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Abstract

The category of crossed complexes gives an algebraic model of CW -
complexes and cellular maps. Free crossed resolutions of groups contain
information on a presentation of the group as well as higher homological
information. We relate this to the problem of calculating non-abelian
extensions. We show how the strong properties of this category allow
for the computation of free crossed resolutions for amalgamated sums
and HNN-extensions of groups, and so obtain computations of higher
homotopical syzygies in these cases.
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Introduction

A general problem is the following, highlighted by Loday in [26]: if G is a
group, construct a small model of a K(G, 1), i.e. a connected cell complex with
π1
∼= G, πi = 0 when i > 1. We want to be able to construct such models

from scratch, and also to combine given models to get new ones. It is with this
latter problem that this paper is mainly concerned. A further problem, whose
solution is required in order to combine models, is to construct cellular maps
K(G, 1) → K(H, 1) corresponding to morphisms G → H.

Suppose for example that the group G is given as a free product with amal-
gamation:

G = A ∗C B,
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which we can alternatively describe as a pushout of groups

C
j

//

i
��

B

i′
��

A
j′

// G .

It is standard that i, j injective implies i′, j′ injective.
Given presentations PQ = 〈XQ | RQ〉 for Q ∈ {A,B, C} we get a presenta-

tion PG of G as

〈XA tXB | RA t S(XC) tRB〉 where S(XC) = {(ix)(jx)−1 | x ∈ XC} .

An elementary question is: what has happened to the relations for C ?
Again, given a cellular model K(Q) for each of Q ∈ {A,B,C}, how do we

get a cellular model for A∗C B? The morphisms i, j determine, up to homotopy,
cellular maps

K(C)
K(j)

//

K(i)

� �

K(B)

K(A) .

How do we write down any representatives for K(i) and K(j) ? Perhaps an
algebraic model would clarify the situation? We shall see that free crossed
resolutions seem to provide a useful model.

Since we do not know that K(i), K(j) are injective, it is not sensible to take
their pushout. In topological work it is standard to complete the above diagram
to a homotopy pushout or double mapping cylinder construction

K(C)
K(j)

/ /

K(i)

��

'

K(B)

��

K(A) // M(i, j)

(1)

where I = [0, 1] and

M(i, j) = K(A) t (I ×K(C)) tK(B) ,

with the ends of the cylinder I ×K(C) glued to K(A), K(B) using K(i), K(j).
It is important that K(A), K(B) are subcomplexes of M(i, j). In the latter
space, and with a usual construction of K(C) from the presentation, the loops
xc of K(C) for c in the generating set XC of C then contribute ‘cylindrical’
2-cells I×xc to M(i, j). We can use free crossed resolutions of groups to model
well K(A), but what about this M(i, j) ? It has two vertices, so we need to use
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groupoids. Rather than causing additional difficulties, this in fact makes some
aspects clearer.

Applying π1 to diagram (1) we get the homotopy pushout in the category of
groupoids:

C
j

//

i

� �

'

B

� �

A // A ∗̂C B .

(2)

The interval I has groupoid analogue

I : objects : {0, 1}, arrows : {10, 11, ι : 0 → 1, ι−1 : 1 → 0} . (3)

The groupoid ̂G = A ∗̂C B is obtained by gluing the cylinder groupoid I × C
to A,B at each end. Thus ̂G contains two vertex groups each isomorphic under
conjugation in this groupoid and isomorphic to G = A ∗C B. In fact ̂G is
isomorphic to I ×G.

Calculation in these cellular models relates to determining identities among
relations and, in higher dimensions, what have been called homotopical syzygies
by Loday [26]. To do calculations of such syzygies we use the technology of

free crossed resolution of a group G ,

namely an augmented crossed complex of the form:

F = (F−, φ−) : · · · / / Fn
φn

// Fn−1 // · · · // F2
φ2

// F1
φ1

//___ G ,

where φ1 induces an isomorphism F1/(Im φ2) ∼= G .
Work of Whitehead, Wall and Baues, which we quote in section 3, allows us

to replace the geometry of cellular models of K(G, 1)s and their cellular maps
by the algebra of free crossed resolutions and their morphisms. This enables us
to do calculations since in the case of free crossed resolutions we mainly need to
know the values of boundaries and morphisms on the elements of the free bases,
and various algebraic rules for evaluating these. The corresponding geometry
of the cellular models tends to be very difficult to imagine or even state.

Major advantages of free crossed resolutions are that there is a tensor prod-
uct construction, −⊗−, on such crossed resolutions (Definition 2.1), and also
functors

cellular models
of groupoids

Π
//

free crossed
resolutions

π1
// groupoids

such that
1) π1 preserves colimits and sends −⊗− to −×−

and the deep properties:

2) Π preserves sufficient colimits for our purposes,
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3) Π(K ⊗ L) ∼= Π(K)⊗ Π(L).

These last two results give exact non abelian local-to-global methods.
The calculation of free crossed resolutions yields calculations of presentations

for modules of identities among relations in the following way. The boundaries
of the elements of the free basis in dimension 3 give generators for the module
of identities among relations; the boundaries of those in dimension 4 give re-
lations among those generators; and the higher dimensional bases give ‘higher
homotopical syzygies’.

If K(Q) is a cellular model of the group or groupoid Q then

F(Q) = Π(K(Q))

is a free crossed resolution of Q. This gives a homotopy pushout of free crossed
resolutions

F(C)
j′′

//

i′′

��

'

F(B)

��

F(A) // F(i, j).

Here F(i, j) is obtained from

F(A) t (I ⊗ F(C)) t F(B)

by the obvious identifications, and is a free crossed resolution of the groupoid
A ∗̂C B.

Thus in dimension n we obtain generators an, bn from those of F(A),F(B)
in dimension n, and also ι⊗ cn−1 from generators of F(C) in dimension n− 1.

So: a generator of C gives a relator of the groupoid ̂G = A ∗̂C B; a relation of
C gives an identity among relations; and so on, thus answering our ‘elementary
question’. Further we get corresponding results for each of the vertex groups of
̂G. We can do sums with rules for expanding the boundary φn(ι ⊗ cn−1), and
for example if n = 2 we can use derivation rules of the form

ι⊗ cc′ = (ι⊗ c)1⊗c′ (ι⊗ c′).

