G, then

(B;Y,P,Z,Q) o (a3X,y,w,2) (Booas X,p,W,Q)

and if o'+ o is defined in G, then

]

(a'swyz,r,s) + (a3x,y,w,2) (o' + a3 x,y,r,s).
The connection A is defined by

n A(y,a,x) = (I'(a);x,X,X,y), X,y € 5, a € G,

and the tree u by

(2) wx) = (x,Oe,e), Xx e S

The extension of ¢ to a functor o : QG: x Eng* -~ Rg‘is obvious.

: ' be
We define § : 294+ DG’ x Ens* toythe functor

G,e,I',v) b (Gle}, T|Gi{e}, G,)



Where G {e} is the largest sub-—double groupoid of G with
{ e} as object set. Clearly §6 is naturally equivalent to the
{ dentity s@ that is remains to show ob to be naturally equivalent

to the identity.
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IJOVV U8(G, €, ‘I‘, V) = (H, e, A, u)’ WhEEI‘e I% = G‘o )

H = {(.Y: a, x): Xy y€ G, 2 ¢ Giie;} 3

B = {(0; x,5,w,2) : x,57,w,z ¢ Gy a € Giel],

Ay, a, x) = ¢ (2); x, X5 X, y) and ulx) = (x, Ge: e) o
A morphism y: H—» ¢ is defined on H, by the identity, on H, by

y(7s 2, x) = v(y) + a - v(x) and y(a; x, v, w, z) 1is defined to be

the face

) |1 | re(a)

Oa o 0 a

~Iv{x)"* 1 Tv(w)™*

It is straightforward to check using the transport property of I that

Y is an isomorphism of double groupoids with base point., TFurthermore s

vo(y, &, x) =

~I'v(x) 1 Iv(y) l-v(x) Tv(y)
O (x) (a) 0, = 1 y(x) I'(a) .
~Tv(x)™* | o (x) | TvGo)™ I(-v(x)) 0 ) &
= I(v(y) + (a~v(x)), by transport,
=Iy{y, a, %) , |
and yu(x) = y{x, 0gr €)= v(x) + 0y = v(x) = v(x) = vp(x) ; seo

Y preserves the connection and tree and thus 7 determines a natural

isomorphism y : o8 —> 1 ,
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In a double groupoid with connection it is possible to
define an operation which interchanges horizontal and vertical
compositions. This fact is of interest in itself and is also useful

in our discussion of homotopy in the next sectionm.

6.11 Definition Let G be a double groupoid with connection T.
The rotation T associated with I' is the function T : G2 + G2
such that if o € Gy then the edges of o and T(a) are related by

b a

a o d -c T(a) -b

c d

and 1(a) is defined by

-1
1, | 0,
I (a) o -r(-a)7}
O_. -T'(-c) 1

6.12 Theorem Let G be a double groupoid with connection. Then

the associated rotation T satisfies

(1) T(B+a) = 1(a) e t(p) whenever B+a is defined

(ii1) 1(a'ea) = 1(a") + t(a) whenever a'oa is defined
1

(iii) 12(a) = -o
(iv) =1

(v) 1t is a bijection




37

Proof Clearly (iv) is a consequence of (iii), which also implies

that T2 is a bijection; (v) follows easily.

For the proofs of (i), (ii) and (iii) we use Theorem C, which
implies that it is sufficient to prove the theorem for the case of
a double groupoid G with connection T arising from a crossed sequence
C:0~>B~>A 3 L~+Q~+ 0, and set S, so that
Gy = {(y,a,x) : X,y € G» ac i}, Gy = ((a;a,b,c,d); X,¥,2,W) where
X,¥,2,Ww € G, a,b,c,d e L, a € Aand 3a =b +a-c - d}with
connectionZgiven by I'(y,a,x) =((0;0,a,0,a); x,x,x,y). The formula
for t then gives by a direct computation

t((o3a,b,c,d) : x,y,z,w) = (((-b).a;-c.a.d.;b);w,x,2,y).
Properties (i), (ii) and (iii) follow easily from this.

