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INTRODUCTION 

The notion of a covering morphism of groupoids has been developed by 
P. J. Higgins [4, 51 and shown to be a convenient tool in algebra, even for 
purely group theoretic results. That covering morphisms of groupoids model 
conveniently the covering maps of spaces is shown in [l]. 

If we weaken the conditions for a covering morphism we obtain what we 
shall call a fibration of groupoids, and our purpose is to explore this notion. 

The main results are that, even if we start in the category of groups, then 
certain constructions lead naturally to fibrations of groupoids; that for 
fibrations of groupoids we can obtain a family of exact sequences of a type 
familiar to homotopy theorists; and that these exact sequences include 
not only the bottom part of the usual exact sequence of a fibration of spaces, 
but also the well known six term exact sequences in the non-Abelian coho- 
molog!; of groups [6]. A further advantage of our procedure is that the same 
setup leads naturally to a definition of non-Abelian cohomology in dimensions 
0 and 1 of a groupoid with coefficients in a groupoid. This cohomology 
(which will be dealt with elsewhere) generalises a non-Abelian cohomology of 
n group with coefficients in a groupoid which has been developed by 
A. Frohlich (unpublished) with a view to applications in Galois cohomology. 
Another question not touched on here is possible application of these methods 
to the non-bbelian Hz. 

There is some overlap of this paper with techniques used by J. Gray in 1131. 
However, the aims of that paper are quite different from ours, and so the 
theory is developed here from the beginning. 

1. THE CATEGORY OF GROUPOIDS 

The basic theory of groupoids is covered in [l] and in [5] but in order to 
make this paper relatively self-contained most of the elementary notions will 
be recapitulated here. 
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A groupoid is a small category in which every morphism has an inverse. 
However such a groupoid will be regarded as an algebraic object in its own 
right, and so it is convenient to call the morphisms of a groupoid G elements 
of G, so that to some extent G is identified with the (disjoint) union of the 
sets G(s, y) for all x, y in Oh(G). 

A groupoid G is connected if G(s, ~8) ‘. IS nonempty for all ob.jects .Y, -Y of G. 
The co~~ponents of G are the maximal, connected subgroupoids of G. .1t the 
other extreme, a groupoid G is discrete if its only elements are identities; 
such a groupoid can be identified with its set of objects. 

Ifs is an object of G, then under composition’ the set G(.v, v) is a group, 
written G(.vf, and called the object group, or vevtes~rou~, of G at .x. 

A mcyphism f : G + H of groupoids is simply a functor. Then kerf is 
the set of elements a in G such thatf( a is an identity of IT, and Im f is the ) 
set of elementsf(a) for a an element of G. Clearly ker f is a subgroupoid of G, 
hut Im f is in general only a subgraph of H, since the composite of two ele- 
ments of Im f may not again be an element of Im f. For example, Ict .f 
denote throughout this paper the groupoid with two objects 0, 1 and only 
two nonidentity morphisms 1 E X(0, I), LC~ E .P(O, 1). Then any nonconstant 
morphism 9 ---+ Z (where Z, the additive group of integers, is considered as 
a groupoid with one object) has image which is not a subgroup, and so not 
a subgroupoid, of Z. 

As is usual, a subgroupoid N of a groupoid G is called Fuji if ,\~(x, -v) 
G(x,y) for all objects ~‘,y of Ar. \\‘e say a subgroupoid N is zcici~ in G if :V 
has the same objects as G. 

A subgroupoid IV of G wilt be called wormal if ;V is wide in G and for all 
objects 9, y of G and g E G(x, y) we have 

<T- ’ N{ yi ,I: N(s] . 

In such case the yuotientgroupoid is delined as follows (cf. [5]). The objects of 
G/N arc the equivalence classes of objects of G under the relation .I’ - y 
if ,V(.v,y) is nonempty; the elements of G/N are the equivalence ctasscs of 
elements of G under the relation g - lz if there are elements a, (t of 3’ such 
that ugh is defined and equal to I/; composition in G/N is induced 1,); compo- 
sition in G. The prqjection p : G m-p G/iV is then a morphism of groupoids 
which is universal for morphisms ,f from G such that Im .f is discrete. 
Any such universal morphism, which must he of the form p followed by an 
isomorphism, wilt be called a quotient map. 

Suppose further that R is a suhgroupoid of G such that R contains .V. 
Then R,‘N is a suhgroupoid of G/A’. In particular, /V/-V is a subgroupoid of 
G/:V; however this subgroupoid dots not, as in the case of groups, have 
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only one element, but instead is the discrete group&d with one object for 
each component of A’. 

Let f : G ---f H he a morphism of groupoids. The jibre off at an object y 
of H is the suhgroupoid of G whose elements are mapped h!;f to the identity 
at y; this fihre is written .f-l(y). Clearly the kcrncl of .f, kerf, is the sum 
(or disjoint union, as it is also called) of the fihresfpl(y) for all ohjectsy of ZZ. 

Further kerfis a normal suhgroupoid of G. So WC have a factorization 

G 

, G/ker f (1.1) 

A vital difference now emerges between groups and groupoids. If G and H 
are groups and we factor f as in (I .I) through a quotient map, then p(f) 
is an isomorphism onto Imf. However, we have already pointed out that 
for groupoids Imf may not he a groupoid. A further important fact is that 
p(f) ma\- make some identifications. For example, iff : 9 ---t Z, maps L and 
L-.~ to 1, then I is an isomorphism and p(f) is essentially justf. 

For a general morphism f, the kernel of p(f) will consist only of identities, 
which we can express as p(f) has discrete kevnel. 

Let G he a groupoid, and ?L’ E Oh(G). Then St, .x is the union of the sets 
G(x, y) for all y E Oh(G). If f : G + N is a morphism, and x E Oh(G), then 
St, x is the restriction offmapping St, s ---f St,f(x). We sayfis star irzjectize, 
star surjective, star bijective according as St, s is injective, surjectire, hijeclive 
for all s E Oh(G). 

1.2 PROPOWI-ION. .-I morphism f : G -+ Z-I has discrete kernel ;f and only 
if f zs star-injPctize, 

Proof. Suppose f has discrete kernel. Let a, b E St, s, and supposef(a) 

f(b). Th en ab&* E ker f, which is discrete. Hence ab--l is an identity, and so 
a =r b. 

Conversely, let f he star injective. If f ( ) a is an identity of ZZ, then f (u) = 
.f( 1,) where N is the initial point of a and 1,. is the identity at s. By star 
injcctivity, a = I,.; so kerf is discrete. 0 

A morphismf : G --f His faithfuZZ (respfull) if the restrictions off mapping 
G(x, y) --f N(f(s), f(y)) are injective (resp surjective) for all objects N, y of G. 
Clearly star injective implies faithful, and star surjective implies full. 
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Going back to (1. l), the fibres of p(f) : G/kerf -+ H are discrete, and so 
may be considered as sets. The construction of p( f) shows that if .v E Oh(H), 
then the fibre of p(f) over s is simply r,,fp’(x), the set of components of the 
fibre off over s. 

The factorization (I .I) is functorial. In order to express this precisely, 
let Vb denote the category of groupoids and groupoid morphisms, and let 
96” denote the categorv whose objects are morphisms of groupoids, and 
whose morphisms from j : G Pp /I to .f’ : G’ --> H’ arc commutative squares 
of morphisms 

(1.3) 

1.4 PROPOSITION. p extends to a functor p : 59~‘) -f Y:‘). 

Proof. Suppose given the commutative diagram( I .3), then a(kerf) c kerf” 
and so a: defines 01’ : G/kerf + G’jkerf’, and we set p(x, /3) == (a’, /3). ‘-_I 

We now consider homotopy notions for groupoids. 
X morphism f : G x .Y ---f I3 of groupoids is also called a homotopy from 

f. to fi , where .ft .f( ,c):G--zH, Ed-0,l. Thus,(,=fai,, where 
i, : G - + G x 4 is the inclusion g ti (g, G) for E ~7 0, I. For each object ,Y 
of G, let Bs -:- f(x, L) E II. Then for any a E G(x, y) we have a commutative 
square of elements of I-1 

so that 

I,,(Q) 
1 1 

f,(“l (1.5) 

fob’) 7;+ f,(Y) 

f,(Q) 0,. == (I,,fo(a). (1.6) 

Conversely, given a collection of elements 0, in St*f,(x) for each .Y E Oh(H), 
then we can define a homotopyffromf,, tofi wheref, is determined by (1.6) 
(cf. [l] Section 6.5). Thus a homotopy is the same as a natural equivalence; 
and if G, Hare groups, the relation of homotopy between morphisms G + H 
is just conjugation by elements of H ( since in this case G has just one object). 

Another way of expressing the above results is in terms of free products. 
Recall from [I, p. 2701 that a free product G, k G, of groupoids G, , G, 
is a pushout of the diagram of inclusions 

G, - Ob(G,) n Ob(G,) + G, 
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(where Ob(G,) is regarded as a discrete subgroupoid of G,). Then we have: 
G x 9 is the free product 

(G x 0) ,-- @b(G) x J’), 

because a morphism G >: .P -+ II is completely determined by morphisms 
G x 0 --f H, Oh(G) i: 4 + H which agree on Oh(G) M 0. 

Aq generalization of this will be convenient later. 

1.7 PROPOSITION. Let A be o subgroupoid of G, a?zd let 0 be the full 
subgroupoid of G x 4 on Ob(G x 0) u Ob(,4 ‘4 Y). Then the diagram of 
inclusions 

A-f x 0 -m---f *4 >: ,P 

is a pushout. 

Proof. Suppose given a commutative square of morphisms 

Let 12 : Oh(G) x ,Y - H be any morphism extending R j Oh(A) X, 3. 
Then .f and h define a morphism # : G x 4 -+ II, and F = 4 I Q extends 
both .f and R. However, any element of Q can be written as a product of 
elements from X x 0 or -4 x CF; so there is at most one morphism Q + H 
extending f and g. u 

In analogy with constructions in homotopy theory, the groupoid Q of 1.7 
will be written G x 0 u i2 x 9; however, note that if A is wide in G, tlren 
G >: 0 u A b: 3 == G x 9. 

We now define a groupoid (GN). The objects of (GI-l) are the morphisms 
G --f H. The morphisms in (GH)( fO , fJ arc just the homotopies fO to f, , 
and homotopies are composed in the obvious way [for example by composing 
squares such as (I .5)]. The composition of homotopies f : fO ef, , g : j, -z f2 
is written ,y + f : f0 rv f2 . 

The groupoid (GN) satisfies the exponential law: 

((GH)K) g ((G x H)K) (1.8) 

the isomorphism of (I .S) being given by the usual exponential formula. 
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Finally, we shall assume as known the notion of a pullback square 

v ‘~+ G 

F ; 111 
L\- I-) II 

for which it is sometimes convenient to refer to p as the pullback of p by f. 

2. FIBRATIOM .INU COWRING AIowHrsnrs 

A regular completion of a square of morphisms 

is a morphism p : 1’- G such that 

2.1 PROPOSITION. Let p : G + H be n morphism of poupoids. The folIozing 
conditions are equivalent. 

(i) (The covering homotopy property). For any groupoid <Ti, any commutative 
square 

x ~-‘---, G 

ill 
I I 

0 (2.2) 

x >< .F -p II 

has a regular completion. 

(ii) (Path-lifting propeperty). Any commutative square 

0 --+G 

Gl 
I Ii1 

.f -+ II 

has a regular completion. 

(iii) The morphism J is star surjective. 
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f’roqf. It is clear (by taking S to be a point groupoid) that (i) --f (ii). 
Also (ii) + (iii) because morphisms 0 --t G are bijective (under evaluation 
on 0) with objects of G, and morphisms .P ---f Ii’ are bijective (under evalua- 
tion on L) with elements of H. 

WC now prove (iii) + (i). Letf, F be as in (i). For each object s E S choose 
an element H,,, in St,fx such that 

P(~,T) = E’k 0; 

this is possible by (iii). By [I, Section 6.51 the morphism .f and the function 
.T tt H,, determine a morphism S M .P --, G; and this morphism is the 
required regular completion. 0 

It may happen that the regular completion of diagram (2.2) is unique--in 
this case we say p has the unique coaeuing honrotop~~propert~~. Similarly, we have 
the unique pafh-lifting property. 

2.2 PROPOSITION. For a morphism p : G - H of groupoids, the unique 
covering homotopy property, and unique path-lifting property, are equizlajent, 
and aw each equivalent to the condition that .f is star bijectice. 

The proof of this is clear. 
Because of the analogies shown by 2.1, 2.2 with topological situations, 

u-e call a star surjective morphism a.fi&ation, and a star-bijcctive morphism a 
covering morphism. 

Kotc that a morphism p of groups is a fibration if and only if p is surjective 
and p is a covering morphism if and only if p is an isomorphism. On the other 
hand, the morphism .P ---+ Z, of groupoids which sends L -+ f 1, L r .+ ~ I 
and the identities to 0, is surjective on elements, but is not a fibration. 

2.3 PROPOSITIOS. A jibration p is a cover&g morphism (f and only if 
kerp is discrefe. 

Proof. This follows from 1.2. fl 
On the other hand, given a fibration we can use the factorisation of Section I 

to construct a covering morphism. 

2.4 PROPOSITIOX. Let p : G - H be a morphism, and let 

G 
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be the canonical ,factorization of p with (: .- G/km-p. Then K is a jibration, 
and if p is a$bration then p is a cooering morphism. 

Pro?f. Let x E Oh(C), y K(.x). If c E St,y, then c K(b) for some b 
in G(.v’, ,x”) sap. Since K(X) - K(x’), th ere is an element ct in (kerp)(.~, x’). 
Then bd E St, s and K(bd) r. This prows K is a fibration. 

Now let y E Oh(C), and suppose (I E St, py. Choose an x t: Oh(G) such 
that K(,x) y, and choose, using the fibration propertv of p, an clcmwt b 
of St, s such that p(b) = a. Then c K(b) satisfies- c E StC?r, p(c) a. 

So we have proved that the restriction of p mapping St,y > St,,(V) is 
surjectivc; it is injcctive because p has discrete kernel. 

2.5 C‘OROI.L.ARTi. Jf 1Y :. I! a normal subgroupoid of G, then the quotient 
morphism G --f G/.1: is uJibration. 

ProoJl Xpplv 2.4 withp the quotient morphism G -+ G,‘lYand K p. rj 
Let 3’6, EC/’ denote the full subcategories of 3:” on the fibrations and 

covering morphisms respectively. 

2.6 COROl.I.AK’I’. ‘The fu1u-tov p : w D r Jb ‘p(l) restricts to a fwctw. 

p : .Fib * %‘r,,.. 

\\.e now give some rules for deriving new fibrations from old ones. 

2.7 PROPOSITION. Let p : G -- + II, (I : II -t K be morphisms. Then 

(i) if p, q are$brations (resp. covering morphisms) then so also is qp; 

(ii) if qp and p are jibrations, am/ Ol$/ ) I is surjective, then q is a jib)-ation; 

(iii) if qp alzd q are coveritlg morphisms, theu so also i.7 p. 

Proof. ‘I’his atnounts to considering the sequence of restrictions of p and q 

St, .\‘ -f St, 2’ - St, q(11’). 