The algebra matches the geometry.
Thus one aim of this paper is to advertise the notion of free crossed resolu-

tion, as a working tool for certain problems in combinatorial group theory. This
requires giving a brief background in crossed complexes, which are an analogue
of chain complexes of modules over a group ring, but with a non abelian part,
a crossed module, at the bottom dimensions. This allows for crossed complexes
to contain in that part the data for a presentation of a group, and to contain
in other parts higher homological data. The non abelian nature, and also the
generalisation to groupoids rather than just groups, allows for a closer represen-
tation of the geometry, and this, combined with very convenient properties of
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the category of crossed complexes, allows for more and easier calculations than
are available in the standard theory of chain complexes of modules.

The notion of crossed complex of groups was defined by A.L.Blakers in
1946 [3] (under the term ‘group system’) and Whitehead [34], under the term
‘homotopy system’ (except that he restricted to the free case). Blakers used
these as a way of systematising known properties of relative homotopy groups
πn(Xn, Xn−1, p), p ∈ X0, of a filtered space

X∗ : X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X∞ .

It is significant that he used the notion to establish relations between homotopy
and homology of a space. Whitehead was strongly concerned with realisability,
that is, with the passage between algebra and geometry and back again. He
explored the relations between crossed complexes and chain complexes with a
group of operators and established remarkable realisability properties, some of
which we explain later. The relation of Whitehead’s work to the notion of iden-
tities among relations was given an exposition by Brown and Huebschmann in
[10]. Calculating homotopical syzygies in dimension 2 is the same as calculating
generators for the module of identities among relations, which is often done by
the method of pictures as in [21].

There was another stream of interest in crossed complexes, but in a broader
algebraic framework, in work of Fröhlich [18] and Lue [27]. This gave a general
formulation of cohomology groups relative to a variety in terms of equivalence
classes of certain exact sequences. However the relation of these equivalence
classes with the usual cohomology of groups was not made explicit till papers
of Holt [22] and Huebschmann [24]. The situation is described in Lue’s paper
[28].

Since our interest is in the relation with homotopy theory, we are interested
in the case of groups rather than other algebraic systems. However there is one
key change we have to make, as stated above, namely that we have to generalise
to groupoids rather than groups. This makes for a more effective modelling of
the geometry, since we need to use CW -complexes which are non reduced, i.e.
have more than one 0-cell, for example universal covering spaces, and simplices.
This also gives the category of crossed complexes better algebraic properties,
principally that it is a monoidal closed category in the sense of having an internal
hom which is adjoint to a tensor product. This is a generalisation of a standard
property of groupoids: if Gpd denotes the category of groupoids, then for any
groupoids A,B, C there is a natural bijection

Gpd(A×B,C) ∼= Gpd(A, GPD(B, C))

where A×B is the usual product of groupoids, and GPD(B,C) is the groupoid
whose objects are the morphisms B → C and whose arrows are the natural
equivalences (or conjugacies) of morphisms.

A more computational use of groupoids is that, even if we start with an
amalgamated sum of groups, which is a particular kind of pushout of groups,
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we must work with the homotopy pushout of the free crossed resolutions of
these groups, which is a free crossed resolution of the homotopy pushout of the
groups, which is itself a groupoid. The category of groupoids has a unit interval
object, written I. Once this apparently trivial groupoid is allowed as a natural
extension of the usual consideration of the family of groups, then essentially all
groupoids are allowed, since any groupoid is obtained by identifications from a
disjoint union of copies of I. The point is that groupoids allow for transitions,
whereas groups are restricted to symmetries.

The exponential law for groupoids is modelled in the category Crs of crossed
complexes by a natural isomorphism

Crs(A⊗ B, C ) ∼= Crs(A, CRS(B, C) ) ,

that is, Crs is a monoidal closed category, as proved by Brown and Higgins
in [7]. The groupoid I determines a crossed complex, also written I, and so
a homotopy theory for crossed complexes in terms of a cylinder object I ⊗ B
and homotopies of the form I ⊗ B → C. For our purposes, the key result is
the tensor product A⊗ B. This has a complicated formal definition, reflecting
the algebraic complexity of the definition of crossed complex. However, for the
purposes of calculating with free crossed complexes, it is sufficient to know the
boundaries of elements of the free bases, and also the value of morphisms on
these elements. Thus the great advantage is that the free crossed resolutions
model Eilenberg-Mac Lane spaces and their cellular maps (see Corollary 3.5
and Proposition 3.6), and give modes of calculating with these which would be
very difficult geometrically.

The end point of this paper (section 4) is to show how these methods enable
one to compute higher homotopical syzygies for amalgamated sums and HNN-
extensions of groups. This is developed for graphs of groups in Moore’s thesis
[11, 29]. One inspiration for this work was Holz’s thesis [23] where identities
among relations for presentations of certain arithmetic groups were studied
using graphs of groups and chain complex methods.

This paper is closely related to [4] which gives higher homotopical syzygies
for graph products of groups.

1 Definitions and basic properties

A crossed complex C = (C−, χ−) (of groupoids) is a sequence of morphisms of
groupoids, each with object set C0

· · · // Cn

τ
� �

χn
/ / Cn−1 / /

τ
� �

· · · // C2
χ2

//

τ
��

C1

τ

� �

σ

��

C0 C0 C0 C0 .

For n > 2 the groupoid Cn is a family of groups, so the base point map τ gives
source and target, and for each p ∈ C0 we have groups Cn(p) = τ−1(p) . The
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groupoid C1 need not be disconnected, and has source and target maps σ, τ . A
groupoid operation of C1 on each family of groups Cn for n > 2 is also required,
such that:

(i) each χn is a morphism over the identity on C0 ;

(ii) (χ2 : C2 → C1) is a crossed module of groupoids;

(iii) Cn is a C1-module for n > 3 ;

(iv) χn is an operator morphism for n > 3 ;

(v) χn−1 χn : Cn → Cn−2 is trivial for n > 3 ;

(vi) χ2C2 acts trivially on Cn for n > 3 .