We have found for (i) and (ii) of Theorem 6.12 direct proofs
not involving the use of Theorem C. We have not found such proofs

for (iii) or (iv).
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7, Homotopies for double groupoids

There are various possible definitions for homotopy £ = g of
morphisms of double groupoids f,g : G - H, For our purposes we
wish to impose the following conditions on such a definition.

1. The definition could depend on having a connection for H, but

the homotopy classes should not depend on the choice of connection.

2, It should be toFation invariant: that is, if T : H~> H is the
D2 fanition 6.1

fotation of A determined by a connection on H, then f = g

should imply tf = tg.

3. If H is a connected double groupoid, then H should have as

strong deformation retract a double groupoid with only one object.

4, The Whitehead Theorem should hold, namely that if f : G >~ H

is a morphism of connected double groupoids, then f is a homotopy

equivalence if and only if f induces isomorphisms of w; and ms.

Remarks 1. Condition 1 is reminiscent of the use of the Kan
condition for defining homotopies in css-theory. In fact the
existence of a connection implies the Kan condition (in its
semi-cubical sense and in the dimensions O, 1,2 we have available).

2. Condition 3 is reminiscent of the existence of minimal complexes.
3. Condition 4 will be expected to require some freeness assumptions,

e.g. G; and H; are free groupoids.

The following definition is motivated by the idea that a
homotopy of a square should in some way be determined by a cube.
However for double groupoids we have no cubes! So we fold flat

the surface of a cube less one face to give the figure
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and then use the conmection to fill in the corners so as to make

a square,

7.1 Definition Let f,8 : G H be a morphism of double groupoids
and suppose H has a connection. A homotopy f = g is a triple
(T,w,V) such that

T : Go + H ; U,V : Gy > Hy

with the following properties:

(i) if x ¢ Go, then T(x) : f(x) + g(x) in Hy,

(ii) if a : x > y in G, then U(a), V(a) have edges given by

T(y) gla)

— —_———
T (x) f(a)

(iii) Linearity If b,a e G and b + a is defined then

U(b+x)

U(b) o U(a)

V(b+a) = ¥(b) +V(a)
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(iv) For each a ¢ G; whose boundaries are given by

b
y z
a ) d (*)
x w

c

the following element of Hy is f(a):

r"lT(y) V)L -rlr(z)
U(a) g(a) -U(d) (%%)
IT(x) V(c) -I'T (w)

Immediate consequences of (iii) are U(OX)=1 V(Ox) =0

T(x)*® T(x)®

Also it can be deduced from (iii) and (iv) that for faces of the

form

7 y y
a o b
X 9 X
X

we have g(a) + U(a) = U() + f(a). Similarly, for a face

we have g(B) o V(a) = V(b) o £(B).
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We now show that if G, H are double groupoids and H has a
connection I'y then the homotopies of morphisms G -~ H form a
groupoid HOM(GH). The object set of HOM(G,H) is the set Howm(G,H)
of morphisms G+~ H; if f,g : G > H are morphisms, then the arrows
f ~ g of HOM(G,H) are to be the homotopies f ~ g. If ¢ = (T,U,V) : f=~g,
¥ = (T',U',V') : g=h are homotopies, then the composite § + ¢ of the
homotopies is defined to be (T' + T, U' + U, V' o V) ; the following
diagram may be simplified using the transport property for T to show

that ¢ + ¢ is a homotopy £ = h.

rlrey) 05y O O_r () 171 (2)
Ly ey rlrvgy | vyt | e (e) P
U(a) U' (a) h (o) ~U" (d) -U(d)
Ly () IT'(x) | V'(c) e L)
T (x) | Or () V(c) Or () =I'T (w)

It is easily verified that with this composition HOM(G,H) is a
groupoid. This structure depends on the connection \' on H, and
when we wish to emphasise this we write this groupoid  as

"
HOM (G,H).
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We shall also need the following result -

7.2 Proposition Suppose given morphisms of double groupoids

f:F>G, g,g' : G+ H, h: H~+> K such that H and K have

connectionssthen g ~ g' implies hgf =~ hg'f.

Notice that 7.2 would be automatic if homotopy defined in 7.1

gave a 2-category structure for double groupoids with connection.

