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Abstract

This is an introductory survey of the passage from groups to groupoids and
their higher dimensional versions, with most emphasis on calculations with crossed
modules and the construction and use of homotopy double groupoids.

Introduction

This article is a slightly revised version of about nine hours of lectures given at the
Summer School on the Foundations of Algebraic Topology, Grenoble, June 16 - July
4, 1997. The audience had been prepared in the previous week with basic lectures on
algebraic topology. The intention of the lectures was to give a feel for what is going on,
to encourage the listeners to read more widely in the area, and hopefully to suggest ways
in which they could develop and apply some of these ideas in novel ways.

The scope of this article is an introduction to the use of groupoids, higher dimensional
groupoids, and related structures in homotopy theory. To this end it seems best to explain
some motivation, proofs and applications reasonably fully and so I will concentrate on
the use of crossed modules, double groupoids, and crossed complexes. Part of the aim
is to show that these methods give not just theoretical understanding, but that they
also lead to explicit computations of homotopical invariants which are unapproachable
by other means. This is in some ways surprising, but in fact is a consequence of the
attention paid to generalisations of the Van Kampen Theorem.

Since I have had to restrict the material, I could only hint at the work with Loday
on crossed squares, tensor products, and the Van Kampen theorem for cubical diagrams
of spaces given in [BL87b, BL87a]. Surveys of this material are given in [Bro92, Bro89].
Thus this article is still very much an introduction to the area.

∗This is a version of the article published as 102. ‘Groupoids and crossed objects in algebraic topol-
ogy’, Homology, homotopy and applications, 1 (1999) 1-78, slightly revised to update the notation and
references, and to make it available as a hyperref pdf file. Much of this material is now available in the
book ‘Nonabelian algebraic topology: filtered spaces, crossed complexes, cubical homotopy groupoids’,
by Ronald Brown, Philip J. Higgins, Rafael Sivera; published as EMS Tract Vol 15, August, 2011.
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1 Groupoids in homotopy theory

The starting point of this study has been to consider the following extensions:

(groups) ⊂ (groupoids) ⊂ (multiple groupoids).

The basic question is that of the significance of these extensions in the light of (i) the
well recognised notion that groups form a central concept in mathematics, and (ii) the
general importance of group theory for science.

A reason for regarding groups as significant is that they are considered to give the
mathematics of reversible processes. This explains the connection with symmetry.

By a groupoid we mean simply a small category in which every morphism is an
isomorphism. Thus a group may be considered as a groupoid with one object. The
category of groupoids will now be written Gpd.

The extension from groups to groupoids starts in a formal sense with the desire
to describe reversible processes which may traverse a number of states. So the group
theory idea is say to consider a variety of journeys from say Bangor back to Bangor,
whereas in groupoid theory one considers journeys between various cities in the UK, and
observe that journeys can be continued or composed if and only if the starting point
of one journey is the end point of the previous one. This naive viewpoint gives rise to
the heretical suggestion that the natural concept is that of groupoid rather than that of
group! In fact the groupoid idea is forced when one tries to structure a journey, i.e. to
list the cities travelled.

It is interesting in this respect to note the view of Connes [Con84] that Heisenberg
discovered quantum mechanics by considering the groupoid of quantum transitions rather
than the group of symmetry.

The formal definition of groupoid can be considered a consequence of the legacy of
Gauss, since it arose from Brandt’s attempts to extend to quaternary forms Gauss’ work
on the composition of binary quadratic forms, which has a strong place in Disquitiones
Arithmeticae. Bourbaki [Bou70], p.153, cites this latter composition as an influential
early example of a composition law which arose not from numbers, even taken in a broad
sense, but from distant analogues1. Brandt found that each quaternary quadratic form
of a given norm had a left unit and a right unit, and that two forms were composable
if and only if the left unit of one was the right unit of the other. This led to his 1926
paper on groupoids. (A modern account of the work on composition of forms is given by
Kneser et al. [KOK+86].) Groupoids were then used in the theory of orders of algebras.
Curiously, groupoids did not form an example in Eilenberg and Mac Lane’s basic 1945
paper on category theory.

1.1 The fundamental groupoid

Groupoids appear in Reidemeister’s 1932 book on topology [Rei49], as the edge path
groupoid, and for handling isomorphisms of a family of structures. The fundamental

1C’est vers cette même époque que, pour le premier fois en Algèbre, la notion de loi de composition
s’étend, dans deux directions différents, à des élements qui ne présentent plus avec les <<nombres>> (au
sens le plus large donné jusque-là à ce mot) que des analogies lointaines. La première de ces extensions
est due à C.F.Gauss, à l’occasion de ses recherches arithmétiques sur les formes quadratiques . . .
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groupoid π1(X) of a space X was well known by the 1950’s. It consists of homotopy
classes rel end points of paths in X, with the usual composition. Crowell and Fox
remark in [CF77] that ‘It is an interesting curiosity that the notion of groupoid gives a
nice account of the idea of change of base point for the fundamental group.’

1.2 Covering spaces

Philip Higgins came to his view on the utility of groupoids from reading the account
of [HW60] on covering spaces, and deciding this was mainly groupoid theory. He then
proceeded to show the utility of using presentations of groupoids for applications to
groups [Hig64, Hig66, Hig71]. Basically, he showed that some of the topological versions
of proofs of classical subgroup theorems (Nielsen-Schreier, Kurosch, Grusko, . . . ) could
be given an analogous algebraic proof, and generalised in the case of Grushko’s theorem,
using the notion of covering morphism of groupoids. This we now define.

First we define the star StH x of a groupoid H at an object x of H to be the set of
all arrows of H starting at x.

Definition 1.1 A morphism p : H → G of groupoids is a covering morphism if the
induced maps of stars StH x→ StG px are bijective for all objects x of H.

The category of covering morphisms of G, where the morphisms are the commutative
triangles, is written GpdCov(G).

Two other related categories are the category SetG of functors G → Set, and the
category G-Set of actions or operations of G on sets. The objects of the latter category
are triples (A,w, .) where A is a set, w : A→ Ob(G) is a function and . is a function which
assigns to each g : x → y in G and a ∈ w−1x and element a.g ∈ w−1(y) satisfying the
usual action rules a.1 = a, a.(hg) = (a.g).h whenever these are defined. The morphisms
f : (A,w, .) → (B, v, .) of this category are functions f : A → B such that vf =
w, f(a.g) = (fa).g whenever a.g is defined.

The following is a basic result of groupoid theory:

Theorem 1.2 There are equivalences of categories

GpdCov(G) ≃ SetG ≃ G-Set.

Let TopCov(X) be the category of covering maps of a space X. The main theorem
of topological covering space theory is:

Theorem 1.3 If the space X admits a universal covering space then the fundamental
groupoid functor

π1 : TopCov(X) → GpdCov(π1(X))

determines an equivalence of categories.

This gives a complete translation from topology to algebra. For proofs of these theorems,
see for example [Bro06].

When G is a group, Theorem 1.2 can be given in a different form which Peter May
has pointed out is useful in equivariant theory. We define the category Or(G) to have
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objects the sets G/H of cosets for a subgroupH of G and to have morphisms the G-maps.
Recall that a groupoid G is connected if G(x, y) is non empty for all objects x, y ∈ G.

Theorem 1.4 If G is a group, then the category Or(G) is a skeleton of the full subcat-
egory of G-Set consisting of transitive actions, and is also equivalent to the category of
connected coverings of the group G.

Theorems 1.2, 1.3 also have versions for group objects in the respective categories.
This is useful for discussing the existence of universal covering groups of non connected
topological groups [BM94].

1.3 The Van Kampen Theorem

The start of my interest in groupoids came with the following theorem, due in this form to
R.H. Crowell in 1959, but in fact for general open covers closed under finite intersection.

Theorem 1.5 (Van Kampen Theorem for the fundamental group) Let the space X be
the union of connected open sets U, V with connected intersection W , and let x ∈ W .
Then the diagram of group morphisms induced by inclusions

π1(W,x) //

��

π1(U, x)

��
π1(V, x) // π1(X,x)

(1)

is a pushout of groups.

This is often written as an isomorphism of groups

π1(X,x) ∼= π1(U, x) ∗π1(W,x) π1(V, x) (2)

It is in these forms that the theorem is used in [CF77], for example.

The problem with this theorem is that it requires the connectivity condition and
so does not yield the fundamental group of a circle, which in standard expositions is
usually determined by using the theory of covering spaces applied to the covering map
p : R → S1, t 7→ exp(2πit).

The main result of [Bro67] was that a satisfactory result for non connected spaces
could be obtained by replacing the single base point of the usual theory of the fundamen-
tal group by a set of base points chosen appropriately for the geometry. In particular, if
the space W above is not connected, we do not know in which component of W to put
a base point. We therefore avoid this choice by taking at least one ‘base point’ in each
component of W . So we define for any set A the fundamental groupoid π1(X,A) of X
on A to be the full subgroupoid of π1(X) on the set A ∩ X. That is, its object set is
A ∩X and the arrows are classes of paths in X joining points of A ∩X, with the usual
composition of arrows being the usual one.

This leads to the theorem:
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Theorem 1.6 [Bro67] Let the space X be the union of open sets U, V with intersection
W , and let A be a subset of X meeting each path component of U, V,W . Then A meets
each path component of X and the diagram of groupoid morphisms induced by inclusions

π1(W,A) //

��

π1(U,A)

��
π1(V,A) // π1(X,A)

(3)

is a pushout of groupoids.

We do not give the proof here as a proof of a 2-dimensional version for general covers will
be given later. An alternative proof is given in [BHK84] as an application of cohomology
with coefficients in a groupoid.

It is important to note that information on the way the components of U, V,W in-
tersect is naturally given in terms of graph theory. This nicely translates into algebraic
information on groupoids. The representation of this information in terms of groups
alone is much more awkward.

Grothendieck writes in 1985 [Gro83]:

The idea of making systematic use of groupoids (notably fundamental group-
oids of spaces, based on a given set of base points), however evident as it
may look today, is to be seen as a significant conceptual advance, which has
spread into the most manifold areas of mathematics. . . . In my own work in
algebraic geometry, I have made extensive use of groupoids – the first one
being the theory of the passage to quotient by a “pre-equivalence relation”
(which may be viewed as being no more, no less than a groupoid in the cat-
egory one is working in, the category of schemes say), which at once led me
to the notion (nowadays quite popular) of the nerve of a category. The last
time has been in my work on the Teichmüller tower, where working with a
“Teichmüller groupoid” (rather than a “Teichmüller group”) is a must, and
part of the very crux of the matter ....

A survey of the use of groupoids up to 1986 is given in [Bro87], and a more recent
survey is [Wei01].

1.4 Presentations of groupoids

In order to interpret the last theorem, one needs to be able to deal with presentations of
groupoids. Here we can give only the indications of the theory.

The theory of groupoids may be thought of as an algebraic analogue of the theory
of groups, but based on directed graphs rather than on sets. For some discussion of the
philosophy of this, see [Bro94].

1.4.1 Free groupoids

The term graph will always mean what is usually called a directed graph. A graph X
consists of two sets Arr(X), Ob(X), of arrows and objects respectively of X, and two
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functions s, t : Arr(X) → Ob(X), called the source and target maps. A morphism
f : X → Y of graphs consists of two functions Arr(X) → Arr(Y ), Ob(X) → Ob(Y ),
which commute with the source and target maps. This defines the category Graph.

The underlying graph UG of a groupoid G has the same objects, arrows, source and
target as G, but omits the composition and the function Ob(G) → G giving the identities.
This gives the forgetful functor U : Gpd → Graph.

A basic construction in any algebraic theory is that of free objects. For groups, the
free group functor F : Set → Groups is left adjoint to the forgetful functor Groups → Set.
In the case of groupoids, we may define the free groupoid functor to be the left adjoint
F : Graph → Gpd to the forgetful functor U : Gpd → Graph. So if X is a graph, then
the free groupoid F (X) on X consists of a graph morphism i : X → UF (X) which is
universal for morphisms from X to the underlying graph of a groupoid.

The set of objects of F (X) may be identified with Ob(X). There are several ways of
explicitly constructing the set of arrows of F (X). The usual way is as equivalence classes
of composable words

w = (x1, ε1) . . . (xn, εn), n > 0, xi ∈ Arr(X), ε = ±

together with empty words ( )a, a ∈ Ob(X), where the word w is composable means that
t(xi, εi) = s(xi+1, εi+1), i = 1 . . . n− 1, where

s(x, ε) =

{
sx if ε = +,

tx if ε = −,
t(x, ε) =

{
tx if ε = +,

sx if ε = −.

The equivalence relation on words, and the composition, to obtain the free groupoid
is defined in a manner analogous to the usual definition of free group, and the graph
morphism i : X → F (X) sends an arrow x to [x], the equivalence class of the word
(x,+).

A groupoid G is called connected if G(a, b) is non empty for all a, b ∈ Ob(G). The
maximal connected subgroupoids of G are called the (connected) components of G.

If a is an object of the groupoid G, then the set G(a, a) inherits a group structure
from the composition on G, and this is called the object group of G at a and is written
also G(a). The groupoid G is called simply connected if all its object groups are trivial.
If it is connected and simply connected, it is called 1-connected, or a tree groupoid.

A standard example of a tree groupoid is the indiscrete, or square, groupoid I(S) on
a set S. This has object set S and arrow set S × S, with s, t : S × S → S being the first
and second projections. The composition on I(S) is given by

(a, b)(b, c) = (a, c), a, b, c ∈ S.

A graph X is called connected if the free groupoid F (X) on X is connected, and is
called a forest if every object group F (X)(a) of F (X), a ∈ Ob(X), is trivial. A connected
forest is called a tree. If X is a tree, then F (X) is a tree groupoid.
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1.4.2 Retractions

Let G be a connected groupoid. Let a0 be an object of G. For each object a of G choose
an arrow τa : a0 → a, with τa0 = 1a0 . Then an isomorphism

φ : G→ G(a0)× I(Ob(G))

is given by g 7→ ((τa)g(τb)−1, (a, b)), g ∈ G(a, b), a, b ∈ Ob(G). The composition of φ with
the projection yields a morphism ρ : G→ G(a0) which we call a deformation retraction,
since it is the identity on G(a0) and is in fact homotopic to the identity morphism of G,
though we do not elaborate on this fact here.

It is also standard [Bro06, 8.1.5] that a connected groupoid G is isomorphic to the
free product groupoid G(a0) ∗ T where a0 ∈ Ob(G) and T is any wide, tree subgroupoid
of G. The importance of this is as follows.

Suppose that X is a graph which generates the connected groupoid G. Then X is
connected. Choose a maximal tree T in X. Then T determines for each a0 in Ob(G) a
retraction ρT : G→ G(a0) and the isomorphisms

G ∼= G(a0) ∗ I(Ob(G)) ∼= G(a0) ∗ F (T )

show that a morphism G → K from G to a groupoid K is completely determined by a
morphism of groupoids G(a0) → K and a graph morphism T → K which agree on the
object a0.

We shall use later the following proposition, which is a special case of [Bro06, 6.7.3]:

Proposition 1.7 Let G,H be groupoids with the same set of objects, and let φ : G→ H
be a morphism of groupoids which is the identity on objects. Suppose that G is connected
and a0 ∈ Ob(G). Choose a retraction ρ : G → G(a0). Then there is a retraction
σ : H → H(a0) such that the following diagram, where φ′ is the restriction of φ:

G
ρ //

φ

��

G(a0)

φ′

��
H σ

// H(a0)

(4)

is commutative and is a pushout of groupoids.

This result can be combined with Theorem 1.6 to determine the fundamental group
of the circle S1.

Corollary 1.8 The fundamental group of the circle S1 is a free group on one generator.

Proof We represent S1 as the union of two semicircles E1
+, E

1
- with intersection {−1, 1}.

Then the fundamental groupoid π1(E
1
+, {−1, 1}) is easily seen to be isomorphic to the

connected groupoid I with object set {−1, 1} and trivial object groups. In fact this
groupoid is the free groupoid on one generator ι : −1 → 1. From previous results, we
have a pushout diagram, in which {−1, 1} denotes the discrete groupoid on these objects,

{−1, 1} //

��

{1}

��
I // π1(S

1, 1)
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and the result follows by an easy universal argument. 2

Note that S1 may be regarded as a pushout in the category of topological spaces

{−1, 1} //

��

{1}

��
[−1, 1] // S1

The correspondence between these last two diagrams was for me a major incentive to
exploring the use of groupoids. Here we have a successful algebraic model of a space,
but of a different type from that previously considered. An aspect of its success is
that groupoids have structure in two dimensions, namely 0 and 1, and this is useful for
modelling the way spaces are built up using identifications in dimensions 0 and 1.

Another advantage of this method is that it yields calculations for which the corre-
sponding covering space theory is more awkward. One example is the fundamental group
of the non Hausdorff manifold obtained by identifying all points of two copies of the unit
interval except for the mid points. We find, as for S1, that this space has fundamental
group isomorphic to Z. Other examples are given in [Bro06].

Another interesting aspect is that the groupoid I is finite, and it is easy to explore
all its properties. By contrast, the integers form an infinite set, and discussion of its
properties usually requires induction.

One problem posed by these results was to find analogous methods and results in
higher dimensions.

1.4.3 Normal subgroupoids and quotient groupoids

Let G be a groupoid. A subgroupoid N of G is called normal if N is wide in G (i.e.
Ob(N) = Ob(G)) and for any objects a, b of G and g in G(b, a), g−1N(b)g = N(a).

Let φ : G→ H be a morphism of groupoids. Then Ker φ is the wide subgroupoid of
G whose elements are all g in G such that φg is an identity of H is a normal subgroupoid
of G. If Ob(f) is injective then Ker φ is totally disconnected, i.e. (Ker φ)(a, b) = ∅ if
a 6= b.

A morphism φ : G→ H is said to annihilate a subgraph X of G if φ(X) is a discrete
subgroupoid of H. Thus Ker φ is the largest subgroupoid of G annihilated by φ. The
next proposition gives the existence of quotient groupoids.

Proposition 1.9 Let N be a totally disconnected, normal subgroupoid of G. Then there
is a groupoid G/N and a morphism p : G → G/N such that p annihilates N and is
universal for morphisms from G which annihilate N .

Proof We define Ob(G/N) = Ob(G). If a, b ∈ Ob(G) we define (G/N)(a, b) to consist
of all cosets N(a)g, g ∈ G(a, b). The multiplication of G is inherited by G/N , which
becomes a groupoid.

The morphism p : G → G/N is the identity on objects, and on elements is defined
by g 7→ N(sg)g. Clearly p is a morphism and Ker p = N .

The remainder of the proof is clear. 2
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We call G/N a quotient groupoid of G.

1.4.4 Presentations of groupoids

We now consider relations in a groupoid. Suppose given for each object a of the groupoid
G a set R(a) of elements of G(a)— thus R can be regarded as a wide, totally disconnected
subgraph of G. The normal closure N(R) of R is the smallest wide normal subgroupoid
of G which contains R. This obviously exists since the intersection of any family of
normal subgroupoids of G is again a normal subgroupoid of G. Further, N(R) is totally
disconnected since the family of object groups of any normal subgroupoidN of G is again
a normal subgroupoid of G.

Alternatively, N = N(R) can be constructed explicitly. Let a be an object of G. By
a consequence of R at a is meant either the identity of G at a, or any product

τ = g−1
1 rε11 g1 . . . g

−1
n rεnn gn, (5)

in which n > 1, gi ∈ G(ai, a) for some object ai of G, εi = ±1 and ri is an element
of R(ai). Clearly, the set N(a) of consequences of R at a is a subgroup of G(a) and
the family N = (N(a) : a ∈ Ob(G) of these groups is a totally disconnected normal
subgroupoid of G containing R. Clearly N = N(R).

The projection p : G → G/N(R) has the following universal property: if f : G → H
is any morphism which annihilates R then there is a unique morphism f : G/N(R) → H
such that fp = f . We call G/N(R) the groupoid G with the relations r = 1, r ∈ R.

In applications, we are often given G, R as above and wish to describe the object
groups of G/N(R). These are determined by the following result.

Proposition 1.10 [Bro06, 8.3.3] Let G be connected, let a0 ∈ Ob(G) and let ρ : G →
G(a0) be a deformation retraction. Let H = G/N(R). Then H(a0) is isomorphic to the
group G(a0) with the relations

ρ(r) = 1, r ∈ R.

Proof The proof follows from Proposition 1.7, with H = G/N and φ = p : G → G/N
the quotient morphism. Details are given in [Bro06]. 2

We can now indicate how to combine covering groupoids and presentations of groups
to obtain results on groups.

Let H be a subgroup of a group G. The G acts on the set of cosets G/H and so
we obtain an associated covering morphism p : K → G with object set of K equal to
G/H and object group K(1), where 1 denotes the coset H, mapped by p isomorphically
to H. Suppose given a presentation (X;R) of the group G. Then we obtain a lifted
presentation (Y ;S) of the covering groupoid K, but Y is here a connected directed
graph. We can choose a retraction ρ : K → K(1) associated to this graph, for example by
choosing a maximal tree in Y . This gives a presentation of K(1), by the last proposition,
and so a presentation of the subgroup H. This is the method used in [Hig64, Hig71],
and was in fact earlier used by Hasse in [Has60]. The details of the above argument
require verifications on the lifting of presentations, and this we have to omit. It is worth
pointing out that this methodology gives a stronger version of Grusko’s theorem than
had previously been known [Hig66]2.

2See also a combination of the Grushko and Kurosch theorem in [Bra04].
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Again, Cayley graphs for presentations of groups are widely used, but it not so widely
known that a convenient context for this is as the free generating graph p−1(X) of the
free groupoid K in the covering morphism p : K → F (X) determined by the kernel of
F (X) → G, together with the labelling given by the graph morphism p−1(X) → X. This
description, with a corresponding 2-dimensional version, is exploited in [BRS99].

Presentations of groupoids are used to obtain new results on cross ratio in projective
geometry in [Cat95].

1.5 Orbit spaces and orbit groupoids

Another reason for choosing groupoids rather than groups concerns the equivariant the-
ory, that is the case of actions of a group Γ on a space X. If there is no fixed point for
the action then information on the action cannot be reflected by any fundamental group
π1(X,x). By contrast the group Γ acts on the fundamental groupoid π1(X). The utility
of this for calculations is shown below.

An action of the group Γ on the space X is called discontinuous if the stabiliser of
each point of X is finite, and each point x in X has a neighbourhood Vx such that any
element γ of Γ not in the stabiliser of x satisfies (γ · Vx) ∩ Vx = ∅. An example of such
an action is that of a finite group on a Hausdorff space.

If a group Γ acts on a groupoid G, it is easy to define the notion of orbit groupoid
as a Γ-morphism p : G → H of Γ-groupoids such that Γ acts trivially on H and p is
universal for this property: i.e. if p′ : G → H ′ is any Γ-morphism of Γ-groupoids such
that Γ acts trivially on H ′, then there is a unique morphism φ : H → H ′ of groupoids
such that φp = p′.

The following theorem is due to R. Brown and P.J. Higgins and is proved in Chapter 9
of [Bro06]. It gives a convenient formulation of work of A. Armstrong on the fundamental
group of orbit spaces.

Theorem 1.11 If X is a Hausdorff space on which the group Γ acts discontinuously, and
X admits a universal covering space, then the induced morphism p∗ : π1X → π1(X/Γ)
makes π1(X/Γ) the orbit groupoid of π1X by the action of Γ.

This theorem gives a complete translation from topology to algebra, and it is then
necessary to work out methods of calculating orbit groupoids. This has been done by
Higgins and Taylor [HT82] and Taylor [Tay88], whose work motivated the above theorem.

1.6 The category of groupoids

One way of evaluating the extension of categories

Groups ⊂ Gpd

from the viewpoint of the user is to consider any desirable properties which the larger
category has which are not held by the smaller one.

We have already seen that there is a notion of covering morphism of groupoids,
which for the case of groups reduces simply to an isomorphism. There is also a notion of
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fibration of groupoids [Bro70], which for the case of groups reduces to an epimorphism.
The exact sequences arising from a fibration are useful even in group theory [HK82].

The categories Gpd and Groups are both complete and cocomplete, i.e. they admit
limits and colimits. However a useful formal advantage of the bigger category is that
for any groupoids H,K there is also a groupoid GPD(H,K) whose objects are the
morphisms H → K and whose arrows f → g are simply the natural equivalences. In the
case H,K are groups this means that an arrow f → g in GPD(H,K)(f, g) is a pair (f, k)
such that k ∈ K and for all x ∈ H, g(x) = k−1f(x)k, that is, the arrows are conjugation
by elements of K.

Theorem 1.12 For any groupoids G,H,K there is a natural bijection

Gpd(G×H,K) ∼= Gpd(G,GPD(H,K)).

Thus the category Gpd is cartesian closed. This result is a special case of the carte-
sian closedness of the category of small categories. A generalisation of this property to
groupoids over a given groupoid has been exploited to give information about groups
[BH70].

This cartesian closed property is also useful in combination with the classifying space
functor

B : Gpd → Top.

To define this, recall that the nerve of a groupoid G may be defined to be the simplicial
set NG such that (NG)0 = Ob(G) and whose n-simplices for n > 1 are the group-
oid morphisms π1(∆

n, (∆n)0) → G, where (∆n)0 denotes the 0-skeleton of ∆n. Then
πn(BG,x) = 0 for n > 2, x ∈ Ob(G), while π1(BG,Ob(G)) ∼= G.

Let X be a CW -complex, and let G be a groupoid. It may be also proved that then
there is a natural weak equivalence

B(GPD(π1(X), G)) → (BG)X ,

where the latter space is the space of functionsX → BG with the compact-open topology.
This leads immediately on taking path components to a homotopy classification theorem
for maps X → BG, which may be written

[X,BG] ∼= [π1(X), G]

where the left hand side is the set of homotopy classes of maps, and the right hand side
is the set of conjugacy classes of morphisms of groupoids. From this it may be shown
that there is a map X → Bπ1(X) inducing an isomorphism of fundamental groupoids.
It is in this sense that groupoids model homotopy 1-types. These last two results are
special cases of results on crossed complexes given in [BH91] (see section 10).

Another advantage of groupoids is that they have a satisfactory homotopy theory
[KP97], since the groupoid I can be regarded as a model for groupoids of the unit
interval.

1.7 The role of groupoids in algebraic topology and mathematics

By this time it should be easy for you to be convinced that replacing the fundamental
group by the fundamental groupoid leads to a more powerful and more elegant theory,

13



and that groupoids give the natural and convenient exposition of the major facts of 1-
dimensional homotopy theory. This was the viewpoint taken in my first, 1968, edition of
[Bro06].

This immediately raised questions about higher dimensions. If groupoids are useful
in dimension 1, how useful are they, or should they be, in higher dimensions?

There are two extreme possibilities.

1. Groupoids are useful in dimension 1 but are not more useful, or even useless, in
higher dimensions.

2. Groupoids can become more useful with increasing dimension.

It was to attempt to decide on these possibilities that I began in the mid 1960s to
investigate notions of higher dimensional groupoids. It turned out much more difficult
to move from dimension 1 to dimension 2 than I expected and the first papers were not
published till 1976 [BS76b, BS76a].

It should be emphasised that for purely practical reasons the aim of this study could
not be to solve other people’s problems. The intention was to investigate this world, and
to see what was there. It would clearly be a bonus if the theory solved old problems, and
one could always hope, but the only way forward was to investigate the new territory.
Fortunately, connections with classical concepts kept on appearing, and this was some
comfort on a long road across a kind of desert before a lush countryside was reached.
Also, at the beginning there were only a few clues as to the road to take. The only
published information seemed to be the definition in Ehresmann’s book published near
that time [Ehr65] which gave a definition of double category and the example of the
double category of commuting squares in a category.

There was also a gut feeling of the potential importance of such a study. The Principal
Hypothesis was that the resulting theory would eventually come to bear to ordinary group
theory a relation similar to that of many variable analysis to 1-variable analysis. This
was the intention of this development of algebra to model geometry. The advantage of
considering this hypothesis was that obstructions to it were also likely to be of interest,
and that it suggested a range of areas for investigation.

Thus the study of multiple groupoids and their applications could be thought of as a
higher dimensional, or many variable, theory, which would be expected to yield:

• a range of new algebraic structures, with new applications

• better understanding, from a higher dimensional viewpoint, of some phenomena in
group theory

• new algebraic understanding of the structure of certain geometric situations and
hence new geometric theorems

• new computations with these objects, and hence also in the areas in which they
apply.

It is thus reasonable to ask if these aims have already been achieved, and if not to
ask how they might, if at all, be achieved.

14



The main applications of results derived from multiple groupoids have been in homo-
topy theory, as indicated here, differential topology (see for example [BM92, Wei01], and
combinatorial group theory (see for example [Bro84, HAM93, BRS99]). A chief aim is
to use these areas as test beds for the methods. For example, the fact that in homotopy
theory one can achieve results not currently obtainable by other methods is an adver-
tisement for these new local-to-global techniques, particularly in view of the difficulties
in these areas. Indeed, a principal aim of this exposition is to give the background and
intuition for some of these homotopical results. The overall aim of the investigation is is
still to open up new modes of thought and questions.

The term ‘higher dimensional group theory’ [Bro82] which was suggested in 1982 was
also expected to be part of a wider theory of ‘higher dimensional algebra’, and this is
now widely investigated (see for example [BD95, BN96]). This term also encompasses
investigation of structures satisfying weaker axioms, see for example [Lei02, Che04], than
the strict structures which are the main subject of these lectures,.
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2 A search for higher order versions of the

fundamental group in homotopy theory

One of the origins of the ideas for “higher dimensional group theory” is Poincaré’s def-
inition of the fundamental group, in his 1895 paper [Poi96]. The motivation for the
fundamental group in this paper seems to be from the notion of monodromy, that is
the change in the value of a meromorphic function of many complex variables as it is
analytically continued along a loop avoiding the singularities. This change in value de-
pends only on the homotopy class of the loop. So Poincaré was led to the notion of the
group π1(X, a) of homotopy classes of loops at a, where the group structure arises from
composition of loops. He called this group the fundamental group, and the fundamental
group π1(X, a), for a space X and base point a, with its relation to covering spaces,
surface theory, and the later combinatorial group theory, came to play an increasing rôle
in the geometry and analysis of the next hundred years.

An early result was the relation with the first homology group, namely that for a
connected simplicial complex X, the first homology group H1(X) is the fundamental
group made abelian:

H1(X) = π1(X, a)
ab.

It was thus clear that the non abelian fundamental group gave much more information
than the first homology group. However, the homology groups were defined in all dimen-
sions. So there was pressure to find a generalisation to all dimensions of the fundamental
group.

According to [Die89], Dehn had some ideas on this in the 1920’s, as would not be
surprising. The first published attack on this question is the work of Čech. He submitted
his paper on higher homotopy groups πn(X, a) to the International Congress of Math-
ematicians at Zurich in 1932. The story is that Alexandroff and Hopf quickly proved
that these groups were commutative for n > 2, and then persuaded Čech to withdraw
his paper, on the grounds that the higher homotopy groups clearly did not generalise the
non abelian fundamental group. Presumably it was considered unreasonable that the
structure proposed to model homotopy in dimensions larger than 1 should be simpler
than that for 1 itself. All that appeared in the Proceedings of the Congress was a brief
paragraph [Čec32].

It is helpful to give the reason why the higher homotopy groups are Abelian. It is a
corollary of the following result.

Theorem 2.1 Let X be a set with two monoid structures ◦1, ◦2 each of which is a
morphism for the other. Then the two structures coincide and are commutative.

Proof The condition that the structure ◦1 is a morphism for ◦2 is that the function

◦1 : (X, ◦2)× (X, ◦2) → (X, ◦2)

is a morphism of monoids, where (X, ◦2) denotes X with the monoid structure ◦2. This
condition is equivalent to the statement that for all x, y, z, w ∈ X

(x ◦2 y) ◦1 (z ◦2 w) = (x ◦1 z) ◦2 (y ◦1 w)
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which can be interpreted as saying that the diagram

[
x y
z w

]

1��

// 2

(6)

has only one composition. This law is the well known interchange law.

We now use some special case of the interchange law. Let e1, e2 denote the identities
for the structures ◦1, ◦2. We now consider the matrix

[
e1 e2
e2 e1

]
(7)

This yields easily that e1 = e2. We write then e for e1.

Now we consider the matrix composition

[
x e
e w

]
(8)

Interpreting this in two ways yields

x ◦1 w = x ◦2 w.

So we write ◦ for ◦1.

Finally we consider the matrix composition

[
e y
z e

]
(9)

and find easily that y ◦ z = z ◦ y. This completes the proof.

Incidentally, it will also be found that associativity comes for free. We leave this to
the reader. 2

This result seemed to kill any possibility of “higher dimensional group theory”, or of
any generalisations to higher dimensions of the fundamental group. In 1935, Hurewicz
published the first of his celebrated notes on higher homotopy groups, and the latter
are often referred to as the Hurewicz homotopy groups. The abelian higher homotopy
groups came to be accepted, a considerable amount of work in homotopy theory has
moved as far as possible from group theory and the non abelian fundamental group, and
the original concern about the commutative nature of the higher homotopy groups came
to be seen as a quirk of history.

The writing of the first edition of the book [Bro06] made it natural to consider what
happens to Theorem 2.1 if the word ‘monoid’ is replaced by ‘category’ or ‘groupoid’. The
proof then shows that a double category contains a family of abelian monoids. So double
groupoids do not necessarily reduce to ‘abelian’ objects, and in fact it is now known that
n-fold groupoids become increasingly complicated as n increases. This suggested the
interest in searching for higher dimensional versions of the fundamental groupoid, that
is for higher homotopy groupoids.

Such an idea does not seem to have been put forward till its mention in the Intro-
duction to [Bro67]. The claim for a proof given there in 1966 of a higher dimensional
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Van Kampen Theorem might be considered premature, since there was no theorem for-
mulated. In fact, the next eight or nine years of work were an idea of a proof in search
of a theorem, and the move from dimension 1 to dimension 2 turned out to require a
number of new ideas. It was however very satisfactory that the intuition for the proof
found in 1966 was exactly embedded in the final theorem found with Philip Higgins in
1974, which was submitted in 1975 and published in 1978 [BH78].

3 Whitehead’s work on crossed modules

Henry Whitehead was steeped in the combinatorial group theory of the 1930’s, and
much of his work can be seen as trying to extend the methods of group theory to higher
dimensions, still keeping the interplay with geometry and topology. These attempts led
to greatly significant work such as the theory of simple homotopy types. His ideas on
crossed modules have taken longer to come into wide use but they can be regarded as
equally significant.

One of his starting points was the Van Kampen Theorem for the fundamental group.
This tells us how the fundamental group is affected by the attaching of a cell, or of
a family of 2-cells, to a space. Namely, if X = A ∪ {e2i }i∈I , where the 2-cell e2i is
attached by a map which for convenience we suppose is fi : (S

1, 1) → (A, x), then each
fi determines an element φi in π1(A, x), and a consequence of the Van Kampen Theorem
for the fundamental group is that the group π1(X,x) is obtained from the group π1(A, x)
by adding the relations φi, i ∈ I. This can be put in a more general format and easily
proved using the results on presentations of groupoids given earlier.

The next problem is to determine the effect on the higher homotopy groups of adding
cells to a space. If we could solve this in general, then we would in particular be able
to calculate all homotopy groups of spheres. Work over the last 60 years has shown the
enormous difficulty of this task.

One of the results Whitehead was able to obtain in 1941 [Whi41] gave information
on second homotopy groups of X although it is only recently that it has been possible to
develop this to a kind of algorithm [BRS99]. His results were clarified and reformulated
by him in two subsequent papers [Whi46, Whi49] using the notion first of crossed module
and then of free crossed module. This formulation became the key to higher order Van
Kampen Theorems, as we shall see later.

We start with the basic definition of crossed module.

A crossed module is a morphism of groups µ : M → P together with an action
(m, p) 7→ mp of P on M satisfying the two axioms3

CM1) µ(mp) = p−1µ(m)p

CM2) n−1mn = mµn

for all m,n ∈M,p ∈ P.

Standard algebraic examples of crossed modules are:

3Whitehead in footnote 25 on p.422 of [Whi41] points to relation (6.3) which is exactly rule CM2) for
a crossed module.
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(i) an inclusion of a normal subgroup, with action given by conjugation;

(ii) the inner automorphism map χ : M → Aut M, in which χm is the automorphism
n 7→ m−1nm;

(iii) the zero map M → P where M is a P -module;

(iv) an epimorphism M → P with kernel contained in the centre of M ;

(v) the free crossed P -module
∂ : C(w) → P

determined by a function w : R→ P , where R is a set. The group C(w) is generated by
R× P with the relations

(r, p)−1(s, q)−1(r, p)(s, qp−1(wr)p)

the action is given by (r, p)q = (r, pq) and the boundary morphism is given by ∂(r, p) =
p−1(wr)p, for all (r, p), (s, q) ∈ R×P . This construction will be seen later as a special case
of the crossed P -module induced from the identity crossed F (R)-module F (R) → F (R)
of the free group on R by the morphism w′ : F (R) → P determined by w.

Simple consequences of the axioms for a crossed module µ :M → P are:

3.1 Im µ is normal in P .

3.2 Ker µ is central in M and is acted on trivially by Im µ, so that Ker µ inherits an
action of M/Im µ.

The major geometric example of crossed module can be expressed in two ways.

Let (X,A, x) be a based pair of spaces. Whitehead showed that the boundary map

∂ : π2(X,A, x) → π1(A, x), (10)

together with the standard action of π1(A, x) on π2(X,A, x), has the structure of crossed
module. Later Quillen put this in the form that if F → E → B is a based fibration, then
the induced morphism of fundamental groups π1F → π1E may be given the structure of
crossed module.

Because of the first of these examples, it is convenient and sensible to regard crossed
modules µ : M → P as 2-dimensional versions of groups, with P,M being respectively
the 1- and 2-dimensional parts.

The category XMod of crossed modules has objects all crossed modules with mor-
phisms the commutative diagrams

M
g //

µ

��

N

ν
��

P
f

// Q

in which the vertical maps are crossed modules, and the pair g, f preserve the action in
the sense that for all m ∈M,p ∈ P we have g(mp) = (gm)fp.
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Now we see that we have a functor

Π2 : (based pairs of spaces) → XMod

which sends the based pair (X,A, x) to the crossed module given in (10) above. (Later
we shall formulate a groupoid version of this functor, but at the first shot we wish to
keep things as simple as possible.)

3.1 The classifying space of a crossed module

In order to see the relevance of crossed modules to homotopy types we indicate a definition
and state some properties of a classifying space functor B [Lod82, BH91] assigning to
a crossed module M = (µ : M → P ) a connected, pointed CW -space BM with the
following properties:

3.3 The homotopy groups of the classifying space of the crossed module µ : M → P are
given by

πi(B(M → P )) ∼=





Coker µ for i = 1
Ker µ for i = 2
0 for i > 2.

3.4 The classifying space B(1 → P ) is the usual classifying space BP of the group P ,
and BP is a subcomplex of B(M → P ). Further, there is a natural isomorphism of
crossed modules

Π2(B(M → P ), BP ) ∼= (M → P ). (11)

3.5 (Loday [Lod82],see also [BH91]) Let X be a reduced CW -complex, let Z be a con-
nected space with π2(Z) = 0, and suppose given a map f : Z → X which is surjective on
fundamental groups. Let M → P be the crossed module π1(F (f)) → π1(Z), where F (f)
is the homotopy fibre of f . Then there is a map

X → B(M → P ) (12)

inducing an isomorphism of π1 and π2.

In this last result, it is easy to construct such a Z, for example it could be the 1-skeleton
X1 of X so that M ∼= π2(X,X

1). If X = B(M → P ), for a crossed module M → P ,
then we could take Z = BP .

It is in these senses that it is reasonable to say that crossed modules model all pointed
homotopy 2-types. This result is due originally to Mac Lane and Whitehead [MLW50]
(they use the term 3-type for what is now called 2-type).

It is useful to indicate how B(M → P ) is constructed as the geometric realisation of
a simplicial set K = Nerv(M → P ). Later we shall give an elegant description of the
simplices of this nerve, but here we shall give a sketch of their definition as in [BH91],
and which in fact goes back to Blakers in [Bla48].
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First K0 = 0,K1 = P . The 2-simplices of K are quadruples k = (m; p, q, r) such that
m ∈M,p, q, r ∈ P and µm = qpr−1 with ∂0k = p, ∂1k = r, ∂2k = q. The 3-simplices of K
are quadruples (k0, k1, k2, k3) of 2-simplices such that if ki = (mi; pi, qi, ri), i = 0, . . . , 3,
then

mp3
0 m2m

−1
1 m−1

3 = 1, (13)

and the edges of the 2-simplices ki match up to form a 3-simplex. For n > 4, an n-simplex
of K is an (n + 1)-tuple of (n − 1)-simplices of K, whose faces match up appropriately.
In essence, the construction is defined by the so-called ‘homotopy addition lemma’. We
omit further details at this stage. (See section 7.2.) The construction in [Lod82] is in
terms of bisimplicial groups, but this is more difficult to use for homotopy classification
results.

Clearly another problem is to give useful calculations of a crossed module representing
the 2-type of a space. Our next result gives an essential ingredient for this.

4 The 2-dimensional Van Kampen Theorem

The 2-dimensional version of the Van Kampen Theorem is a theorem yielding pushouts
of crossed modules or, more generally, colimits of crossed modules (see section 7.1 for
the more general version).

First, we say the pair (X,A) is connected if A and X are path connected and the
induced map of fundamental groups π1(A, x) → π1(X,x) is surjective. This last condition
is, with the connectivity of A, equivalent to saying that the homotopy fibre over x of the
inclusion A→ X is path connected.

The following theorem will be proved in section 6.3.

Theorem 4.1 (Brown and Higgins [BH78]) Suppose that the commutative diagram of
based pairs of spaces

(W,WA)
f //

i
��

(U,UA)

ı̄
��

(V, VA)
f̄

// (X,A)

satisfies one of the two following hypotheses:

HYPOTHESIS A: the maps i, f, ı̄, f̄ are inclusions of subspaces, X is the union of the
interiors of the sets U and V , W = U ∩ V , and VA = A ∩ V,UA =
A ∩ U,WA = A ∩W ;

HYPOTHESIS B: the maps i : W → V, iA : WA → VA are closed cofibrations, WA =
W ∩ VA, and X,A are the adjunction spaces U ∪f V,UA ∪fA VA.

Suppose also that all the pairs (U,UA), (V, VA), (W,WA) are connected. Then:

(C) The pair (X,A) is connected.
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(I) The following diagram induced by inclusions

Π2(W,WA) //

��

Π2(U,UA)

��
Π2(V, VA) // Π2(X,A)

(14)

is a pushout of crossed modules.

The interest in this theorem is at least six fold.

• The theorem is a very useful computational tool and gives information unobtainable
so far by other sources.

• The theorem is an example of a local-to-global theorem. Such theorems play an
important rôle in mathematics and its applications.

• The theorem deals with non abelian objects, and so cannot be proved by traditional
means of algebraic topology.

• The two available proofs use groupoid notions in an essential way.

• The existence of the theorem confirms the value of the crossed module concept, and
of the methods used in its proof. We should be interested in algebraic structures
for which this kind of result is true.

• It shows the difficulty of homotopy theory since one has, it appears, to go through
all this just to determine the second homotopy groups of certain mapping cones.

A further point is that the proof we shall give later (section 6.3) does not assume
the existence of pushouts in the category XMod. Instead the proof directly verifies the
required universal property, and in fact the theorem deals with covers with any number
of elements.
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5 Computation with crossed modules and second relative

homotopy groups

The 2-dimensional van Kampen Theorem (Theorem 4.1) shows the interest in computing
pushouts of crossed modules. A general treatment of this is in [BH78] but for explicit
calculations there have so far been two main streams of results, namely induced crossed
modules, and coproducts of crossed P -modules for a fixed P . We will be concerned here
mainly with the former, partly because the results are newer and also because there is
information and more references on the latter case in [HAM93].

5.1 Induced crossed modules I: Algebra

Consider the situation of theorem 4.1, so that X = U ∪ V but in which we set A = U .
Then we have a pushout of pairs in which W = V ∩A:

(W,W ) //

��

(A,A)

��
(V,W ) // (X,A)

(15)

The inclusion of pairs ε : (V, V ∩ A) → (V ∪ A,A) is known as the excision map,
since the smaller pair is obtained from the bigger one by ‘excising’ A \ V . A chief
reason why homology is computable is that this map induces an isomorphism in relative
homology in all dimensions if, for example, U, V are open in X. By contrast, the excision
map in relative homotopy is not an isomorphism even in dimension 2. In order to see
what happens we interpret theorem 4.1 for this situation in the next section. This
interpretation uses the notion of induced crossed module which was first described in
[BH78], and which we now develop.

Definition 5.1 Let M = (µ : M → P ) be a crossed module, which we abbreviate
to (M,P ) when convenient, and let ι : P → Q be a morphism of groups. The crossed
module induced from M by ι is ι∗M = (∂ : ι∗M → Q) defined by the pushout of crossed
modules

(1, P )
(1, ι)

//

��

(1, Q)

��
(M,P )

(ῑ, ι)
// (ι∗M,Q)

(16)

It can be proved from general considerations that the category XMod is complete
and cocomplete, and in particular admits all pushouts. However, we will give below a
presentation of the induced crossed module which can be used for specific calculations,
and is also helpful for the calculation of colimits.

First we give another way of expressing the universal property of induced crossed
modules using pullback crossed modules. Let ι : P → Q be a morphism of groups. Let
ν : N → Q be a crossed Q-module. Let ν ′ : ι∗N → P be the pullback of N by ι,
so that ι∗N = {(p, n) ∈ P × N |ιp = νn}, and ν ′ : (p, n) 7→ p. Let P act on ι∗N by
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(p1, n)
p = (p−1p1p, n

ιp). The verification of the axiom CM1) is immediate, while CM2)
is proved as follows:

Let (p, n), (p1, n1) ∈ ι∗N. Then

(p, n)−1(p1, n1)(p, n) = (p−1p1p, n
−1n1n)

= (p−1p1p, n
νn
1 )

= (p−1p1p, n
ιp
1 )

= (p1, n1)
ν′(p,n).

This can be expressed functorially. If P is a group, then the category XMod/P of
crossed P -modules is the subcategory of XMod whose objects are the crossed P -modules
and in which a morphism g : M → N of crossed P -modules is a morphism of groups
such that νg = µ and g preserves the action in the sense that g(mp) = (gm)p, for all
m ∈M, p ∈ P .

Proposition 5.2 Pullback by ι defines a functor ι∗ : XMod/Q→ XMod/P for which the
induced module functor ι∗ : XMod/P → XMod/Q is a left adjoint.

Proof The proof is not hard, using the universal property of the pushout. 2

In terms of the last result, the universal property of induced crossed modules is the
following. Let µ :M → P, γ : C → Q be crossed modules. In the diagram

M
f //

µ

��

ῑ ""D
DD

DD
DD

D C

γ

��

ι∗M

δ
!!C

CC
CC

CC
C

g
=={

{
{

{

P ι
// Q

(17)

the pair ῑ, ι is a morphism of crossed modules such that for any crossed Q-module γ :
C → Q and morphism of crossed modules f, ι, there is a unique morphism g : ι∗M → C
of crossed Q-modules such that gῑ = f.

It is a consequence of this universal property that if µ : F (R) → F (R) is the identity
crossed module for the free group F (R) on a set R, and if w : R→ Q is the restriction of
ι to the set R, then ι∗F (R) is the free crossed module on w, in the sense of Whitehead
[Whi49] (see also [BH82, HAM93, Pri91]). Constructions of this free crossed module
were given in these papers.

The following presentation for crossed modules induced by a morphism ι is given in
Proposition 8 of [BH78].

Proposition 5.3 Let µ : M → P be a crossed P -module and let ι : P → Q be a
morphism of groups. Then the induced crossed Q-module D = ι∗M is generated, as a
group, by the set M ×Q with defining relations

(i) (m1, q)(m2, q) = (m1m2, q),

(ii) (mp, q) = (m, (ιp)q),
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(iii) (m1, q1)
−1(m2, q2)(m1, q1) = (m2, q2q

−1(ιµm1)q1),

for m1,m2,m ∈ M, q1, q2, q ∈ Q, p ∈ P. The morphism ∂ : D → Q is given by ∂(m, q) =
q−1(ι∂m)q, the action of Q on D by (m, q1)

q = (m, q1q), and the canonical morphism
ῑ :M → D by ῑ(m) = (m, 1).

Proof One verifies directly that this recipe defines a crossed Q-module and that (ῑ, ι) :
(M,P, µ) → (D,Q, ∂) is a morphism of crossed modules with the required universal
property. 2

The following is a consequence of this explicit presentation of the induced crossed
module.

Corollary 5.4 If ι : P → Q is the inclusion of the subgroup P of Q, then the image of
the boundary ∂ : ι∗P → Q of the crossed module induced from 1P : P → P is the normal
closure of P in Q.

Thus in the case of a subgroup P of Q the induced crossed module construction
replaces the usual normal closure NQ(P ) of P in Q by a group ι∗P which is in general
larger than the normal closure NQ(P ) and has additional structure satisfying a universal
property. The kernel of the boundary map ι∗P → Q has topological interest since it can
be given as a second homotopy group (Corollary 5.18) but so far it has no independent
algebraic construction.

We will need two more results from [BH78].

Proposition 5.5 [BH78, Proposition 9] If ι : P → Q is a surjection, and µ :M → P is
a crossed P-module, then ι∗M ∼= M/[M,K], where K = Ker ι, and [M,K] denotes the
subgroup of M generated by all m−1mk for all m ∈M, k ∈ K.

The proof is a direct exercise in verifying that µι determines a morphism M/[M,K] →
Q which may be given the structure of crossed Q-module which satisfies the required
universal property. We leave this for the reader.

The next results in this section come from [BW95]. We use the following term and
notation. Let P be a group and let T be a set. We define the copower P ~∗ T to be the
free product of groups Pt, t ∈ T, each with elements (p, t), p ∈ P, and isomorphic to P
under the map (p, t) 7→ p. If Q is a group, then P ~∗ Q will denote the copower of P with
the underlying set of the group Q.

Proposition 5.6 If ι : P → Q is an injection, and µ : M → P is a crossed P-module,
let T be a right transversal of ιP in Q. Let Q act on the copower M ~∗ T by the rule
(m, t)q = (mp, u), where p ∈ P, u ∈ T, and tq = (ιp)u. Let δ : M ~∗ T → Q be
defined by (m, t) 7→ t−1(ιµm)t. Let S be a set of generators of M as a group, and let
SP = {xp : x ∈ S, p ∈ P}. Then

ι∗M = (M ~∗ T )/R

where R is the normal closure in M ~∗ T of the Peiffer commutators

〈(r, t), (s, u)〉 = (r, t)−1(s, u)−1(r, t)(s, u)δ(r,t) (r, s ∈ SP , t, u ∈ T ).
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Proof Let N = M ~∗ T. Proposition 10 of [BH78] yields that ι∗M is the quotient of
N by the subgroup 〈N,N〉 generated by 〈n, n1〉 = n−1n−1

1 nnδn1 , n, n1 ∈ N, and which is
called in [BH82] the Peiffer subgroup of N . Now N is generated by the set (SP , T ) =
{(sp, t) : s ∈ S, p ∈ P, t ∈ T}, and this set is Q-invariant since (sp, t)q = (spp

′

, u) where
u ∈ T, p′ ∈ P satisfy tq = (ιp′)u. It follows from Proposition 3 of [BH82] that 〈N,N〉 is
the normal closure of the set 〈(SP , T ), (SP , T )〉 of basic Peiffer commutators. 2

Example 5.7 The dihedral crossed module We show how this works out in the following
case, which exhibits a number of typical features. We let Q be the dihedral group Dn

with presentation 〈x, y : xn = y2 = xyxy = 1〉, and let M = P be the cyclic subgroup C2

of order 2 generated by y. Let Cn = {0, 1, 2, . . . , n− 1} be the cyclic group of order n. A
right transversal T of C2 in Dn is given by the elements xi, i ∈ Cn. Hence ι∗C2 has a
presentation with generators ai = (y, xi), i ∈ Cn, and relations given by a2i = 1, i ∈ Cn,
together with the Peiffer relations. Now δai = x−iyxi = yx2i. Further the action is given
by (ai)

x = ai+1, (ai)
y = an−i. Hence (ai)

δaj = a2j−i, so that the Peiffer relations are
ajaiaj = a2j−i. It is well known that we now have a presentation of the dihedral group
Dn, in which we get the standard presentation 〈u, v : un = v2 = uvuv = 1〉 by setting
u = a0a1, v = a0, so that ui = a0ai. Then

δu = x2, δv = y,

so that y acts on ι∗C2 by conjugation by v. However x acts by

ux = u, vx = vu.

Note that this is consistent with the crossed module axiom CM2) since

vx
2

= (vu)x = vuu = u−1vu.

We call this crossed module the dihedral crossed module. It follows from these formulae
that δ in the induced crossed module δ : Dn → Dn is an isomorphism if n is odd, and
has kernel and cokernel isomorphic to C2 if n is even. In particular, if n is even, then
by results of section 5.2, π2(BDn ∪ ΓBC2) has one non-trivial element which can be
regarded as being represented by un/2.

Corollary 5.8 Assume ι : P → Q is injective. If M has a presentation as a group with g
generators and r relations, the set of generators of M is P-invariant, and n = [Q : ιµ(M)],
then ι∗M has a presentation with gn generators and rn+ g2n(n− 1) relations.

Another corollary determines induced crossed modules under some abelian conditions.
This result has useful applications. If M is an abelian group, or P -module, and T is a
set we define the copower of M with T , written M ~⊕ T , to be the sum of copies of M
one for each element of T.

Corollary 5.9 Let µ :M → P be a crossed P -module and ι : P → Q a monomorphism
of groups such that M is abelian and ιµ(M) is normal in Q. Then ι∗M is abelian and
as a Q-module is just the induced Q-module in the usual sense.
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Proof We use the result and notation of Proposition 5.6. Note that if u, t ∈ T and r ∈ S
then uδ(r, t) = ut−1(ιµr)t = (ιµm)ut−1t = (ιµm)u for some m ∈ M, by the normality
condition. The Peiffer commutators given in Proposition 5.6 can therefore be rewritten
as

(r, t)−1(s, u)−1(r, t)(s, u)δ(r,t) = (r−1, t)(s, u)−1(r, t)(sm, u).

Since M is abelian, sm = s. Thus the basic Peiffer commutators reduce to ordinary
commutators. Hence ι∗M is the copower M ~⊕ T, and this, with the given action, is the
usual presentation of the induced Q-module. 2

Example 5.10 Let M = P = Q be the infinite cyclic group, which we write Z, and let
ι : P → Q be multiplication by 2. Then ι∗M ∼= Z ⊕ Z, and the action of a generator
of Q on ι∗M is to switch the two copies of Z. This result could also be deduced from
known results on free crossed modules. However, our results show that we get a similar
conclusion simply by replacing each Z in the above by for example C4.

We also note the following theorem from [BW95], whose proof is omitted.

Theorem 5.11 [BW95] Let µ : M → P be a crossed module and let ι : P → Q be a
morphism of groups. Suppose that M and the index of ι(P ) in Q are finite. Then the
induced crossed module ι∗M is finite.

The main difficulty in the proof is in the case when ι : P → Q is injective.

Theorem 5.11 suggests that the computation of induced crossed modules should be
accessible to symbolic computation. This has been realised as one of the functions in the
GAP package XMOD [WA97] and in this way a number of calculations have been made
[BW94].

The following theorem gives another useful instance of the determination of induced
crossed modules. For any group G, let I(G) denote its augmentation ideal, i.e. the kernel
of the augmentation map ZG→ Z.

Theorem 5.12 [BW96] Let M ