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INTRODUCTION

The notion of a covering morphism of groupoids has been developed by
P. ]. Higgins [4, 5] and shown to be a convenient tool in algebra, even for
purely group theoretic results. That covering morphisms of groupoids model
conveniently the covering maps of spaces is shown in [1]}.

If we weaken the conditions for a covering morphism we obtain what we
shall call a fibration of groupoids, and our purpose is to explore this notion.

The main results are that, even if we start in the category of groups, then
certain constructions lead naturally to fibrations of groupoids; that for
fibrations of groupoids we can obtain a family of exact sequences of a type
familiar to homotopy theorists; and that these exact sequences include
not only the bottom part of the usual exact sequence of a fibration of spaces,
but also the well known six term exact sequences in the non-Abelian coho-
mology of groups [6]. A further advantage of our procedure is that the same
setup leads naturally to a definition of non-Abelian cohomology in dimensions
0 and 1 of a groupoid with coeflicients in a groupoid. This cohomology
(which will be dealt with elsewhere) generalises a non-Abelian cohomology of
a group with coeflicients in a groupoid which has been developed by
A. Frohlich (unpublished) with a view to applications in Galois cohomology.
Another question not touched on here is possible application of these methods
to the non-Abelian H2

There is some overlap of this paper with techniques used by J. Gray in [3].
However, the aims of that paper are quite different from ours, and so the
theory is developed here from the beginning.

1. Tue Catecory OF GROUPOIDS

The basic theory of groupoids is covered in [1] and in [5] but in order to
make this paper relatively self-contained most of the elementary notions will
be recapitulated here.
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104 BROWN

A groupord 1s a small category in which every morphism has an inverse.
However such a groupoid will be regarded as an algebraic object in its own
right, and so it is convenient to call the morphisms of a groupoid G elements
of G, so that to some extent G is identified with the (disjoint) union of the
sets G(x, y) for all x, v in Ob(G).

A groupoid G is connected if G(x, ¥) is nonempty for all objects x, ¥ of G.
The components of G are the maximal, connected subgroupoids of G. At the
other extreme, a groupoid G is discrefe if its only elements are identities;
such a groupoid can be 1dentified with its set of objects.

If x is an object of G, then under composition’ the set G(x, x) is a group,
written G{x}, and called the object group, or vertex group, of G at x.

A morphism f . G — H of groupoids is simply a functor. Then ker f is
the set of elements @ in G such that f(a) is an 1dentity of I7, and Im f 1s the
set of elements f(a) for @ an element of G. Clearly ker fis a subgroupoid of G,
but Im £ is in general only a subgraph of H, since the composite of two cle-
ments of Im f may not again be an element of Im f. For example, let 4
denote throughout this paper the groupoid with two objects 0, | and only
two nonidentity morphisms « € £(0, 1), ' €.7(0, 1). Then any nonconstant
morphism # — Z (where 7, the additive group of integers, is considered as
a groupoid with one object) has image which is not a subgroup, and so not
a subgroupoid, of Z.

As is usual, a subgroupeid N of a groupoid G is called fuil if N{x, v} ==
G(x, v) for all objects x, y of N. We say a subgroupoid N is wide in G if N
has the same objects as G.

A subgroupoid N of G will be called normal if N is wide in G and for all
objects x, v of G and g € G(x, y) we have

gN{yi g - Nix

In such case the quotient groupoid is defined as follows (cf. [5]). The objects of
G/N are the equivalence classes of objects of G under the relation v ~ ¥
if N(x,y) is nonempty; the elements of G/N are the equivalence classes of
clements of G under the relation g ~ /% if there are elements a, & of N such
that agh is defined and equal to /; composition in G/N is induced by compo-
sition in G. The projection p : G —> G/N is then a morphism of groupoids
which is universal for morphisms / from G such that Im f is discrete.
Any such universal morphism, which must be of the form p followed by an
isomorphism, will be called a quotient map.

Suppose further that B is a subgroupoid of G such that B contains V.
Then B/N is a subgroupoid of G/N. In particular, N/N is a subgroupoid of
G/N; however this subgroupoid docs not, as in the case of groups, have

' We shall write maps on the left so that the composite of « € G(x, ¥), b€ Gy, 2)
15 ba € Gix, 3).
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only one element, but instead 1s the discrete groupoid with one object for
each component of V.

Let f: G — H be a morphism of groupoids. The fibre of f at an object y
of H is the subgroupoid of G whose elements are mapped by f to the identity
at y; this fibre is written f=1(y). Clearly the kernel of f, ker £, is the sum
(or disjoint union, as it is also called) of the fibres f ~!(y) for all objects y of H.

Further ker f is a normal subgroupoid of G. So we have a factorization

G
Y
i Gfker f (1.1)
l p(f)
H

A vital difference now emerges between groups and groupoids. If G and H
are groups and we factor f as in (I.1) through a quotient map, then pf f)
15 an isomorphism onto Im f. However, we have already pointed out that
for groupoids Im f may not be a groupoid. A further important fact is that
p( /) may make some identifications. For example, if f:.# —> Z, maps ¢ and
vt to 1, then «( f) is an isomorphism and p( f) is essentially just f.

For a general morphism f, the kernel of p( f) will consist only of identities,
which we can express as p( f) has discrete kernel.

Let G be a groupoid, and x € Ob(G). Then St; x is the union of the sets
G(x, y) for all y € Ob(G). If f: G — H is a morphism, and x € Ob(G), then
Sty x is the restriction of f mapping St; x — Sty f(x). We say fis star injective,
star surjective, star bijective according as St; x is injective, surjective, bijective

for all & € Ob(G).

1.2 ProvosiTioN. A morphism f: G — H has discrete kernel if and only
if f is star-injective.

Proof.  Suppose f has discrete kernel. Let g, b € St x, and suppose f(a) -
J(8). Then ab~! € ker f, which is discrete. Hence ab™! is an identity, and so
a=b.

Conversely, let f be star injective. If f(a) is an identity of H, then f(a) =
f(1,) where x is the initial point of a and 1, is the identity at x. By star
mjectivity, a = 1,; so ker f is discrete. [

A morphism [ : G — H is faithfull (resp full) if the restrictions of f mapping
G(x, ¥) — H(f(x), f()) are injective (resp surjective) for all objects x, y of G.
Clearly star injective implies faithful, and star surjective implies full.
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Going back to (1.1), the fibres of p(f) : Gjker f — H are discrete, and so
may be considered as sets. The construction of p( /) shows that if x € Ob(H),
then the fibre of p( f) over « is simply =, f~!(x), the set of components of the
fibre of f over «.

The factorization (1.1} is functorial. In order to express this precisely,
let %, denote the category of groupoids and groupoid morphisms, and let
@ denote the category whose objects are morphisms of groupoids, and
whose morphisms from f: G — I to f': G' - H’ arc commutative squares
of morphisms

GG
; l I (1.3)
H > I

1.4 PROPOSITION. p extends to a functor p: G —» G,

Proof. Suppose given the commutative diagram (1.3), then a(ker f) C ker
and so « defines o' : Gfker f — G'Jker f', and we set p(x, B) == (&', B). "7

We now consider homotopy notions for groupoids.