= Wheb ce.rhr.wskﬁ existfis a

weak 2-category structure which is sufficient to imply 7.2.

7.3 Proposition Let £ : F+ G, h : H~> K be morphisms of double

groupoids and let H,K have connections I',A respectively. Then there

are induced morphisms

£% ; HOM' (G,H) - HOM' (F,H)

h

. @ HOM' (G,H) ~ HOM' (G,K)

satsifying the functorial rules
| (kh), = kh,, (fe)* = e*f,
h f* = f*h
Proof The definition of f* is easy: if ¢ = (T,U,V) : g :‘g', then
fx(g) = (T§,uf v4)is easily seen to be a homotopy gf = g'f, and the
verification that f* is a morphism is easy. To define h,, again
let ¢ = (T,U,V) : g = g'. Then h,(¢) = (hT,U',hV) where if

a:x>ying,
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U'(a) = ART(y) o hT 'T(y) o hu(a) o hIT(x) o A VBT (x). (Notice
that if h preserves the connections 'y, A, then U' = hU.) A direct
computation shows that h,(a) is a homotopy hg = hg', and that h,
is a morphism of groupoids. Thke verification of the functorial

rule is straightforward.

An easy consequence is that if h = 1 : H > H, then we have an
isomorphism of groupoids HOMI(G,H) > HOMA(G,H) which is the identity
on Hom(G,H). Hence the set [G,H] of homotopy classes of morphisms

G >~ H is independent of the connection en H.

In the case of double groupoids G,H both with connection and

morphisms preserving connection, a different expression for homotopies

can be obtained.

7.4 Theorem Let f,g : (G,A) >~ (H,I') be connection preserving morphisms

of double groupoids. Then a triple (T,U,V) where T : G_ -+ Hj,

U,V : Gy > Hy is a homotopy £ ~ g if and only if the following conditions

holdt

(1) if x e G, then T(x) : £(x) > g(x) in H;,

O
U

(ii) if a : x> y in G;, then U(a) has edges given by

T(y)

£(a) g(a)

T (x)
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(iii) U(b+a) = U(b) ¢ U(a) whenever b+a is defined in G,

(iv) for eash a€G, with edges given by

we have g(a) + U(a) = U(b) + f(a),

(v) if a : x>y in G;, and T is the rotation in H determined

by I', then V(a) = (TU(a))_l.

Proof Suppose first of all that (T,U,V) is a homotopy f = g.

All the conditions (i) - (iv) above follow from 7.1 (i) - (iv)
directly, while the condition V(a) = (TU(a))_1 comes from substituting
o = A(a) in 7.1 (iv) and making a straightforward reduction using

fA(a) = Tf(a), gA(a) = I'g(a), and the transport condition.

Now suppose U satisfies (i) - (iv) of the Theorem ., and

that V is given by (v). Let a € G2 have faces given by

b
h/
a o d
X W
c




to obtain

{1y

g(A"l(b)o acoA(c)) +UCa) =U(-b +d +¢c) + f(A'l(b) oa o Afc))

from which we deduce using linearity of U

of f,g that f£(a) is the face

T£(b)
~1 -1
lT(y) r “g(b) U(b)
U(a) g (o) -U(d) ¢H)
IT(x) Tg(a) -U(c)
: F_lf(c)
Now for any face
q
Pl 8 8
T
in Hy a consequence of the definition of T and transport is
T'(q) -~
-1 = r'(-p) 8 -T “(-s)
lP I “(r) T(B)
Thus since -U(b)-_1 = 12U0(b) (by 6.12), replacing B by TU(b) we have
T£(b) 1 _1"
- = = r "T(y)| tU() | -T "T(a)
lT(y) I “g(b) -U(b)
Similarly
lT(x) rg(a) =U(c) -
) = IT(x)| (tU(c)) | -TT(w)
I "f(c)
Finally combining (1), (2) and (3) we have f(g) is the face (*)

and this completes the proof.

and the morphism properties

(2)
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7.5 Remarks (i) The notion of homotopy as given by a pair (T,U)
satisfying conditions on U (i) - (iv) of 7.4 seems to be essentially
the same as that given by Gray [ ¥ 1 p. 281 -284 for a 2-natural
transformation of 2-functors of 2-categories. These conditions
do not depend on a connection for G or H, and so can be used
to define a notion of homotopy

for morphisms of any double groupoi#ds. There is also

a similar notion of homotopy using the other coordinate.