In (i) and (iii) WC take y p(x), w iie in (ii) we at-e given y and USC: the fact h 
that Ob( p) is surjectivc to find .T such that 3’ :--- p(x). Then (i), (ii), and (iii) 
correspond to simple criteria for functions to be surjective or bijective. ci 

2.8 hOPOSITION. Suppose given a pull-back square 

(2 -* G 

If p is a jibration (resp. covering morphism) then SO also is /?, 
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Proof. This is a simple consequence of the covering homotopy property 
of fibrations or covering morphisms, and the universal properties of pull 
backs. :l 

Our next examples involve the groupoid (XG), and will be essential for 
our description of the non-Abelian cohomology of groups. 

2.9 ~KOPOSITION. If p : G -+ H is a jibration (resp. coe:erinCr morphism) 
then for any ggroupoid X the induced morphism 

(Xp) : (XG) -+ (XH) 

is a jbration (resp, coverirg morphism) 

Proof. This is an easy consequence of the covering homotopy propert! 
and the exponential law (I .8). : 

2. IO hOPOSITION. Let G be a gvoupoid and i : ‘-1 + ,Y an inchkon 
morphism. ‘Then the induced morphism 

(iG) : (XG) + (9G) 

is a fibmtion, and is a coverin,n morphism if .4 is wide in S. 

l’ro~f. By the exponential law and 2.1 ( ) t ii i is sufficient to prove that 
given any commutative diagram 

then there is a morphism F : X x Y + G extending both f and g, and that 
such an F is unique if A is wide in S. Define a homotopy function 0 on 
Oh(S) by 0, = ~(2, L) if .X E Oh(A), and H, is any element of St,f(x, 0), 
if x $Ob(.4). By Section 1, 0 defines a homotopy F : S x J’ + G which 

extends both f and g. If A is wide in X, then F is determined byf and 0,,, -2 
g(x, 1) : F(.v, L), x E Oh(X). Thus F is unique in this case. E 

There is a proposition including both 2.9 and 2.10. We use the groupoid 
X >: 0 u -4 x .Y of 1.7, which is defined when -4 is a subgroupoid of .Y. 

2.1 1 PROPOSITION. Let ,4 be a supCyroupoid of S and p : G --F H a,fibmtion. 
Then any commutative square 

Xx Ou.2 x 4A+G 

c 
1 1 

i’ 

x x 3 pF-- H 



has a regular completion which is unique ;f .-I is wide in AY OY if p is a cooering 
morphism. 

I’voqf. All that is needed is to lift the restriction of F mapping 
Oh(S) ,.j .P --f N to a morphism Oh(S) M I -f H agreeing with h on 
Ob(,Y) i: 0 and Oh(A) h’ 3; this can clearly he done using the fibration 
property, and the lifting is unique if p is a covering morphism or if -4 is wide 
in .\‘. mm- 

The following corollary: of 2. I I is useful is classifying sections of a filtration. 

2.12 COROl.l.ARY. hip : G F Ii be a$bration, and f : <Y - + N (I v~~pl~ism 
where a\- is connected. Let f : Ti ---+ G b e a mol-phism such that pf : j.. Suppvse 
.x E Oh(aY) and z belongs to the same component of p-‘f (s) as f(,s). Then ,f is 
homotopic to a morphism f ’ : .I- 4 C such that f’(x) 2, awl pf ’ f. 

Proof. I,et (I) hc an clement froInJ(.~) to 2 Iving in p--‘,f (.x). \\.e apply 2. I 1 _ 
aith .-I {,ri, with h defined by- 

/7(% 0) .m a: E A- 

I/(X, 1) w 

and with I<’ the constant homotop)- off to itself. Ry 2. I 1, F lifts to a homotopy 
A’ :‘. .I -+ G extending h, and the final morphism of this homotopy is the 
one required. I--: 

13~ using 2.1 1 and the exponential law, it is cask.. to prove the following 

gcncralization of both 2.9 and 2. IO. 

2.13 proposition. /,et p : G -+ ll be (I Jibfation alrd L : _ I ~* .\’ au 
inclusion. Consider the diagram 

in which the inner square is a pullback and k is determined by (A-p) anct (iG). 
Then k is a jibration, and is a cove&g morphism if -1 is wide in S or f p is a 
cozeu+y morphism. 

The final proposition of this section will lx used in constructing “fibrations 
along the fibres”. 
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2.14 PROPOSITION. Suppose, given a commutative diagram of morphisms 

in which (i) F = p-‘(y), F’ -= p’-‘(y’) are the jibres of p, p' over y E Oh(H) 
and y‘ = fi(y), respectively; (ii) fi has discrete kernel (or at least the kernel of 

H(y) - H’{y’} is trivial). Then f3 is a $bmtion OY covering morphism iffy is a 
jibvation OY covering morphism respectiveb. 

Proof. Let x E Oh(F), a E St,lfs(x). Th en also a E St,ffz(x) and so a lifts 
to an element b E St, x, since f2 is a fibration. However 

.A p(b) = p’fdb) ---. p’(a) r-~ I,,, . 

BY (ii), p(b) --- II , and so b E F. Since i is an inclusion and f?(b) == a, it 
follows that f3(b) -= a. If fi is a covering morphism and b, 6’ E St, x satisfy 
i?(b) = f..(b’) = a, thenbl(b) = f2(b’) = a and so b b’. 0 

We conclude this section with a more concrete example which w-ill be 
useful later. This example is obtained essentially by taking fundamental 
groupoids of the usual fibre bundles rll--+ ‘9, 8M-t S1 where M is the 
Mobius band, &rU is the boundary of AZ and S1 is the circle. 

2.15 EXAMPLE. Let T be a free cyclic group with generator t. Let 
p’: T x .Y+ T be the projection; it is easy to check that p' is a fibration. 
Define p : T x .fl - T to be the homotopy of p, : t’” - P” determined by 
the element t of T; then p is a covering morphism called the double cove&g 
of T. Define g : T x ,Y --z T x .Y to be the homotopy of go : t” - (P, 0) 
determined by the element (t, L) of T x .v’. Then p’g ~ p, so that (g, I) 
is a morphism p --, p’ of fibrations. Notice also that the (unique) fibre of p 
is discrete, while the fibre of p‘ is .f. 

3. LIFTING MORPIIISMS 

Throughout this section, p : G + H will be a fibration of groupoids 

3.1 PROPOSITION. Let x E Oh(G), and let h, . . . h, be a product in fl 
such that h, E St,p(x). Then there aye elements g, in G such that g, E St6 N; 

481/I j/I-8 
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p(g,) = hi , i -z I,...) n; and the product g, . . . g1 is de$ned in G. These elements 
gi are unique ifp is a covering morphism. 

Proof. The proof is easy using 2.1 (iii) and shifting in turn from the 
initial to the final point of h, ,..., h,, . / ~1 

Let ,f : X --f H be a morphism. If .x E Oh(X), then the subgroup 

of H{fx} is called the characteristic subgroup off at x. Recall that subgroups 
C of H{x’}, D of H(y’} are conjugate if there is an element h of H(x’,y’) 
such that h-lDh --- C. 

3.2 PROPOSITION. Let C be the characteristic group of p at x. (i) If D is the 
characteristic group of p at y, and x, y lie in the same component of G, then C 
and D are conjugate. (ii) If D is a subgroup of H{y’} and D is conjugate to C, 
then D is the characteristicgroup of p at y for some y. 

Proof. (i) Let g E G(x, y) and let p(g) = h. If c’ E C, then c’ is covered 
by an element c of G(x). Clearly p(gcgpi) = hc’h-I, and so hCh-l C D. 
Similarly, h-lDh C C, and hence h-lDh =~ C. 

(ii) Suppose h-IDh =~y C. Let g be an element of St, x covering h. Let y 
be the final point of g, and let D’ be the characteristic group of p at y. We 
prove D’ = D. 

If d’ E D, then d’ == hc’h-l for c’ E C. Then d’ is covered by an element 
gcg-’ with c E G(x); hence d’ E’D’. Conversely, if d’ E D’, then d’ is covered 
by an element d of G(y), whence d’ := hc’h-l where c’ = p(g-ldg). 0 

The above is essentially the same as 9.3.2 of [I]. 
We are now interested in the following question: given a morphism 

f : X + H, when does f lift to a morphism f: X -+ G, that is, is there a 
morphism J: S --f G such that pi = f ? We shall see that this reduces to 
a group theoretic problem in the case p is a fibration; the solution of this is 
simple when p is a covering morphism, and in this case we shall determine 
the set of all liftings. 

It is convenient to work first in the category of pointed groupoids. So we 
consider the following question: given morphisms of pointed groupoids 

when doesf lift to a morphism j: X, z --, G, x ? 
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3.3 PROPOSITION. Let X be connected. Then f lifts if and only ;f, in the 
following diagram of restrictions 

Gfx} 

f lifts to a morphism X(x} + G(x) of groups. 

Proof. Clearly, if f lifts, so also does f. On the other hand suppose a 
lifting j’ off exists. Write X = X{z}*T where T is a tree groupoid (8.1.5 
of [I]). Clearly f 1 T : T, z ---f H, y lifts to a morphism p” : T, z + G, x (since p 
is a fibration). The morphismsP’, p define a morphism f-: X, z M G, x which 
lifts f. n 

3.4 COROLLARY. Let X be connected and p a covering morphism. Then the 
pointed morphism f lifts if and only if the characteristic group off (at zj is 
contained in the characteristic group of p (at x), and in such case the lifting is 
unique. 

Proof. The first part follows from 3.3 since p : G(x) --f H(y) is injective. 
If the lifting p’ off exists, it is unique. Also the lifting off / T (where T is 
as in the proof of 3.3) always exists, and is unique. 0 

We suppose for the rest of this section that p : G + E-I is a covering 
morphism. In order to solve the lifting problem for nonbase point morphisms, 
we need some notation. 

Suppose K is a group, and F, C are subgroups of K. The K normaliser of 
(F, C) is the set 

N,(F, C) = {R E K : F C KCW). 

In general, this set is not a group, although it is a group if F = C [in which 
case it is the usual normaliser N(C) of C in K], or if F is normal in K. How- 
ever, we do have the additional structure that C operates by right-multiplica- 
tion on N&F, C); the set of orbits is written 

N&F, C)/C. 

3.5 THEOREM. Let f : X--f H be a morphism, and let p : G - H be a 
covering morphism; ule assume X, G, H are connected. Let 

F = f(X@>), C = P(W) 



be the characteristic groups off, p at u”, s respectively, where we assume f (z) m= 
p(x). Let h’ ~= H{ ps]. Then the set of liftiqs off is bijectice with N,(F, C)jC. 

Proof. Let @ be the set of liftings off. \Vc define a function 

y : NK(F, q i CD. 

Let k E N&E’, C), so that F i kCk ‘. Then h lifts uniquely to an element 
g t St, s with final point .x’ sa!., and c“, the characteristic group of p at s’, 
is kCk-‘, 1~~ 3.2. Since F i- C’, it follows from 2.4 that f lifts uniquely to a 
morphism f : S --F G such thatf7(z) s’, and \Yc! set I#) : ,f 

If f : X - G is any lifting off, then there is an element g in G(x, f (z)); 

if k = p(g), we have j ~= p(k). This proves cp is surjective. 
Kow 9) is not injective in general. For suppose c’ t C, so that c’ ~~ p(c) for 

some c E G(x). If g t St, s lifts k E ‘VK(F, C), then gc E St, x lifts kc’; but g 
and gc have the same final point, so that p(W) = y(k). 

On the other hand, suppose cp(k) y(P), and that g, g’ E St, s lift /2, 
k’ respectively. Then g, g’ have the same final point, and so c = gig’ E G(x) 
is well defined. Clearly ?r’ kp(c). 

Thus I z= v(k’) if and only if lit‘ k’C, and so we have proved that q 
induces a bijection :\TK(F, C)jC’ + @. 11 

In the case f p, the liftings of p are called covet@ transformations, and 
WC can make 3.5 a little more precise. 

3.6 THEOREM. Let p : G ---+ H be a rocering morphism such that G and H 
are connected. Let C be the characteristic group of p at a point x of Oh(G), 
Then the set of roaering transformafions is under composition a group anti- 
isomorphic to N(C)/C. 

Proof. Let A’ = H{ p.vl. In this case, 1\‘(C) iVK(C, C) is a group 
containing C as normal subgroup, and NK(C, C)/C is the quotient group 
N(C),‘C. Let cp : N(C) + @ be the function defined in the proof of 3.5, 
where @ is nox the set of lifts of p. \Vc prove that F(k,k,) ~~ y(kJ p(k,). 

For E = I, 2, let k, E X(C), let g< E G(s, s,) lift k, and let rp(k,) fe , 

so that .f,(x) = xc . Then f,(g,) E G(x, , fi(xz)). Since pfl = p, we have 
pfl(,yz) == h, . Hence ,f,(gr)gl t St, .r and lifts k,k, . The final point of 
fi(R2) ,y2 is ~(kzkl)(,~). Hence 

q(k,k,)(x) = f&J -~= fJ+). 

It follows that y(k2kl) = fJ2 = ye q~(kJ. 

Since q : LV(C) - Q, is an antihomomorphism, which is surjcctive and 
has kernel C, it follows that ye induces an antiisomorphism N(C)/C + @‘, 
and this implies that @ is a group. n 
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4. OPERATORS AND EXACT SEQCENCES 

Let p : G - II be a covering morphism. If x E Oh(H), then the fibre P-‘(X) 
is discrete, and so we regard p-r(~) both as a subset of Oh(G) and as a sub- 
groupoid of G. 

We now define an operation of H on Oh(G). 
Let h E N(x, y) and let x’ E p-‘(x). Then /z lifts to a unique element ,F of 

St, x’, and the final point of g is written h 2. Clearly- 

1 . x’ = x’, 12’ . (h . x’) ~~ (h’h) x’ 

when these are defined. However h . X’ is defined if and only if h E St,p(x’). 
So to make the notion of an operation clear we follow Ehresmann in defining 
an operation of a groupoid on a set. 

Let H be a groupoid. An operation of H is a quadruple (H, S, w, .) where S 
is a set, zu : S + Oh(H) is a function and . : (h, x’) -+ 12 . X’ is a function 
defined whenever h E St, w(x’). The axioms we impose are that zu(h . x’) 
shall be the final point of h, and also the usual rules 1 . x’ .-- s’, h’ . (h . 2) y= 
(U/z) . X’ whenever both sides are defined. Note that if h E H(x,y), then the 
operation gives us a function h, : W-‘(X) - w-‘(y), x’ - h . x’, and we have 
I.+ ~ 1, (h’h), = h’,h, . Thus an operation of H defines a functor H -+ 97 I, 
where ,ir/,/ is the category of sets. 

The operations of groupoids form a category CC2 whose objects are opera- 
tions (H, S, w, .) and whose maps (H, S, w, .) + (H, ‘S’, w’, .) are pairs 
(I/J,~) such that $ : H + 11’ is a morphism of groupoids, f : S 4 S’ is a 
function, and vve have the axioms 

(i) w’f = Ob(+)w 

(ii) C/J(~) .f(.~‘) = f(h . I’), whenever h . X’ is defined. 

