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ABSTRACT  
Novel approaches to extended quantum symmetry, paracrystals, quasicrystals, noncrystalline solids, topological 

order, supersymmetry and spontaneous, global symmetry breaking are outlined in terms of quantum groupoid, 

quantum double groupoids and dual, quantum algebroid structures. Physical applications of such quantum groupoid 

and quantum algebroid representations to quasicrystalline structures and paracrystals, quantum gravity, as well as 

the applications of the Goldstone and Noether's theorems to: phase transitions in superconductors/superfluids, 

ferromagnets, antiferromagnets, mictomagnets, quasi-particle (nucleon) ultra-hot plasmas, nuclear fusion, and the 

integrability of quantum systems are also considered. Both conceptual developments and novel approaches to 

Quantum theories are here proposed starting from existing Quantum Group Algebra (QGA), Algebraic Quantum 

Field Theories (AQFT), standard and effective Quantum Field Theories (QFT), as well as the refined `machinery' of 

Non--Abelian Algebraic Topology (NAAT), Category Theory (CT) and Higher-Dimensional Algebra (HDA).The 

logical links between Quantum Operator Algebras and their corresponding,'dual' structure of the Quantum State 

Spaces are also investigated. Among the key concepts presented are: Quantum Group Algebras (QGAs)/Groupoids, 

Hopf and C*- algebras, Lie `algebras', Quantization and Asymptotic Morphisms, Locally Topological Groupoids, 

Crossed Modules of Groups or Lie Double Groupoids, Lie Algebroids, Crossed Complexes over Groupoids, 

Holonomy and Gauge Transformation Groupoids, Quantum Principal Bundles and Sheaves. 

   

Keywords: Extended quantum symmetry, topological ordering, quantum groupoid/quantum algebroid 

representations, quasicrystals, paracrystals, glasses and noncrystalline solids, ferromagnets, FSWR, ESR and spin 

waves, quantum groups and quasi-Hopf algebras, Yang-Baxter equations, R-matrix and quantum inverse scattering 

problem, 6-j symmetry, convolution algebroids, duality, supersymmetry, graded Lie algebroids and quantum 
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1.  INTRODUCTION 
In this highly-condensed review we are discussing several fundamental aspects of quantum symmetry, extended 

quantum symmetries, and also their related quantum groupoid and categorical representations. This is intended as an 

up-to-date review centered on quantum symmetry, invariance and representations. We aim at an accessible 

presentation, as well as a wide field of view of quantum theories, so that the hitherto `hidden' patterns of quantum 

relations, concepts and the underlying, extended quantum symmetries become visible to the `mathematical-ready 

eyes' of the theoretical physicist. To this end, we are therefore focusing here on several promising developments 

related to extended quantum symmetries, such as `paragroups', `quasicrystals' and quantum groupoid/quantum 

algebroid representations whose roots can be traced back to recent developments in solid state physics, 

crystallography, metal physics, nanotechnology laboratories, quantum chromodynamics theories, nuclear physics, 

nuclear fusion reactor engineering /designs, and so on, to other modern physics areas, including quantum gravity and 

supergravity theories. Then, we propose several unifying ideas such as: general representations of abstract structures 

and relations relevant to the treatment of extended quantum symmetry, ultra-high energy physics, and topological 

order theories. 

Symmetry groups have been the mainstay of Euclidean structures as have been envisaged in classical dynamical 
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systems, relativity and particle physics, etc., where single, direct transformations are usually sufficient. In contrast, 

as is found to be the case in sub-atomic, extreme microscopic quantum mechanical and biomolecular systems, 

transformations are essentially simultaneous. A transformed state-configuration can be indistinguishable from its 

original and at the microscopic level a precise symmetry might neglect some anomalous behaviour of the underlying 

physical process particularly in the excitation spectra. Thus, the role played here by classical symmetry (Lie) groups 

is useful but limiting. Extending the latter symmetry concepts, one looks towards the more abstract but necessary 

structures at this level, such as `paragroups' or `symmetry groupoids', and also encoding the ubiquitous concept of a 

`quantum group' into the architecture of a 
*C -Hopf algebra. With this novel approach, a classical Lie algebra now 

evolves to a `Lie (bi)algebroid' as one of the means for capturing higher order and super- symmetries. The 

convolution algebra of the  transition groupoid of a bounded quantum system--which is related to its spectra--is 

however just  matrix algebra, when viewed in terms of its representations. The initial groupoid viewpoint-- which 

was initially embraced by Werner Heisenberg for a formal, quantum-theoretical treatment of spectroscopy--was thus 

replaced for expediency by a computable matrix formulation of Quantum Mechanics resulting from such group 

representations. This was happening at a time when the  groupoid and category concepts have not yet entered the 

realm of either physics or the mainstream of pure mathematics. On the other hand, in Mathematics the groupoid 

theory and the groupoid mode of thought became established in algebraic topology [44] towards the end of the 

twentieth century, and now it is a fruitful, already rich in mathematical results; it is also a well-founded field of 

study in its own right, but also with potential, numerous applications in mathematical physics, and especially in 

developing  non-Abelian physical theories. 

In the beginning, the algebraic foundation of Quantum Mechanics occurred along two different lines of approach- 

that of John von Neumann, published in 1932, and independently, Paul A.M. Dirac's approach in 1930; these two 

developments followed the first analytical formulation of Quantum Mechanics of the (electron in) Hydrogen Atom 

by Erwin Schrödinger in 1921. The equivalence of Heisenberg's `matrix mechanics' and Schrödinger's analytical 

formulation is now universally accepted. On the other hand, Von Neumann's formulation in terms of operators on 

Hilbert spaces and 
*W -algebras has proven its fundamental role and real value in providing a more general, 

algebraic framework for both quantum measurement theories and the mathematical treatment of a very wide range 

of quantum systems. To this day, however, the underlying problem of the `right' quantum logic for von Neumann's 

algebraic formulation of quantum theories remains to be solved, but it would seem that a modified Ł ukasiewicz, 

many-valued,  LM -- algebraic logic is a very strong candidate [21]. Interestingly, such an LM -quantum 

algebraic logic is  noncommutative by definition, and it would also have to be a  non-distributive lattice ( loc.cit., 

and also the relevant references cited therein). A topos theory based on a concept called a 'quantum topos' was also 

proposed for quantum gravity by rejecting the idea of a spacetime continuum [148]. The latter concept is based 

however on a Heyting (intuitionistic) logic algebra which is known however to be a  commutative lattice, instead of 

the (noncommutative and non-distributive, multi-valued) quantum logic expected of any quantum theory [21]. 

The quantum operator algebra for various quantum systems then required also the introduction of: 
*C -algebras, 

Hopf algebras/quantum groups, Clifford algebras (of observables), graded algebras or superalgebras, Weak Hopf 

algebras, quantum doubles, j -symbols, Lie 2-algebras, Lie-2 groups, Lie 3-superalgebras [9], and so on. The 

current rapid expansion of the collection of such various types of `quantum algebras' suggests an eventual need for a  

Categorical Ontology of quantum systems which is steadily moving towards the framework of higher-dimensional 

algebra (HDA) and the related, higher categorical, non-Abelian structures underlying quantum field and higher 

gauge theories. A survey of the basic mathematical approach of HDA, also with several examples of physical 

applications, can be found in an extensive, recent monograph [21], complemented by a recent, introductory textbook 

on Quantum Algebraic Topology, Quantum Algebra and Symmetry [11]. The case of the 
*C -algebras is 

particularly important as the von Neumann 
*W - algebras can be considered as a special type of 

*C -algebras. 

Moreover, Gelfand and Neumark [123] showed that any 
*C - algebra can be given a concrete representation in a 

Hilbert space, that need not be separable; thus, there is an isomorphic mapping of the elements of a 
*C - algebra into 

the set of bounded operators of a Hilbert space. Subsequently, Segal [254] completed the work begun by Gelfand 

and Neumark by providing a procedure for the construction of concrete Hilbert space representations of an abstract 
*C -algebra, called the  `GNS construction' [253], from the initials of Gelfand, Neumark and Segal. Segal then 

proceeded to an algebraic formulation of quantum mechanics based on postulates that define a Segal S -algebra 

structure which is more general than a 
*C -algebra [254]. 

We also introduce the reader to a series of novel concepts that are important for numerous applications of modern 

physics, such as: the generalised convolution algebras of functions, convolution product of groupoids/quantum 
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groupoids, convolution of quantum algebroids and related crossed complexes, 
*C --convolution quantum 

algebroids, graded quantum algebroids, the embeddings of quantum groups into groupoid 
*C -algebras, quantum 

(Lie) double groupoids with connection, the R -matrix of the Yang-Baxter equations, the 6 j-symbol symmetry with 

their representations in relation to Clebsch-Gordan theories, Extended Topological Quantum Field Theories 

(ETQFTs), as well as their relationship with integrable systems, solutions of the generalised Yang-Baxter equation 

and j6 -symbols. Other related structures, such as Clifford algebras, Grassman algebras, R --algebroids, quantum 

double algebroids were discussed in detail in a recent monograph [21]. Moreover, the new establishment of the dual 

concepts of quantum groupoid and quantum algebroid representations in a `Hopf'-algebra/bialgebroid setting are a 

natural consequence of their long-accepted use in the simpler guise of finite, `quantum groups'. Many of the 

extended quantum symmetry concepts considered here need to be viewed in the light of fundamental theorems that 

already have a wide range of physical applications, such as the theorems of: Noether, Goldstone, Wigner, Stone-von 

Neumann and others,which we briefly recall in § 5. Further generalisations and important potential applications to 

theoretical physics of theorems such as the generalised Siefert-van Kampen theorem are then discussed in § 6. 

Ultimately, we would like to see an  unified categorical framework of the quantum symmetry fundamental concepts 

and the results based on them that are here encapsulated only as the sub-structures needed for a broader view of 

quantum symmetry theories than that traditionally emcountered. In this regard, our presentation also includes several 

novel approaches that are outlined, particulary in § 5 and § 6. The inclusion of an extensive, supporting 

bibliography of both experimental data and theoretical physics reports was thus required, together with an overview 

provided in the next subsection indicating how the cited references are grouped according to the main categories, or 

themes, that are discussed here. 

 

1.1.Topic Groups and Categories 
 The topics covered in the references cited under our main subject of quantum symmetries and representations can 

be grouped, or categorized as follows:   

• Extended Quantum Symmetry and Nonabelian Quantum Algebraic Topology:[21],[286, 287], [12], [14], [20], 

[41],[35], [57],[63, 193], [66], [121],[122], [130],[140],[148], [154], [159], [178], [179], [181], [202], [203],[205], 

[227], [241, 242, 243], [271], [278, 279],[284],[293], [121];  

• Paracrystal Theory, Quasicrystals and Convolution Algebra: [21, 14],[143], [145, 144, 146],[162],[249], [299, 

300];  

• Operator algebras: Von Newmann, 
*C -, 

*W - algebras, Clifford algebras, Hilbert spaces, Quantum Groups and 

Hopf algebras: [5], [36],[115], [38], [36],[78], [95], [101], [102], [103], [109, 110], [116], [117],[111],[123], [126], 

[142], [163], [104],[164], [165],[185], [204], [209, 210],[213],[225],  

[219], [235],[239, 240], [253, 254], [257, 258], [266], [290];  

• Quantum Groupoids and Weak Hopf, Quantum Doubles, Quasi-Hopf, etc. algebras and the Inverse Scattering 

Problem:[265], [2], [37], [30], [38], [41], [104], [167, 168],[177], [178], [186], [199, 200], [233], [262],[295],[301, 

302];  

• Algebraic Topology, Groupoids, Algebroids, R-algebroids, Homology/Cohomology, 

Double Groupoids, Algebraic Geometry and Higher-Dimensional Algebra: [30], [132], [133, 134, 135, 136], [190, 

191], [34], [34], [60], [57], [63], [66], [67], [78], [95], [141], [129], [171], [177],[181], [192],[193],[199, 200], [213, 

214, 215], [268], [269],[276];  

• Groupoid Representations and Haar measure systems: [250, 251],[68], [71, 69, 70], [72, 73, 74, 75, 76, 77, 78] [40, 

41, 42], [138, 139], [213, 214, 215], [226], [236], [253],[254],[259, 260],[284];  

• Functional and Harmonic Analysis--Fourier Transforms, Generalised Fourier Transforms and Measured 

Groupoids: [113],[182], [213, 214, 215], [212], [228, 229],[237], [247, 248], [282, 283];  

• Quantum Field theories, Local Quantum Physics and Yang-Baxter equations: [119],[274, 275], [285], [25], [98], 

[164], [172],[280],[187], [245], [259, 260], [267], [290],[296],[298];  

• General Relativity (GR), Quantum Gravity and Supersymmetry: [234], [28], [41], [83], [131], [137], [171],[172], 

[198],[202], [216], [218], [231], [244], [281],[291], [275], [102];  

• Quantum Topological Order and Quantum Algebraic Topology:[99], [173, 175, 174],[188], [230], [278, 279], 

[230], [278],[203],[11],[99], [121];  

• Quantum Physics Applications related to Symmetry and Symmetry Breaking: Superconductivity [274], [238], 

Superfluidity [274], Quasi-crystals [227], Crystalline [1], [3], [7], [118] and Noncrystalline Solids [8], [18, 15, 19, 

17, 22],[23], Mott-Anderson Transition [194, 195],[196],[197],[170], [270],[82], Many-body and Many-electron 

systems [278], [126],[35], Liquid Crystals, Nanotechnologies, Quantum Hall Systems [263, 264], Nuclear Fusion 
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[23], [274], and Astrophysics* [274], Fundamental aspects: [24],[21],[188],[274, 275], [11];  

• Fundamental theorems and results:[272], [11, 21], [59], [61], [62, 176], [67],[81];  

• Generalised Representation Theory and Adjunction Theorems: [21], [95];  

• Galois and Generalised Galois theories: [149, 39], [58, 150], [209, 210];  

• Van Kampen Theorem, its Generalisations and Potential Applications to Quantum Theories: [272, 44, 50, 57, 60, 

67, 55, 59, 58];  

• Category Theory and Categorical Representations: [189], [183, 184], [222], [29],[97], [95], [153], [108], [125], 

[124],[180], [206], [211]; 

• Noncommutative geometry: [273], [41], [42], [40],[188], [241, 242]. 

*Note that only several representative examples are given in each group or category, without any claim to either 

comprehensiveness or equal representation. 

 

1.2. Paracrystal Theory and Convolution Algebra 
As reported in a recent publication [21], the general theory of scattering by partially ordered, atomic or molecular, 

structures in terms of paracrystals and lattice convolutions was formulated by Hosemann and Bagchi in [145] using 

basic techniques of Fourier analysis and convolution products. A natural generalization of such molecular, partial 

symmetries and their corresponding analytical versions involves convolution algebras -- a functional/distribution 

[247, 248] based theory that we will discuss in the context of a more general and original concept of a convolution-

algebroid of an extended symmetry groupoid of a paracrystal, of any molecular or nuclear system, or indeed, any 

quantum system in general; such applications also include quantum fields theories, and local quantum net 

configurations that are endowed with either partially disordered or `completely' ordered structures, as well as in the 

graded, or super-algelbroid extension of these concepts for very massive structures such as stars and black holes 

treated by quantum gravity theories. 

A statistical analysis linked to structural symmetry and scattering theory considerations shows that a real paracrystal 

can be defined by a three dimensional convolution polynomial with a semi-empirically derived composition law, *, 

[146]. As was shown in [13, 14] - supported with computed specific examples - several systems of convolution can 

be expressed analytically, thus allowing the numerical computation of X -ray, or neutron, scattering by partially 

disordered layer lattices via complex Fourier transforms of one-dimensional structural models using fast digital 

computers. The range of paracrystal theory applications is however much wider than the one-dimensional lattices 

with disorder, thus spanning very diverse non-crystalline systems, from metallic glasses and spin glasses to 

superfluids, high-temperature superconductors, and extremely hot anisotropic plasmas such as those encountered in 

controlled nuclear fusion (for example, JET) experiments. Other applications - as previously suggested in [12] - may 

also include novel designs of `fuzzy' quantum machines and quantum computers with extended symmetries of 

quantum state spaces. 