(ii) We have not yet found a suitable abstract homotopy theory

to include the notion of homotopy given by Definition 7.1. In
particular, it seems unlikely that homotopy can be defined as a
morphism M(§) ~ H from a cylinder object M(G) in 29, basically
because such a morphism would define a morphism M(G); + H; of
groupoids, suggesting that homotopic morphisms in DG would have to
restrict to homotopic morphisms of the l-skeletons, which are
groupoids. Such a notion would be too restrictive for our purposes.
The contrast here is similar to that between the loose and strict

double functor categories of Wyler [ 1§ ] §16,
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We now wish to relate homotopies for double groupoids, G-groupoids
and crossed sequences. Recall that wlzqgt;g is a functor from
double groupoids with base point to G-groupoids. We shall require
a homotopy (T,U,V) in 25* to be rel base point, that is to satisfy

T(*) = 0.

7.6 Proposition.Let G,H be double groupoids with base point, let H

have a connection, and let (T,U,V): fwvg be a homotopy rel base point

of morphisms G?H in DG*. Then V is a homotopy W) (f) & wl(g) of

><

morphisms wl(G)~>w1(H) of G-groupoids.

The proof is trivial.

The previous proposition is not expressed in terms of 2-categories
because of a difficulty in obtaining such a structure on double
groupoids with the present definition of homotopy. (Such a structure
may be possible using homotopy classes rel end maps of homotopies,
but we do not pursue this line.)

7.7 REMARK Let 22' be the category of double groupoids with connection
and morphisms preserving the connection. In order to obtain a
2-category structure using HOMF(G,H) we require a pairing

v
GH) | mom ®  (1,x)—mOM?

HOM (G,K)-
which is a morphism of groupoids; so if ¥ : fa~g: GHH and@': f'yg' :HH K
are homotopies, we require the interchange lemma

gk (B') + £, ) =g, @) +£* (¢') : £'4¥ux g'g (%)

If ¢=(T,U,V),¢' = (T',U',V'), then(*) is equivalent to the equations

T'g + £'T = g'T + T'f (1)
U'g + f'U = g'U + U'f (2)
Vg 6 £'V =g'Ve V' (3)

We have been unable to verify these equations in gg' although in

this category either side of (*) does give a homotopy £'f = g'g.

However our category!)q!of double groupoids with connection and exactly
4
one object, and with morphisms preserving the connections, can be

!
extended to a 2-category DG° by requiring the homotopies to be rel
e
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base point, i.e. of the form (0,U,V ). Then (1) is trivially
valid;

(2} follows from naturality of U' for the face

fa {Ua | ga

and (3) follows similarly.

i

7.8 Theorem The functor/u: G—»DG" extends to an equivalence
i w o<

G-»DG" of 2-categories.

. A

Proof Let S : § = g be a G-homotopy of G-groupoid morphisms G —¥H.
Let e denote the unique vertéx of u(G) and set T(e) = 0 € Hj.
We define for each a € u(G). = 0b(G)

U(a) = (1 - 8(a) ; £(a), 0, O, g(a)).

f(a)
Then 7.4 (i) and (ii) certainly hold. To check 7.4 (iii), let

a,b € 0b(G). Then

U(b+a) = ( - S(b+a)§ f(b) + f(d), o, O, g(b) + g(a))

lev)

while

U(b)» UCa) = (1 -Sk) +1 f(b)+£(a),

£(b) gb) ~ 568 T 1oy
0, 0, g(b) + g(a)).
But -S(b) + lg(b) and 1f(a) - S(a) commute (Corollary 2.3). Hence

U(b+a) = U(b) » U(a)

In order to verify 7.4 (iv) we must prove in/u(H) the identity
/ug(d; a,0,0,b) + U(a) = U(b) +Mf(«;a, 0,0, b),

for ® &€ 5St.0, a,b € 0b(G) and ¥ = a - b. According to the definition
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of + in u(H), it will be enough to show