Because of condition (iii) we shall write the composition in Cn additively for
n > 3, but we will use multiplicative notation in dimensions 1 and 2 (except
when giving the rules for the tensor product). Note that if a : p → q, b : q → r
in C1 then the composite arrow is written ab : p → r. If further x ∈ Cn(p) then
xa ∈ Cn(q) and the usual laws of an action apply. We write C1(p) = C1(p, p),
and C1 operates on this family of groups by conjugation. Condition (ii) implies
that χ2(xa) = a−1(χ2x)a, that x−1yx = yχ2(x) for x, y ∈ C2(p), a ∈ C1(p, q), and
hence that χ2(C2) is normal in C1, and Ker χ2 is central in C2 and is operated
on trivially by χ2(C2) .

Let C = (C−, χ−) be a crossed complex. Its fundamental groupoid π1C is the
quotient of the groupoid C1 by the normal, totally disconnected subgroupoid
χ2C2. The rules for a crossed complex give Cn, for n > 3, and also Ker χ2, the
induced structure of a π1C-module.

The crossed complex C is reduced if C0 is a singleton, so that all the groupoids
Cn, n > 1, are groups. This was the case considered in [3, 34] and many other
sources.

A morphism f : B → C of crossed complexes is a family of groupoid mor-
phisms {fn : Bn → Cn | n > 0} which preserves all the structure. This defines
the category Crs of crossed complexes. The fundamental groupoid now gives a
functor π1 : Crs → Gpd. This functor is left adjoint to the functor i1 : Gpd → Crs
where for a groupoid G the crossed complex i1G agrees with G in dimensions 0
and 1, and is otherwise trivial.

An m-truncated crossed complex C consists of all the structure defined above
but only for n 6 m, and there are functors im : Crsm → Crs . In particular, an
m-truncated crossed complex is for m = 0, 1, 2 simply a set, a groupoid, and a
crossed module respectively.

One basic algebraic example of a crossed complex comes from the notion of
identities among relations for a group presentation. (For more details on the
following, see [10].) Let P = 〈X1 | ω〉 be a presentation of a group G where ω
is a function from a set X2 to F (X1), the free group on the set X1 of generators
of G. The natural epimorphism φ1 : F (X1) → G has kernel N(R), the normal
closure in F (X1) of the set R = ω(X2).
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The free F (X1)-operator group on the set X2 is the free group H(ω) =
F (X2×F (X1)). Let φ′2 : H(ω) → F (X1) be determined by (x, u) 7→ u−1(ωx)u,
so that the image of φ′2 is exactly N(R). The action of F (X1) on H(ω) is given
by (x, u)v = (x, uv), so that:

CM1) φ′2(w
u) = u−1(φ′2w)u for all w ∈ H(ω), u ∈ F (X1).

We say that (φ′2 : H(ω) → F (X1)) is a precrossed module.
We now define Peiffer commutators, for w1, w2 ∈ H(ω), by

〈w1, w2〉 = w−1
1 w−1

2 w1 w2
φ′2w1 .

Then φ′2 vanishes on Peiffer commutators. Also the subgroup P = 〈H(ω), H(ω)〉
generated by the Peiffer commutators is a normal F (X1)-invariant subgroup of
H(ω). So we can define C(ω) = H(ω)/P and obtain the exact sequence

C(ω)
φ2−→ F (X1)

φ1−→ G → 1.

The morphism φ2 satisfies

CM2) c−1dc = dφ2c for all c, d ∈ C(ω).

The rules CM1), CM2) are the laws for a crossed module, so the boundary
morphism φ2 together with the induced operation of F (X1) on C(ω) determines
F(ω) = (φ2 : C(ω) → F (X1)), called the free crossed F (X1)-module on ω. The
map ω2 : X2 → C(ω) is such that φ2ω2 = ω and is known to be injective [10,
Proposition 6]. It has the universal property that if M = (µ : M → F (X1))
is a crossed module and ψ2 : X2 → M is a function such that µψ2 = ω, then
there is a unique crossed module morphism (µ2, 1F (X1)) : F(ω) →M such that
µ2ω2 = ψ2. The elements of C(ω) are ‘formal consequences of the relators’

c =
n

∏

i=1

(xεi
i )ui

where n > 0, xi ∈ X2, εi = ±1, ui ∈ F (X1), φ2((xεi
i )ui) = u−1

i (ωxi)εiui,
subject to CM2).

The kernel π(P) of φ2 is abelian and in fact obtains the structure of a G-
module – it is known as the G-module of identities among relations for the
presentation. (Note: this additional use of π is standard terminology.)

When there is no question of repeated or trivial relators we may dispense
with the function ω, denote the presentation by P = 〈X1 | R〉, and write C(R)
for C(ω) and F(P) for F(ω). The reader is encouraged to draw a commutative
diagram exhibiting all these maps.

Now suppose given a resolution of π(P) by free G-modules:

· · · → Fn
φn−→ Fn−1 −→ · · · −→ F4

φ4−→ F3
φ′3−→ π(P) −→ 0 .
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We may splice this resolution to the free crossed module as follows:

· · · // Fn
φn

// Fn−1 // · · · // F4
φ4

/ / F3
φ3

//

φ′3
� �

=

=

=

=

=

=

=

C(ω)
φ2

// F (X1)
φ1

//__ G // 1 .

π(P)
E

>>

|

|

|

|

|

|

|

|

We have constructed a free crossed resolution F(G) = (F−, φ−), comprising a
crossed complex (F−, φ−) where F2 = C(ω), F1 = F (X1) and φ3 is the compos-
ite of φ′3 and the inclusion, plus the natural epimorphism φ1.

One way of obtaining a resolution of π2 = π(P) is as follows. Choose a set of
generators X3 for π2 as a G-module, and take F3 to be the free G-module on X3,
inducing φ′3 : F3 → π2. Then set π3 = Ker φ′3 and iterate. This construction is
analogous to the usual construction of higher order syzygies and free resolutions
for modules, but taking into account the non abelian nature of the group and
its presentation, and in particular the action of F (X1) on N(R). Choosing a set
of generators for a kernel, rather than the whole of the kernel, can be a difficult
problem, and is attacked by different methods for modules of identities among
relations in [13, 17]. Our overall method is to avoid this inductive process.