A morphism f: G % .# — H of groupoids is also called a homotopy from
fo to fi, where f, = f( ,€):G— H, ¢ ==0,1. Thus f, = f24i, where
7,: G-> G x . is the inclusion g+ (g, ) for € == 0, |. For each object x
of G, let 8, == f(x,¢)e II. Then for anv a € G(x, v) we have a commutative
square of elements of H

Jol®) = fi(x)
e l l Fila) (1.5)
() 5 F()

so that
fila) b, =0, fi(a). (1.0)

Conversely, given a collection of elements 0, in Sty f(x) for each x € Ob(H),
then we can define a homotopy f from f, to f; where £, is determined by (1.6)
(cf. [1] Section 6.5). Thus a homotopy is the same as a natural equivalence;
and if G, H are groups, the relation of homotopy between morphisms G — H
is just conjugation by elements of H (since in this case G has just one object).

Another way of expressing the above results is in terms of free products.
Recall from [l, p. 270] that a free product G, = G, of groupoids G,, G,
is a pushout of the diagram of inclusions

G, < Ob(G,) N OB(G,) — G,
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(where Ob(G,) is regarded as a discrete subgroupoid of G,). Then we have:
G X # is the free product

(G x 0) = (Ob(G) x .9),

because a morphism G x .# — H is completely determined by morphisms
G x 0 H, Ob(G) x # — H which agree on Ob(G) < 0.

A generalization of this will be convenient later.

1.7 ProposiTiON. Let A be a subgroupoid of G, and let Q be the full

subgroupoid of G X< & on Ob(G x 0) U Ob(A4 < .J). Then the diagram of

inclusions

AXx0—> 4 xS

l |

GX0——>0Q
is a pushout.

Proof. Suppose given a commutative square of morphisms

AX0-55>4x75

T

Let 7 :0b(G) x .# — H be any morphism extending g | Ob{A) < .#.
Then f and % define a morphism  : G x F — H, and ¢ == | Q extends
both f and g. However, any element of O can be written as a product of
elements from X X 0 or 4 x .#; so there is at most one morphism O — H
extending fand g. []

In analogy with constructions in homotopy theory, the groupoid Q of 1.7
will be written G X 0 U 4 X J; however, note that if A is wide in G, then
Gx0udxg=GxS

We now define a groupoid (GH). The objects of (GH) are the morphisms
G — H. The morphisms in (GH)(f,,f;) are just the homotopies f, to f;,
and homotopies are composed in the obvious way [for example by composing
squares such as (1.5)]. The composition of homotopies f: fy ~f;, ¢ : fi = fs
iswritteng - f: fy ~ f,

The groupoid (GH) satisfies the exponential law:
(GH)K) 2= (G x H)K) (1.8)

the isomorphism of (1.8) being given by the usual exponential formula.
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Finally, we shall assume as known the notion of a pullback square

for which it is sometimes convenient to refer to p as the puliback of p by f.

2. FiBraTions aND COVERING MORPHISMS

A regular completion of a square of morphisms

N G

|
!
P
A%

Vool

is a morphism ¢ : " — G such that
pe =8 @)
2.1 ProposITION. Let p : G — H be a morphism of groupoids. The following

conditions are equivalent.

(1) (The covering homotopy property). For any groupoid X, any commutative

square
X LG

W | l z (2.2)
Xx & —>H

has a regular completion.

(it) (Path-lifting property). Any commutative square

0 —G
L
S —— I

has a regular completion.

(i) The morphism f is star surjective.
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Proof. 1t is clear (by taking X to be a point groupoid) that (i) — (ii).
Also (ii) — (iii) because morphisms 0 — G are bijective (under evaluation
on 0) with objects of G, and morphisms .# —> H are bijective (under evalua-
tion on 1) with elements of H.

We now prove (ii1) — (i). Let £, F be as in (i). For each object x € .X choose
an element &, in Stg fx such that

p(0a) = F(x, 4);
this is possible by (iii). By [I, Section 6.5] the morphism f and the function
x — 0, determine a morphism X X .# —» G; and this morphism is the
required regular completion. []
It may happen that the regular completion of diagram (2.2) 1s unique—in
this case we say p has the unique covering homotopy property. Similarly, we have
the unique path-lifting property.

2.2 ProrosiTioN. For a morphism p: G — H of groupoids, the unique
covering homotopy property, and unique path-lifting property, are equivalent,
and are each equivalent to the condition that f is star bijective.

The proof of this is clear.

Because of the analogies shown by 2.1, 2.2 with topological situations,
we call a star surjective morphism a fibration, and a star-bijective morphism a
covering morphism.

Note that a morphism p of groups is a fibration if and only if p is surjective
and p is a covering morphism if and only if p is an isomorphism. On the other
hand, the morphism & — Z; of groupoids which sends ¢ = +1, ¢"1i> —1
and the identities to 0, is surjective on elements, but is not a fibration.

2.3 Prorosimiox. A fibration p is a covering wmorphism if and only if
ker p is diserere.

Proof. 'This follows from 1.2. ]
On the other hand, given a fibration we can use the factorisation of Section |
to construct a covering morphism.

2.4 ProrosiTiON. Let p : G — H be a morphism, and let
G

"

!

"

I

) \c
e
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be the canonical factorization of p with C ... Gjker p. Then « is a fibration,
and if p is a fibration then p is a covering morphism.

Proof. Let x € Ob(G), ¥ == «(x). If c€8tcy, then ¢ - «(b) for some b
in G(3', a") say. Since «(x) == x(x'), there is an element d in (ker p)(x, x°).
Then bd € St x and «(bd) - ¢. This proves « is a fibration.

Now let y e Ob((), and suppose a € Sty py. Choose an x & Ob(G) such
that x(x) ~ ¥, and choose, using the fibration property of p, an clement b
of Stga such that p(d) = a. Then ¢ - «(b) satisfies ceStey, plc) - a.

S0 we have proved that the restriction of p mapping Stey —> Sty p(v) is
surjective; it 1s injective because p has discrete kernel, 7

2.5 CoroLLary. If N & a normal subgroupoid of G, then the quotient
morphism G — G/N is a fibration.

Proof.  Apply 2.4 with p the quotient morphism G — G/Nandx - p. 1
Let ., Ger denote the full subcategories of %" on the fibrations and
covering morphisms respectively.

2.6 CoroLLary. The functor p : G -~ G\ restricts to a functor.

p i Fil > Cen.

We now give some rules for deriving new fibrations from old ones.
° g

2.7 PropositioN.  Let p: G > H, g : H ~> K be morphisms. Then
(1) if p, q ave fibrations (resp. covering morphisms) then so also is ¢p;
(ii) if qp and p are fibrations, and Ob( p) is surjective, then q is a fibration;
(1) if gp and q are covering morphisms, then so also is p.
Proof. 'Fhis amounts to considering the sequence of restrictions of p and ¢
Stgx — Sty y — Stx ().

In (1) and (111) we take ¥ = p(x), while in (ii) we are given ¥ and use the fact
that Ob( p) is surjective to find x such that y — p(x). Then (1), (i), and (iii)
correspond to simple criteria for functions to be surjective or bijective. [

2.8 PROPOSITION. Suppose given a pull-back square

0——C
P l l n
N o H

If p is a fibration (resp. covering morphism) then so also is p.
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Proof. 'This is a simple consequence of the covering homotopy property
of fibrations or covering morphisms, and the universal properties of pull
backs. [~

L

Our next examples involve the groupoid (XG), and will be essential for
our description of the non-Abelian cohomology of groups.

2.9 ProposiTioN. If p: G — H is a fibration (resp. covering morphism)
then for any groupotd X the induced morphism
(Xp) : (XG) — (XH)

is a fibration (resp. covering morphism)

Proof. 'This is an easy consequence of the covering homotopy property
and the exponential law (1.8). 7

2.10 ProvosrrioN. Let G be a groupoid and i: A4 -~ N an inclusion
morphism. Then the induced morphism

(iG) : (XG) — (4G)
is a fibration, and is a covering morphism if A is wide in X',

Proof. By the exponential law and 2.1 (1) it is sufficient to prove that
given any commutative diagram

A0 5,1 x ¥

|

XX0—r>G

then there is a morphism F : X X .# — ( extending both f and g, and that
such an /' is unique if 4 is wide in .X. Define a homotopy function 0 on
Ob(X) by 0, = g(x, ) if xeOb(4), and 8, is any element of St; f(x, 0),
if x ¢ Ob(4). By Section 1, 6 defines a homotopy F: X x .7 ->» G which
extends both f and g. If 4 is wide in X, then F is determined by f and 8, ==
g(x, ) == F(x, ), x € Ob(X). Thus F is unique in this case. [

There is a proposition including both 2.9 and 2.10. We use the groupoid
X > 0uU 4 < f of 1.7, which is defined when 4 1s a subgroupoid of .X.

2.11 ProposiTION. Let A be a supgroupoid of X and p : G —~ H a fibration.
Then any commutative square

Xx0oudx.f-1sG

gl lp

XX S e H
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has a regular completion which is unique if A is wide in X or if p is a covering
morphism.

Proof. All that is needed is to lift the restriction of F mapping
Ob(Y) » # — H to a morphism Ob(X) x . — H agreeing with / on
Ob(X) » 0 and Ob(A) ¥ .#; this can clearly be done using the fibration
property, and the lifting is unique if p is a covering morphism or if 4 is wide
in X, 7

The following corollary of 2.1 1 1s usctul is classtfying sections of a fibration.

2.12 CorovLary. Letp : G > H be a fibration, and f : X — H a morphism
where X is connected. Let [ : X > G be a morphism such that pf - f. Suppose
x € Ob(XX) and = belongs to the same component of p~'f(x) as f(x). Then f is
homotopic to a morphism ' : N — G such that f'(x) - =, and pf’ - f.

Proof. Let w be an clement from f(x) to z lying in p~'f(x). We apply 2.11
with 1 {x}, with /2 defined by

Mo, 0) ~ f(x)  aeX
M, ) - w

and with I the constant homotopy of f to itself. By 2.11, F lifts to a homotopy
X » # - G extending A, and the final morphism of this homotopy is the
one required. [T

By using 2.11 and the exponential law, it is casy to prove the following
gencralization of both 2.9 and 2.10.

2.13 ProrosiTioN. Let p: G — H be a fibration and .: .1 >\ an
inclusion. Consider the diagram

in which the inner square is a pullback and k is determined by (Xp) and (iG).
Then k is a fibration, and is a covering morphisnt if A is wide in X or if p is a
covering morphism.

The final proposition of this section will be used 1n constructing “fibrations

along the fibres”.
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2.14 PROPOSITION. Suppose, given a commutative diagram of morphisms

Oy
T
G-I
T
H o> 11

in which (1) F = p~Y(y), 1" = p"Yy') are the fibres of p, p’ over y € Ob(H)
and y' = fi(y), respectively; (i1} f; has discrete kernel (or at least the kernel of
H{y}— H'{y"} is trivial). Then f, is a fibration or covering morphism if f, is a
fibration or coveritng morphism respectively.

Proof. Let x € Ob(F), a € Stp f4(x). Then also a € Sty fo(x) and so a lifts
to an element b € St «, since f, is a fibration. However

flp(b) - P/fg(b) o p’(a) = 11// .

By (i1), p(b) =- 1,,, and so beF. Since 7 is an inclusion and fo(b) = a, it
follows that f,(b) -= a. If f, is a covering morphism and b, &' € St; » satisfy
f3(B) = f4(8") = a, then f(b) = f(b') = aandso b - b". []

We conclude this section with a more concrete example which will be
useful later. This example is obtained essentially by taking fundamental
groupoids of the usual fibre bundles M —» S, éM -> S' where M is the
Mébius band, M is the boundary of A and S* 1s the circle.

2.15 ExampLe. Let T be a free cyclic group with generator ¢. Let
p': T x # — T be the projection; it is easy to check that p’ is a fibration.
Define p: T x # — T to be the homotopy of p, : t" — #*" determined by
the element # of T'; then p is a covering morphism called the double covering
of 7% Define g: T x . — T x .# to be the homotopy of g, : t" — (¢£27,0)
determined by the element (¢,:) of 7" x #. Then p'g == p, so that (g, 1)
is a morphism p — p’ of fibrations. Notice also that the (unique) fibre of p
is discrete, while the fibre of p’ is /.

3. LirtiNG MORPHISMS

Throughout this section, p : G — H will be a fibration of groupoids.

3.1 ProposiTiON. Let x € Ob(G), and let h,... h, be a product in H
such that hy e Sty p(x). Then there are elements g; in G such that g, € St. x;

481/15/1-8
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ple) = hy i = 1,..., n; and the product g, ... g, is defined in G. These elements
g; are unique if p is a covering morphism.

Proof. The proof is easy usmg .1 (in) and shifting in turn from the
initial to the final point of 4 ..., &, . [}
Let f: X — H be a morphism. If x e Ob(X), then the subgroup

ACSED)

of H{ fx} is called the characteristic subgroup of f at x. Recall that subgroups
C of H{x"}, D of H{y'} are conjugate if there is an element & of H(x', y")
such that 71Dk == C

3.2 ProPosITION. Let C be the characteristic group of p at x. (i) If D is the
characteristic group of p at y, and x, y lie in the same component of G, then C
and D are conjugate. (i) If D is a subgroup of H{y'} and D is conjugate to C,
then D is the characteristic group of p at y for some y.

Proof. (1) Let g€ G(x, y) and let p(g) = A. If ¢’ € C, then ¢ is covered
by an element ¢ of G{x}. Clearly p(geg™") = hc'h™, and so ACh-' C D.
Similarly, 271DAh C C| and hence A~1Dh = C.

(i1) Suppose A~tDh = C. Let g be an element of St x covering A. Let y
be the final point of g, and let D’ be the characteristic group of p at y. We
prove D' = D.

If d"€ D, then d' = hc'h™! for ¢/ € C. Then d’ is covered by an element
geg~! with ¢ € G{x}; hence d'e D’. Conversely, if d'€ D', then d’ is covered
by an element d of G{y}, whence d = hc'h! where ¢’ = p(g~1dg). [

The above is essentially the same as 9.3.2 of [1].

We are now interested in the following question: given a morphism
f:X — H, when does f lift to a morphism f: X — G, that is, is there a
morphism f: X — G such that pf = f? We shall see that this reduces to
a group theoretic problem in the case p is a fibration; the solution of this is
simple when p is a covering morphism, and in this case we shall determine
the set of all liftings.

It is convenient to work first in the category of pointed groupoids. So we
consider the following question: given morphisms of pointed groupoids

G, x

ll.

X,z——H,y

when does f lift to a morphism f: X, ¥ — G, «?
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3.3 ProposIiTION. Let X be connected. Then f lifts if and only if, in the
following diagram of restrictions

Gix}

lﬁ

X{z} —> H{},

Flifts to a morphism X{z} — G{x} of groups.

Proof. Clearly, if f lifts, so also does f. On the other hand suppose a
lifting f' of f exists. Write X = X{}*T where T is a tree groupoid (8.1.5
of [1]). Clearly f| T: T, x— H, y lifts to a morphism f": T, ¥ — G, x (since p
is a fibration). The morphisms /', f define a morphism f : X, = —> G, x which
lifts £, [

3.4 CoroLLARY. Let X be connected and p a covering morphism. Then the
pointed morphism f lifts if and only if the characteristic group of f (at 2) is
contained in the characteristic group of p (at x), and in such case the lifting is
unique.

Proof. 'The first part follows from 3.3 since p : G{x} — H{y} is injective.
If the lifting f' of f exists, it is unique. Also the lifting of f| T' (where T is
as in the proof of 3.3) always exists, and is unique. [

We suppose for the rest of this section that p: G — H is a covering
morphism. In order to solve the lifting problem for nonbase point morphisms,
we need some notation.

Suppose K is a group, and F, C are subgroups of K. The K normaliser of
(F, C) 1s the set

Ni(F,C) ={ke K:F C kCk™}.
In general, this set is not a group, although it is a group if F = C [in which
case it is the usual normaliser N(C) of C in K], or if F is normal in K. How-

ever, we do have the additional structure that C operates by right-multiplica-
tion on Ng(F, C); the set of orbits is written

N(F, C)]C.

3.5 Tueorem. Let f: X — H be a morphism, and let p: G — H be a
covering morphism; we assume X, G, H are connected. Let

F = f(X{z}), C = p(G{x})
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be the characteristic groups of f, p at =, x respectively, where we assume f(z) =
p(x). Let K = H{ px}. Then the set of liftings of f is bijective with N (F, C)/C.

Proof.  Let @ be the sct of liftings of £. We define a function
@ Ne(F, C) - D,

Let ke Ng(F, C), so that F' C kCk-1. Then £ lifts uniquely to an element
g € 5t; & with final point &’ say, and C’, the characteristic group of p at &7,
is kRCk™', by 3.2. Since F C (", it follows from 2.4 that f lifts uniquely to a
morphism f: X -> G such that f(z) = &', and we set g(k) = f.

If f: X — G is any lifting of f, then there is an element g in G(x, f(2));
if & = p(g), we have f = (k). This proves @ is surjective.

Now ¢ is not injective in general. For suppose ¢’ € C, so that ¢’ = p(c) for
some ¢ € G{x}. If g € St x lifts ke N(F, C), then gc € Stg; x lifts k¢’; but g
and gc have the same final point, so that (kc’) == ¢(k).

On the other hand, suppose ¢(k) - @(£'), and that g, g’ € St; x lift £,
k" respectively. Then g, g have the same final point, and so ¢ = g-¢" € G{x}
is well defined. Clearly 2 = Ap(c).

Thus ¢(k) — (k') if and only if AC =~ £'C, and so we have proved that ¢
induces a bijection N(F, C)/C' — &. ]

In the case f == p, the liftings of p are called covering transformations, and
we can make 3.5 a little more precise.

3.6 TueoreMm. Let p: G — H be a covering morphism such that G and H
are connected. Let C' be the characteristic group of p at a point x of Ob(G).
Then the set of covering transformations is under composition a group anti-
isomor phic to N(C)/C.

Proof. Let K = H{px}. In this case, N(C) — Ng(C,C) is a group
containing C as normal subgroup, and Ng(C, C)/C is the quotient group
N(C)/C. Let ¢ : N(C) — @ be the function defined in the proof of 3.5,
where @ is now the set of lifts of p. We prove that e(k,k,) = ¢(k;) (k).

For e = 1, 2, let k. e N(C), let g.€ G(x, x,) lift £, and let ¢(k) = f.,
so that f(x) = x.. Then fi(g,) € G(x;, fi(xs)). Since pf; == p, we have
pfi(gs) = ky. Hence fi(g.) g, €St x and lifts kyk, . The final point of
Ji(g2) &2 1s g(Roky)(x). Hence

PRk )(w) = filxs) == ffol®)-

It follows that ¢(k.k,) = f, /. = (k) e(ky).

Since ¢ : N(C)— @ is an antithomomorphism, which is surjective and
has kernel C, it follows that ¢ induces an antiisomorphism N(C)/C — @,
and this implies that @ is a group. []
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4. OPERATORS AND EXACT SEQUENCES

Let p : G — H be a covering morphism. If x € Ob(H), then the fibre p=1(x)
is discrete, and so we regard p~!(x) both as a subset of Ob(G) and as a sub-
groupoid of G.

We now define an operation of H on Ob(G).

Let he H(x, y) and let &' € p~'(x). Then 4 lifts to a unique element g of
Stg &', and the final point of g is written /. &’ Clearly

1.0 =, K (h.x) = (k).

when these are defined. However 4 . x* is defined if and only if & € Sty p(x').
So to make the notion of an operation clear we follow Ehresmann in defining
an operation of a groupoid on a set.

Let H be a groupoid. An operation of H is a quadruple (H, S, w, .) where S
is a set, w:.S— Ob(H) is a function and .: (4, &) — A .x" is a function
defined whenever A e Sty w(x’). The axioms we impose are that w(h . x’)
shall be the final point of 4, and also the usual rules 1 . &" — &', 2" . (k. &) =
(Z'R) . ¥’ whenever both sides are defined. Note that if # € H(x, v), then the
operation gives us a function A, : w™(x) - w~Y(y), ¥’ — k. x’, and we have
1, — I, (#h), = #,h, . Thus an operation of H defines a functor i — .7/,
where #¢/ 1s the category of sets.

The operations of groupoids form a category (2 whose objects are opera-
tions (H, S, w,.) and whose maps (H, S, w,.)— (H,'S’, &',.) are pairs
(i, ) such that s : H— H’ is a morphism of groupoids, f: S — 5" is a
function, and we have the axioms

() /= Ob(w
(i) (h) . f(x") = f(h.x"), whenever i . 5’ is defined.