Loty S(a) + gla) = £(a) + 1 - S(b) *)

£(b)
Now by linearity and naturality of S, using (2.2), we have

g(a) = f(a) + 1 1 + S(a) - S(b). Thus the left hand

£(b) ~ “f(a)
i * = - -

side of (*) becomes (1f(a) S(a)) +(f@™) + lf(b) 1f(a)) + S(a) S(b)

which, because the terms in parentheses commute (being elements of

StHO and CostHO respectively) is equal to f(a) ¥ lf(b) - S(b).

This verifies 7.4 (i) - (iv) and so proves that, with

v(a) = (TU(a))—l, the triple (T,U,V) is a homotopy u(f) = u(g).

It is clear that the correspondence ¢ : S+» U defined above
is a bijection., So to complete the proof that/u.is an equivalence
of 2-categories it is sufficient to prove ¢ preserves composition

of homotopies.

1

Let S; : £ =g, S : g =~ h be G-homotopies of morphisms of

G-groupoids. Then

(¢(SZ) + (Sl))(a) = (1f(a) - S]_(a) + lg(a) - SZ(a); f(a),0,0,h(a))
¢(320 Sl)(a) = (lf(a) = SZ(a) © Sl(a); f(a)’ O:Oah(a))

which are equal by 2.3.
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8. The Whitehead Theorem

The Whitehead Theorem requires a number of preliminary results.

First we define homotopy groups.

8.1 Definition Let G be a double groupoid and let e € G,

The first and second homotopy groups of G at e, which are written

71 (G,e), m2(G,e), are respectively the last and first terms of the
crossed sequence yYw; (G,e) - that is, we have the crossed sequence

0 > my(G,e) ~ Stuﬁ e - 0Ob(@G) » m1(G,e) » O.

G

8.2 Theorem Let £ : G~ H be a homotopy equivalence &f double

groupoids with connection. Then f induces isomorphisms

£, & ﬂi(G,e) > ﬂi(H,¥Gﬂ i=1,2,

The case 1 = 2 of this theorem requires some lemmas.

First given a double groupoid G and elements a, b, ¢, d of G ,

let A be the 'matrix'

c
and weike G,A for the set of o in G, whose edges are given by A.

Note that a morphism h : G -+ H induces h, : G2A » Hoh(A).

8.3 Lemma Given a homotopy 6 : h = k : G > H, where H has a

connection, there is a bijection 6(A) making the following diagram

commute
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‘Hyh(A)

h
GoA / JG(A)
x Hok (A)

Proof Let 6 = (T,U,V). Let B' be the element obtained from the
second diagram in 7.1 (iv) by replacing g(a) by B € Hyh(A).

Clearly 6(A) : B+ B' is a bijection as required.

8.4 Lemma Let G have a connection, and let h = 1 : G+ G. Then

h : GoA > Goh(A) is a bijection.

Proof This follows from 8.3 on taking H = G, k = 1,

8.5 Lemma Let G,H have connections and let £ : G > H be a homotopy

equivalence. Then f : GpA > Hpf(A) is a bijection

Proof Consider the composites gf, fg in the sequence
oA £ HyE(A) B Gogf(a) 5 Hofgr(a)

By 8.4, these are bijections. Hence f is a bijection.

]
N

The case i of Theorem 8.2 is of course the special case

of 8.5whena=b=c=d=0,

The case 1 1 of Theorem 8.2 is non~-trivial only because it

is not assumed that f is a homotopy equivalence rel base:point.

To express the lemma we need it is helpful to use the fundamental
groupoid 7H of the double groupoid H, defined to be the quotient
groupoid H;/N where N is the totally disconnected normal subgroupoid

of H; such that at x ¢ Ho’ N{x} = B(SE» Clearly m is

NCR R

a functor from double groupoids to groupoids.
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8.6 Lemma If h ~k : H-> K, where K is a double groupoid with

connection, theph,, Ry : 7H > 7K are homotopic morphisms of

groupoids.

Proof Let (T,U,V) be a homotopy h = k. For each x € H, let

¢ (x) be the.class in 7K(h(x),k(x)) of T(x).

For a : x> y in H; we have the following element of Sbﬁ-’ekh(x}

R(a) Tty) -hia)

_&T(x)

o| "TGY | Via) -1T(y) 1_“(“) o

showing that the classes in K of T(y) + h(a), -h(a) + T(x) agree.

The proof of the case i = 1 of Theorem 8.2 now follows from

standard results on groupoids.,

The Whitehead Theorem we want is of course a converse to
Theorem 8.2. We first prove a special case which allows us to
reduce the general case to that of double groupoids with only

one object.
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Let H be a sub~double groupoid of the double groupoid G.
We say H is full in G if H; is a full subgroupoid of G;, and
HyA = GyA for every matrix A of elements of Hj. We say H is

representative in G if the groupoid H; is representative in G;.

Now let f,g : G > G' be morphisms where G' has a connection,

and let 6 = (T,U,V) be a homotopy £ ~ g. Wesay 6 : £ = g rel H
if x € Hj implies T(x) = f(Ox), and a € H; implies U(a) = of(a)’
V(a) = 1f(a)' We say H is a deformation retract of G if there

is a morphism r : G -~ H such that r{ = 1y ir = rel H, where

1G
i : H> G is the inclusion.

8.7 Theorem Let H be a representative, full sub-double groupoid

of the double groupoid with connection G. Then H is a deformation

retract of G..

Proof Let i : H-+ G be the inclusion. By 6.5.13 of [1] there

is a morphism of groupoids r : G; + H; such that ri = 1Hl , and

there is a function T : G, > G with T(x) : r(x) > x for x in G

and T(y) =0 (

r(y) if ye Ho'

We now extend r over G, .
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First of all for a : x> y in G; we set

U(a) = (-TC-T))e 0o (I (=TaN)

V(a)

P'l(:r(y))+ B - r'l(—Tcx))

It is easy to verify that U,V are linear. ©Next if a is the face
of G, given by (*) of 7.1 (iv) then r(a) is defined to be the
face (¥*) of 7.1 (iv) with g(a) replaced by a. That r is a
morphism of double groupoids and in fact a deformation retraction

G+ H follows from:

8.8 Lemma Let gﬁ: G > H be a morphism of double groupoids such

that H has a connection. Let £ : Gy > Hy be a morphism of

groupoids and let T,U,V be functions satisfying 7.1 (i), (ii), (iii).

Then 7.1 (iv) defines an extension of f to a morphism f : G+ H

of double groupoids such that (T,U,V) is a homotopy f = g.

The proof is straightforward.

8.9 Corollary A connected double groupoid with connection is

homotopy equivalent to a double groupoid with exactly one vertex.

Theorem D (The Whitehead Theorem) Let £ : G - H be a morphism of

connected double groupoids with connection such that G, H; are

free groupoids and for some x in G f, : 7. (G,x) > m¢ (H,f(x))

is isomorphic for i = 1,2, Then f is a homotopy equivalence,
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Proof Let us first assume G, H have each exactly one vertex.
We apply a Whitehead Tﬁeorem for crossed sequences (Theorem 3
of [3]) to obtain that Y& (f) : Yw;G > Yw1H is a homotopy
equivalence of crossed sequences. By Theorem 7.7

£' = pyd; (£) : pywy (G) » pywy (H) is a homotopy equivalence of

double groupoids.

Consider the diagram’ JF

G—H

v)c"\‘ T')H

" pyw(s) ?/’Y’“’t‘m

where n,, n, are determined by connections I' for G, & for H

q H
(Theorem 6.8), and let g = Ny f'1ﬁg Then there is a homotopy
(T,U,V) : £ = g where T(%) = Of(x)’ U(a) = Af(a) - £fI'(a),

V(a) = 1f(a)’ a € Gj. By Proposition 7.2 the composite of
homotopy equivalences is a homotopy equivalence; hence g is a

homotopy equivalence. Since £ = g it follows again from

Proposition 7.2 that f is a homotopy equivalence.

The general case follows from the special case, Corollary 8.9

and again Proposition 7.2,
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