 

1.3. Convolution product of groupoids and the convolution algebra of functions 

From a purely mathematical perspective, Alain Connes introduced the concept of a 
C -algebra of a (discrete) group 

(see, e.g., [91]). The underlying vector space is that of complex valued functions with finite support, and the 

multiplication of the algebra is the fundamental convolution product which it is convenient for our purposes to write 

slightly differently from the common formula as  

 ),()(=))((
=

ygxfzgf
zxy

  

 and  -operation  

 .)(=)( 1xfxf  

The more usual expression of these formulas has a sum over the elements of a selected group. For topological 

groups, where the underlying vector space consists of continuous complex valued functions, this product requires 

the availability of some structure of measure and of measurable functions, with the sum replaced by an integral. 

Notice also that this algebra has an identity, the distribution function 1 , which has value 1 on the identity 1 of the 

group, and has zero value elsewhere. Given this convolution/distribution representation that combines crystalline 

(`perfect' or global-group, and/or group-like symmetries) with partial symmetries of paracrystals and glassy solids 

on the one hand, and also with non-commutative harmonic analysis [182] on the other hand, we propose that several 

extended quantum symmetries can be represented algebraically in terms of certain structured groupoids, their 
*C -

convolution quantum algebroids, paragroup/quantized groups and/or other more general mathematical structures 

that will be introduced in this report. It is already known that such extensions to groupoid and algebroid/coalgebroid 

symmetries require also a generalization of non-commutative harmonic analysis which involves certain Haar 
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measures, generalized Fourier-Stieltjes transforms and certain categorical duality relationships representing very 

general mathematical symmetries as well. Proceeding from the abstract structures endowed with extended 

symmetries to numerical applications in quantum physics always involves representations through specification of 

concrete elements, objects and transformations. Thus, groupoid and functorial representations that generalize group 

representations in several, meaningful ways are key to linking abstract, quantum operator algebras and symmetry 

properties with actual numerical computations of quantum eigenvalues and their eigenstates, as well as a wide 

variety of numerical factors involved in computing quantum dynamics. The well-known connection between 

groupoid convolution representations and matrices [276] is only one of several numerical computations made 

possible via groupoid representations. A very promising approach to nonlinear (anharmonic) analysis of aperiodic 

quantum systems represented by rigged Hilbert space bundles may involve the computation of representation 

coefficients of Fourier--Stieltjes groupoid transforms. 

Currently, however, there are several important aspects of quantum dynamics left out of the invariant, simplified 

picture provided by group symmetries and their corresponding representations of quantum operator algebras [126]. 

An alternative approach proposed in [140] employs differential forms to find symmetries. 

Physicists deal often with such problems in terms of either spontaneous symmetry breaking or approximate 

symmetries that require underlying assumptions or ad-hoc dynamic restrictions that have a phenomenological basisl. 

A well-studied example of this kind is that of the dynamic Jahn--Teller effect and the corresponding `theorem' 

(Chapter 21 on pp. 807--831, as well as p. 735 of [1]) which in its simplest form stipulates that  a quantum state with 

electronic non-Kramers degeneracy may be unstable against small distortions of the surroundings, that would lower 

the symmetry of the crystal field and thus lift the degeneracy (i.e., cause an observable splitting of the corresponding 

energy levels). This effect occurs in certain paramagnetic ion systems  via dynamic distortions of the crystal field 

symmetries around paramagnetic or high-spin centers by moving ligands that are diamagnetic. The established 

physical explanation is that the Jahn--Teller coupling replaces a purely electronic degeneracy by a vibronic 

degeneracy (of  exactly the same symmetry!). The dynamic, or spontaneous breaking of crystal field symmetry (for 

example, distortions of the octahedral or cubic symmetry) results in certain systems in the appearance of doublets of 

symmetry 3  or singlets of symmetry 1  or 2 . Such dynamic systems could be locally expressed in terms of 

symmetry representations of a Lie algebroid, or globally in terms of a special Lie (or Lie--Weinstein) symmetry 

groupoid representations that can also take into account the spin exchange interactions between the Jahn--Teller 

centers exhibiting such quantum dynamic effects. Unlike the simple symmetries expressed by group representations, 

the latter can accommodate a much wider range of possible or approximate symmetries that are indeed characteristic 

of real, molecular systems with varying crystal field symmetry, as for example around certain transition ions 

dynamically bound to ligands in liquids where motional narrowing becomes very important. This well known 

example illustrates the importance of the interplay between symmetry and dynamics in quantum processes which is 

undoubtedly involved in many other instances including: quantum chromodynamics (QCD), superfluidity, 

spontaneous symmetry breaking (SSB), quantum gravity and Universe dynamics (i.e., the inflationary Universe), 

some of which will be discussed in further detail in § 5. 

Therefore, the various interactions and interplay between the symmetries of quantum operator state space geometry 

and quantum dynamics at various levels leads to both algebraic and topological structures that are variable and 

complex, well beyond symmetry groups and well-studied group algebras (such as Lie algebras, see for example 

[126]). A unified treatment of quantum phenomena/dynamics and structures may thus become possible with the help 

of algebraic topology, non-Abelian treatments; such powerful mathematical tools are capable of revealing novel, 

fundamental aspects related to extended symmetries and quantum dynamics through a detailed analysis of the 

variable geometry of (quantum) operator algebra state spaces. At the center stage of non-Abelian algebraic topology 

are groupoid and algebroid structures with their internal and external symmetries [276] that allow one to treat 

physical spacetime structures and dynamics within an unified categorical, higher dimensional algebra framework 

[52]. As already suggested in our recent report [21], the interplay between extended symmetries and dynamics 

generates higher dimensional structures of quantized spacetimes that exhibit novel properties not found in lower 

dimensional representations of groups, group algebras or Abelian groupoids. 

It is also our intention here to explore new links between several important but seemingly distinct mathematical 

approaches to extended quantum symmetries that were not considered in previous reports. An important example 

example is the general theory of scattering by partially ordered, atomic or molecular, structures in terms of 

paracrystals and lattice convolutions that was formulated in [145] using basic techniques of Fourier analysis and 

convolution products. Further specific applications of the paracrystal theory to X -ray scattering, based on 

computer algorithms, programs and explicit numerical computations, were subsequently developed by the first 

author [13] for one-dimensional paracrystals, partially ordered membrane lattices [14] and other biological 

structures with partial structural disorder [16]. Such biological structures, `quasi-crystals', and the paracrystals, in 
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general, provide rather interesting physical examples of extended symmetries (cf. [144]). Moreover, the quantum 

inverse scattering problem and the treatment of nonlinear dynamics in ultra-hot plasmas of white stars and nuclear 

fusion reactors requires the consideration of quantum doubles, or respectively, quantum double groupoids and 

graded double algebroid representations [21].   

 

1.4. Group and Groupoid Representations 
Whereas group representations of quantum unitary operators are extensively employed in standard quantum 

mechanics, the quantum applications of groupoid representations are still under development. For example, a 

description of stochastic quantum mechanics in curved spacetime [102] involving a Hilbert bundle is possible in 

terms of groupoid representations which can indeed be defined on such a Hilbert bundle ),*,( HX , but cannot 

be expressed as the simpler group representations on a Hilbert space H . On the other hand, as in the case of group 

representations, unitary groupoid representations induce associated 
*C -algebra representations. In the next 

subsection we recall some of the basic results concerning groupoid representations and their associated groupoid *-

algebra representations. For further details and recent results in the mathematical theory of groupoid representations 

one has also available a succint monograph [68] (and references cited therein). 

Let us consider first the relationships between these mainly algebraic concepts and their extended quantum 

symmetries. Then we introducer several extensions of symmetry and algebraic topology in the context of local 

quantum physics, ETQFT, spontaneous symmetry breaking, QCD and the development of novel supersymmetry 

theories of quantum gravity. In this respect one can also take spacetime `inhomogeneity' as a criterion for the 

comparisons between physical, partial or local, symmetries: on the one hand, the example of paracrystals reveals 

thermodynamic disorder (entropy) within its own spacetime framework, whereas in spacetime itself, whatever the 

selected model, the inhomogeneity arises through (super) gravitational effects. More specifically, in the former case 

one has the technique of the generalized Fourier--Stieltjes transform (along with convolution and Haar measure), 

and in view of the latter, we may compare the resulting `broken'/paracrystal--type symmetry with that of the 

supersymmetry predictions for weak gravitational fields, as well as with the spontaneously broken global 

supersymmetry in the presence of intense gravitational fields. 

Another significant extension of quantum symmetries may result from the superoperator algebra and/or algebroids 

of Prigogine's quantum superoperators which are defined only for irreversible, infinite-dimensional systems [225]. 

The latter extension is also incompatible with a commutative logic algebra such as the Heyting algebraic logic 

currently utilized to define topoi [128]. 

 

1.4.1.  Extended Quantum Groupoid and Algebroid Symmetries. 

Our intention here is to view the following scheme in terms of a weak Hopf 
*C -algebroid- and/or other- extended 

symmetries, which we propose to do, for example, by incorporating the concepts of rigged Hilbert spaces and 

sectional functions for a small category.   

 

Quantum groups    Representations     Weak Hopf algebras     Quantum groupoids and algebroids  

 

We note, however, that an alternative approach to quantum groupoids has already been reported [186], (perhaps also 

related to noncommutative geometry); this was later expressed in terms of deformation-quantization: the Hopf 

algebroid deformation of the universal enveloping algebras of Lie algebroids [295] as the classical limit of a 

quantum `groupoid'; this also parallels the introduction of quantum `groups' as the deformation-quantization of Lie 

bialgebras. Furthermore, such a Hopf algebroid approach [177] leads to categories of Hopf algebroid modules [295] 

which are monoidal, whereas the links between Hopf algebroids and monoidal bicategories were investigated by 

Day and Street [95]. 

As defined under the following heading on groupoids, let ),( lcG  be a locally compact groupoid endowed with a 

(left) Haar system, and let ),(= * lcCA G  be the convolution 
*C -algebra (we append A  with 1  if necessary, so 

that A  is unital). Then consider such a groupoid representation Xxxxlc  },{),(:  HG  that respects a 

compatible measure x  on xH  (cf. [68]). On taking a state   on A , we assume a parametrization  

 . ),(:=),( Xxxx  HH                                                                                (1) 

Furthermore, each xH  is considered as a rigged Hilbert space[38], that is, one also has the following nested 

inclusions:  
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 , ),(  xxxx H                                                                                                        (2) 

in the usual manner, where x  is a dense subspace of xH  with the appropriate locally convex topology, and 
 x

 is 

the space of continuous antilinear functionals of  .  For each Xx , we require x  to be invariant under   

and xm  | I  is a continuous representation of lcG  on x  . With these conditions, representations of (proper) 

quantum groupoids that are derived for weak 
*C -Hopf algebras (or algebroids) modeled on rigged Hilbert spaces 

could be suitable generalizations in the framework of a Hamiltonian generated semigroup of time evolution of a 

quantum system via integration of Schrödinger's equation i 


H
t

=



  as studied in ɩthe case of Lie groups 

[284]. The adoption of the rigged Hilbert spaces is also based on how the latter are recognized as reconciling the 

Dirac and von Neumann approaches to quantum theories [38]. 

Next, let G  be a locally compact Hausdorff groupoid and X  a locally compact Hausdorff space. ( G  will be 

called a locally compact groupoid, or lc- groupoid for short). In order to achieve a small 
*C -category we follow a 

suggestion of A. Seda (private communication) by using a general principle in the context of Banach bundles [250, 

251]. Let XXqqq G:),(= 21  be a continuous, open and surjective map. For each XXyxz ),(= , 

consider the fibre )(=),(= 1 zqyxz

GG , and set )),((=)(= 00 yxCC zz GG  equipped with a uniform 

norm zPP  . Then we set zz
 =  . We form a Banach bundle XXp :  as follows. Firstly, the 

projection is defined via the typical fibre ),(

1 ==)( yxzzp 
 . Let )(GcC  denote the continuous complex 

valued functions on G  with compact support. We obtain a sectional function   XX:~  defined via 

restriction as ),(|=|=)(~ yxz z GG   . Commencing from the vector space )}(:~{= GcC , the set 

}~:)(~{  z  is dense in z  . For each  ~
, the function zz PP )(~  is continuous on X , and each ~  is a 

continuous section of XXp :  . These facts follow from Theorem 1 in [251]. Furthermore, under the 

convolution product gf  the space )(GcC  forms an associative algebra over C  (cf. Theorem 3 in [251]).  

We refer readers to [105] for the description and properties of Banach bundles. 

 

1.4.2.  Groupoids 

 Recall that a groupoid G  is, loosely speaking, a small category with inverses over its set of objects )(O= GbX  . 

One often writes 
y

xG  for the set of morphisms in G  from x  to y
 
.   A topological groupoid consists of a space 

G , a distinguished subspace GGG )(O=(0) b , called  the space of objects of G , together with maps  

 

                                         r, s: G
 

(0)G
 

  (3) 

called the  range and  source maps respectively, together with a law of composition  

 ,   } )(=)( : ),( {=:= : 2121(0)

(2) GGGGGG
G

  rs  (4) 

such that the following hold :    

    1.  )(=)( , )(=)( 121221  rrrs   , for all 
(2)

21 ),( G  . 

    2.  xxrxs =)(=)(  , for all 
(0)Gx  . 

    3.   =)( , =)(  rs  , for all G  . 

    4.  )(=)( 321321    . 
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    5.  Each   has a two--sided inverse 
1  with )(= , )(= 11  sr 

 . 

Furthermore, only for topological groupoids the inverse map needs be continuous. It is usual to call )(O=(0) GG b   

the set of objects of G  . For )(O Gbu , the set of arrows uu   forms a group uG , called the isotropy group 

of G  at u .  

Thus, as is well kown, a topological groupoid is just a groupoid internal to the category of topological spaces and 

continuous maps. The notion of internal groupoid has proved significant in a number of fields, since groupoids 

generalize bundles of groups, group actions, and equivalence relations. For a further study of groupoids we refer the 

reader to [48]. 

Several examples of groupoids are:   

        - (a) locally compact groups, transformation groups, and any group in general (e.g. [59]);  

        - (b) equivalence relations;  

        - (c) tangent bundles;  

        - (d) the tangent groupoid (e.g. [4]);  

        - (e) holonomy groupoids for foliations (e.g. [4]);  

        - (f) Poisson groupoids (e.g. [81]);  

        - (g) graph groupoids (e.g. [47, 64]).  

As a simple example of a groupoid, consider (b) above. Thus, let R be an equivalence relation on a set X. Then R is 

a groupoid under the following operations: ),(=),(),,(=),)(,( 1 xyyxzxzyyx 
. Here, X=0G , (the 

diagonal of XX   ) and yyxsxyxr =)),((,=)),(( . 

So 
2R  =  Rzyyxzyyx ),(),,(:)),(),,(( . When XXR = , R is called a trivial groupoid. A special case 

of a trivial groupoid is  nRR n 1,2,...,==     n1,2,..., . (So every i is equivalent to every j). Identify 

nRji ),(  with the matrix unit ije . Then the groupoid nR  is just matrix multiplication except that we only 

multiply klij ee ,  when jk = , and jiij ee =)( 1
. We do not really lose anything by restricting the multiplication, 

since the pairs klij ee ,  excluded from groupoid multiplication just give the 0 product in normal algebra anyway. 

 

Definition 1.1. 

For a groupoid lcG  to be a locally compact groupoid, lcG  is required to be a (second countable) locally compact 

Hausdorff space, and the product and also inversion maps are required to be continuous. Each 
u

lcG  as well as the 

unit space 
0

lcG  is closed in lcG . 

 

Remark 1.1: 

What replaces the left Haar measure on lcG  is a system of measures 
u  (

0

lcu G ), where 
u  is a positive regular 

Borel measure on 
u

lcG  with dense support. In addition, the 
u  's are required to vary continuously (when integrated 

against ))( lccCf G  and to form an invariant family in the sense that for each x, the map xyy  is a measure 

preserving homeomorphism from )(xs

lcG  onto )(xr

lcG . Such a system  u  is called a left Haar system for the 

locally compact groupoid lcG . This is defined more precisely in the next subsection. 

 

1.4.3. Haar systems for locally compact topological groupoids 
 Let  

                                                                  G  
(0)G    

= X                                                 
(5) 

 

 be a locally compact, locally trivial topological groupoid with its transposition into transitive (connected) 

components.  Recall that for Xx , the costar of x  denoted )(CO* x  is defined as the closed set 
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}:),({ GG yxy , whereby  

 , )(CO),( *

00 Xxyx G  (6) 

 is a principal ),( 00 yxG -bundle relative to fixed base points ),( 00 yx .  Assuming all relevant sets are locally 

compact, then following [250], a (left) Haar system on G  denoted ),( G  (for later purposes), is defined to 

comprise of i) a measure   on G , ii) a measure   on X  and iii) a measure x  on )(CO* x  such that for every 

Baire set E  of G , the following hold on setting )(CO= * xEEx   :   

  )( xx Ex   is measurable 

 xxx
x

dEE   )(=)(     

 )(=)( xxxz EtE  , for all ),( zxt G  and Gzx,  .  

The presence of a left Haar system on lcG  has important topological implications: it requires that the range map 

0: lclcr GG   is open. For such a lcG  with a left Haar system, the vector space )( lccC G  is a convolution *--

algebra, where for )(, lccCgf G : 

 ),()()(=)(* )(1 tdxtgtfxgf xr

  

with  

 .)(=)(* 1xfxf  

One has )(*

lcC G  to be the enveloping 
*C -algebra of )( lccC G  (and also representations are required to be 

continuous in the inductive limit topology). Equivalently, it is the completion of ))(( lccuniv C G  where univ  is 

the universal representation of lcG . For example, if nlc R=G , then )(*

lcC G  is just the finite dimensional 

algebra nlcc MC =)(G , the span of the ije' s. 

There exists (cf. [68]) a measurable Hilbert bundle ),,( 0 HlcG  with  

 










u

lc
u

HH 0=
G

 

and a G-representation L on H . Then, for every pair  ,  of square integrable sections of H , it is required that 

the function )))(()),(()(( xrxsxLx   be  --measurable. The representation   of )( lccC G  is then given 

by )()))(()),(()()((=|,)( 0 xdxrxsxLxff   . The triple ),,( LH  is called a measurable lcG -

Hilbert bundle. 

 

1.5. Groupoid 
*C --convolution Algebras and Their Representations 

Jean Renault introduced in ref. [235] the 
*C -algebra of a locally compact groupoid G  as follows: the space of 

continuous functions with compact support on a groupoid G  is made into a *-algebra whose multiplication is the 

convolution, and that is also endowed with the smallest 
*C -norm which makes its representations continuous, as 

shown in ref.[76]. Furthermore, for this convolution to be defined, one needs also to have a Haar system associated 

to the locally compact groupoid G  that are then called measured groupoids because they are endowed with an 

associated Haar system which involves the concept of measure, as introduced in ref. [138] by P. Hahn. 

With these concepts one can now sum up the definition (or construction) of the  groupoid 
*C -convolution algebra, 

or the  groupoid 
*C -algebra [79] as follows. 
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Definition 1.2: A groupoid 
*C -convolution algebra, CAG , is defined for measured groupoids as * -algebra, with 

―*‖ being defined by convolution so that it has a smallest C* -norm which makes its representations continuous. 

representations continuous. 

 Remark 1.2: One can also produce a functorial construction of CAG  that has additional interesting properties. 

Next we recall a result due to P. Hahn [139] which shows how groupoid representations relate to induced 

*-algebra representations and also how-under certain conditions- the former can be derived from the appropriate  

*-algebra representations. 

  

Theorem 1.  (Source: ref. [139]). Any representation of a groupoid ),( CG  with Haar measure ),(   in a 

separable Hilbert space H  induces a *-algebra representation fXf   of the associated groupoid algebra 

),( G  in ),,(2 HUL G  with the following properties: 

 

(1) For any ml,  , one has that:   

               |  Xf (u  l ), (u m )  |    || fl || || l|| || m || 
 

              and  

  (2)     rffr XXM  =)( , where   ]),([),(: 2  GG ULLULM r 
, with jjM r  =)( . 

Conversely, any *- algebra representation with the above two properties induces a groupoid representation, X ,  as 

follows:   

                                      )],())(()),(()()[( = ,, xdxrkxdjxXxfX kjf                        (8) 

 (viz. p. 50 of ref. [139]). 

Furthermore, according to Seda (ref. [252] and also  personal communication from A. Seda), the continuity of a Haar 

system is equivalent to the continuity of the convolution product gf *  for any pair f , g  of continuous functions 

with compact support. One may thus conjecture that similar results could be obtained for functions with locally 

compact support in dealing with convolution products of either locally compact groupoids or quantum groupoids. 

Seda's result also implies that the convolution algebra )(GcC  of a groupoid G  is closed with respect to 

convolution if and only if the fixed Haar system associated with the measured groupoid mG  is continuous (see ref. 

[68]). 

Thus, in the case of groupoid algebras of transitive groupoids, it was shown in [68] that any representation of a 

measured groupoid ])[=)](
~

[,(  udu

 G  on a separable Hilbert space H  induces a non-degenerate  

*-representation fXf   of the associated groupoid algebra )
~

,,( G  with properties formally similar to (1) 

and (2) above in  Theorem 1. Moreover, as in the case of groups, there is a correspondence between the unitary 

representations of a groupoid and its associated 
*C -convolution algebra representations (p. 182 of [68]), the latter 

involving however fiber bundles of Hilbert spaces, instead of single Hilbert spaces. 

 

2.  SYMMETRIES OF VON NEUMANN ALGEBRAS. EXTENDED SYMMETRIES. HOPF AND WEAK 

HOPF ALGEBRAS 

 

2.1. Symmetries and Representations 
The key for symmetry applications to physical problems and numerical computations lies in utilizing 

representations of abstract structures such as groups, double groups, groupoids and categories. Thus, an abstract 

structure has an infinite number of equivalent representations such as matrices of various dimensions that follow the 

same multiplication operations as for example those of an abstract group; such representations are therefore called 

group representations. Among the important representations in physics are:   

 

 Representations of Lie algebras and Lie groups  

 Representations of the symmetry groups  
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 (2)(1), SUU  and (3)SU  symmetry group representations 

 6j - symmetry representations 

 Quantum Group, Hopf and Weak Hopf algebra representations  

 Representations of the Poincaré group 

 Representations of the Lorentz group of transformations  

 Double-group representations.  

 

Lie groups and Lie algebras are representative examples of a very well developed and elegant theory of continuous 

symmetry of mathematical objects and structures that are also indispensible tools in modern theoretical physics; they 

provide a natural framework for the analysis of continuous symmetries related to differential equations in a 

Differential Galois theory somewhat similar to the use of premutation groups in the Galois theory for analysing the 

discrete symmetries of algebraic equations. Sophus Lie's principal motivation for developing the theory was the 

extension of the original Galois theory to the case of continuous symmetry groups. We shall consider in § 6 further 

extensions of the Galois theory, well beyond that of Lie's theory. 

A widely employed type of symmetry in many quantum computations for solid crystals is the point-group symmetry 

of various kinds, and the representations of the point-groups are matrices of lower dimensions in some cases, but 

typically infinite matrices as in Heisenberg's formulation of Quantum Mechanics. In finite dimensions, a 

representation of the Abelian, local symmetry group (1)U  is related to electrical charges and it is gauged to yield 

Quantum Electrodynamics (QED). Moreover, in quantum mechanics there are several quite useful and widely 

employed, lower-dimensional representations of symmetry groups, such as the Pauli (spin) matrix representations of 

the group (2)SU  and the three dimensional matrix representations of (3)SU  in QCD for the strong interactions 

via gluons. Thus, there are two types of (3)SU  symmetry: the exact gauge symmetry mediated by gluons, which 

symmetry acts on the different colors of quarks, and there is the distinct flavor (3)SU  symmetry which is only an 

approximate (not a fundamental) symmetry of the vacuum in QCD. Moreover the vacuum is symmetric under 

(2)SU  isospin rotations between up and down orientations, but it is less symmetric under the strange or full flavor 

group (3)SU ; such approximate flavor symmetries still have associated gauge bosons, that are actually observed 

particles such as the   and the  , but they are not masssles and behave very differently from gluons. In an 

approximate QCD version with fn  flavors of massless quarks one would have an approximate global, chiral 

symmetry group for flavors, (1)(1))()( ABfRfL UUnSUnSU  , whose symmetry is spontaneously broken 

by the QCD vacuum with the formation of a chiral condensate. The axial symmetry (1)AU  is exact classically, but 

broken in the quantum theory; it is sometimes called an `anomaly'. On the other hand, the (1)BU  vector symmetry 

is an  exact symmetry in the quantum theory and relates to the baryon quark number [11]. 

The representations, or realizations, of quantum groupoids and quantum categories are however much more 

complex, especially if numerical computations are desired based on such representations. Both quantum groupoids 

and quantum categories can be defined in several ways depending on the type of quantum system envisaged, e.g. 

finite boundary problems or quantum fields. 

 

2.1. The QCD Lagrangian and formal Cross-relations with Disordered Magnetic Systems in Solids 
Quark and gluon dynamics are governed by a QCD Lagrangian of the form: 

          ,(1/4))(=






  a

a

j

a

iji

a

iiQCD GGTgGmiL                                       (9) 

 where )(xi  is a dynamic function of spacetime called the quark field in the fundamental representation of the 

gauge group (3)SU , which has indces ...., ji , and )(xG
a

  are the gluon fields, also dynamic functions of 

spacetime x , but in the  adjoint representation of the (3)SU  gauge group indexed by ,...,ba ; the Lagrangian 

L QCD  also includes the Dirac matrices 
  which connect the spinor representation to the vector representation of 

the Lorentz group of transformations. 
a

ijT 's are called the generators which connect fundamental, anti-fundamental 

and adjoint representations of the (3)SU  gauge group; Gell-Mann matrices provide one such representation, thus 
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playing a central role in QCD. G  is the gauge invariant, gluonic field strength tensor, somewhat analogous in 

form to the electromagnetic field strength tensor of QED; this gluon field tensor includes also the  structure 

constants of (3)SU . The gluon color field is represented by a SU(3)-Lie algebra-valued `curvature' 2-form: 

GGgGdG
~~~

=  , where G
~

 is a `vector-potential' 1-form corresponding to G
~

. The constants m  and g  in eq. 

(2.1) represent, respectively, the quark mass and the coupling constants of the QCD theory expressed by this 

Lagrangian, and are subject to renormalisation in the complete quantum theory. Then, the gluon terms represent the 

non-Abelian character of the symmetry group (3)SU . 

Hinting at an underlying quantum symmetry, there is the gauge invariance that gives rise to a formal similarity 

between Mattis spin glasses in certain disordered magnetic solid systems and the coupling degrees of freedom kiJ ,  

in QCD which correspond to gluons; in such magnetic solids there are fixed ``random" couplings kiki JJ  0, = , as 

a result of quenching or ``freezing", whereas in QCD such coupling degrees of freedom ``fluctuate". When 0J  is 

positive the Mattis spin glass corresponds to a ferromagnet because such systems are not subject to any 

``frustration". This notion of ``frustration" in a spin glass corresponds to the Wilson loop quantity of QCD, but in the 

latter case where the symmetry is given by matrix representations of the (3)SU  group, the coupling degrees of 

freedom `` fluctuate". This formal cross-correlation between disorderd magnetic systems (including spin glasses and 

mictomagnets) was considered in some detail in [120]. 

 

2.2. Quantum Theories and Symmetry 
Following earlier attempts by Segal to formulate postulates [253] for quantum mechanics (and also to identify 

irreducible representations of operator algebras [254]), quantum theories adopted a new lease of life post 1955 when 

von Neumann beautifully re-formulated Quantum Mechanics (QM) in the mathematically rigorous context of 

Hilbert spaces and operator algebras. From a current physics perspective, von Neumann's approach to quantum 

mechanics has done however much more: it has not only paved the way to expanding the role of symmetry in 

physics, as for example with the Wigner-Eckhart theorem and its applications, but also revealed the fundamental 

importance in quantum physics of the state space geometry of (quantum) operator algebras. 

Subsequent developments of these latter algebras were aimed at identifying more general quantum symmetries than 

those defined for example by symmetry groups, groups of unitary operators and Lie groups, thus leading to the 

development of theories based on various quantum groups [101]. The basic definitions of von Neumann and Hopf 

algebras (see for example [185]), quasi-Hopf algebra, quasi-triangular Hopf algebra, as well as the topological 

groupoid definition, are recalled in the Appendix to maintain a self-contained presentation. Several, related quantum 

algebraic concepts were also fruitfully developed, such as: the Ocneanu paragroups-later found to be represented by 

Kac--Moody algebras, quantum groups represented either as Hopf algebras or locally compact groups endowed with 

Haar measure, `quantum' groupoids represented as weak Hopf algebras, and so on. 

 

2.3. Ocneanu Paragroups, Quantum Groupoids and Extended Quantum Symmetries 
The Ocneanu paragroup case is particularly interesting as it can be considered as an extension through quantization 

of certain finite group symmetries to infinitely-dimensional von Neumann type II1  algebras [112], and are, in 

effect, quantized groups that can be nicely constructed as Kac algebras; in fact, it was recently shown that a 

paragroup can be constructed from a crossed product by an outer action of a Kac-Moody algebra. This suggests a 

relation to categorical aspects of paragroups (rigid monoidal tensor categories [271, 298]). The strict symmetry of 

the group of (quantum) unitary operators is thus naturally extended through paragroups to the symmetry of the latter 

structure's unitary representations; furthermore, if a subfactor of the von Neumann algebra arises as a crossed 

product by a finite group action, the paragroup for this subfactor contains a very similar group structure to that of the 

original finite group, and also has a unitary representation theory similar to that of the original finite group. Last-but-

not least, a paragroup yields a complete invariant for irreducible inclusions of AFD von Neumannn 1II  factors with 

finite index and finite depth (Theorem 2.6. of [245]). This can be considered as a kind of internal, 'deeper' quantum 

symmetry of von Neumann algebras. 

On the other hand, unlike paragroups, quantum locally compact groups are not readily constructed as either Kac or 

Hopf 
*C -algebras. In recent years the techniques of Hopf symmetry and those of weak Hopf 

*C -algebras, 

sometimes called `quantum groupoids' (cf. Böhm et al. [38]), provide important tools-in addition to the paragroups- 

for studying the broader relationships of the Wigner fusion rules algebra, j6 -symmetry [233], as well as the study 
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of the noncommutative symmetries of subfactors within the Jones tower constructed from finite index depth 2 

inclusion of factors, also recently considered from the viewpoint of related Galois correspondences [204]. 

 

2.4. Quantum groupoids, Lie Algebroids and Quantum Symmetry Breaking 

The concept of a quantum groupoid may be succinctly presented as that of a weak 
*C - Hopf algebra which admits 

a faithful *-representation on a Hilbert space (see Appendix § 0.4 and [24, 21]). On the other hand, one can argue 

that locally compact groupoids equipped with a Haar measure (after quantization) come even closer to defining 

quantum groupoids. Nevertheless, there are sufficiently many examples in quantum theories that justify introducing 

weak C*--Hopf algebras and hence quantum groupoids as the essentially the same concept. Further importance is 

attached to the fact that notions such as (proper) weak 
*C -algebroids provide a significant framework for symmetry 

breaking and quantum gravity. Related notions are the quasi-group symmetries constructed by means of special 

transformations of a coordinate space M . These transformations along with M  define certain Lie groupoids, and 

also their infinitesimal version - the Lie algebroids A . Lifting the algebroid action from M  to the principal 

homogeneous space R  over the cotangent bundle MMT *
, one obtains a physically significant algebroid 

structure. The latter was called the Hamiltonian algebroid, 
HA , related to the Lie algebroid, A . The Hamiltonian 

algebroid is an analog of the Lie algebra of symplectic vector fields with respect to the canonical symplectic 

structure on R  or MT *
. In this example, the Hamiltonian algebroid, 

HA  over R , was defined over the phase 

space of NW -gravity, with the anchor map to Hamiltonians of canonical transformations [171]. Hamiltonian 

algebroids thus generalize Lie algebras of canonical transformations; canonical transformations of the Poisson sigma 

model phase space define a Hamiltonian algebroid with the Lie brackets related to such a Poisson structure on the 

target space. The Hamiltonian algebroid approach was utilized to analyze the symmetries of generalized 

deformations of complex structures on Riemann surfaces  ng ,
 of genus g  with n  marked points. One recalls that 

the Ricci flow equation introduced by Richard Hamilton is the dynamic evolution equation for a Riemannian metric 

)(tgij . It was then shown that Ricci flows ``cannot quickly turn an almost Euclidean region into a very curved one, 

no matter what happens far away'' [218], whereas a Ricci flow may be interpreted as an entropy for a canonical 

ensemble. However, the implicit algebraic connections of the Hamiltonian algebroids to von Neumann *--algebras 

and/or weak 
*C --algebroid representations have not yet been investigated. This example suggests that algebroid 

(quantum) symmetries are implicated in the foundation of relativistic quantum gravity theories and of supergravity. 

The fundamental interconnections between quantum symmetries, supersymmetry, graded Lie algebroids/their duals 

and quantum groupoid representations are summarized in Figure 2.1. Several physical systems that exhibit such 

extended quantum symmetries, and in which spontaneous symmetry breaking does occur, are also indicated in  

Figure 2.1. The example of quasicrystals is then further discussed in the following section. 

 

3.   QUASICRYSTALS. SYMMETRY GROUPOIDS.NONCOMMUTATIVE STRUCTURES  
 

3.1. Quasicrystals 
Penrose [216] considered the problem of coverings of the whole plane by shifts of a finite number of non-

overlapping polygons without gaps. These tilings, though being non-periodic, are quasi-periodic in the sense that 

any portion of the tiling sequence, displayed as a non-periodic lattice, appears infinitely often and with extra 

symmetry (there are more general examples in 3-dimensions). In such tiling patterns there is a requirement for 

matching rules if the structure is to be interpreted as scheme of an energy ground state [227]. Remarkably, further 

examples arise from icosahedral symmetries as first observed in solid state physics by [249] who described the 

creation of alloys MnAl6  with unusual icosahedral, 10-fold symmetries  forbidden by the crystallographic rules for 

Bravais lattices. These very unsual symmetries were discovered in the electron diffraction patterns of the latter 

solids which consisted of sharp Bragg peaks (true  -functions) that are typical of all crystalline structures that are 

highly ordered, and are thus in marked contrast to those of metallic glasses and other noncrystalline solids which 

exhibit only broad scattering bands instead of discrete Bragg diffraction peaks. Such unusual lattices were coined 

quasicrystals because they contain relatively small amounts of structural disorder in such lattices of 10-fold 

symmetry, formed by closely packed icosahedra. Further investigation of 10 - and higher- fold symmetries has 

suggested the use of noncommutative geometry to characterize the underlying electron distributions in such 

quasicrystals, as outlined for example in [31, 91] in the setting of 
*C -algebras and K-theory on a variety of        

non-Hausdorff spaces, and also attempting to relate this theory to the quantum Hall effect.  
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Goldstone and Higgs bosons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 2.1. Extensions of quantum symmetry concepts in Quantum Algebra, Supersymmetry, Quantum Gravity, 

Superfluid and Paracrystal quantum theories.  

 

More specifically, as explained in [299, 300] there is an apparent lack of direct correlation between the symmetry of 

the diffraction patterns and the expected periodicity in the quasi-crystalline lattice; hence, there is an absence of a 

group lattice action. Furthermore, there are no distinct Brillouin zones present in such quasicrystals. Here is where 

groupoids enter the picture by replacing the single group symmetry of crystalline lattices with many distinct 

symmetries of the quasi-lattice, and noncommutative 
*C -algebras replacing the Brillouin zones of the crystalline 

lattices. The quasicrystal can also be modeled by a tiling T  and its hull T , regarded as the space of all tilings can 

be equipped with a suitable metric 
T

d , so that T  is the metric space completion of 

)},:({
T

d dxxT  R  thus giving a structure more general than the space of Penrose tilings; moreover, 

T  / Rd
 is, in general, a non-Hausdorff space. This leads to a groupoid T  Rd

, and from the space of 

continuous functions with compact support Cc( T Rd 
), a completion in the supremum norm provides a 

noncommutative 
*C -algebra, Cc

*
( T Rd 

), which can be interpreted as a 'noncommutative Brillouin zone' [31, 

299]. This procedure related to an overall noncommutativity thus characterizes a transition from a periodic state 

structure to one that is either non-periodic or aperiodic. From another perspective, [162] has considered exactly 

solvable (integrable) systems in quasicrystals constructing an 8-vertex model for the Penrose non-periodic tilings of 

the plane equivalent to a pair of interacting Ising spin models. Further, it is shown that the 8-vertex model is 

solvable, and indeed that any solution of the Yang-Baxter equations can be used for constructing an unique, 

integrable model of a quasicrystal. 

 

4.  YANG-BAXTER EQUATIONS 
 

4.1. Parameter-dependent Yang--Baxter equation 

Consider A  to be an unital associative algebra. Then the parameter--dependent Yang--Baxter equation below is an 

equation for )(uR , the parameter--dependent invertible element of the tensor product AA  and )(= uRR  is 
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usually referred to as the (quantum) R -matrix (see Appendix § 0.3). Here, u  is the parameter, which usually 

ranges over all real numbers in the case of an additive parameter, or over all positive real numbers in the case of a 

multiplicative parameter. For the dynamic Yang--Baxter equation see also ref. [111]. The Yang--Baxter equation is 

usually stated (e.g., [259, 260]) as:  

 ),()()(=)()()( 121323231312 uRvuRvRvRvuRuR   (10) 

 for all values of u  and v , in the case of an additive parameter, and  

 ),()()(=)()()( 121323231312 uRuvRvRvRuvRuR  (11) 

 for all values of u  and v , in the case of a multiplicative parameter, where  
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))((=)(

))((=)(
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wRwR




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                                                                   (12) 

 for all values of the parameter w , and  
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 are algebra morphisms determined by the following (strict) conditions:  
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                                                                                                                                                                                (14) 

The importance of the equation (and Yang-Baxter algebras) is that they are ubiquitous in (integrable) quantum 

systems such as [88]:   

        - 1-dimensional quantum chains such as the Toda lattice and the Hesienberg chain. 

        - Factorizable scattering in 1)(1 -dimensions. 

        - 2-dimensional statistical lattice/vertex models. 

        - Braid groups.  

The quantum R -matrix itself also appears in many guises, such as a correspondent to 2-pt Schlesinger 

transformations in the theory of isomonodromic deformations of the torus [187]. 

 

4.2. The Parameter-independent Yang--Baxter equation 

Let A  be a unital associative algebra. The parameter--independent Yang--Baxter equation is an equation for R , an 

invertible element of the tensor product AA . The Yang--Baxter equation is:  

 
).(= and ),(=

)(= where ,=

23231313

1212121323231312

RRRR

RRRRRRRR




 (15) 

Let V  be a module over A . Let VVVVT :  be the linear map satisfying xyyxT  =)(  for all 

Vyx , . Then a representation of the braid group nB , can be constructed on 
nV 

 by 
11 11=   ini

i R


  

for 1,1,= ni  , where RTR 


=  on VV  . This representation may thus be used to determine quasi--

invariants of braids, knots and links. 

 

4.3. Generalization of the Quantum Yang--Baxter Equation 
The quantum Yang--Baxter equation was generalized in [164] to: 

 ),)(()()()(=
>

1

<>1=

jiij

ji

jjii

ji

jjii

ji

iiii

n

i

eecqqbeeceebeeqbR   
 (16) 

 for 0, cb . A solution of the quantum Yang--Baxter equation has the form MMMMR : , with M  

being a finite dimensional vector space over a field k . Most of the solutions are stated for a given ground field but 
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in many cases a commutative ring with unity may instead be sufficient. 

 

4.4. j6 -Symmetry, Extended Topology Quantum Field Theories, and j6 -Symmetry Representations j6 - 

Symbols and j6 -Symmetry Representations 

An important development linking classical with quantum group symmetries occurs in the Clebsch-Gordan theory 

involving the recoupling formulation for representations of classical and quantum (2))(slU  groups  via the spin 

networks of Penrose [217] and Kauffman [157, 158]. In such formulations the finite dimensional irreducible 

representations are expressed in spaces of homogeneous polynomials 
jV  in two variables of degree srj =2 , 

where ,...}{0,1/2,3/2j . 
1/2V  is called the  fundamental representation. 

For the quantum (2)sl  case the variables  `commute up to a factor of q ', that is  

 ,= qxyyx  

and when the parameter is a root of unity one only decomposes representations modulo those with trace 0. In 

general, however, the tensor product of two representations is decomposed as a direct sum of irreducible ones. Let 

us consider first the set of (2 by 2) matrices of determinant 1 over the field of complex numbers which form the 

`special' group (2SL ). There is a  Well Known Theorem for representations on 
jV :   The representations of the 

classical group (2)SL  on 
jV  are irreducible, [84]. 

Then, the classical group (2))(slU  constructed from the algebra generated by three symbols FE,  and H  subject 

to a few algebraic relations, has the same finite dimensional representations as the group (2SL ). As an example, 

when A  is a primitive r4 -th root of unity, one has the relations: 0== ** FE  and 1=4rK , and the quantum 

group (2))(slUq  has the structure of a modular ribbon Hopf algebra as defined by Reshetikhin-Turaev [232]. In 

general, FE,  and H  are subject to the following algebraic relations:  

 ,= ,2= EEHHEHFEEF   

and  

 ,= FFHHF   

analogous to the Lie bracket in the Lie algebra (2)sl . The (2)sl  Lie algebra is related to the Lie group (2)SL  via 

the exponential function , (2)(2): SLslexp   defined by the power series:  

 ),!/(=)(
0=

jQQexp j

j



  

for (2)slQ . This exponentiation function exp  maps a trace 0  matrix to a matrix with determinant 1 . 

A  representation of either (2)sl  or (2))(slU  is determined by assigning to FE,  and H  corresponding 

operators on a vector space V  that are also subject to the above relations, and the enveloping algebra acts by 

composition: ),(=2 EvEvE  where v  is a vector in the representation V . 

Moreover, the tensor product of such representations can be naturally decomposed in two distinct ways that are 

compared in the so-called  recoupling theory or formulation with recoupling coefficients that are called ` j6 -

symbols'.    

 

4.5.1. Extended Topological Quantum Field Theories (ETQFT)  

A useful geometric visualisation of j6 -symbols is also available as the corners of regular tetrahedra, but in fact the 

j6 -symbols satisfy two fundamental identities--the Elliott-Biedenharn and the orthogonality identities--that can be 

interpreted in terms of the decomposition of the union of two regular tetrahedra; in the case of the Elliott-Biedenharn 

identity the two tetrahedra are glued only along one face, and then recomposed as the union of three tetrahedra glued 

along an edge. In the case of the orthogonality identity the tetrahedra are glued along two faces but the 

recomposition is no longer simplicial. This peculiar symmetry of the j6 -symbols and their relationship to 

tetrahedra was explained when Turaev and Viro [271] were able to construct 3-manifold invariants based on a 

roughly analogous theory for the quantum (2)sl  group case, and interestingly, the identities satisfied by the j6 -

symbols are exactly the same in the quantum case as in the classical one [84]. The Turaev-Viro invariants were 