We mention (but shall not use the fact) that the above way of constructing
a functor from an operation defines an equivalence between the category ('
and the category #( whose objects are functors I" from a groupoid H to
FSef, and whose morphisms I' — I are pairs (¢, f) where y : H — H' is a
morphism and f:I"— I"¢ is a natural transformation. For our present
purposes, the category (/% is more useful that # (4, but in other situations,
for example in order to have an operation of a groupoid on vector spaces, the
description of an operation as a functor is perhaps more convenient.

In the third paragraph of this section we defined for each covering morphism
p : G — H an operation

o(p) = (H, Ob(G), Ob(p), .).

4.1 ProrosiTION.  The function p — o p) extends to a functor o : Cov —> s
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Proof. Suppose given a commutative diagram

GG
Tt
H——H'

where p, p’ are covering morphisms. Let f = Ob(g) : Ob(G) — Ob(G").
Then Ob(p").f = Ob(¥) . Ob( p), and this verifies one condition for (i, f)
to be a map of operations.

To verify the other condition, let & e H(x, y), ¥ € p7(x). If ge G(x', ")
lifts &, then 2 . 8" = 3'. Further ¢(g) in G( fx', fy’) lifts s(k), and so

k) f(x) = f() = fh- &)

We have now defined 6 on maps in €ev. The verification that o 1s a functor
is straightforward. []
In Section 2 we defined a functor p : #£ — Fse. Let 7 be the composite

T = op : Fil — ((/(.

Then 7 gives the operations which are fundamental in the theory of fibrations.
That 7 is a functor expresses the fact that these operations are natural with
respect to maps of fibrations.

Let p: G — H be a fibration. It is useful to describe the operation 7( p)
explicitly. First of all,

~(p) = (H, Ob(Glker p), o(p), -)s

so that H operates on Ob(G/ker p). If he H(x, y), then k, is a function
o p) " Ux) — o(p)~»). But o(p)~(x) = myp~Y(x), the components of the

fibre over x. Thus we have
hy 2o p(x) > mep7H(y)-

This function can be described explicitly as follows: Let " denote the com-
ponent of &’ in myp~'p(x"). Then £ .x == y" where 3’ is the final point of
some lifting of % which starts at x". It can be verified directly and easily that
j' is independent of the choice of x in its class, and of the possible liftings of /.

However, the previous, more abstract, construction of 7{(p) has the advan-
tage of making obvious the naturality with respect to maps of fibrations.

We now use the operations to construct exact sequences.

Suppose p : G — H is a fibration, x € Ob(G) and F == p~!p(x) is the fibre
over p(x). The inclusion F' — G is written ¢; and X, & denote the components
of x in w,F, 7,G, respectively. Define

0 H{px} — m F
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by
oh) = h.x

and consider the sequence

1~ Fi} -5 G} = H{pa} 2> mF Lo 7G 2> mgH - (42)

in which we abuse notation by writing 7, p for maps induced by 7, p respec-
tively. Notice that the first four terms of the sequence are groups, and the
last three terms are sets; however, we give these sets basepoints, namely ¥
(which is, as above, the component of x in F), & (the component of x in G)
and px (the component of px in H). With this choice of base points, each
function in (4.2) has a well-defined kernel, so that it makes sense to speak of
the sequence being exact. However, there is also an operation of H{px} on
mol"; this is used in the definition of 2, and we will see that it gives additional
information about exactness.

4.3 TueoreM. The sequence (4.2) of groups and based sets is exact in the
usual sense. Further:

(2) If h, k€ H{px}, then 8(h) = &(k) if and only if there is a g in G{x} such
that p(g) = k~'h.

(b) If ¥, e mF, then 1(y) = i(8) if and only if there is an h in H{px}
such thath .y = z.

Proof. (1) Exactness at G{x} is clear, since F' = p~1p(x).

(if) We prove exactness at H{px}.

If g € G{x}, then g is a lift of p(g), and g has final point x. Hence dp(g) = %.
So Im(p : G{x} — H{px}) C ker 8. The opposite inclusion is implied by (a},
s0 we now prove (a).

Let o(h) = o(k), so that o. ¥ = k. %. Then k% .% = % This implies
that 4717 lifts to an element g’ € G(x, 2), say, where @ = ¥. So F(z, x) is
nonempty. Let g” be an element of F(z, x). Then g = g"g’ belongs to G{x}
and p(g) = p(g’) = k~'h.

On the other hand, if 2~'h = p(g), where g € G{x}, then A~*h . ¥ = ¥ and

soh.x =Fk.X

(iii) We prove exactness at woF. This is clearly a consequence of (b).

Suppose then 7, Fem ' and i(¥) = i(2). Then G(y, 2) is nonempty;
let g€ G(y, 2). Then & = p(g)e H{px}, and & == k. 3.

On the other hand if Ae H{px} and h.J = %, then & = p(g) for some
g € G(y, =), and so y, z are in the same component of G, that is #( §) = i(3).

(iv) We prove exactness at 7,G. Clearly Im(7 F — m,G) C ker(myG — = H).
Suppose then p(F) = px. Then H(px, py) is nonempty, containing an
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element /, say. Let g € St; y 1ift 27 and Jet & be the final point of g. Then
p(z) = p(x), and i(3) = 5. []

4.4 CoroLrary. Let p:G — H be a fibration, and let v = Ob(H).
Then there ts a bijection

g0 L HiyY pGix) — mop~ ()

£

where the disjoint union 1s taken over any set X of objects x of G which satisfy
p(x) = v, and such that X is a complete set of representatives of the subset

PN Y) of mG.

Proof. 'The function 0 of 4.2 depends on x and so will here be written 0, .
By 4.2 (a), the functions &, induce % as above, and 7 is injective on cach set
of cosets H{y}/pG{x}. Also, if x, v' € X and x 54 &', then & =% &', whence

Im(2,) N Im(e, ) = 7Yx) N 71(&) by

So 7 1s injective.

Finally % 1s surjective, because if ¥" e =y p~1(y), then {(x") = i(x) for somc
x € X and so ¥ € Im(9,) by exactness. "1

The exact sequence simplifies in case p : G — H has a section, that is,
if there is a morphism s : H — G such that ps = 1.

4.5 PropositioN. Let p: G —> I be a fibration, and s a section of p.
If ve Ob(H) and h € H{v}, then

Proof. Let p - px be the canonical factorization of p. The covering

morphism p has section «s, and s(z) -= xs(v). But xs(k) is the unique lift
of /& which starts at «xs(v), and «s(h) finishes at «5(v). So k. xs(v) - ws(2). [

4.6 CoroiLary. Let p: G — H be a fibration with fibve F over v € Ob(H).
Suppose (*): every component of F' contains an object s(v) for s a section of p.
Then the function miF — =G induced by inclusion is injective.

Proof. 'This follows from 4.5 and 4.3(b) with y = s(v), & = s'(v) for
sections s, s" of p. 7]

Notice that it follows from 2.12 with f: X — H, the identity morphism
on H, that the condition (*) of 4.6 is equivalent to (**): every object of F
is of the form s(o) for s a section of p.
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The exact sequence of 4.2 is natural in the following sense. Suppose given
a commutative square of morphisms

G 1> G
3 K @.7)
H— > H

where p, p’ are fibrations. Let ve Ob(H), v = h(zv); let F = p~Y(v),
F' = p"~)(v'), then g induces a morphism f:F —F' of fibres. Choose
x € Ob(F) and let & = f(x). Then we have a diagram

; 2 L ,
| — Fia} ——> G{x} > H{z} 7o > 7 G L

R R (e

| Fi} —r G} —r H{0) —r mF == G ——> g

in which m,F, =,G, w /T have base points ¥, &, 7; w,F", m,G’, m H' have base
points &', &, ¢; and &, & are given by operations on &, &', respectively. Then
4.8 is commutative by commutativity of 4.7 and naturality of the operations.

Next we prove a 5-lemma type result, which uses the operations in a
crucial way. We suppose given the situation as above.

4.9 TueoreM. (a) If h: H{v} — H'(v'), g : m¢G — m G’ are surjective and
h:m H — moH' is injective, then f: mglt — mw I’ is surjective.

(b) If h:H{o} — H'{¢'} is injective and g :G{x} — G'{x'} is surjective,
then f 2w, F — m,F' is injective on ker(i : meF — m,G).

Proof. (a) Lety' €= F’. We must construct y € mpF such that f(7) = ¥".

Since g : myG — m,G’ is surjective, there is an element ¥ in m,G such that
g(%) = 1'(3). Now

hp(%) = pe(3) = pi(3) =" = h(®).
Since # is injective, it follows that p(2) = @. Hence, by exactness, there is a
w € Ob(F) such that & = 2. It follows that
1f(w) = g(@) = g(&) = i'(¥).

By 4.3 (b), there is an @’ € H'{2"} such that

a . f(@) =y’

Since & : H{z} — H'{v'} is surjective, @’ = h(a) for some a € H{v} and we
have

fla.@) =y
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(b) Lety, e Ob(F)satisfy § = 2 = &, f(¥) = f(%). We prove that § = Z.
Since § = &, 2 — &, there are elements c e G(x,y), de G(x, 2); hence

ple) . & =¥, pld). x = z.
Since f( y) = f(%), we have
Ghp(c) = f(ple) . %) = f(p(d) . x) = &hp(d).
By 4.3(a) there is a 8" € G’{a"} such that
P'O) = [hp(e)] ™ . hp(d).

Since g : G{x} — G'{x}" is surjective there is a b € G{x} such that &' = g(b).
Then
hp(b) == p'g(b) = h(p(c)'p(d)).
Since £ is injective
pb) = ple)y'p(d)
and it follows that
y=p).x =pd).x =% []

Notice that in 4.9(b) we make no assumption on g : 7,G — m,G’; however,
if this function is injective (as in the usual 5-lemma) and y, 2 € Ob(F) satisfy
f(3) = 1), {f(¥) = &, then we can deduce g( ) = g(3) = g(&), whence
=7 =3

Another point is that the conclusion of 4.9(b) is weaker than in the ususal
5-lemma. The following example shows that the assumptions of 4.9(b) do not
imply f : mo ' — = F" injective even when g : mG — m,G’ is injective.

4.10 ExampLE. Suppose given a map of fibrations

G22>G
THE
H-*>H

such that G, G’ are connected and the induced map 7 " — mF’ of compo-
nents of the fibres of p, p” over v € Ob(H) is not injective. Thus p, p’ could be
coverings, or we could take p, p” as in Example 2.15. Then there is the follow-
ing map of fibrations

GuH- %G uH

(p,1) l l (p",1)

H 1 H.
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The induced map of components of fibres is still not injective, although
the maps 7(G U H) — =(G' U H), H{v} — H{v} are injective and also
(G U H){v} — (G' U H){v} is surjective.

If we apply the full force of 4.9 we obtain the following corollary which
assumes the situation of 4.7, 4.8.

4.11 CoroLLARY. Ifh:H — H',g: G — G’ are equivalences of groupoids,
thenso alsots f : F — F'.

Proof. Since g, h are equivalences, the induced functions
h:mgH — mH’, h:H{g— H{v'}, g:Gx}— G}

are bijective, the last one for all x € Ob(F). Hence f : my ' — = "’ is a bijection,
by 4.9. But the ordinary 5-lemma for groups applied to diagram 4.8 shows
that f:F{x} — F'{x’} is bijective for all x€ Ob(F). It follows easily (for
example, by using 6.5.13 (Corollary 1) of [1]) that f:F —F’ is an equiv-
alence. [

This corollary can also be proved by using arguments for groupoids
similar to those given in [2] for spaces. This sort of topic will be dealt with
elsewhere by P. R. Heath.

5. NoxN-ABELIAN COHOMOLOGY OF (GROUPS

In this section we show how the exact sequence of the previous section
includes the well-known exact sequences involving H° and H* for the non-
Abelian cohomology of groups.

Let G be a group operating on the left of a group 4. We call 4 a G module.
If g € G, a € 4 we shall write 7a for the result of operating on a by g.

We can form the split extension G X 4 and the split exact sequence

1-54-—>GXA4-2G6G—1 (5.1)
where the elements of G X A are pairs (g, a), g € G, a € 4; the multiplication
in G X A 1s given by

(g a)gy > a) = (gg1, a’ay);

andi:ar>(a, 1), p:(g a)—g.

A section s of p has a principal part §: G — A obtained by composing s
with projection onto 4. Of course §, unlike s, is not a morphism but is a
crossed morphism (or derivation); 1.e., § satisfies

S(ge) = 3(g) - 5(g) & &€CG
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The set of such crossed morphisms is nonempty, since the constant function
G — A with value 1 is a crossed morphism-— this frivial crossed morphism
1s the principal part of the 1-section s; : G — G X A, g > (g, 1).

Let p, : (G(G X A)) — (GG) be the morphism of groupoids induced by p;
Py 1s a fibration by 2.9. Let 1, : G — G be the identity morphism. Then
the fibre of p, over 1 is written

ZHG; A).

Clearly the objects of Z1(G; A) are just the sections of p.
Let us abbreviate Z1(G; A) to Z' when this will cause no confusion.

5.2 ProposiTION.  Let s, t be two sections of p : G % A — G with principal
parts s, t. Then Z\(s, t) is bijective with the set of objects a € A which satisfy

i(e) = as(e)('a)*  all geG.

Proof. Since G has only one object, the elements of Z'(s, t) are determined
by elements (g, , a) in G X A which satisfy p(g,, a) — 1 and (g, , @) s{g) =
Hg)go, @) all g€ G. So g, == 1, and the latter equation becomes, in terms
of principal parts.

as(g) = t(g)’a all geG

from which the equation of the proposition follows. [

5.3 CoroLLARY. ZYs,} 25 dsomorphic to the group AC of elements of A
Sfixed under G.

Proof. This follows from 5.2 with §(g) = t(g) = 1, allge G. []

The set A€ is sometimes written H%G; A).

Similar calculations to those of 5.3 show that (GG){ls} is isomorphic to
C(G), the centre of G. Note that according to 4.1 C(G) operates on 7, ZYG; A);
but this operation is trivial by 4.5.

5.4 DerINITION. 'The 1-dimensional cohomology set of G with coeflicients
in A is
H(G; A) = mgZ G5 A).
Notice that because C(G) operates trivially on HY(G; A), we can, by 4.6,
identity HY(G; A) with a subset of m(G(G X 4)).

5.5 PROPOSITION. Let | —> A -> B —> C 21 be an exact sequence of
G modules. Then j induces a fibration
7' ZNG; B) — ZV(G; ()

whose fibre over s, : G — G X C is the image of the inclusion i’ : ZY(G; A) —
ZNG; B) induced by 1.
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Proof. A morphism f:A4-—> A" of G modules induces a function
f:GXA>GRA, (g,a) (g, f(a)), and it is easily checked that
f:G X 4> G X A'isamorphism of groups which is injective or surjective
according as f : A — A’ is injective or surjective.

It follows that j : B — C induces a diagram

ZNG; B) > ZX(G; C)

l l

(G(G % B)) > (G(G % C))

l !

(GG) ——"—— (GG)

By 2.9, j.. is a fibration, and so by 2.14 j" is a fibration.

If s € Ob[ZYG; B)], then the condition j'(s) = s, : G — G X C is simply
that js = § , whence, by exactness, § factors through the inclusionz : 4 — B.
This proves that the fibre of j' is the image of ' : Z{G; 4) — ZXG; B).
In fact ' is injective: indeed it is obviously injective on objects; and it is
injective on elements by 5.2. [

5.6 CorOLLARY., Let 1 — A -—~>B-—>C— 1 be an exact sequence of
G modules. There is a six term sequence

| — AS —» BG —» (G -5 HY(G; 4) — HYG; B) — H{(G; C)

which is exact in the sense of 4.3, so that C¢ operates on HYG; A) and the
boundary 0 is defined by o(c) = c . (cls ;).

Proof. This is immediate from 5.5 and 4.2. [

The sequence of 5.6 is the fundamental exact sequence of non-Abelian
cohomology-see for example [6].

There is a well-known generalization of the exact sequence of 5.6 involving
cohomology sets H Y(G; ) determined by a morphism ¢ : G — G. This
comes out of the present setup as follows.

5.7 TueoreM. Let ¢ : G— G be a morphism and A a G module. Let
Zy = ZMNG; A) be the fibre of py : (G(G X A)) — (GG) over @, and let
HNG; A) = = Z G5 A). Then for any exact sequence of G modules 1 — A —
B — C —> 1 there is a six term sequence

| - 4G 5 Bot&) __, Cote) 2, HNG; A — H,YG; B)—> H,\(G; C)

which is exact in the sense of 4.3.
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Proof. 'The modifications in the previous proofs are that the objects of Z !
are morphisms s : G — G X A of the form g+ (¢(g)), 5(¢) such that 5.2
becomes: Z,(s, t) is bijective with objects @ € A such that

Hg) == as(g)(*Wa);

that Z_Y{s,} is isomorphic to A*@, the set of elements of A4 fixed under the
action of ¢(G); and that we obtain a fibration Z,(G; B) — Z (G; C) with
fibre Z Y(G; 4). [

Other exact sequences can be obtained by considering the fibration
ZY(G; B) — ZY{G; C) and taking the fibre over some other object of Z'(G; C)
than the trivial section. The discussion of these is left to the reader.

Going back to the situation of 5.6, we can obtain some 5-lemma type
results by applying 4.9.

5.8 PROPOSITION.  Suppose given a map of exact sequences of G modules

| A B C —1

PaNTaE

l >4 — B —> C; —>1

We have (a) If H{(G; C), C\¢ and HY(G; B,) consist of a single element, then
fir : HYG; A) - HYG; Ay) is surjective. (b) If HYG;B), C¢ and B,
consist of a single element, then fi. - H{G; A) — HYG; A,) is injective.

Proof. We apply 4.9 to the map of exact sequences given by 5.6. Then
5.8(a) follows from 4.9(a), and 5.8(b) follows from 4.9(b). [

We now obtain an exact sequence for the case 4 is a G module and H is
a subgroup of G, so that 4 is also an H module.

5.9 ProrosiTioN. If i: H — G is an inclusion of groups, and A is a
G module, then i induces a covering morphism
* 1 ZNG; A) — ZA(H; A).

Proof. We consider the diagram

Z(G; A) —2 W P A)

! ! |

(GG % A)) 25 (H(G % A)) <2 (HH % A))

lm | l Ds | l P

(GG) — X (HG) < (HH)
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in which the horizontal morphisms are induced by 7; the morphisms p, are
induced by the projections of the split extension; and W is the fibre over
1: H-— G. By 2.10, #,* and #,* are covering morphisms.

By 2.14, 7,* : ZY(G; A) — W also is a covering morphism.

Now i« is an inclusion. Further its image contains the image of #*,
essentially because a section of G X 4 — G restricts to a section of
H X A— H. So i,* restricts to a covering morphism *: ZY(G; 4) —
ZVH; A).

(One can also give a fairly simple direct proof of 5.9).

The fibre of i* : Z\(G; A) — Z'(H; A) over the trivial section s, is written

ZYG, H; A).
It is a discrete groupoid consisting of the sections s of G X 4 — G whose
principal parts § satisfy s(H) = {l}.

5.10 CoroLLARY. There is a S-term sequence

1 — AS — A% -2 7Y(G, H; 4) — HXG; 4) — H(H; A)

in which A% operates on ZWG, H; A), © is defined by o(a) = a.s,, and the
sequence 1s exact in the sense of 4.3.  []

The quotient of ZYG, H; A) by the above operation of A% will be written
HY(G, H; A). By 4.3 we obtain
5.11 CoroLLARY. There is an exact sequence of pointed sets
HYG, H; 4) > HYG; A) — HY(H; A)
in which j is injective. [

In the case H is normal in G the above relative cohomology becomes more
understandable.

5.12 ProposiTION. If H is normal in G, then A® is a G[H module and
there is a bijection

HYG, H; A) — HYG/H; A")
Proof. That A® is a G/H module is clear since the elements of H act

trivially on AH,
We construct a function

¢ : ZYG, H; A) — Ob[ZYG/H; AH)].
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Letse ZYG, H; A). It h, " e H, g € G, then

s(hg) == 5(h) . "s(g) ~ "s(g),  s(gh) == 5(2) . 5(H)) = 3(g)-

But given 2in H, g in G, we can find &' in H such that hg = gh’ (as H is normal
in G). We deduce that

"s(g) = s(hg) = s(g).

Thus the 1mage of 5 is contained in 4%, and 5 1s constant on each cosct gff.
Hence s determines a section ¢(s) of (G/H) X A" -~ G/H as required.

Conversely, a section ¢ of (G/H) X AM -» G/H has principal part
f:G/H -— A4 and the composite

G —-—— GjH BRI | |

is the principal part of a section (t) of G X A — G such that
$(t) € ZV(G, H; A). Clearly fp = 1, ¢p == 1, and so ¢ is a bijection.

Two elements s, ¢ of ZY{G, 1{; A) lie in the same orbit under the action
of A% if and only if they lie in the same component of ZYG; A), and this
is truc if and only if g(s), ¢(f) arc in the same component of ZY(G/H; A%).
Hence ¢ induces the required bijection. [

5.13 CoroLLary. If H is normal in G, and A is a G module, there is an
exact sequence of pointed sets

HNGIH; A%y —2» H(G; A) “5> HY(H; A)

with j injective, 1|

6. AprpLicaTioNs To HomoTory THEORY

If X, Y are spaces, then # ¥ will mean the track groupoid as defined in [1];
that is, the objects of # ¥¥ are the maps X — Y and the morphisms = Y*( £, g)
arc the homotopy classes rel end maps of homotopies f~g. If X,V are
spaces with base point, then 7Y ¥ has objects the maps X' — ¥ of spaces with
base point, and the elements of 7Y ¥( £, g) are the homotopy classes rel end
maps of homotopies f ~ g rel base point.

A fibration of spaces is a map p : £ > B which has the covering homotopy
property for all spaces; for spaces with base point, this will mean that all
maps and homotopies are to be rel base point.
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6.1 ProposITION. Let p : E — B be a fibration of spaces; then for any X

py s mEX — mBX

is a fibration of groupoids. Further p, is a covering morphism if, in addition,
p 2 E— B has unique path-lifting, that is if given e E and w a path in B
starting at p(e), then w is covered by a unique path in E starting at e; in particular,
P s a covering morphism if p is a covering map.

Proof. This is almost immediate from the definition and 2.1 (iii). Indeed
the necessary and sufficient condition for p, to be a fibration is that given any
map f : X — E, any homotopy of pf is homotopic rel end maps to a homotopy
which is covered by a homotopy of f. If p has unique path lifting, then the
above covering homotopy is unique, since a homotopy F on X determines
for each x € X a path f+—F(x, ). [

The dual result to 6.1 is:

6.2 Prorosition. Let i: A — X be a cofibration. Then for any Y, the
induced morphism
¥ oYX —»> nY4
is a fibration of groupords.

The proof here is simple.
The canonical factorization of a fibration of groupoids leads to a simple
version of the first step in the Moore—-Postnikov factorization of afibration.

6.3 ProrosiTiON. Let p : E — B be a fibration, and let B be locally path-
connected and semilocally simply connected. Then there is a factorization

<
¥o
Y

.

pj B
WL
B

such that p’ is a covering map and k' is a surjective fibration with path-connected

fibres.

Proof. By 2.4, the fibration of groupoids p, : 7k — =B has a factoriaztion
p« = px where « :7wE - C is a fibration of groupoids and p:C — 7B
is a covering morphism. By Section 9.5 of [1], the topology of B lifts to a

481/15/1-9
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topology on B - Ob(C) so that if p’ -~ Ob(p) then w(p’) : 7B — 7B can
be identified with p. Let «” .~ Ob(x); then «" 1s continuous by 9.5.3 of [1],
and it is casily checked that «" is a fibration. The fibres of «” are path-con-
nected since the fibres of #(x") — « are connected groupoids. | |

The results of Section 3 on lifting morphisms can be used to generalise
well-known results on the group of covering transformations (for example

2.6.2 of [7)):

6.4 ProrosiTiON. Let p: I —> B be a covering map and let f: X -~ B
be a map. We suppose X, E, B are path-connected and locally path-connected.
Let x € XN, x € I be such that {(2) - p(x). Then the set of liftings of f is bijective
with

Natpp(fom(AS 2), par(E, 2)) par(E, x).

Proof. 'This 1s immediate from 3.5 and the facts (9.5.3 of [1]) that if /' :
7 X > E is any lifting of #(f), then f = Ob(f'): .\ — E is continuous,
f is a lifting of f, and any lifting of fis obtained in this way. ]

If we apply the results of Section 4 on operations to the case of fibrations of
spaces, then we obtain at one blow all the usual operations, in particular
all those discussed in [7], Section 7.3, First of all we prove:

6.5 PROPOSITION. Let p: 15 ~> B be a fibration of spaces. Then for any
space X there is a functor I': 7BX > Y/ which on objects sends u —>
X, E 5 u, where X, BN u is the set of homotopy classes vel p of lifts of u.

Proof.  We know that p, : 0¥ — 784 is a fibration so that by Section 4
we have a functor [": #BY — .%¢/ which on objects sends u - 7, F, where F),
is the fibre of p,, over . The objects of £/, are lifts of w. If £, g : X' » [ are
two lifts of # which are homotopic rel p, then f, ¢ lie in the same component
of F, . Conversely if f, g lie in the same component of £, , then there is a
homotopy G : f o~ g such that pG is homotopic rel end maps to the constant
homotopy of u. This homotopy of pG can be lifted to a homotopy rel end
maps of G to a homotopy G’ : f ~ g such that pG’ is constant. | |

By applying the same method to the dual case given in 6.2, we can derive
the operations used in Chapter 7 of [I]. As another example, recall that
a pair (X, A) has nondegenerate base point x, if x, € 4 and for any map f:
(X, ) — (Y, B) any homotopy of f | {x,}, B extends to a homotopy of f.

6.6 Proposition. Let (X, A) have nondegenerate base point x,. Then
for any (Y, B) there is a functor =B — Yo/ which on objects sends b, —>
[X, 4, xo; Y, B, b,] this being the set of homotopy classes of maps of triples.
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Proof. Since (X, A) has nondegenerate base point, we have for any (Y, B)
a fibration of groupoids (with obvious notation)

p (Y, B)X4 > zB

defined by evaluation on x,. The required functor is thus a special case of
that given by 6.5. ]

The operation given in 6.5 is a special case of a more subtle operation
which for a fibration £ — B gives a functor from =B assigning to each x € B
the fibre I, over x, and to each class in mB(x, y) a homotopy class of homotopy
equivalences F, — F, (cf. [7] Theorem 2.8.12). This operation, and some
generalizations, will be discussed elsewhere by P. R. Heath.

We conclude with the exact sequence of a fibration.

6.7 ProrosiTioN. Let p: E— B be a fibration. Then for any X, map
w: N - B and lift f : X — E of u there is a sequence

AEX ) > wBY - X B w2 X, E] S (X B

awhich is exact in the sense of 4.3, where the last three sets have base points f, f, i,
respectively, wBX{u\ operates on X, E\ u, and ¢ is defined by &(x) == o.f.

Proof. This is immediate from 4.3 and 6.5. []

A similar exact sequence is valid for the case p : £ — B is a fibration of
spaces with base point, where wEX, 7BX are replaced by =E¥, #B¥. But then
we can take f == ., u = . to be constant maps so that (modulo suitable
topological assumptions, or by working in a convenient category of spaces)

TEX ) ~ [ZX, E] = [X, QF]

7B¥(} ~ [ZX, B] ~ [, 2B]

where 2Y is the reduced suspension of .X and £ is the loop space of AL
Further if F is the fibre of p over ., then X, EX . — [X, F]. So the exact
sequence of 6.7 becomes the usual exact sequence

[X.QE] 2> [X, QB] — [X,F] — [X, E] -— [X, B]. (6.8)

Here p, is induced by Qp : QFE — £2B. Since Qp is also a fibration, the
sequence (6.8) can be continued indefinitely to the left.
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