There is a notion of homotopy for morphisms of crossed complexes which
we will explain later. Assuming this we can state one of the basic homologi-
cal results, namely the uniqueness up to homotopy equivalence of free crossed
resolutions of a group G.

There is a standard free crossed resolution F st(G) = (F st
− , φst

−) of a group G
[13, Theorem 11.1] in which

• F st
1 is the free group on G with generators [a], a ∈ G , and φst

1 [a] = a ;

• F st
2 is the free crossed F st

1 -module on ω : G×G → F st
1 given by

ω(a, b) = [a] [b] [ab]−1, a, b ∈ G ;

• for n > 3, F st
n is the free G-module on Gn, with

φst
3 [a, b, c] = [a, bc] [ab, c]−1 [a, b]−1 [b, c][a]−1

;

• for n > 4,

φst
n [a1, a2, . . . , an] = [a2, . . . , an]a

−1
1 +

+
n−1
∑

i=1

(−1)i [a1, a2, . . . , ai−1, aiai+1, ai+2, . . . , an] +

+ (−1)n [a1, a2, . . . , an−1] .

We can now see the advantage of this setup in considering the notion of
non abelian 2-cocycle on the group G with values in a group K. According to
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standard definitions, this is a pair of functions k1 : G → Aut(K), k2 : G×G →
K satisfying certain properties. But suppose G is infinite; then it is difficult to
know how to specify these functions and check the required properties.

However the 2-cocycle definition turns out to be equivalent to regarding
(k2, k1) as specifying a morphism of reduced crossed complexes

· · · // F st
3 (G)

φst
3

//

� �

F st
2 (G)

φst
2

//

k2

��

F st
1 (G)

k1

��

· · · // 0 // K ∂
// Aut(K)

(so that ∂k2 = k1φst
2 , k2φst

3 = 0), where (∂ : K → Aut(K)) is the inner au-
tomorphism crossed module. Further, equivalent cocycles are just homotopic
morphisms. Equivalent data to the above is thus obtained by replacing the
standard free crossed resolution by any homotopy equivalent free crossed reso-
lution.

Example 1.1 Let T be the trefoil group with presentation PT = 〈a, b | a3b−2〉.
We show in the last section that there is a free crossed resolution of T of the
form

F(T ) : · · · / / 1 // C(r)
φ2

// F{a, b} φ1
//___ T where φ2 r = a3b−2 .

Hence a 2-cocycle on T with values in K can also be specified totally by elements
s ∈ K, c, d ∈ Aut(K) such that ∂(s) = c3d−2, which is a finite description. It is
also easy to specify equivalence of cocycles.

It is shown in [12] that the extension 1 → K → E → T → 1 determined
by such a 2-cocycle is obtained by taking E to be the quotient of the semidi-
rect product F{a, b} n K by the relation (a3b−2, 1) = (1, s). (This is a case
where there are no identities among relations. The general necessity to refer to
identities among relations in this context was first observed by Turing [31].) 2

A similar method can be used to determine the 3-dimensional obstruction
class l3 ∈ H3(G,A) corresponding to a crossed module (µ : M → P ) with
Coker µ = G, Ker µ = A. For this we need a small free crossed resolution of
the group G. This method is successfully applied to the case with G finite cyclic
in [14, 15].

2 Relation with topology

In order to give the basic geometric example of a crossed complex we first define
a filtered space X∗. By this we mean a topological space X∞ and an increasing
sequence of subspaces

X∗ : X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X∞.
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A map f : X∗ → Y∗ of filtered spaces consists of a map f : X∞ → Y∞ of spaces
such that for all i > 0, f(Xi) ⊆ Yi . This defines the category FTop of filtered
spaces and their maps. This category has a monoidal structure in which

(X∗ ⊗ Y∗)n =
⋃

p+q=n

Xp × Yq,

where it is best for later purposes to take the product in the convenient category
of compactly generated spaces, so that if X∗, Y∗ are CW -spaces, then so also is
X∗ ⊗ Y∗.

We now define the fundamental, or homotopy, crossed complex functor

Π : FTop → Crs.

If (C−, χ−) = Π(X∗), then C0 = X0, and C1 is the fundamental groupoid
π1(X1, X0). For n > 2, Cn = πnX∗ is the family of relative homotopy groups
πn(Xn, Xn−1, p) for all p ∈ X0. These come equipped with the standard op-
erations of π1X∗ on πnX∗ and boundary maps χn : πnX∗ → πn−1X∗, namely
the boundary of the homotopy exact sequence of the triple (Xn, Xn−1, Xn−2) .
The axioms for crossed complexes are in fact those universally satisfied by this
example, though this cannot be proved at this stage (see [6]).

This construction also explains why we want to consider crossed complexes
of groupoids rather than just groups. The reason is exactly analogous to the
reason for considering non reduced CW -complexes, namely that we wish to
consider covering spaces, which automatically have more than one vertex in the
non trivial case. Similarly, we wish to consider covering morphisms of crossed
complexes as a tool for analysing presentations of groups, analogously to the
way covering morphisms of groupoids were used for group theory applications
by P.J. Higgins in 1964 in [19]. A key tool in this is the use of paths in a Cayley
graph as giving elements of the free groupoid on the Cayley graph, so that one
moves to consider presentations of groupoids. Further, as is shown by Brown
and Razak in [13], higher dimensional information is obtained by regarding the
free generators of the universal cover of a free crossed resolution as giving a
higher order Cayley graph, i.e. a Cayley graph with higher order syzygies. This
method actually yields computational methods, by using the geometry of the
Cayley graph, and the notion of deformation retraction of this universal cover.

Thus crossed complexes give a useful algebraic model of the category of
CW -complexes and cellular maps. This model does lose a lot of information,
but its corresponding advantage is that it allows for algebraic description and
computation, for example of morphisms and homotopies. This is the key aspect
of the methods of [13]. See also the results in Theorems 3.4 - 3.6 here.