M’e mention (but shall not use the fact) that the above way of constructing 
a functor from an operation defines an equivalence between the category I’// 
and the category 9C/ L whose objects are functors r from a groupoid H to 
.%/, and whose morphisms r + r’ are pairs ($,f) where 4 : H - H’ is a 
morphism and f : r + r’# is a natural transformation. For our present 
purposes, the category Cj$ is more useful that 9&p, but in other situations, 
for example in order to have an operation of a groupoid on vector spaces, the 
description of an operation as a functor is perhaps more convenient. 

In the third paragraph of this section we defined for each covering morphism 
p:G+ H an operation 

4 P) = (K 04% 04 P), .). 

4.1 PROPOSITION. The function p H u( p) extends to a functov o : YOU --f 6~ 
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Proof. Suppose given a commutative diagram 

where p, p’ are covering morphisms. Let f == Oh(q) : Oh(G) + Ob(G’). 
Then Ob( p’) . f = Ob($) . Ob( p), and this verifies one condition for (I/J, f) 
to be a map of operations. 

To verify the other condition, let h E 11(x, y), X’ E p-‘(x). If g E G(x’, y’) 
lifts h, then h . x’ = y’. Further ~(8) in G( jY, fy’) lifts $(h), and so 

t/qz) .f(x’) = f(y’) I--= f (It . x’). 

We have now defined (T on maps in 59’0~;. The verification that CJ is a functor 
is straightforward. q 

In Section 2 we defined a functor p : 35’6 - V&v. Let Q- be the composite 

Then 7 gives the operations which are fundamental in the theory of fibrations. 
That T is a functor expresses the fact that these operations are natural with 
respect to maps of fibrations. 

Let p : G - H be a fibration. It is useful to describe the operation T(P) 
explicitly. First of all, 

T(P) = (H, Ob(G/ker P), 4 P), .>, 

so that H operates on Ob(G/kerp). If h E N(x,y), then h, is a function 
U(~)--‘(X) ---f u(p)-‘(y). But CJ(~)-‘(x) = nOp-l(r), the components of the 
fibre over X. Thus we have 

This function can be described explicitly as follows: Let X’ denote the com- 
ponent of x’ in Z-,p-p(x’). Then 12 . X’ ~ y’ where y’ is the final point of 
some lifting of h which starts at x’. It can be verified directly and easily that 
y’ is independent of the choice of x’ in its class, and of the possible liftings of h. 

However, the previous, more abstract, construction of T(P) has the advan- 
tage of making obvious the naturality with respect to maps of fibrations. 

We now use the operations to construct exact sequences. 
Suppose p : G ---f H is a fibration, x E Oh(G) and F = pp’p(x) is the fibre 

over p(x). The inclusion F --z G is written i; and X, x” denote the components 
of x in n,,F, n,G, respectively. Define 
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bY 
6(h) = h . i 

and consider the sequence 

in which we abuse notation by writing i, p for maps induced by i, p respec- 
tively. Notice that the first four terms of the sequence are groups, and the 
last three terms are sets; however, we give these sets basepoints, namely f 
(which is, as above, the component of x in F), 3i; (the component of x in G) 
and @ (the component of px in H). With this choice of base points, each 
function in (4.2) has a well-defined kernel, so that it makes sense to speak of 
the sequence being exact. However, there is also an operation of H{p.r} on 
r,F; this is used in the definition of a, and we will see that it gives additional 
information about exactness. 

4.3 THEOREM. The sequence (4.2) of groups and based sets is exact in the 
usual sense. Further: 

(a) If h, k E H(px), then 8(h) = Z(k) if and only if there is a g in G(x) such 
that p(g) = k-lh. 

(b) If 7, s E r,,F, then I = i(z) if and onZy ;f there is an h in H{px) 
such that h . jj = Z. 

Proof. (i) Exactness at G(x) is clear, since F = p-p(x). 

(ii) We prove exactness at H{px}. 
If g E G(x), then g is a lift of p(g), and g has final point X. Hence ap(g) = X. 

So Im(p : G(X) + H(px}) c ker 3. The opposite inclusion is implied by (a), 
so we now prove (a). 

Let 8(h) _- a(k), so that h . J = k . X. Then k-lh . x = X. This implies 
that k-lh lifts to an element g’ E G(x, z), say, where ,I = I So F(z, x) is 
nonempty. Let g” be an element of F(z, x). Then g = g”g’ belongs to G(x) 
and p(g) = p(g’) = k-lh. 

On the other hand, if k-lh = p(g), where g E G(x), then k-lh .? = x and 
so h . x == k _ x. 

(iii) We prove exactness at rOF. This is clearly a consequence of (b). 
Suppose then y, .%E rrOF and i(y) = i(T). Then G(y, 2) is nonempty; 

let g E G(y, z). Then h = p(g) E H(px}, and z = h .r. 
On the other hand if h E H(px} and h . y = Z, then h = p(g) for some 

g E G(y, z), and so y, x are in the same component of G, that is i( 7’) == i(g). 

(iv) We prove exactness at n,,G. Clearly Im(naF + r,G) C ker(rr,,G + ~~15). 
Suppose then p(j) = $. Then H(px,py) is nonempty, containing an 



element h, say. Let g E St,y lift k’ and let z be the final point of g. Then 
p(x) 7 p(x), and ~(2) = 9. ~1 

4.4 COROL.I.ARI-. Let p : G ~+ II be a Jibration, and let y E Oh(H). 
Then there is a bijection 

7j : u H(y)‘pGIx) -+ Tr"p-'(y) 

z&eve the disjoint union is taken ovey any set A- of objects v of G which sutisfy 
p(x) y, and such thut ,I’ is a complete set of vepvesentatives of the subset 

P-‘(J) of T,G. 

Proof. The function ii of 4.2 depends on x and so will here be written a,,. . 
Bv 4.2 (a), the functions Z,r induce 7 as above, and 7 is injective on each set 
of cosets N{y]/pG{,v). Also, ifs, .x’ t AT and s ,i s’, then .5 -i- 9, whence 

Im(a,.) n Im(ii,,,) i--‘(Z) fl i-‘(2’) v 

So 7 is injective. 
Finally 17 is surjective, because if x’ TV r,,p-i(y), then z(x’) = i(x) for some 

s t S and so x’ E Im(8,) by exactness. -7 
The exact sequence simplifies in case p : G --, 13 has a section, that is, 

if there is a morphism s : H ---f G such that ps =: 1. 

4.5 P~o~osrrros. Let p : G --p If be n fibration, and s n section of p. 

If v t Oh(H) and h E H(a), then 

h s(c) = s(v). 

Pvoqf. Let p PK be the canonical factorization of p. The covering 
morphism p has section KS, and S(C) KS(U). Rut KS(~) is the unique lift 
of h which starts at KS(C), and KS(h) finishes at KS(V). So h . KS(~) KS(V). [; 

4.6 COROI.LAKY. Let p : G - H be nfibration with,fibre F o‘uer e’ t Oh. 
Suppose (*): every romponent of E’ contains an object s(v) for s a section of p. 
Then the function rr,F - v,G induced by inclusion is injective. 

Proof. ‘I’his follows from 4.5 and 4.3(b) with y ~~ S(V), z s’(v) for 
sections s, s’ of p. 1-1 

Notice that it follows from 2.12 with f : S + H, the identity morphism 
on ff, that the condition (*) of 4.6 is equivalent to (**): every object of 3 
is of the form s(zl) for s a section of p. 
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The exact sequence of 4.2 is natural in the following sense. Suppose given 
a commutative square of morphisms 

(4.7) 

where p, p’ are fibrations. Let o E Oh(H), ZI’ : h(v); let F = p-‘(u), 
F’ C-m p’-l(d), then s induces a morphism f : F - F’ of fibres. Choose 
.v E Oh(F) and let X’ =~ f(x). Then we have a diagram 

I f 1 
LJ 

1 
h (4.8) 

1 --+ F’(d) i’ G’(d) T+ Zl’(v’j ?,+ noF’ i-+ -;r,,G’ T+ n,If’ 

in which Z-,,F, TT”G, sr,,H have base points Z, E, v; vOF’, n,,G’, nOH’ have base 
points X’, 1’, “u”; and a, a’ are given by operations on x, x’, respectively. Then 
4.8 is commutative by commutativity of 4.7 and naturality of the operations. 

Kext we prove a 5-lemma type result, which uses the operations in a 
crucial vvay. IVe suppose given the situation as above. 

4.9 THEOREM. (a) Ifh : H(v) -+ H’(d), g : T,G --f r,,G’ aye suvjective and 
h : =&I--f roH’ is injective, then f : n,,F - r,,F’ is surjective. 

(11) If h : H(v) - N’{v’} is injective and g : G(x) -+ G’(d) is surjective, 
then f : r,,F - n,,F’ is injective on ker(i : rroF --f n,,G). 

Proof. (a) Lety’ E n,F’. We must construct 7 E n,,F such that f(r) = J’. 
Since g : rr,G - n”G’ is surjective, there is an element 5 in r,,G such that 

g(2) i’(?,‘). Now 

hp(,$?) = p’g(%) L p’i’( 7’) T 5 z h(f,T). 

Since h is injective, it follows that p(Z) = ii. Hence, by exactness, there is a 
zc E Oh(F) such that ZZ = B. It follows that 

i’f (W) = g(C) = g(Z) = i’( 9’). 

By 4.3 (b), there is an a’ E H’{v’j such that 

a’ . f (27) -: 7.’ 

Since h : Il(cJ - H’{v’] is surjective, a’ == h(u) for some a E H(v) and vve 
have 

f(a . zu) = 7’. 
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(b) Let y, z E Oh(F) satisfy3 = d = .?,f( 7) -: f(g). We prove that7 = 2. 
Since 9 = 2, % ~= 2, there are elements c E G(x, y), ct~~ G(.v, a); hence 

p(c) . x .-= y, P(4 ’ x -= 1. 

Sincef( 7) = f(%), we have 

ahp(c) f@(c) . x) z f(p(d) . 3) = a’hp(d). 

By 4.3(a) there is a b’ E G’{s’J such that 

p’(b’) = [hp(c)]-’ . /$+I). 

Since g : G(x) - G’(x)’ ’ 1s surjective there is a b E G(x) such that b’ = g(b). 
Then 

&p(b) == p’g(b) :- /Q(c)-lp(d)). 

Since h is injective 

P(b) r P(C)YPV) 
and it follows that 

J7 = p(c) . x = p(d) . x = 2. q 

Notice that in 4.9(b) we make no assumption on g : rr,,G + r,,G’; however, 
if this function is injective (as in the usual 5-lemma) and y, z E Oh(F) satisfy 
f( 3) = f(s), i’f( 7) = i’, then we can deduce g(y) = g(Z) = g(Z), whence 
gzJ,z. 

Another point is that the conclusion of 4.9(b) is weaker than in the ususal 
5-lemma. The following example shows that the assumptions of 4.9(b) do not 
imply f : noF --f n,,F’ injective even when g : nOG ---f rOG’ is injective. 

4.10 EXAMPLE. Suppose given a map of fibrations 

such that G, G’ are connected and the induced map n,,F - roF’ of compo- 
nents of the fibres of p, p’ over v E Oh(H) is not injective. Thus p, p’ could be 
coverings, or we could take p, p’ as in Example 2.15. Then there is the follow- 
ing map of fibrations 
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The induced map of components of fibres is still not injective, although 
the maps rO(G Ll N) + n,(G’ U N), H{ z’ - I-l(v) are injective and also } 

(G Ll H)(v) + (G’ U H)(v) is surjective. 
If we apply the full force of 4.9 we obtain the following corollary which 

assumes the situation of 4.7, 4.8. 

4.11 COROLLARY. If h : H + H’, g : G -+ G’ are equivalences of groupoids, 

then so also is f : F -+ F’. 

Proof. Since g, h are equivalences, the induced functions 

h : rOH + rroH’, h : H(v) -+- H’{v’}, g : G(x) ---f G’{x’} 

are bijective, the last one for all x E Oh(F). Hence f : rOF --j rOF’ is a bijection, 
by 4.9. But the ordinary 5-lemma for groups applied to diagram 4.8 shows 
that f : F(x) - F’{x’) is bijective for all x E Oh(F). It follows easily (for 
example, by using 6.5.13 (Corollary 1) of [l]) that f : F ---f F’ is an equiv- 
alence. 0 

This corollary can also be proved by using arguments for groupoids 
similar to those given in [2] for spaces. This sort of topic will be dealt with 
elsewhere by P. R. Heath. 

5. NON-ABELIAN COHOMOLOGY OF GROUPS 

In this section we show how the exact sequence of the previous section 
includes the well-known exact sequences involving Ho and H1 for the non- 
Abelian cohomology of groups. 

Let G be a group operating on the left of a group A. We call A a G module. 
If g E G, a E A we shah write “a for the result of operating on a by g. 

We can form the split extension G Z A and the split exact sequence 

IAA--tGzA-%G+l (5.1) 

where the elements of G 2 A are pairs (g, a), g E G, a E A; the multiplication 
in G 2 A is given by 

CR, 4kl s 4 = kg1 f a %h 

and i : a w (a, I), p : (g, a) H g. 
A section s of p has a principal part s : G + A obtained by composing s 

with projection onto A. Of course S, unlike s, is not a morphism but is a 
crossed morphism (or derivation); i.e., s satisfies 

%g1) = KY) . “W g, gl E G 
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The set of such crossed morphisms is nonempty, since the constant function 
G -> d with value I is a crossed morphism- this triwial crossed morphism 
is the principal part of the I-sectiolz s, : G --p G 2 A, g +--F (g, 1). 

Let p* : (G(G Z A)) + (GG) be the morphism of groupoids induced by p; 
p, is a fibration by 2.9. Let lc : G--f G be the identity morphism. Then 
the fibrc of p* over I G is written 

Z’(G; A). 

Clearly the objects of Zr(G; A) are just the sections of p. 
Let us abbreviate Zr(G; A) to Z’ when this will cause no confusion. 

5.2 PROPOSITIOS. Let s, t he two sections of p : G S? A - G with principal 
parts s, i. Then Zl(s, t) is bijective with the set of objects a E A which satisfy 

i(g) = as(g)(ga)-l all g E G. 

Proof. Since G has only one object, the elements of %r(s, t) are determined 
by elements (g, , a) in G k A which satisfy p(g,, , u) ~~ 1 and (go , a) s(g) :m 

Wko 3 a) all g E G. So g,, =m= 1, and the latter equation becomes, in terms 
of principal parts. 

as(g) = i(g) !‘a all <Y E G 

from which the equation of the proposition follows. [ 7 

5.3 COROLLARY. Z1{sl) is isomorphic to the group AG of elements of A 
fixed under G. 

Proof. This follows from 5.2 with s(g) = t(g) = I, all g E G. 11 
The set AC is sometimes written IIO(G; A). 
Similar calculations to those of 5.3 show that (GG){l,) is isomorphic to 

C(G), the centre of G. Note that according to 4. I C(G) operates on x,P(G; =3); 
but this operation is trivial by 4.5. 

5.4 DEFINITIOS. The l-dimensional cohomology set of G with coefficients 
in A is 

II’(G; -4) n,,%‘(G; 21). 

Notice that because C(G) operates trivially on IP(G; A), we can, by 4.6, 
identity Hl(G; A) with a subset of n,,(G(G 2 -4)). 

5.5 PROPOSITION. Let 1 - -4 4, B - C 4 I be an exact sequence of 
G modules. Thenj induces a$bration 

j’ : Z’(G; B) + Z1(G; C) 

zuhose fibre over s1 : G + G 2 C is the image of the inclusion i’ : Z’(G; iz) -+ 
Z’(G; B) induced by i. 
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Proof. A morphism f : 4 ---f A’ of G modules induces a function 

f: G 2 J - G j? A’, (g, u) it (g,f(a)), and it is easily checked that 
f : G 2 il - G 2 A’ is a morphism of groups which is injective or surjective 
according as f : A ---f A’ is injective or surjective. 

It follows that j : R - C induces a diagram 

Zl( G; B) ---Al+ Z1( G; C) 

1 1 

(G(G 2 B)) 1’+ (G(G 52 C)) 

1 1 

(GG) --id+ (GG) 

By 2.9,j, is a fibration, and so by 2.14;’ is a fibration. 
If s E Ob[Zl(G; B)], then the condition j’(J) = sr : G --f G 2 C is simply 

thatjs = i, , whence, by exactness, s factors through the inclusion i : A -> B. 
This proves that the fibre of j’ is the image of i’ : Z1(G; -4) --, Zl(G; B). 
In fact i’ is injective: indeed it is obviously inject& on objects; and it is 
inject&e on elements by 5.2. 0 

5.6 COROLLARY. Let 1 - 11 - B ---f C - 1 be an exact sequence of 
G modules. There is a six term sequence 

1 --• A” --f BG -+ C” -2 HI(G; A) + H’(G; B) - W(G; C) 

wlzich is exact in the sense of 4.3, so that Cc operates on HI(G; iz) and fhe 
bounduary 8 is defined by a(c) = c . (cls sr). 

Proof. This is immediate from 5.5 and 4.2. 0 
The sequence of 5.6 is the fundamental exact sequence of non-Abelian 

cohomology-see for example [6]. 
There is a well-known generalization of the exact sequence of 5.6 involving 

cohomology sets H,I(G; ) determined by a morphism v : G---f G. This 
comes out of the present setup as follows. 

5.7 THEOREM. Let q~ : G - G be a morphism and A a G module. Let 
Z,l == Z,l(G; A) be the jibre of p.+ : (G(G Y? A)) ----f (GG) over ‘p, and let 
H,l(G; A) = r,,Z,l(G; A). Then for any exact sequence of G modules 1 --f A ---f 
B - C -+ 1 there is a six term sequence 

1 -+ /Jr(G) p+ @z(G) + (;'dC) _a - H,,l(G; A) -* H,l(G; B) --f H,l(G; C) 

which is exact in the sense of 4.3. 
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Proof. The modifications in the previous proofs are that the objects of Z,r 
are morphisms s : G + G R A of the form g M (p(g)), s(g) such that 5.2 
becomes: ZD1(s, t) is bijective with objects a E A such that 

f(g) -I aqg)(“‘“‘a)-‘; 

that Z,l{s,} is isomorphic to Am(G), the set of elements of A fixed under the 
action of p(G); and that we obtain a fibration ZV1(G; B) -+ ZD1(G; C) with 
fibre Z,l(G; A). 0 

Other exact sequences can be obtained by considering the fibration 
Zr(G; B) + Zr(G; C) and taking the fibre over some other object of Z’(G; C) 
than the trivial section. The discussion of these is left to the reader. 

Going back to the situation of 5.6, we can obtain some 5-lemma type 
results by applying 4.9. 

5.8 PROPOSITION. Suppose given a map of exact sequences of G modules 

We have (a) If Hr(G; C), CrG and HI(G; B,) consist of a single element, then 
fie : H’(G; A) -+ H1(G; A,) is surjective. (b) If Hl(G; B), Cc and BIG 
consist of a single element, then fi* : Hl(G; A) + HI(G; A,) is injective. 

Proof. We apply 4.9 to the map of exact sequences given by 5.6. Then 
5.8(a) follows from 4.9(a), and 5.8(b) follows from 4.9(b). ci 

We now obtain an exact sequence for the case A is a G module and H is 
a subgroup of G, so that A is also an H module. 

5.9 PROPOSITION. If i : H - G is an inclusion of groups, and A is a 
G module, then i induces a covering morphism 

i* : Z’(G; A) - Z1(H; A). 

Proof. We consider the diagram 

Zl(G; A) -i3* E7 +A”_ ‘3 Z1(H; A) 

(G(G 57 A)) 2 (H(G 5? A)) 21 (H(H 57 A)) 

1 
nc 

1 
iI* 

1 
n+ 

il* 
(GG) - (ZZG) - ‘I* (HI-I) 
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in which the horizontal morphisms are induced by i; the morphisms p, are 
induced by the projections of the split extension; and W is the fibre over 
i : H -+ G. By 2.10, i,* and i,* are covering morphisms. 

By 2.14, i,- : Zr(G; A) 4 W also is a covering morphism. 
Now is* is an inclusion. Further its image contains the image of 9*, 

essentially because a section of G X A - G restricts to a section of 
H 2 A ---f H. So iE3* restricts to a covering morphism i* : Zr(G; A) + 
ZJ(H; ,4). z 

(One can also give a fairly simple direct proof of 5.9). 
The fibre of i* : Z1(G; A) --, Z’(H; A) over the trivial section sr is written 

Z’(G, H; A). 

It is a discrete groupoid consisting of the sections s of G z A ---f G whose 
principal parts s satisfy s(H) = {l}. 

5.10 COROLLARY. There is a 5-term sequence 

1 ----j AG -+ AH -2 Z’(G, II; A) -+ Hl(G; A) -+ H1(H; A) 

in which AX operates on Z1(G, H; A), a is defined by a(a) = a . sJ , and the 
sequence is exact in the sense of 4.3. q 

The quotient of Zr(G, H; A) by the above operation of AH will be written 
H1(G, H; A). By 4.3 we obtain 

5.11 COROLLARY. There is an exact sequence of pointed sets 

H1(G, H; A) & H1(G; A) -+ Hl(H; A) 

in which j is injective. 0 

In the case H is normal in G the above relative cohomology becomes more 
understandable. 

5.12 PROPOSITION. If H is normal in G, then AH is a G/H module and 
there is a bijection 

H1(G, H; A) - Hl(GIH; A”) 

Proof. That AH is a G/H module is clear since the elements of H act 
trivially on AH. 

We construct a function 

CJI : Z’(G, H; A) + Ob[Zl(G/H; AH)]. 



128 BHOWIi 

Let s E %‘(G, 13; A). If h, h’ E M, ,,y E G, then 

s@g) =: s(h) . %(g) -- ?qg), s(gh’) -- s(g) . “S(h’) = S(g). 

But given h in Ii, g in G, we can find h’ in H such that hg = gh’ (as il is normal 
in G). We deduce that 

“i(g) ~ s(hg) = s(g). 

Thus the image of s is contained in .-i H, and s is constant on each cosct ,yII. 
Hence s determines a section p(s) of (G/H) 2 AH - l GjlI as required. 

Conversely, a section t of (G/H) 2 AH -+ G/H has principal part 

t : G/H -+ AH, and the composite 

is the principal part of a section 4(t) of G 5? 9 + G such that 
4(t) E Zi(G, H; A). Clearly 4~ = 1, F/J := 1, and so 9 is a bijection. 

Two elements S, t of Zi(G, II; A) lie in the same orbit under the action 
of &qr+ if and only if they lie in the same component of Z’(G; A), and this 
is true if and only if v(s), v(t) arc in the same component of Z’(G/H; AH). 
Hence q induces the required bijection. 11 

5. I3 COROILYRS. If Fi is normal in G, and A is a G module, theye is arc 
exact sequence of pointed sets 

-with J’ kjective. i j 

6. APPLICATIONS TO HOMOTOPY THEORY 

If-V, I’ are spaces, then nLrx will mean the track groupoid as defined in [I]; 
that is, the objects of nYx are the maps X - Y and the morphisms rYx(f, g) 
arc the homotopy classes rel end maps of homotopies f ‘u g. If X, 1’ are 
spaces with base point, then ?rY? has objects the maps S --F I’ of spaces with 
base point, and the elements of rI-?(,f, g) are the homotopy classes rel end 
maps of homotopiesf Y g rcl base point. 

Afibmtion of spaces is a map p : R + R which has the covering homotopy 
property for all spaces; for spaces with base point, this will mean that all 
maps and homotopies are to be rel base point. 
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6.1 PROPOSITION. Let p : E --f B be a fibration of spaces; then for any X 

p* : xEX - rrBX 

is a fibration of groupoids. Further p, is a covering morphism tf, in addition, 
p : E + B has unique path-lifting, that is if given e E E and w a path in B 
starting at p(e), then w is covered by a unique path in E starting at e; in particular, 
p, is a covering morphism sfp is a covering map. 

Proof. This is almost immediate from the definition and 2.1 (iii). Indeed 
the necessary and sufficient condition for p, to be a fibration is that given any 
map f : X - E, any homotopy of pf is homotopic rel end maps to a homotopy 
which is covered by a homotopy off. If p has unique path lifting, then the 
above covering homotopy is unique, since a homotopy F on X determines 
for each .x E X a path t H F(x, t). 0 

The dual result to 6.1 is: 

6.2 PROPOSITION. Let i : A --f X be a cofibration. Then for any Y, the 
induced morphism 

i* : TyX -N nXyA 

is ajibration of groupoids. 

The proof here is simple. 
The canonical factorization of a fibration of groupoids leads to a simple 

version of the first step in the Moore-Postnikov factorization of afibration. 

6.3 PROPOSITIOK. Let p : E - B be a fibration, and let B be locally path- 
connected and semilocally simply connected. Then there is a factorization 

E 

such that p‘ is a covering map and K’ is u surjective$bration with path-connected 
jibres. 

Proof. By 2.4, the fibration of groupoids p, : ~3 + rrB has a factoriaztion 
p, = PK where K : TE - C is a fibration of groupoids and p : C - rrB 
is a covering morphism. By Section 9.5 of [I], the topology of B lifts to a 



topolog\; on B Oh(C) so that if p’ Oh(p) then I : 7rr3 + 7rB can 
bc identified with p. Let K’ ~~ Ob(/r); then K’ is continuous by 9.5.3 of [I], 
and it is easily checked that K’ is a f&ration. The fibres of IC’ arc path-con- 
nected since the fibrcs of T(K’) K are connected groupoids. [ I 

The results of Section 3 on lifting morphisms can be used to generalise 
well-known results on the group of covering transformations (for example 
2.6.2 of [7]): 

6.4 PROI~~~ITIOS. Let p : E p H he (1 cozwing map and let ,f-: -1. + B 
be (I map, We suppose -Y, I:‘, B me prrth-connected and locally path-connected. 
Let z E -Y, .x E E he such tlwt.f(z) p(,~). Then the set of liftings qf f is hijPctize 

witIf 

l'wof. This is immediate from 3.5 and the facts (9.5.3 of [I]) that if,/” : 
nS -F xR is any lifting of r(.f), then 1’ Oh(f’) : .Y -> E is continuous, 
,f’is a lifting off, and any lifting off is obtained in this ~vav. Lmmj 

If we apply the results of Section 4 on operations to the case of fibrations of 
spaces, then wvc obtain at one l)lo~v all the usual operations, in particular 
all those discussed in [7], Section 7.3. I:irst of all we prove: 

6.5 ~ROIJOSITION. Let p : 1; --+ I{ be a jibration (f spaces. Then fov rmn)’ 
space S there U N .functor I‘ : rRX + .‘4/ zohirh on 0hj’ect.s sends u Lm t 
-I-, I:’ ‘,~ u, dwe .I-, B Yxx u is the set qf homotopy Asses rel p qf l<fts qf u. 

Proof. \Ve know that p>. : rE.Y l ~~13~ is a f&ration so that h!. Section 4 
wc have a functor r : xBX -+ .%’ / which on objects sends u -F n,,F,, where F’,, 
is the fibre of p* over ZI. The objects of F,, are lifts of u. If ,f, g : zY + i:’ are 
two lifts of u which are homotopic ~-cl p, then f, o 0 lit in the same component 
of F,, C.‘on\ ersely if ,f, x lie in the same component of F,, , then there is a 
homotop\, G : f c” <y such that pG is homotopic rcl end maps to the constant . 
homotopy of U. This homotopy of pG can be lifted to a homotopy rel end 
maps of G to a homotopy G’ :,f - ‘y such that pG’ is constant. j ] 

Hy applying the same method to the dual case given in 6.2, we can dcrivc 
the operations used in Chapter 7 of [I]. A. s another example, recall that 
a pair (.I-, A) has nondegmeuzte base poht x,, if .x,, E :I and for any rnq>S : 
(X, -1) + ( 17, B) any homotopy off (,A$, B extends to a homotopy off. 

6.6 PROPOSITION. /A (s,AJ) / MUM nondegenerute base point .x0 . Therl 
fey uny (II, B) there is a .functov nB --f V / z&ich on objects sends h,, ‘~ l c 

[A-, -4, x,,; I’, B, h,,] this being the set of Izomotopy classes qf maps qf triples. 
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Pvoqf. Since (X, A) has nondegenerate base point, we have for any (Y, B) 
a fibration of groupoids (with obvious notation) 

p : ,(Y, B)‘XJ’ - l 7rB 

defined by evaluation on +. The required functor is thus a special case of 
that given by 6.5. p, 

The operation given in 6.5 is a special case of a more subtle operation 
which for a fibration E - B gives a functor from TB assigning to each .X ~1 Lz 
the fibre 17, over X, and to each class in ~B(x, y) a homotopy class of homotopy 
cquil-alenccs FJ -F,, (cf. [7] Th eorcm 2.8.12). This operation, and some 
generalizations, will be discussed elsewhere by P. R. Heath. 

\Ve conclude with the exact sequence of a fibration. 

6.7 PHOPOSITION. Let p : E + B he a jibration. Then for any ‘Y, map 
u : ‘I7 - l B, and lift f : <I’ -+ I:‘ qf u there is a sequence . 

~I!‘“{f~ -- nBX{u) -5 x, I:’ ‘: 2.I :F, [-Y, E] -‘1; [S, B] 

which is evact in the sense of 4.3, where the last three sets have base points f, ,f, I, 
respectkely, rBX(uj operates on X, E \~ u, and i is defined by 2(x) m .f. 

Proof. This is immediate from 4.3 and 6.5. 0 
4 similar exact sequence is valid for the case p : E -+ B is a fibration of 

spaces with base point, where rEX, mBX are replaced by TE?‘, rB!. But then 
we can take f ~~ . , u -= . to be constant maps so that (modulo suitable 
topological assumptions, or by working in a convenient category of spaces) 

%-ET{.) z [2X, E] “- [S, QE] 

nB<{.) gg [2x, R] E [A-, SZB] 

where Z-y is the reduced suspension of S and L? is the loop space of S. 
Further if F is the fibre of p over . , then X, B \ . [X, F]. So the exact 
sequence of 6.7 becomes the usual exact sequence 

[A-. QE] 2% [X, ml] --> [X,zq -- [‘Y, E] -----f [-u, B]. (6.8) 

Hcrc p* is induced by Szp : QnC f - QB. Since L+ is also a fibration, the 
sequence (6.8) can be continued indefinitely to the left. 
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