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derived using the results of Kirilov and Reshetikhin for quantum group representations [160] and are a good 

example of a Topological Quantum Field Theory (TQFT), defined as a functor HilbCob:F , from the 

category Cob  of smooth manifold cobordisms to the category of Hilbert spaces, Hilb . An extension to higher 

dimensional Homotopy QFTs (HHQFTs) has also been reported, but this novel approach [223] is distinct from the 

previous work in ETQFTs. A related, formal approach to HQFTs in terms of formal maps and crossed C --algebras 

was also recently reported [224]. Potential physical applications of the latter HHQFT developments are in the area 

of topological higher gauge theory [127, 9]. 

The solutions to the tetrahedral analogue of the quantum Yang-Baxter equation lead to a 4-algebra, and therefore a 

search is on for the higher-dimensional extensions of such equations, and their related ETQFT invariants. Significant 

efforts are currently being made to generalise such theories in higher dimensions and one such formulation of an 

Extended TQFT is due to Lawrence [169] in terms of the structure associated to a 3-manifold called a `3-algebra'. 

Note, however, that the latter should be distinguished from the cubical structure approaches mentioned in § 6 that 

could lead to a Cubical Homotopy QFT (CHQFT) instead of the 3-algebras of Lawrence's ETQFT. In the latter case 

of CHQFTs, as it will be further detailed in § 6 and § 7, the generalised van Kampen theorem might play a key role 

for filtered spaces. Such recent developments in higher-dimensional ETQTs point towards `` deep connections to 

theoretical physics that require much further study from the mathematical, theoretical and experimental sides" [84]. 

 

4.6.  -Poincaré symmetries 
In keeping with our theme of quantization of classical (Poisson-Lie) structures into Hopf algebras, we consider the 

case as treated in [202] of how the usual Poincaré symmetry groups of (anti) de-Sitter spaces can be deformed into 

certain Hopf algebras with a bicrossproduct structure and depend on a parameter  . Given that Hopf algebras arise 

in the quantization of a 1)(2 -dimensional Chern-Simons quantum gravity, one may consider this theory as 

workable. However, as pointed out in [202] the Hopf algebras familiar in the 1)(2 -gravity are not  -symmetric, 

but are deformations of the isometry groups of the latter, namely, the Drinfeld doubles in relation to respectively 

zero, positive and negative cosmological constant: (1,1)))(U((1,1))),(U( suDsuD q , Rq and 

(1,1))),(S( suUD q  q .(1)U . 

Now suppose we have take the quantization of a classical Poisson Lie group G  into a Hopf algebra. In the case of 

the quasi-triangular Hopf algebras (see R-matrix in the Appendix § 0.3) such as the Drinfeld doubles and the    

 -Poincaré structures, the Lie bialgebras are definable on taking an additional structure for the corresponding Lie 

algebra g . As shown in [202], this turns out to be an element gg 
 XXrr =  which satisfies the 

classical Yang-Baxter equations:  

 0,=],[],[],[=]],[[ 231323121312 rrrrrrrr   (17) 

 

 where 






 XXXrrXXrrXXrr  111 = ,= ,= 231312 , and 

,}{ X , is a basis for
 

. The ensuing relations between the Hopf algebras, Poisson Lie groups, 

Lie bialgebras and classical r-matrices is given explicitly in [202]. From another point of view, works such as [257, 

258] demonstrate that the 
*C -algebra structure of a compact quantum group, such as )(S nUq , can be studied in 

terms of the groupoid 
*C -algebra into which the former can be embedded. These embeddings thus describe the 

structure of the 
*C -algebras of such groups and that of various related homogeneous spaces, such as 

)(S1)/(S nUnU qq   (a `quantum sphere'). 

 

4.7. Towards a Quantum Category 
We remark that the Drinfeld construction of the quantum doubles of (finite dimensional) Hopf algebras can be 

extended to various bilalgebras [262]. The bialgebra (algebroid) treatment leads into a more categorical framework 

(cf. *-autonomous bicategories), namely to that of a quantum category [96] where a quantum groupoid is realized 

via the antipode structure (cf. weak Hopf algebra in Appendix). If  MBA  denotes a braided monoidal category with 

coreflexive equalizer, one considers the right autonomous monoidal bicategory Comod(MBA) and the quantum 

category (in) consists of `basic data' in Comod(MBA)  in [96, 262]. By adding an invertible antipode to an associated 



IJRRAS 9 (2) ● November 2011 Baianu & al. ● Operator Algebra & Quantum Groupoid Representations 

 

 
 

180 
 

weak Hopf algebra (see definition in the Appendix) and on transferring Hopf-basic data into Comod(MBA)
co

 we 

obtain a specialised form of quantum groupoid (cf. [21, 24]). However, we point out that for such constructions at 

least one  Haar measure should be attached in order to allow for groupoid representations that are associated with 

observables and their operators, and that also correspond to certain extended quantum symmetries that are much less 

restrictive than those exhibited by quantum groups and Hopf algebras. Note also that this concept of quantum 

category may not encounter the problems faced by the 'quantum topos' concept in its applications to quantum 

physics [21]. 

 

5.  THEOREMS AND RESULTS 
In this section we recall some of the important results relevant to extended quantum symmetries and their 

corresponding representations. This leads us to consider wider classes of representations than the group 

representations usually associated with symmetry; they are the more general representations for groupoids, arbitrary 

categories and functors. 

 

5.1. General Definition of Extended Symmetries via Representations 
We aim here to define extended quantum symmetries as general representations of mathematical structures that have 

as many as possible physical realizations, i.e. via unified quantum theories. In order to be able to extend this 

approach to very large ensembles of composite or complex quantum systems one requires general procedures for 

quantum `coupling' of component quantum systems; several relevant examples will be given in the next sections. 

Because a group G  can be viewed as a category with a single object, whose morphisms are just the elements of G , 

a general representation of G  in an arbitrary category C  is a functor GR  from G  to C  that selects an object X  

in C  and a group homomorphism from   to )(A Xut , the automorphism group of X . Let us also define an 

adjoint representation by the functor GR CC :*
. If C  is chosen as the category Top  of topological spaces and 

homeomorphisms, then  representations of G  in Top  are homomorphisms from G  to the homeomorphism group 

of a topological space X . Similarly, a general representation of a groupoid G  (considered as a category of 

invertible morphisms) in an arbitrary category C  is a functor GR  from G  to C , defined as above simply by 

substituting G  for G . In the special case of Hilbert spaces, this categorical definition is consistent with the 

`standard' representation of the groupoid on a bundle of Hilbert spaces. 

 

Remark  5.1. Unless one is operating in supercategories, such as 2-categories and higher dimensional categories, 

one needs to distinguish between the representations of an (algebraic) object -- as defined above -- and the 

representation of a functor S  (from C  to the category of sets, Set) by an object in an arbitrary category C  as 

defined next. Thus, in the latter case, a functor representation will be defined by a certain natural equivalence 

between functors. Furthermore, one needs also consider the following sequence of functors:  

 ,:,:,: *
SetCC C  GGRGRG S  

 where GR  and 
*

CR  are adjoint representations as defined above, and S  is the forgetful functor which `forgets' the 

group structure; the latter also has a right adjoint 
*S . With these notations one obtains the following commutative 

diagram of adjoint representations and adjoint functors that can be expanded to a square diagram to include either 

Top  -- the category of topological spaces and homeomorphisms, or TGrpd , and/or CMC =G  (respectively, 

the category of topological groupoids, and/or the category of categorical groups and homomorphisms) : 

                                             
5.2. Representable Functors and Their Representations 
The key notion of representable functor was first reported by Grothendieck (also with Dieudonné) during 1960--
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1962 [136, 133, 134], (see also the earlier publication by Grothendieck [132]). This is a functor SetC:S , 

from an arbitrary category C  to the category of sets, Set, if it admits a (functor) representation defined as follows. 

A functor representation of S  is a pair, ),( R , which consists of an object R  of C  and a family   of 

equivalences C)mC(R,C)  S  (C) which is natural in C . When the functor S  has such a 

representation, it is also said to be represented by the object R  of C . For each object R  of C  one writes 

SetC:Rh  for the covariant Hom-functorhR(C)  mC(R,C).  A representation ),( R  of S  is 

therefore a natural equivalence of functors SRh: . 

   The equivalence classes of such functor representations (defined as natural equivalences) obviously determine an 

algebraic groupoid structure. As a simple example of an algebraic functor representation, let us also consider (cf. 

[183]) the functor SetGr :N  which assigns to each group G  its underlying set, and to each group 

homomorphism f  the same morphism but regarded just as a function on the underlying sets; such a functor N  is 

called a forgetful functor because it ``forgets'' the group structure. N  is a representable functor as it is represented 

by the additive group Z  of integers and one has the well-known bijection mG(Z, G ) )(GS  which assigns 

to each homomorphism Gf Z:  the image (1)f  of the generator 1  of Z .  

  In the case of groupoids there are also two natural forgetful functors F: SetGrpd     and  

 E aphsDirectedGrGrpd : ;  the left adjoint of  E  is the free groupoid on a directed graph, i.e. the groupoid 

of all paths in the graph. One can therefore ask the question:  

 

   Is F  representable, and if so, what is the object that represents F ? 

Similarly to the group case,  a functor F can be defined by assigning  to each groupoid GX its underlying set of 

arrows, GX
(1)

, but `forgetting’ the structure of  GX
(1)

. In this case,  F is representable by the indiscrete groupoid 

I(S) on a set S since the morphisms of GX
(1)

 are determined by the morphisms from I(S) to GX
(1)

. One can 

also describe (viz. [183]) representable functors in terms of certain universal elements called universal points. Thus, 

consider  SetC:S  and let *sC  be the category whose objects are those pairs ),( xA  for which )(Ax S  

and with morphisms ),(),(: yBxAf   specified as those morphisms BAf :  of C  such that 

yxf =)(S ; this category *sC  will be called the category of S -pointed objects of C . Then one defines a 

universal point for a functor SetC:S  to be an initial object ),( uR  in the category *sC . At this point, a 

general connection between representable functors/functor representations and universal properties is established by 

the following, fundamental functor representation theorem [183].  
 

Theorem 5.2. Functorial Representation Theorem 7.1 of MacLane [183]: For each functor SetC:S , the 

formulas RRu )1(=  , and uhhc )(=)( S , (with the latter holding for any morphism CRh : ), establish a 

one-to-one correspondence between the functor representations ),( R of S and the universal points ),( uR  for S .  

 

5.3. Physical Invariance under Symmetry Transformations, Generalised Representation and Quantum 

Algebraic Topology Theorems 
A statement of Noether's theorem as  a conservation law is a s follows.  
 

Theorem 5.3. Noether's Theorem and Generalisations [207]: 

 Any differentiable symmetry of the action of a physical system has a corresponding conservation law; to every 

differentiable symmetry generated by local actions, there corresponds a  conserved current. Thus, if a system has a 

continuous symmetry property, then there are corresponding physical quantities that are invariant (conserved) in 

time.   

5.3.1. Consequences of Noether's theorem, extensions and application examples:   

 (a) The angular momentum and the energy of a system must be conserved;  

 (b) There are also Conservation Laws for tensor fields   which are described by partial differential equations, and 
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the conserved physical quantity is called in this case a ``Noether charge"; the flow carrying the Noether charge is 

called a ``Noether current"; for example, the electric charge is conserved, and Noether's theorem states that there are 

N conserved current densities when the action is invariant under N transformations of the spacetime coordinates and 

fields; an application of the Noether charge to stationary black holes allows the calculation of the black hole's 

entropy;  

 (c) A quantum version of Noether's first theorem is known as the Ward-Takahashi identity. Note that symmetry 

here is expressed as a covariance of the form that a physical law has with respect to the one-dimensional Lie group 

of transformations (with an uniquely associated Lie algebra);  

(d) In the case of the Klein-Gordon(relativistic) equation for spin-0 particles, Noether's theorem provides an exact 

expression for the conserved current, which multiplied by the charge equals the electrical current density, the 

physical system being invariant under the transformations of the field   and its complex conjugate *  that leave 

2||  unchanged; such transformations were first noted by Hermann Weyl and they are the  fundamental gauge 

symmetries of contemporary physics;  

 (e) Interestingly, the relativistic version of Noether's theorem holds rigorously true for the conservation of 4-

momentum and the zero covariant divergence of the stress-energy tensor in GR, even though the conservation laws 

for momentum and energy are only valid up to an approximation;  

 (f) Noether's theorem can be extended to conformal transformations, and also Lie algebras or certain superalgebras, 

such as graded Lie algebras.  

In terms of the invariance of a physical system, Noether's theorem can be expressed for: 

 

 spatial translation--the law of conservation of linear momentum;  

 time translation-- the law of energy conservation;  

 rotation--the law of conservation of angular momentum.  

 change in the phase factor of a quantum field and associated gauge of the electric potential--the law of 

conservation of electric charge (the Ward-Takahashi  identity);  

 

Theorem 5.4. Goldstone's Theorem:   Let us consider the case of a physical system in which a (global) continuous 

symmetry is spontaneously broken. In this case, both the action and measure are initially invariant under a 

continuous symmetry. Subsequent to a global, spontaneous symmetry breaking, the spectrum of physical particles of 

the system must contain one particle of zero rest mass and spin for each broken symmetry; such particles are called 

Goldstone bosons or Nambu-Goldstone (NG) bosons, [274]. An alternate formulation in terms of the energy 

spectrum runs as follows:   

 

Theorem 5.4.1 [43]:  The spontaneous breaking of a continuous, global internal symmetry requires the existence of 

a mode in the spectrum with the property :  

 0.=lim
0

k
k

E


 (18) 

A Corollary of the Goldstone theorem can be then stated as follows: 

 ``If there are two different Green functions of a quantum system which are connected by a symmetry transformation 

then there must exist a Goldstone mode in the spectrum of such a system", [43]. 

One assumes that in the limit of zero gauge couplings, the effective quantum field theory is invariant under a certain 

group G  of global symmetries, which is spontaneously broken to a subgroup H  of G . Then we `turn on' the 

gauge couplings and the gauge group Gg G , for G  being the group of all symmetries of the effective QFT or 

an effective field theory (EFT); moreover, when G  is spontaneously broken to H , the gauge subgroup gG  must 

be sponatneously broken to a subgroup gH , equal to the intersection of gG  with H . Furthermore, the generators 

T  of the gauge group gG  can be expressed as a linear combination of the generators AT  of the full (global) 

symmetry group G  [274]. One can also simply define a  spontaneously broken symmetry (SBS) as a global 

symmetry whose ground state is not an eigenstate of its generator 0T  [43]. Because the charge operator commutes 

with the Hamiltonian of the system, a finite symmetry transformation generated by the charge operator also 

commutes with the Hamiltonian. Then, the ground state will be transformed into another state of the same energy. If 

the symmetry group is continuous there will be infinitely many degenerate ground states, all connected by symmetry 

transformations; therefore, all such ground states must be physically equivalent, and any of these ground states can 
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be excited to yield a full spectrum of excited states. 

The proof of the theorem begins with a consequence of Noether's theorem which requires that any continuous 

symmetry of the action leads to the existence of a conserved Noether current 
J , with a charge Q  that induces the 

associated symmetry transformation ,0))((= 03 rxJdQ  , and the proof proceeds by calculating the vacuum 

expectation value of the commutator of the current and field. Note that the integral charge Q  is conserved/time 

independent, and also that the presence of a density of non-Abelian charge implies the presence of a certain type of 

Glodstone bosons (also called the Nambu-Golstone, NG type-II bosons). The Goldstone theorem does not apply 

when the spontaneously broken symmetry is a local rather than a  global one, and  no massless Goldstone bosons 

are generated in this case as a result of the local symmetry breaking. However, when the broken symmetry is  local, 

the Goldstone degrees of freedom appear in helicity zero states of the vector particles associated with the broken 

local symmetries, thereby acquiring mass, a process called the Higgs mechanism-which is considered to be an 

important extension of the Standard Model of current physics; the vector particles are therefore called Higgs bosons, 

and a real `hunt' is now ongoing at the latest built accelerators operating at ultra-high energies for the observation of 

such massive particles. Similar considerations played a key role in developing the electroweak theory, as well as in 

the formulation of unified quantum theories of electromagnetic, electroweak and strong interactions summarised in 

the  Standard Model [274]. Here is, at last, a chance for the experimental high-energy physics to catch up with the 

theoretical physics, and test its predictions; so far, there has been no report of Higgs bosons up to 175 GeV, above 

the Higgs bosons' mass estimates of about 170GeV from noncommutative geometry-based theories. On the other 

hand, in the case of spontaneously broken approximate symmetries (SBAS), low-mass, spin-0 particles, called 

pseudo-Goldstone bosons, are generated, instead of the massless Goldstone bosons. This case is important in the 

theory of strong, nuclear interactions, as well as in superconductivity. There is also an approximate symmetry of 

strong interactions known as  chiral symmetry, (2)(2) SUSU  , which arises because there are two quark fields, 

u  and d  of relatively small masses. This approximate symmetry is spontaneously broken leading to the isospin 

subgroup (2)SU  of (2)(2) SUSU  . Because the u  and d  quarks do not have zero rest mass the chiral 

symmetry is not exact. Therefore, the breaking of this approximate symmetry entails the existence of approximately 

massless pseudo-Goldstone bosons of spin-0 and with the same quantum numbers as the symmetry broken generator 

X  ; thus, such pseudo-Goldstone bosons should have zero spin, negative parity, unit isospin, zero baryon number 

and zero strangeness. The experimental fact is that the lightest observed of all hadrons is the pion which has 

precisely these quantum numbers; therefore, one identifies the pion with the pseudo-Goldstone boson associated 

with the spontaneous breaking of the approximate chiral symmetry. 

   Another interesting situation occurs when by lowering the temperature in a certain quantum system, this is brought 

very close to a  second-order phase transition which goes smoothly from unbroken to broken global symmetry. 

Then, according to [274], on the side of the transition where the global symmetry is broken there will be massless 

Goldstone bosons present together with other massive excitations that do not form complete multiplets which would 

yield linear representations of the broken symmetry group. On the other side of the transition-- where the global 

symmetry of the system is not broken-- there are, of course, complete linear multiplets, but they are, in general, 

massive, not massless as in the case of Godstone bosons. If the transition is second-order, that is continuous, then 

very near the phase transition, the Goldstone bosons must also be part of a complete linear multiplet of excitations 

that are almost massless; such a multiplet would then form only one irreducible representation of the broken 

symmetry group. The irreducible multiplet of fields that become massless only at the second-order phase transition 

then defines the order parameter of the system, which is  time independent. The calculation of the order parameter 

can be approached on an experimental basis by introducing an  effective field selected with the transformation 

properties under the observed symmetry that create the Goldstone bosons whose ground state expectation value 

determines the order parameter. This approach is also considered in conjunction with either the Higgs boson 

mechanism in the Standard Model (SUSY) or the Ginzburg-Landau theory of phase transitions. As a specific 

example, for ferromagnets it is the expectation value of the spontaneous magnetization which determines the order 

parameter. However, in certain unifed field theories this is no longer straightforward because the order parameter is 

associated with transformation properties corresponding to higher dimensional representations of the symmetry 

group of such a grand unifiication theory (p. 619 of [43]). 

It is possible to construct a quantum description of SBS by employing a symmetric ground state; then the 

spontaneous symmetry breaking is manifested as  long-range correlations in the system rather than as nonzero 

vacuum expectation values [297]. Thus, the Nambu-Goldstone mode can be considered in this case to be a long-

wavelength fluctuation of the corresponding order parameter. Similar explanations hold for  coupled magnons in 

long-range spin wave excitations of certain ferromagnets-- even in the presence of  long-range structural disorder 
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[23]-- leading to nonlinear magnon dispersion curves that are the result of two-magnon, and higher groups, of 

magnon excitations in such noncrystalline, or  glassy solids; the latter ferromagnetic metallic glasses were 

sometimes called `mictomagnets'. A magnon is a propagating, `magnetic' perturbation caused by flipping one of the 

electron spins, and can also be considered as a spin wave that carries a [ 1 ] unbroken charge, being the projection 

of the electron spin along the direction of the total magnetization of the ferromagnet. 

The application of the Goldstone theorem to this case leads to the result that for each broken symmetry generator 

there is a state in the spectrum that couples to the corresponding Noether current. Calculations for the amplitudes 

corresponding to particle states k := k|  can be carried out either in the Schrödinger or the Heisenberg 

representation, and provide the following important result for the energy eigenvalues:  

                                                                      Ek = k
2
/2m                                                                      (19) 

 where the state k|  represents a Goldstone, or NG, boson of momentum  k. Therefore, the magnon dispersion 

curve is often quadratic in ferromagnets, and the coupled magnon pair provides an example of a type II NG-boson; 

this is a single NG-boson coupled to two broken symmetry generators [43]. On the other hand, in antiferromagnets 

there are two distinct Goldstone modes--which are still magnons or spin-waves, but the dspersion relation at low 

momentum is linear. In both the ferromagnet and antiferromagnet case the (2)SU  group symmetry is 

spontaneously broken by spin alignments (that are respectively parallel or anti-parallel) to its (1)U  subgroup 

symmetry of spin rotations along the direction of the total magnetic moment. In a crystalline ferromagnet all spins 

sitting on the crystall lattice are alligned in the same direction and the ferromagnet possesses in general an strongly 

anisotropic total magnetization associated with the crystal symmetry of the ferromagnet. In a glassy ferromagnet the 

spontaneous magnetization plays the role of the order parameter even if the system may manifest a significant, 

residual magnetic anisotropy [22]. Although the magnetization could in principle take any direction even a weak 

external magnetic field is sufficient to align the total sample magnetization along such a (classical) magnetic field. 

The ferromagnet's ground state is then determined only by the perturbation, and this is an example of vacuum 

alignnment. Moreover, the ferromagnetic ground state has nonzero net spin density, whereas the antiferromagnet 

ground state has zero net spin density. The full spectrum of such SBS systems has soft modes--the Goldstone 

bosons. In the case of glassy ferromagnets, the transitions to excited states induced by microwaves in the presence of 

a static, external magnetic field can be observed at resonance as a  spin-wave excitation spectrum [23]. The 

quenched-in magnetic anisotropy of the ferromagnetic glass does change measurably the observed resonance 

frequencies for different sample orientations with respect to the external, static magnetic field, and of course, the 

large total magnetization always shifts considerably the observed microwave resonance frequency in Ferromagnetic 

Resonance (FMR) and Ferromagnetic Spin Wave Resonance (FSWR) spectra from that of the free electron spin 

measured for paramagnetic systems by Electron Spin Resonance (ESR). On the other hand, for an isotropic 

ferromagnet one can utilize either the simple Hamiltonian of a Heisenberg ferromagnet model:  

 , (1/2)= jiij

ij

ssJH   (20) 

In the case of a ferromagnetic glass, however, other more realistic Hamiltonians need be employed that also include 

anisotropic exchange couplings, coupled local domains and localised ferromagnetic clusters of various (local) 

approximate symmetries [23] that can be, and often are, larger than 10 nm in size. 

As required by the isotropic condition, the Hamiltonian expression (20) is invariant under simultaneous rotation of 

all spins of the ferromagnet model, and thus forms the (2)SU  symmetry group; if all ijJ  spin couplings are 

positive, as it would be the case for any ferromagnet, the ground state of the Heisenberg ferromagnet model has all 

spins parallel, thus resulting in a considerable, total magnetization value. The calculated ground state energy of the 

Heisenberg ferromagnet is then ijij
JE (1/8)=0 . With simplifying assumptions about the one-particle 

Hamiltonian and plane k|  waves one also obtains all of the Heisenberg ferromagnet energy eigenvalues for the 

excited states: 

 ),(1/2)(= 0 kk JJE   (21) 

where 

 ), (exp)(= ii

i

k xikxJJ   (22) 

 (see ref. [43]). As already discussed, one obtains with the above equations the result that the dispersion relation for 

the Heisenberg ferromagnet is quadratic at low-momenta, and also that the NG- bosons are of type-II [43]. The 

Hamiltonian for the Heisenberg ferromagnet model in eq. (5.3) is a significant simplification in the isotropic case 
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because in this model a magnon, or a spin wave, propagates in the homogeneous magnetic field background of all 

the other randomly aligned spins. Moreover, the Larmor precession of a spin wave can only occur clockwise, for 

example, because its sense of rotation is uniquely determined by the magnetic moment of the electron spin, and the 

axis for the Laromor precession is determined by the total sample magnetization. 

In a three-component Fermi gas the global SU(3) x U(1) symmetry is spontaneously broken by the formation of 

Cooper pairs of fermions, but still leaving unbroken a "residual SU(2) x U(1) symmetry". 

In a system with three spin polarizations, such as a Bose-Einstein condensate of an alkali gas, the global symmetry 

is instead that of the SO(3) x U(1) group, which corresponds to rotational invariance and conservation 

of particle number [43]. 

One of the key features of SSB is that the symmetry, in this case, is not realised by unitary operators on a Hilbert 

space, and thus, it does not generate multiplets in the spectrum. Another main feature is the presence of the order 

parameter{expressed as a nonzero expectation value of an operator that transforms under the symmetry group; the 

ground states are then degenerate and form a continuum, with each degenerate state being labeled by different 

values of the order parameter; such states also form a basis of a distinct Hilbert space. These degenerate ground 

states are unitarily equivalent representations of the broken symmetry and are therefore called the `Nambu-

Goldstone realisation' of symmetry. For an introduction to SSB and additional pertinent examples see also [43]. 

On the other hand, the above considerations about Goldstone bosons and linear multiplets in systems exhibiting a 

second-order phase transition are key to understanding, for example, superconductivity phenomena at both low and 

higher temperatures, in both type I and type II superconductors. The applications extend however to spin-one color 

superconductors, that is a theory of cold dense quark matter at moderate densities. However, symmetry, Goldstone 

bosons and SSB are just as important in understanding quantum chromodynamics in general, thus including ultra-

hot dense quark plasmas, and nuclear fusion in particular. Thus, similar SSB behavior to that of solid ferromagnets 

can be observed in nuclear matter, as well as several colour superconducting phases made of dense quark matter. As 

a further example, Kapitsa [156] in his Nobel lecture address, pointed out that the symmetry of the configuration in a 

controlled nuclear fusion reactor is very important, and also that in view of the theoretical, major computational 

problems encountered wit dense and ultra-hot plasmas, in systems with toroidal symmetry, such nuclear fusion 

reactors are not optimal for the nuclear fusion confinement and control, and therefore are unmanageable for 

optimizing their output generation efficieny. To date, even though one of the largest, existing nuclear fusion reactors 

(NFRs), JET in UK, generated significant amounts of energy, the input required to the toroidal geometry/toroidal 

confinement field, unoptimised NFR is much greater than the NF energy output of the NFR (as for example in the 

JET or the future ITER NFRs). Therefore, this makes the NF energy breakeven point unattainable in the short term 

(i.e., < 10 years), which is obviously required for any practical use of the tokamak NFRs. Because any NFR system 

operates nonlinearly with ultra-hot plasmas in which the deuterium (D
+
) ion oscillations are strongly coupled to the 

accelerated electron beams [147], the groupoid C*-algebra representation treatments discussed above in Section 4 

can be applied, in the case of simple symmetry configurations, to determine the corresponding extended quantum 

symmetries of such (D
+
; e

-
) processes for optimising the NFRs' energy output and their energy generation efficiency. 

At least in principle, if not in practice, such symmetry-based simplification of the NF computational problems may 

provide clues for significant increases in the energy efficiency of such novel NFRs, beyond their breakeven point, 

and therefore relevant for near future, practical applications. This was precisely Kapitsa's major point also in his 

Nobel lecture about the importance of selecting the more advantageous  NFR configurations, except for the fact that, 

at the time, there were available only semi-empirical approaches, based mostly on physical intuition and brief 

experimental trial runs in very small size, low-cost NFRs [156]. On the other hand, in white, as well as red stars, 

their global spherical configuration is stable in the presence of nuclear fusion reactions that continue to burn for 

extremely long times on the order of many billion years, as one would expect from general symmetry considerations 

related to quantum groups such as sl(2). 

An extension of the Goldstone theorem to the case when translational invariance is not completely broken and long-

range interactions are absent is known as the Nielsen-Chadha theorem; it relates the number of Goldstone bosons 

generated to their dispersion relations [43]. 

 
Theorem 5.5. Wigner's Theorem [288]: 

Any symmetry acts as a unitary or anti-unitary transformation in Hilbert space: there is a surjective map T: H → H 

on a complex Hilbert space H, which satisfies the condition: 

                                        |  Tx , Ty   | = |  x, y  | 

                                         
 

for all x, y in H, has the form Tx =  (x) Ux for all  x  in  H, where  : H → C has modulus one and U : H → H is 

either unitary or antiunitary. 
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Theorem 5.6. Peter-Weyl Theorem: 

I. The matrix coefficients of a compact topological group G are dense in the space C(G) of continuous complex-

valued functions on G, and thus also in the space L
2
(G) of square-integrable functions;  

II. The unitary representations of G are completely reducible representations, and there is a decomposition of a 

unitary representation of G into finite-dimensional representations; 

III. There is a decomposition of the regular representation of G on L
2
(G) as the direct sum of all irreducible unitary 

representations. Moreover, the matrix coefficients of the irreducible unitary representations form an orthonormal 

basis of L
2
(G). A matrix coefficient of the group G is a complex-valued function  , on G given as the composition 

                                                                                        ,=  L                                                                                  
(23) 

where )(: VGLG   is a finite-dimensional (continuous) group representation of G , and L  is a linear 

functional on the vector space of endomorphisms of V (that is, the trace), which contains )(VGL  as an open 

subset. Matrix coefficients are continuous because by their definition representations are continuous, and moreover, 

linear functionals on finite-dimensional spaces are also continuous.   

 

Theorem 5.7.  Stone-von Neumann theorem and its Generalisation: 
The cannonical commutation relations between the position and momentum quantum operators are unique. 

More precisely, Stone's theorem  states that: 
 

 There is a one-to-one correspondence between self-adjoint operators and the strongly continuous, one-parameter 

unitary groups.  In a form using representations it can be rephrased as follows:   For any given quantization value h  

every strongly continuous unitary representation is unitarily equivalent to the standard representation as position 

and momentum.   

 

Theorem 5.8. Generalisation 

Let nH  be a general Heisenberg group for n  a positive integer. The representation of the center of the Heisenberg 

group is determined by a scale value, called the `quantization value' (i.e., Planck's constant,  ). Let us also define 

the Lie algebra of nH  whose corresponding Lie group is represented by 2)(2)(  nn  square matrices 

),,( cbaM  realized by the quantum operators QP, . Then, for each non-zero real number h there is an 

irreducible representation hU  of nH  acting on the Hilbert space )(2 nRL  by  

                                            )(=)())],,(([ )( haxexcbaMU hcxbi

h                                    (24) 

All such i  representations are then unitarily inequivalent; moreover, any irreducible representation which is not 

trivial on the center of nH  is unitarily equivalent to exactly one of the i  representations. (The center of nH  is 

represented by the matrices )(0,0,cM  in this notation).  For a locally compact group G  and its Pontryagin dual 

oG  the theorem can be also stated by using the Fourier-Plancherel transform and also considering the group  
*C --

algebra of G , )(* GC . It turns out that the spectrum of )(* GC  is precisely 
oG , the Pontryagin dual of G ; one 

obtains Stone's theorem for the one-parameter unitary groups when the elements of G  are real numbers, with the 

usual number multiplication. 

  Another fundamental theorem is  Mitchell's theorem for compact Lie groups acting smoothly on a real manifold, 

which constrains the possible stationary points of group-invariant potentials [43]. An interesting question is if 

Michel's theorem could be extended to symmetry  Lie groupoids acting `smoothly' on a manifold; such a generalised 

Michel theorem might be derived from the fundamental holonomy theorem for groupoids. As a particular example, 

for inframanifolds one has the Anosov theorem involving odd-order Abelian holonomy groups, but in the groupoid 

case non-Abelian extensions of the theorem are to be expected. More generally, in the loop space formulation of 

(3+1) canonical quantum gravity the physical information is contained within the holonomy loop functionals, and a  

generalisation of the Reconstruction Theorem for groupoids (GRT) was reported involving principal fiber bundles 

[292], obtained by extension to a base path space instead of a loop space; thus, an abstract  Lie groupoid was 

constructed by employing a  holonomy groupoid map and a path connection. Unlike the holonomy group 

reconstruction theorem-- which is applicable only to connected manifolds-- the generalised groupoid reconstruction 

theorem is valid for both connected and nonconnected base manifolds. Therefore, GRT provides an alternative 
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approach to the conventional Wilson loop theory of quantum gravity.  

 

6. EXTENDED SYMMETRY, GENERALISED GALOIS AND GENERALISED REPRESENTATION 

THEORY 
In this section we shall present without proof the following theorems and results: 

        (a) The Equivalence Theorem of Brown and Mosa (1986) 

        (b) An Univalence Theorem-- Proposition 9.1 in [21] and the Adjointness Lemma 

        (c) A Hilbert-functor Representation Theorem and Rigged-Hilbert Space Corollary. 

  

In two related papers Janelidze [149, 150] outlined a categorical approach to a generalised, or extended Galois 

theory. Subsequently, Brown and Janelidze [58] reported a homotopy double groupoid construction of a surjective 

fibration of Kan simplicial sets based on a generalized, categorical Galois (GCG) theory which under certain, well-

defined conditions gives a Galois groupoid from a pair of adjoint functors. As an example, the standard fundamental 

group arises in GCG from an adjoint pair between topological spaces and sets. Such a homotopy double groupoid 

(HDG, explicitly given in diagram 1 of [58]) was also shown to contain the 2-groupoid associated to a map defined 

by Kamps and Porter [155]; this HDG includes therefore the 2-groupoid of a pair defined by Moerdijk and Svenson 

[192], the 
1cat -group of a fibration defined by Loday [176], and also the classical fundamental crossed module of a 

pair of pointed spaces introduced by J.H.C. Whitehead. Related aspects concerning homotopical excision, Hurewicz 

theorems for n -cubes of spaces and van Kampen theorems [272] for diagrams of spaces were subsequently 

developed in [61, 62]. 

Two major advantages of this generalized Galois theory construction of Higher Dimensional Groupoids (HDGs) that 

were already reported are:   

        - the construction includes information on the map BMq :  of topological spaces, and  

        - one obtains different results if the topology of M is varied to a finer topology.  

 Another advantage of such a categorical construction is the possibility of investigating the global relationships 

among the category of simplicial sets, 
p

S

o

= 
SetC , the category of topological spaces, Top, and the category of 

groupoids, Grpd. Let I  be the fundamental groupoid functor XI S C:= 1  from the category SC  to the 

category GrpdX =  of (small) groupoids. 

Let us introduce first the notations needed to present the general representation theorems and related results. 

Consider next diagram 11 on page 67 of Brown and Janelidze [58]: 

                                                                  (25) 

where:   

- Top  is the category of topological spaces, S  is the singular complex functor and R  is its left-adjoint, called the 

geometric realisation functor;  

- I H  is the adjoint pair introduced in Borceux and Janelidze [39], with I  being the fundamental groupoid 

functor, and H  being its unique right-adjoint nerve functor;  and 

- y  is the Yoneda embedding, with r  and i  being, respectively, the restrictions of R  and I  respectively along 

y ; thus, r  is the singular simplex functor and i  carries finite ordinals to codiscrete groupoids on the same sets of 

objects.  

The adjoint functors in the top row of the above diagram are uniquely determined by r  and i  - up to isomorphisms 

as a result of the universal property of y , the Yoneda embedding construction. Furthermore, one notes that there is 

a natural completion to a square, commutative diagram of the double triangle diagram  (25) reproduced above by 

three adjoint functors of the corresponding forgetful functors related to the Yoneda embedding. This natural diagram 

completion, that may appear trivial at first, leads however to the following Lemma and several related theorems. 
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6.1. Generalised Representation Theorems and Results from Higher-Dimensional Algebra 
In this subsection we recall several recent generalised representation theorems [21] and pertinent, previous results 

involving higher-dimensional algebra (HDA). 

 

6.1.1. Adjointness Lemma [21]--  Theorem 6.1:  Diagram (26) is commutative, and there exist canonical natural 

equivalences between the compositions of the adjoint functor pairs and their corresponding identity functors of the 

four categories present in diagram (26):  

                                                                                                               (26) 

 The forgetful functors SetTop:f , SetGrpd :F  and SetSet  
po

:  complete this commutative 

diagram of adjoint functor pairs. The right adjoint of   is denoted by * , and the adjunction pair *],[   has 

a mirror-like pair of adjoint functors between Top  and Grpd  when the latter is restricted to its subcategory 

TGrpd  of topological groupoids, and also when TopTGrpd :  is a functor that forgets the algebraic 

structure -- but not the underlying topological structure of topological groupoids, which is fully and faithfully 

carried over to Top  by  . 

 

Theorem 6.2. Univalence Theorem (Proposition 9.4  on p. 55 in [21]):   

 If GrpdC:T  is any groupoid valued functor then T  is naturally equivalent to a functor  

GrpdC :  which is univalent with respect to objects in C . 

This recent theorem for groupoid valued functors is a natural extension of the corresponding theorem for the T   

group univalued functors ( Proposition 10.4 of Mitchell, on p.63 in [189]). 

 

Theorem 6.3. The Equivalence Theorem of Brown and Mosa [63].  

 The category of crossed modules of R - algebroids is equivalent to the category of double R -algebroids with thin 

structure.   Remark. An interesting application of this theorem is the novel representation of certain cross-modules, 

such as the Yetter--Drinfeld modules for crossed structures [303], in terms of double R -algebroid representations 

following the construction scheme recently employed for double groupoid representations [80]; this is also 

potentially important for quantum algebroid representations [21]. 

 

6.2. Functorial representations of topological groupoids 

A representable functor SetC:S  as defined above is also determined by the equivalent condition that there 

exists an object X  in C  so that S  is isomorphic to the Hom-functor .Xh   In the dual, categorical representation, 

the Hom--functor 
Xh  is simply replaced by Xh . As an immediate consequence of the Yoneda--Grothendieck 

lemma the set of natural equivalences between S  and 
Xh  (or alternatively Xh ) -- which has in fact a groupoid 

structure -- is isomorphic with the object S(X) . Thus, one may say that if  S  is a representable functor then  S(X) is 

its (isomorphic) representation object, which is also unique up to an isomorphism [189, p.99]. As an especially 

relevant example we consider here the topological groupoid representation as a functor SetTGrpd : , and 

related to it, the more restrictive definition of BHilbTGrpd : , where BHilb  can be selected either as the 

category of Hilbert bundles or as the category of rigged Hilbert spaces generated through a GNS construction: 
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                                                                                (27)                                  

Considering the forgetful functors f  and F  as defined above, one has their respective adjoint functors defined by 

g  and n  in diagram  (27); this construction also leads to a diagram of adjoint functor pairs similar to the ones 

shown in diagram   (26). The functor and natural equivalence properties stated in the Adjointness Lemma   

(Theorem 6.1) also apply to diagram (27) with the exception of those related to the adjoint pair *],[   that are 

replaced by an adjoint pair *],[  , with SetBHilb :  being the forgetful functor and *  its left adjoint 

functor. With this construction one obtains the following proposition as a specific realization of  Theorem 6.2 

adapted to topological groupoids and rigged Hilbert spaces. 

 

Theorem 6.4. Hilbert-functor Representation Theorem   

If TGrpdBHilb:oR  is any topological groupoid valued functor then oR  is naturally equivalent to a 

functor TGrpdBHilb:  which is univalent with respect to objects. 

Remark: oR  and   can be considered, respectively, as adjoint Hilbert-functor representations to groupoid, and 

respectively, topological groupoid functor representations 
*

oR  and 
*  in the category BHilb  of rigged Hilbert 

spaces.  

The connections of the latter result for groupoid representations on rigged Hilbert spaces to the weak 
*C -Hopf 

symmetry associated with quantum groupoids and to the generalised categorical Galois theory warrant further 

investigation in relation to quantum systems with extended symmetry. Thus, the following  Corollary 6.4 and the 

previous  Theorem 6.4 suggest several possible applications of GCG theory to extended quantum symmetries via 

Galois groupoid representations in the category of rigged Hilbert families of quantum spaces that involve interesting 

adjoint situations and also natural equivalences between such functor representations. Then, considering the 

definition of quantum groupoids as locally compact (topological) groupoids with certain extended (quantum) 

symmetries, their functor representations also have the unique properties specified in  Theorem 6.4  and  Corollary 

6.4, as well as the unique adjointness and natural properties illustrated in diagrams (26) and (27). 

 

Corollary 6.4 - Rigged Hilbert Space Duality: 

The composite functor SetBHilbTGrpd  :oR , with BHilbTGrpd  :  and  

SetBHilb:oR , has the left adjoint n which completes naturally diagram (30), with both  

SetBHilb :  and oR  being forgetful functors.   also has a left adjoint * , and oR  has a defined 

inverse, or duality functor mI  which assigns in an univalent manner a topological groupoid to a family of rigged 

Hilbert spaces in BHilb  that are specified via the GNS construction. 

 

6.3. Groups, Groupoids and Higher Groupoids in Algebraic Topology 
An area of mathematics in which nonabelian structures have proved important is algebraic topology, where the 

fundamental group ),(1 aX  of a space X  at a base point a  goes back to Poincaré [221]. The intuitive idea 

behind this is the notion of paths in a space X  with a standard composition. 

An old problem was to compute the fundamental group and the appropriate theorem of this type is known as the 

Siefert--van Kampen Theorem, recognising work of Seifert [255] and van Kampen [272]. Later important work was 

done by Crowell in [94], formulating the theorem in modern categorical language and giving a clear proof. 

 

Theorem 6.5. The Seifert-van Kampen theorem for groups. 
 For fundamental groups this may be stated as follows [272]: 

 Let X  be a topological space which is the union of the interiors of two path connected subspaces 21, XX . 
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Suppose 210 := XXX  , 1X  and 2X  are path connected and 0* X . Let ,*)(,*)(: 101 kk XXi   , 

,*)(,*)( 11 XXj kk    be induced by the inclusions for 1,2=k . Then X  is path connected and the natural 

morphism 

                                       ,*)( 11 X ,*)(,*)( 121,*)
0

(
1

XXX    ,                                       (28)                                                                                                                         

from the free product of the fundamental groups of 1X  and 2X  with amalgamation of ,*)( 01 X  to the 

fundamental group of X  is an isomorphism, or, equivalently, , the following diagram  

 

                                                                                                      (29)                                                                                                               

is a pushout of groups. 

 

   Usually the morphisms induced by inclusion in this theorem are not themselves injective, so that the more precise 

version of the theorem is in terms of pushouts of groups. However this theorem did not calculate the fundamental 

group of the circle, or more generally of a union of two spaces with non connected intersection. Since the circle is a 

basic example in topology, this deficiency is clearly an anomaly, even if the calculation can be made by other 

methods, usually in terms of covering spaces. 

 

Theorem 6.6. Seifert--van Kampen Theorem for Fundamental Groupoids [44, 48] . 

  The anomaly mentioned above was remedied with the use of the fundamental groupoid ),(1 AX  on a set of base 

points, introduced in [44]; its elements are homotopy classes rel end points of paths in X  with end points in 

XA , and the composition is the usual one. 

  

   Because the underlying geometry of a groupoid is that of a directed graph, whereas that of a group is a set with 

base point, the fundamental groupoid is able to model more geometry than the fundamental group, and this has 

proved crucial in many applications. In the non connected case, the set A  could be chosen to have at least one point 

in each component of the intersection. If X  is a contractible space, and A  consists of two distinct points of X , 

then ),(1 AX  is easily seen to be isomorphic to the groupoid often written I  with two vertices and exactly one 

morphism between any two vertices. This groupoid plays a role in the theory of groupoids analogous to that of the 

group of integers in the theory of groups. Again, if the space X  is acted on by a group, than the set A  should be 

chosen to be a union of orbits of the action; in particular, it could consist of all fixed points. 

 

   The notion of  pushout in the category Grpd  of groupoids allows for a version of the theorem for the non path 

connected case, using the fundamental groupoid ),(1 AX  on a set A  of base points, [48]. This groupoid consists 

of homotopy classes rel end points of paths in X  joining points of XA . 

 

Theorem 6.6.1. Fundamental Groupoid S--vKT 

 Let the topological space X  be covered by the interiors of two subspaces 21, XX  and let A  be a set which meets 

each path component of 21, XX  and of 210 := XXX  . Then A  meets each path component of X  and the 

following diagram of morphisms of groupoids induced by inclusion:  
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                                                                                   (30)                                                                                           

 is a pushout diagram in the category Grpd  of groupoids . The use of this theorem for explicit calculation involves 

the development of a certain amount of  combinatorial groupoid theory which is often implicit in the frequent use of 

directed graphs in combinatorial group theory.  

The most general theorem of this type is, however, as follows: 

   

Theorem 6.7. Generalised Theorem of Seifert-van Kampen, [65]:   Suppose X  is covered by the union of the 

interiors of a family }:{ U  of subsets. If A  meets each path component of all 1,2,3-fold intersections of the 

sets U , then A  meets all path components of X  and the diagram  

 

              
),(1

2),(

AUU 



 




   

),(),( 11 AXAU c  







 

 

                                                                          (coequaliser-) 
 of morphisms induced by inclusions is a coequaliser in the category Grpd  of groupoids. Here the morphisms 

cba ,,  are induced respectively by the inclusions:  

                 .:,:,: XUcUUUbUUUa                                           (31) 

  

 Note that the above coequaliser diagram is an algebraic model of the diagram  

 

                              




UU 




2),(

XU c







 

      

                                                                               (coequaliser-2) 
 

 which intuitively says that X  is obtained from copies of U  by gluing along their intersections. 

The remarkable fact about these theorems is that even though  the input information involves two dimensions, 

namely 0 and 1 they enable, through a variety of further combinatorial techniques, the explicit computation of a 

nonabelian invariant, the fundamental group ),(1 aX  at some base point a . In algebraic topology, the use of 

such information in two neighbouring dimensions usually involves exact sequences, sometimes with sets with base 

points, and does  not give complete information. The success of this groupoid generalisation seems to stem from the 

fact that groupoids have structure in dimensions 0 and 1, and this enables us to compute groupoids, which are 

models of homotopy 1-types. In homotopy theory, identifications in low dimensions have profound implications on 

homotopy invariants in high dimensions, and it seems that in order to model this by gluing information we require 

algebraic invariants which have structure in a range of dimensions, and which completely model aspects of the 

homotopy type. Also the input is information not just about the spaces but spaces with structure, in this case a set of 

base points. 

The suggestion is then that other situations involving the analysis of the behaviour of complex hierarchical systems 
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might be able to be analogously modelled, and that this modelling might necessitate a careful choice of the algebraic 

system. Thus there are many algebraic models of various kinds of homotopy types, but not all of them might fit into 

this scheme of being able directly to use gluing information. 

The successful use of groupoids in 1-dimensional homotopy theory suggested the desirability of investigating the 

use of groupoids in higher homotopy theory. One aspect was to find a mathematics which allowed higher 

dimensional `algebraic inverses to subdivision', in the sense that it could represent multiple compositions as in the 

following diagram: 

  
 (multi-composition) 

 in a manner analogous to the use of  

 nn aaaaaa  2121 ),,,(  

in both abstract categories and groupoids, but in dimension 2. Note that going from right to left in the diagram is 

subdivision, a standard technique in mathematics. 

Another crucial aspect of the proof of the Seifert-van Kampen Theorem for groupoids is the use of commutative 

squares in a groupoid. Even in ordinary category theory we need the 2-dimensional notion of commutative square:  

  
An easy result is that any composition of commutative squares is commutative. For example, in ordinary equations: 

  ab=cd, ef=bg  implies  aef= cdg. 
   The commutative squares in a category form a  double category, and this fits with the above (multi-composition)  

diagram. 

   There is an obstacle to an analogous construction in the next dimension, and the solution involves a new idea of  

double categories or double groupoids with connections, which does not need to be explained here in detail here as 

it would take far too much space. What we can say is that in groupoid theory, we can stay still, `move forward, or 

turn around and go back'. In double groupoid theory, we need in addition to be able `to turn left or right'! This leads 

to an entirely new world of 2-dimensional algebra, which is explained for example in [47],[64, 57]. 

A further subtle point is that to exploit these algebraic ideas in homotopy theory in dimension 2 we find we need not 

just spaces but spaces X  with subspaces XAC   where C  is thought of as a set of base points. In higher 

dimensions it turns out that we need to deal with a  filtered space, which is a space X  and a whole increasing 

sequence of subspaces,  

 ,:= 210* XXXXXX n    

which in dimension 0 is often a set of base points. With such a structure it is possible to generalise the Seifert-van 

Kampen Theorem to all dimensions, yielding new results including nonabelian results in dimension 2, which are 

independent of and not seemingly obtainable by traditional methods, such as homology. Indeed this method gives a 

new foundation for algebraic topology, see [57], of which a central feature is a cubical homotopy groupoid )( *X  

for any filtered space *X  and a Higher Homotopy Seifert--van Kampen Theorem analogous to the coequaliser 

diagram (coequaliser-1) but in which the term ),(1 AX  is replaced by )( *X  and analogously for the other 

terms. It is this theorem which replaces and strengthens some of the foundations of homology theory. 

 One of the points of this development is that in geometry spaces often, even usually, arise with some kind of 

structure, and a filtration is quite common. Therefore it is quite natural to consider gluing of spaces with structure 

rather than just gluing of general spaces. What is clear is that the use of some forms of strict higher homotopy 

groupoids can be made to work in this context, and that this links well with a number of classical results, such as the 

absolute and relative Hurewicz theorems. 
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A further generalisation of this work involves not filtered spaces but n -cubes of spaces. The related algebraic 

structures are known as  cat
n

-groups, introduced in [176], and the equivalent structure of  crossed n -cubes of 

groups, of [107]. This work is surveyed in [46]. All these structures should be seen as forms of n -fold groupoids; 

the step from 1 to 1>n  gives extraordinarily rich algebraic structures which have had their riches only lightly 

explored. Again one has a Seifert--van Kampen type theorem, [61], with other surprising consequences, [62, 107]. 

Thus one sees these methods in terms of `higher dimensional groupoid theory', developed in the spirit of group 

theory, so that, in view of the wide importance of group theory in mathematics and science, one seeks for analogies 

and applications in wider fields than algebraic topology. 

In particular, since the main origin of group theory was in symmetry, one seeks for  higher order notions of 

symmetry or  extended symmetry. A set can be regarded as an algebraic model of a homotopy 0-type. The 

symmetries of a set form a group, which is an algebraic model of a pointed homotopy 1-type. The symmetries of a 

group G  should be seen as forming a crossed module, )(A: GutG  , given by the inner automorphism map, 

and crossed modules form an algebraic model of homotopy 2-types: for a recent account of this, see [57]. The 

situation now gets more complicated, and studies of this are in [208] and [51]: one gets a structure called a  crossed 

square, which is an algebraic model of homotopy 3-types. Crossed squares are homotopy invariants of a square of 

pointed spaces, which is a special case of an n -cube of spaces, for which again a Seifert--van Kampen type theorem 

is available, as said above. 

    Since representation theory is a crucial aspect of group theory and its applications, this raises the question of  

what should be the representation theories for double and higher groupoids. A recent preprint [80] is a first step in 

this direction by providing a formal definition of  double groupoid representations. Again, groupoids are heavily 

involved in noncommutative geometry and other related aspects of physics, but it is unknown how to extend these 

methods to the intrinsically `more nonabelian' higher groupoids. Both of these problems may be hard: it took 9 years 

of experimentation to move successfully from the fundamental groupoid on a set of base points to the fundamental 

double groupoid of a based pair. There is an extensive literature on applications of higher forms of groupoids, 

particularly in areas of high energy physics, and even of special cases such as what are called sometimes called  

2 -groups. A recent report following many of the ideas of `algebraic inverse to subdivision' as above, but in a 

smooth manifold context, with many relations to physical concepts, was presented in ref.[114]. 

    A general point about the algebraic structures used is that they have  partial operations which are defined under 

geometric conditions: this is the generalisation of the notion of composition of morphisms, or, more ordinarily, of 

journeys, where the end point of one has to be the start of the next. The study of such structures may be taken as a 

general definition of  higher dimensional algebra, and it is not too surprising intuitively that such structures can be 

relevant to gluing problems or to the local-to-global problems which are fundamental in many branches of 

mathematics and science. 

    As shown in [50] crossed complexes and higher homotopy groupoids provide useful noncommutative tools for 

higher-dimensional, local-to-global problems. Such  local-to-global problems also occur in modern quantum 

physics, as for example in Extended Topological Quantum Field Theories (ETQFTs) and in Local Quantum Physics 

(AQFT) or Axiomatic QFTs. Therefore, one would expect crossed complexes and higher homotopy groupoids, as 

well as the generalised, higher homotopy SvKT theorem, to have potential applications in quantum theories, and 

especially in quantum gravity where the structure of quantised spacetimes is expected to be  non-Abelian, as for 

example it is assumed from the outset in the gravitational theories based on Noncommutative Geometry [91]. 

There is also a published extension of the above Seifert--van Kampen Theorem (S-vKT) in terms of double 

groupoids [50, 60] for Hausdorff spaces rather than triples as above. The Seifert--van Kampen theorem for  double 

groupoids with connections has also indirect consequences  via quantum R -algebroids [63], for example, in 

theories relying on  2-Lie algebraic structures with connections; thus, it has been recently suggested-- albeit 

indirectly- that such fundamental HDA results would have higher-dimensional applications in mathematical physics, 

as in the case of  higher gauge theory, representations of the Lorentz group on 4-dimensional Minkowski 

spacetimes, parallel transport for higher-dimensional extended 'objects', Lie 3-superalgebras and 11-dimensional 

supergravity [10, 246, 9].  

 

6.4. Potential Applications of Novel Algebraic Topology methods to the problems of Quantum Spacetime and 

Extended Topological Quantum Field Theories 
Traditional algebraic topology works by several methods, but all involve going from a space to some form of 

combinatorial or algebraic structure. The earliest of these methods was `triangulation': a space was supposed to be 

represented as a simplicial complex, i.e. was subdivided into simplices of various dimensions glued together along 

faces, and an algebraic structure such as a chain complex was built out of this simplicial complex, once assigned an 

orientation, or, as found convenient later, a total order on the vertices. Then, in the 1940s a convenient form of 
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singular theory was found, which assigned to any space X  a `singular simplicial set' SX , using continuous 

mappings from Xn  , where 
n  is the standard n -simplex. From this simplicial set, the whole of the weak 

homotopy type could in principle be determined. Further, the geometric realisation || SX  is naturally a filtered 

space and so the methods above apply. 

  An alternative approach was found by echC


, using open covers U  of X  to determine a simplicial set UN , and 

then refining the covers to get better `approximations' to X . It was this method which Grothendieck discovered 

could be extended, especially combined with new methods of homological algebra, and the theory of sheaves, to 

give new applications of algebraic topology to algebraic geometry, via his theory of schemes. The 600-page 

manuscript, `Pursuing Stacks' conceived by Alexander Grothendieck in 1983 was aimed at a non-Abelian 

homological algebra; it did not achieve this goal but has been very influential in the development of weak n -

categories and other higher categorical structures. 

 

    Now, if new quantum theories were to reject the notion of a continuum, then it must also reject the notion of the 

real line and the notion of a path. How then is one to construct a homotopy theory? 

One possibility is to take the route signalled by echC


, and which later developed in the hands of Borsuk into a 

`Shape Theory' . Thus, a quite general space, or spacetime in relativistic physical theories might be studied by means 

of its approximation by open covers. 

 

    With the advent of Quantum Groupoids, Quantum Algebra and perhaps Quantum Algebraic Topology, several 

fundamental concepts and new theorems of Algebraic Topology may also acquire an enhanced importance through 

their potential applications to current problems in theoretical and mathematical physics [21]. Such potential 

applications were briefly outlined, based upon algebraic topology concepts, fundamental theorems and HDA 

constructions. Moreover, the higher homotopy van Kampen theorem might be utilzed for certain types of such 

quantum spacetimes and Extended TQFTs to derive invariants beyond those covered by the current generalisations 

of Noether's theorem in General Relativity if such quantised spacetimes could be represented, or approximated in 

the algebraic topology sense, either in terms of open covers or as filtered spaces. If such approximations were valid 

then one would also be able to define a quantum fundamental groupoid of the quantised spacetime and derive 

consequences through the applications of GS-vKT, possibly extending this theorem to higher dimensions. 

 

7.   CONCLUSIONS AND DISCUSSION 

 

   The mathematical and physical symmetry background relevant to this review may be summarized in terms of a 

comparison between the Lie group `classical' symmetries with the following schematic representations of the 

extended groupoid and algebroid symmetries that we discussed in this paper : 

 

 

 Standard Classical and Quantum Group/Algebra Symmetries: 
 

Lie Groups     Lie Algebras       Universal Enveloping Algebra       Quantization   Quantum Group 

Symmetry (or Noncommutative (quantum) Geometry). 
 

 Extended, Quantum Groupoid and Algebroid Symmetries:  
 

Quantum Groupoids/Quantum Algebroids   Weak Hopf Algebras   Representations   Quantum 

Groups 
 

    Supported by a very wide array of examples from: solid state physics, spectroscopy, SBS, QCD, nuclear fusion 

reactors/ulltra-hot stars, EFT, ETQFT, HQFT, Einstein-Bose condensates, SUSY with the Higgs boson mechanism, 

Quantum Gravity and HDA-- as the generous provision of references reveals-- we have surveyed and applied 

several of these mathematical representations related to extended symmetry for the study of quantum systems 

(paracrystalline/quasicrystal structures, superfluids, superconductors, spin waves and magnon dispersion in 

ferromagnets, gluon coupled nucleons, nuclear fusion reactions, etc.) as specifically encapsulated within the 

framework of (nonabelian) Hopf symmetries, nonabelian algebraic topology so leading to a categorical formalism 

underlying a schemata that is apt for describing supersymmetric invariants of quantum space-time geometries. We 

propose that the need for investigation of (quantum) groupoid and algebroid representations is the natural 
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consequence of the existence of local quantum symmetries, symmetry breaking, topological order, and other 

extended quantum symmetries in which transitional states are realized, for example, as noncommutative (operator) 

C*-algebras. Moreover, such representations-- when framed in their respective categories (of representation spaces)-

- may be viewed in relation to several functorial relations that have been established between the categories 

TGrpdBHilb,  and Set as described in § 5 and § 6. We view these novel symmetry-related concepts as being 

essential ingredients for the formulation of a categorical ontology of quantum symmetries in the universal setting of 

the higher dimensional algebra and higher quantum homotopy/HHQFT of spacetimes. 

 

APPENDIX: Hopf algebras- the basic definitions 

 

Firstly, a unital associative algebra consists of a linear space A  together with two linear maps 

 

 
(unity) ,:

ation)(multiplic , :

A

AAAm





C
 (32) 

 satisfying the conditions  

 
.i=)(=)(

)(=)(

dmm

mmmm

11

11






 (33) 

 This first condition can be seen in terms of a commuting diagram:  

 

                                                  (34) 

 Next let us consider `reversing the arrows', and take an algebra A  equipped with a linear homorphisms 

AAA  : , satisfying, for Aba , : 

 

 
.)i(=)i(

)()(=)(





dd

baab
 (35) 

 

We call   a comultiplication, which is said to be coassociative in so far that the following diagram commutes  

 

                                                                                                (36) 

There is also a counterpart to  , the counity map CA:  satisfying  

                                                                        .i=)i(=)i( ddd                                                  (37) 

 A bialgebra ),,,,( mA  is a linear space A  with maps ,,,m  satisfying the above properties. 

Now to recover anything resembling a group structure, we must append such a bialgebra with an antihomomorphism 

AAS : , satisfying )()(=)( aSbSabS , for Aba , . This map is defined implicitly via the property:  

 .=)i(=)i(    SdmdSm  (38) 

 We call S  the antipode map. A Hopf algebra is then a bialgebra ),,,,(  mA  equipped with an antipode map 

S . 
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Commutative and non--commutative Hopf algebras form the backbone of quantum groups [86, 185] and are 

essential to the generalizations of symmetry. Indeed, in many respects a quantum group is closely related to a Hopf 

algebra. When such algebras are actually associated with proper groups of matrices there is considerable scope for 

their representations on both finite and infinite dimensional Hilbert spaces. 

0.1  Example: the SLq(2) Hopf algebra 

 This algebra is defined by the generators dcba ,,,  and the following relations:  

 ,=, = ,= ,= , = cbbcqcddcqaccaqbddbqabba  (39) 

 together with  

 1,= ,)(= 11 bcadqbcqqadda    (40) 

 and  

 

  (41) 

 

0.2  Quasi--Hopf algebra 
 A quasi-Hopf algebra is an extension of a Hopf algebra. Thus, a quasi-Hopf algebra is a quasi-bialgebra 

),,,(=  HBH  for which there exist H ,  and a bijective antihomomorphism S  (the `antipode') of H  

such that  )(=)( ,)(=)( acSbacbS iiiiii   for all Ha , with iii
cba  =)( , and the 

relationships  

 ,=)()(  ,=)( II jjj

j

iii

i

RSQPSZYSX    (42) 

 where the expansions for the quantities   and 
1  are given by  

 .=  ,= 1

jjj

j

iii

i

RQPZYX   
 (43) 

 As in the general case of a quasi-bialgebra, the property of being quasi-Hopf is unchanged by ``twisting''. Thus, 

twisting the comultiplication of a coalgebra  

 ),,(= CC  (44) 

 over a field k  produces another coalgebra 
copC ; because the latter is considered as a vector space over the field 

k ,  the new comultiplication of 
copC  (obtained by ``twisting'') is defined by  

 ,=)( (1)(2) ccccop    (45) 

 with Cc  and  

 .=)( (2)(1) ccc    (46) 

 Note also that the linear dual 
*C  of C  is an algebra with unit   and the multiplication being defined by  

 ,,,=,* (2)

*

(1)

***   cdcccdc  (47) 

 for 
***, Cdc  and Cc  (see [164]). 

Quasi-Hopf algebras emerged from studies of Drinfeld twists and also from F-matrices associated with finite-

dimensional irreducible representations of a quantum affine algebra. Thus, F-matrices were employed to factorize 

the corresponding R-matrix. In turn, this leads to several important applications in Statistical Quantum Mechanics, 

in the form of quantum affine algebras; their representations give rise to solutions of the quantum Yang-Baxter 

equation. This provides solvability conditions for various quantum statistics models, allowing characteristics of such 

models to be derived from their corresponding quantum affine algebras. The study of F-matrices has been applied to 

models such as the so-called Heisenberg `XYZ model', in the framework of the algebraic Bethe ansatz. Thus,       

F-matrices and quantum groups together with quantum affine algebras provide an effective framework for solving 

two-dimensional integrable models by using the Quantum Inverse Scattering method as suggested by Drinfeld and 

other authors. 
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0.3  Quasi--triangular Hopf algebra and the R -matrix 
We begin by defining the quasi--triangular Hopf algebra, and then discuss its usefulness for computing the R-matrix 

of a quantum system. 

Definition:  A Hopf algebra, H , is called quasi--triangular if there is an invertible element R , of HH   such 

that: 

(1) RxTxR ))((=)(    for all Hx , where   is the coproduct on H , and the linear map 

HHHHT :  is given by  

 ,=)( xyyxT   (48) 

(2) 2313=)1)(( RRR , 

(3) 1213=))(( RRR1 , where )(= 1212 RR  , 

(4) )(= 1313 RR  , and )(= 2323 RR  , where HHHHH :12 , 

(5) HHHHH :13 , and HHHHH :23 , are algebra morphisms determined by  

 

.1=)(

,1=)(

1,=)(

23

13

12

baba

baba

baba













 (49) 

 R is called the R-matrix.  

 

An important part of the above algebra can be summarized in the following commutative diagrams involving the 

algebra morphisms, the coproduct on H  and the identity map,  id: 

 

                                                                                   (50) 

 and  

 

   

                                                                                          (51)                           

Because of this property of quasi--triangularity, the R -matrix, R , becomes a solution of the Yang-Baxter equation. 

Thus, a module M  of H  can be used to determine quasi--invariants of links, braids, knots and higher dimensional 

structures with similar quantum symmetries. Furthermore, as a consequence of the property of quasi--triangularity, 

one obtains: 

 

                                        .1=)(1=1)( HRR                                                                             (52) 

 Finally, one also has:  

                           .=))(( and ))((1= ),1)((= 11 RRSSRSRRSR  
                                       (53) 

 One can also prove that the antipode S  is a linear isomorphism, and therefore 
2S  is an automorphism: 

2S  is 
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obtained by conjugating by an invertible element, 
1=)( uxuxS , with  

 .1)(= 21RSmu   (54) 

 By employing Drinfel'd's quantum double construction one can assemble a quasi--triangular Hopf algebra from a 

Hopf algebra and its dual. 

 

0.4  The weak Hopf algebra 
In order to define a weak Hopf algebra, one can relax certain axioms of a Hopf algebra as follows :   

        - The comultiplication is not necessarily unit--preserving.  

        - The counit   is not necessarily a homomorphism of algebras.  

        - The axioms for the antipode map AAS :  with respect to the counit are as follows.  

           For all Hh :  

                           

. )()(=)(

(1))))((1i(=)()i(

1))(1)()(i(=)()i(

(3)(2)(1) hSShhShS

hdhdSm

hdhSdm









                                                  (55) 

  

 These axioms may be appended by the following commutative diagrams : 

            

                (56) 

 along with the counit axiom:  

                                                                            (57) 

 

 

Often the term quantum groupoid is used for a weak C*-Hopf algebra. Although this algebra in itself is not a proper 

groupoid, it may have a component group algebra as in, say, the example of the quantum double discussed 

previously. See [21, 52] and references cited therein for further examples. 
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