Thus we can say that crossed complexes:

(i) give a first step to a full non abelian theory;

(ii) have good categorical properties;
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(iii) give a ‘linear’ model of homotopy types;

(iv) this model includes all homotopy 2-types;

(v) are amenable to computation.

A further advantage of using crossed complexes of groupoids is that this
allows for the category Crs to be monoidal closed: there is a tensor product
−⊗− and internal hom CRS(−,−) such that there is a natural isomorphism

Crs(A⊗ B, C) ∼= Crs(A, CRS(B, C) )

for all crossed complexes A,B, C . Here CRS(B, C)0 = Crs(B, C), the set of
morphisms B → C, while CRS(B, C)1 is the set of ‘1-fold left homotopies’ B → C.
Note that while the tensor product can be defined directly in terms of generators
and relations, such a definition may make it difficult to verify essential properties
of the tensor product, such as that the tensor product of free crossed complexes
is free. The proof of this fact in [8] uses the above adjointness as a necessary
step to prove that −⊗ B preserves colimits.

An important result is that if X∗, Y∗ are filtered spaces, then there is a
natural transformation

η : ΠX∗ ⊗ ΠY∗ → Π(X∗ ⊗ Y∗) (4)

which is an isomorphism if X∗, Y∗ are CW -complexes (and in fact more generally
[2]). In particular, the basic rules for the tensor product are modelled on the
geometry of the product of cells Em⊗En where E0 is the singleton space, E1 = I
is the interval [0, 1] with two 0-cells 0, 1 and one 1-cell, while Em = e0∪em−1∪em

for m > 2. This leads to defining relations for the tensor product. To give these
we first define a bimorphism of crossed complexes.

Definition 2.1 A bimorphism θ : (A,B) → C of crossed complexes A =
(A−, α−), B = (B−, β−), C = (C−, χ−) is a family of maps θ : Am×Bn → Cm+n

satisfying the following conditions, where a, a′ ∈ Am, b, b′ ∈ Bn, a1 ∈ A1, b1 ∈
B1 (temporarily using additive notation throughout the definition):

(i)

σ(θ(a, b)) = θ(a, σb) and τ(θ(a, b)) = θ(a, τb) if m = 0, n = 1 ,
σ(θ(a, b)) = θ(σa, b) and τ(θ(a, b)) = θ(τa, b) if m = 1, n = 0 ,

τ(θ(a, b)) = θ(τa, τb) if m + n > 2 .

(ii)

θ(a, bb1) = θ(a, b)θ(τa,b1) if m > 0, n > 2 ,

θ(aa1 , b) = θ(a, b)θ(a1,τb) if m > 2, n > 0 .
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(iii)

θ(a, b + b′) =

{

θ(a, b) + θ(a, b′) if m = 0, n > 1 or m > 1, n > 2 ,
θ(a, b)θ(τa,b′) + θ(a, b′) if m > 1, n = 1 ,

θ(a + a′, b) =

{

θ(a, b) + θ(a′, b) if m > 1, n = 0 or m > 2, n > 1 ,
θ(a′, b) + θ(a, b)θ(a′,τb) if m = 1, n > 1 .

(iv) χm+n(θ(a, b)) =






































θ(a, βnb) if m = 0, n > 2 ,
θ(αma, b) if m > 2, n = 0 ,
− θ(τa, b)− θ(a, σb) + θ(σa, b) + θ(a, τb) if m = n = 1 ,
− θ(a, βnb)− θ(τa, b) + θ(σa, b)θ(a,τb) if m = 1, n > 2 ,
(−1)m+1θ(a, τb) + (−1)mθ(a, σb)θ(τa,b) + θ(αma, b) if m > 2, n = 1 ,
θ(αma, b) + (−1)mθ(a, βnb) if m > 2, n > 2 .

The tensor product of crossed complexes A,B is given by the universal bi-
morphism (A,B) → A⊗B, (a, b) 7→ a⊗ b. The rules for the tensor product are
obtained by replacing θ(a, b) by a⊗ b in the above formulae.

The conventions for these formulae for the tensor product arise from the
derivation of the tensor product via another category of ‘cubical ω-groupoids
with connections’, and the formulae are forced by our conventions for the equiv-
alence of the two categories [5, 7]. It is in the latter category that the expo-
nential law is easy to formulate and prove, as is the construction of the natural
transformation η of (4).

It is proved in [7] that the bifunctor −⊗− is symmetric and that if a0 is an
object of A then the morphism B → A⊗ B, b → a0 ⊗ b, is injective.

Example 2.2 Let PA = 〈XA | RA〉, PB = 〈XB | RB〉 be presentations of
groups A,B respectively, and let A = F(PA), B = F(PB) be the corresponding
free crossed modules, regarded as 2-truncated crossed complexes. The tensor
product C = (C−, χ−) = A ⊗ B is 4-truncated and is given as follows (where
we now use additive notation in dimensions 3, 4 and multiplicative notation in
dimensions 1, 2):

• C1 is the free group on generating set XA tXB;

• C2 is the free crossed C1-module on RA t (XA ⊗ XB) t RB with the
boundaries on RA, RB as given before and

χ2(a⊗ b) = b−1a−1ba for all a ∈ XA, b ∈ XB ;

• C3 is the free (A×B)-module on generators r⊗b, a⊗s, r ∈ RA, s ∈ RB,
with boundaries

χ3(r ⊗ b) = r−1rb(α2r ⊗ b), χ3(a⊗ s) = (a⊗ β2s)−1s−1sa ;
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• C4 is the free (A×B)-module on generators r ⊗ s, with boundaries

χ4(r ⊗ s) = (α2r ⊗ s) + (r ⊗ β2s) .

The important point is that we can if necessary calculate with these formu-
lae, because elements such as α2r ⊗ b may be expanded using the rules for the
tensor product. Alternatively, the forms α2r ⊗ b, a ⊗ β2s may be left as they
are, since they naturally represent subdivided cylinders.

Example 2.3 A more general situation is that if A,B are free crossed reso-
lutions of groups A, B then A ⊗ B is a free crossed resolution of A × B, as
proved by Tonks in [30]. This allows for presentations of modules of identities
among relations for a product of groups to be read off from the presentations
of the individual modules. There is a lot of work on generators for modules of
identities (see for example [21]) but not so much on higher syzygies.

Example 2.4 Set I = Π(I) as in (3). A ‘1-fold left homotopy’ of morphisms
f0, f1 : B → C is defined to be a morphism I ⊗ B → C which takes the values
of f0 on 0 ⊗ B and f1 on 1 ⊗ B . The existence of this ‘cylinder object’ I ⊗ B
allows a lot of abstract homotopy theory [25] to be applied immediately to the
category Crs. This is useful in constructing homotopy equivalences of crossed
complexes, using for example gluing lemmas.

We shall later be concerned with the cylinder C = (C−, χ−) = I ⊗ B, where
B = (B−, β−) is a reduced crossed complex with B0 = {∗}. Then I ⊗B has two
vertices, 0⊗ ∗ and 1⊗ ∗, which we write as 0, 1. We assume b, b′ ∈ Bn, b1 ∈ B1

so that I ⊗ B is generated by elements ι ⊗ ∗, written ι, in dimension 1; 0 ⊗ b
and 1 ⊗ b in dimension n; and ι ⊗ b in dimension n + 1, n > 1. The laws are
then as follows (now using multiplicative notation in dimensions 1 and 2):

(i)

σ(0⊗ b1) = 0, σ(1⊗ b1) = 1, σ(ι) = 0 ;
τ(0⊗ b) = 0 , τ(1⊗ b) = 1 , τ(ι⊗ b) = 1 .

(ii) if n > 2 ,

0⊗ bb1 = (0⊗ b)0⊗b1 , 1⊗ bb1 = (1⊗ b)1⊗b1 , ι⊗ bb1 = (ι⊗ b)1⊗b1 .

(iii)

0⊗ bb′ = (0⊗ b)(0⊗ b′) if n = 1 or 2,
0⊗ (b + b′) = 0⊗ b + 0⊗ b′ if n > 3,

1⊗ bb′ = (1⊗ b)(1⊗ b′) if n = 1 or 2,
1⊗ (b + b′) = 1⊗ b + 1⊗ b′ if n > 3 ,

ι⊗ (bb′) = (ι⊗ b)1⊗b′(ι⊗ b′) if n = 1 ,
ι⊗ (bb′) = ι⊗ b + ι⊗ b′ if n = 2 ,

ι⊗ (b + b′) = ι⊗ b + ι⊗ b′ if n > 3 .
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(iv)

χn(0⊗ b) = 0⊗ βnb ,
χn(1⊗ b) = 1⊗ βnb ,

χn+1(ι⊗ b) =











(1⊗ b)−1 ι−1 (0⊗ b) ι if n = 1 ,
(ι⊗ βnb)−1 (1⊗ b)−1 (0⊗ b)ι if n = 2 ,
−(ι⊗ βnb)− (1⊗ b) + (0⊗ b)ι if n > 3 .

An important construction is the simplicial nerve N(C) of a crossed complex
C. This is the simplicial set defined by

N(C)n = Crs( Π ∆n, C ) .

It directly generalises the nerve of a group. In particular this can be applied to
the internal hom functor CRS(B, C) to give a simplicial set N(CRS(B, C)) and
so turn the category Crs into a simplicially enriched category. This allows the
full force of the methods of homotopy coherence to be used [16].

The classifying space B(C) of a crossed complex C is simply the geomet-
ric realisation |N(C)| of the nerve of C. This construction generalises at the
same time: the classifying space of a group; an Eilenberg - Mac Lane space
K(G, n), n > 2; and the classifying space for local coefficients.

This construction also includes the notion of classifying space B(M) of a
crossed module M = (µ : M → P ). Every connected CW -space has the
homotopy 2-type of such a space, and so crossed modules classify all connected
homotopy 2-types. This is one way in which crossed modules are naturally seen
as 2-dimensional analogues of groups.

3 A Generalised Van Kampen Theorem

This theorem, proved by Brown and Higgins in [6], states roughly that the
functor Π : FTop → Crs preserves certain colimits. This allows the calculation
of certain crossed complexes, and in particular to see how free crossed complexes
arise from CW -complexes. In [6] the overall assumption was made that filtered
spaces were J0, meaning that each loop in X0 is contractible in X1. We now find
it clearer to put this assumption as part of the definition of connected filtration.

Definition 3.1 A filtered space X∗ is called connected if the following condi-
tions J0 and ϕ(X, m) hold for each m > 0 :

(i) J0 : each loop in X0 is contractible in X1;

(ii) ϕ(X, 0) : if j > 0, the map π0X0 → π0Xj, induced by inclusion, is
surjective;
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(iii) ϕ(X,m), (m > 1) : if j > m and p ∈ X0, then the map

πm(Xm, Xm−1, p) → πm(Xj, Xm−1, p)

induced by inclusion, is surjective. 2

The following result gives another useful formulation of this condition. We omit
the proof.

Proposition 3.2 A filtered space X is connected if and only if

• it is J0;

• for all n > 0, the induced map π0X0 → π0Xn is surjective; and

• for all r > n > 0 and p ∈ X0, πn(Xr, Xn, p) = 0.

The filtration of a CW -complex by skeleta is a standard example of a con-
nected filtered space.

Suppose for the rest of this section that X∗ is a filtered space. Let X = X∞.
We suppose given a cover U = {Uλ}λ∈Λ of X such that the interiors of the

sets of U cover X. For each ζ ∈ Λn we set

U ζ = U ζ1 ∩ · · · ∩ U ζn , U ζ
i = U ζ ∩Xi .

Then U ζ
0 ⊆ U ζ

1 ⊆ · · · is called the induced filtration U ζ
∗ of U ζ . Consider the

following Π-diagram of the cover:

⊔

ζ∈Λ2 Π U ζ
∗

a
//

b
//

⊔

λ∈Λ Π Uλ
∗

c
/ / Π X∗ (5)

Here
⊔

denotes disjoint union (which is the same as coproduct in the category
of crossed complexes); a, b are determined by the inclusions aζ : Uλ∩Uµ → Uλ,
bζ : Uλ ∩ Uµ → Uµ for each ζ = (λ, µ) ∈ Λ2; and c is determined by the
inclusions cλ : Uλ → X.

The following result constitutes a generalisation of the Van Kampen Theo-
rem for the fundamental groupoid on a set of base points.

Theorem 3.3 (The coequaliser theorem for crossed complexes: Brown and
Higgins [6])
Suppose that for every finite intersection U ζ of elements of U the induced filtra-
tion U ζ

∗ is connected. Then

(C) X∗ is connected, and

(I) in the above Π-diagram of the cover, c is the coequaliser of a, b in Crs.
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The proof of this theorem uses the category of cubical ω-groupoids with
connections [5], since it is this category which is adequate for two key elements
of the proof, the notion of ‘algebraic inverse to subdivision’, and the ‘multiple
compositions of homotopy addition lemmas’ [6].

In this paper we shall take as a corollary that the coequaliser theorem applies
to the case when X is a CW -complex with skeletal filtration and the Uλ form
a family of subcomplexes which cover X.

In order to apply this result to free crossed resolutions, we need to replace
free crossed resolutions by CW -complexes. A fundamental result for this is
the following, which goes back to Whitehead [35] and Wall [32], and which is
discussed further by Baues in [1, Chapter VI, §7]:

Theorem 3.4 Let X∗ be a CW -filtered space, and let f : ΠX∗ → C be a homo-
topy equivalence to a free crossed complex with a preferred free basis. Then there
is a CW -filtered space Y∗, and an isomorphism ΠY∗ ∼= C of crossed complexes
with preferred basis, such that f is realised by a homotopy equivalence X∗ → Y∗.

In fact, as pointed out by Baues, Wall states his result in terms of chain
complexes, but the crossed complex formulation seems more natural, and avoids
questions of realisability in dimension 2, which are unsolved for chain complexes.

Corollary 3.5 If A is a free crossed resolution of a group A, then A is realised
as free crossed complex with preferred basis by some CW -filtered space Y∗.

Proof We only have to note that the group A has a classifying CW -space B(A)
whose fundamental crossed complex ΠB(A) is homotopy equivalent to A. 2

Baues also points out in [1, p.657] an extension of these results which we
can apply to the realisation of morphisms of free crossed resolutions.

Proposition 3.6 Let X = K(G, 1), Y = K(H, 1) be CW -models of Eilenberg -
Mac Lane spaces and let h : Π X∗ → Π Y∗ be a morphism of their fundamental
crossed complexes with the preferred bases given by skeletal filtrations. Then
h = Πg for some cellular g : X → Y .

Proof Certainly h is homotopic to Πf for some f : X → Y since the set of
pointed homotopy classes X → Y is bijective with the morphisms of groups
G → H. The result follows from [1, p.657,(**)] (‘if f is Π-realisable, then each
element in the homotopy class of f is Π-realisable’). 2

Note that from the computational point of view we will start with a mor-
phism G → H of groups and then lift that to a morphism of free crossed resolu-
tions. It is important for our methods that such a morphism is exactly realised
by a cellular map of the cellular models of these resolutions. Thus these results
now give a strategy of weaving between spaces and crossed complexes. The key
problem is to prove that a construction on free crossed resolutions yields an
aspherical free crossed complex, and so also a resolution. The previous result
allows us to replace the free crossed resolutions by CW -complexes. We can
also replace morphisms of free crossed resolutions by cellular maps. We have
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a result of Whitehead [33] which allows us to build up K(G, 1)s as pushouts
of other K(A, 1)s, provided the induced morphisms of fundamental groups are
injective. The Coequaliser Theorem now gives that the resulting fundamental
crossed complex is exactly the one we want. More precise details are given in
the last section.

Note also an important feature of this method: we use colimits rather than
exact sequences. This enables precise results in situations where exact sequences
might be inadequate, since they often give information only up to extension.

The relation of crossed complex methods to the more usual chain complexes
with operators is studied in [9], developing work of Whitehead [34].

4 Free products with amalgamation and HNN-
extensions

We illustrate the use of crossed complexes of groupoids with the construction of
a free crossed resolution of a free product with amalgamation, given free crossed
resolutions of the individual groups, and a similar result for HNN-extensions.
These are special cases of results on graphs of groups which are given in [11, 29],
but these cases nicely show the advantage of the method and in particular the
necessary use of groupoids.

Suppose the group G is given as a free product with amalgamation

G = A ∗C B,

which we can alternatively describe as a pushout of groups

C
j

//

i
��

B

i′
��

A
j′

// G .

We are assuming the maps i, j are injective so that, by standard results, i′, j′

are injective. Suppose we are given free crossed resolutions A = F(A), B =
F(B), C = F(C). The morphisms i, j may then be lifted (non uniquely) to
morphisms i′′ : C → A, j′′ : C → B. However we cannot expect that the
pushout of these morphisms in the category Crs gives a free crossed resolution
of G.

To see this, suppose that these crossed resolutions are realised by CW -
filtrations K(Q) for Q ∈ {A,B, C}, and that i′′, j′′ are realised by cellular maps
K(i) : K(C) → K(A), K(j) : K(C) → K(B), as in Proposition 3.6. However,
the pushout in topological spaces of cellular maps does not in general yield a
CW -complex — for this it is required that one of the maps is an inclusion of a
subcomplex, and there is no reason why this should be true in this case. The
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standard construction instead is to take the double mapping cylinder M(i, j)
given by the homotopy pushout

K(C)

K(i)

��

K(j)
//

'

K(B)

��

K(A) // M(i, j)

where M(i, j) is obtained from K(A)t(I×K(C))tK(B) by identifying (0, x) ∼
K(i)(x), (1, x) ∼ K(j)(x) for x ∈ K(C). This ensures that M(i, j) is a CW -
complex containing K(A), K(B) and {1

2}×K(C) as subcomplexes and that the
composite maps K(C) → M(i, j) given by the two ways round the square are
homotopic cellular maps.

It follows that the appropriate construction for crossed complexes is obtained
by applying Π to this homotopy pushout: this yields a homotopy pushout in
Crs

C

i′′

��

j′′
//

'

B

��

A / / F(i, j) .

Since M(i, j) is aspherical we know that F(i, j) is aspherical and so is a free
crossed resolution. Of course F(i, j) has two vertices 0, 1. Thus it is not a free
crossed resolution of G but is a free crossed resolution of the homotopy pushout
in the category Gpd

C

i

��

j
//

'

B

� �

A // G(i, j)

which is obtained from the disjoint union of the groupoids A, B, I×C by adding
the relations (0, c) ∼ i(c), (1, c) ∼ j(c) for c ∈ C. The groupoid G(i, j) has two
objects 0, 1 and each of its object groups is isomorphic to the amalgamated
product group G, but we need to keep its two object groups distinct. This idea
of forming a fundamental groupoid is due to Higgins in the case of a graph
of groups [20], where it is shown that it leads to convenient normal forms for
elements of this fundamental groupoid. This view is pursued in [29], from which
this section is largely taken.

The two crossed complexes of groups F(i, j)(0), F(i, j)(1), which are the
parts of F(i, j) lying over 0, 1 respectively, are free crossed resolutions of the
groups G(i, j)(0), G(i, j)(1). ¿From the formulae for the tensor product of
crossed complexes we can identify free generators for F(i, j) : in dimension
n we get
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• free generators an at 0 where an runs through the free generators of An ;

• free generators bn at 1 where bn runs through the free generators of Bn ;

• free generators ι⊗ cn−1 at 1 where cn−1 runs through the free generators
of Cn−1 .

Example 4.1 Let A,B,C be infinite cyclic groups, written multiplicatively.
The trefoil group T given in section 1 can be presented as a free product with
amalgamation A ∗C B where the morphisms C → A, C → B have cokernels
of orders 3 and 2 respectively. The resulting homotopy pushout we call the
trefoil groupoid. We immediately get a free crossed resolution of length 2 for
the trefoil groupoid, whence we can by a retraction argument deduce the free
crossed resolution F(T ) of the trefoil group T stated in Example 1.1.

More elaborate examples and discussion are given in [11, 29].
Now we consider HNN-extensions. Let A,B be subgroups of a group G and

let k : A → B be an isomorphism. Then we can form a pushout of groupoids

{0, 1} × A

i
��

(k0, k1)
// G

j
��

I × A
f

/ / ∗k G

(6)

where
k0(0, a) = ka, k1(1, a) = a, and i is the inclusion.

In this case of course ∗k G is a group, known as the HNN-extension.
It can also be described as the factor group

(Z ∗G) / {z−1a−1z (ka) | a ∈ A}

of the free product, where Z is the infinite cyclic group generated by z.
Now suppose we have chosen free crossed resolutions A, B, G of A,B, G

respectively. Then we may lift k to a crossed complex morphism k′′ : A → B
and k0, k1 to

k′′0 , k′′1 : {0, 1} × A → G .

Next we form the pushout in the category of crossed complexes:

{0, 1} ⊗ A

i′′

��

(k′′0 , k′′1)
// G

j′′

��

I ⊗ A f ′′
// ⊗k′′ G

(7)
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Theorem 4.2 The crossed complex ⊗k′′ G is a free crossed resolution of the
group ∗k G .

The proof will be given in [11] as a special case of a theorem on the reso-
lutions of the fundamental groupoid of a graph of groups. Here we show that
Theorem 4.2 gives a means of calculation. Part of the reason for this is that
we do not need to know in detail the definition of free crossed resolution and of
tensor products, we just need free generators, boundary maps, values of mor-
phisms on free generators, and how to calculate in the tensor product with I
using the rules given previously.

Example 4.3 The Klein Bottle group K has a presentation

gp〈 a, z | z−1a−1z a−1 〉.

Thus K = ∗k A where A = 〈a〉 is infinite cyclic and ka = a−1. This yields a
free crossed resolution

K : · · · / / 1 // C(r)
φ2

// F{a, z} φ1
/ /___ K

where φ2 r = z−1a−1z a−1. Of course this was already known since K is a surface
group, and also a one relator group whose relator is not a proper power, and so
is aspherical. 2

Example 4.4 Developing the previous example, let

L = gp〈 c, z | cp, z−1c−1z c−1 〉.

Then L = ∗k Cp where Cp is the cyclic group of order p generated by c and
k : Cp → Cp is the isomorphism c 7→ c−1. A small free crossed resolution of Cp

is given in [14] as

Cp : · · · // Z[Cp]
χn

// Z[Cp] / / · · · // Z[Cp]
χ2

// A
χ1

//___ Cp

with a free generator a of A in dimension 1 ; with χ1 a = c ; free generators cn

in dimension n > 2 ; and

χn cn =











ap if n = 2 ,
cn−1 (1− c) if n is odd,
cn−1 (1 + c + c2 + · · ·+ cp−1) otherwise.

The isomorphism k lifts to a morphism k′′ : Cp → Cp which is also inversion in
each dimension. Hence L has a free crossed resolution

L = (L−, λ−) = ⊗k′′ Cp .
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This has free generators a, z in dimension 1; generators c2, z ⊗ a in dimension
2; and generators cn, z ⊗ cn−1 in dimension n > 3 . The extra boundary rules
are

λ2(z ⊗ a) = z−1a−1z a−1 ,
λ3(z ⊗ c2) = (z ⊗ ap)−1 c−1

2 (c−1
2 )z ,

λn+1(z ⊗ cn) = −(z ⊗ χncn)− cn − cn
z for n > 3 .

In particular, the identities among relations for this presentation of L are gen-
erated by

c2 and λ3(z ⊗ c2) = (z ⊗ χ2c2)−1 c2
−1 (c2

−1)z .

Similarly, relations for the module of identities are generated by

c3 and λ4(z ⊗ c3) = − (z ⊗ c2(1− c)) − c3 − c3
z .

Of course we can expand expressions such as (z ⊗ χncn) using the rules for the
cylinder given in Example 2.4. Further examples are developed in [29]. 2
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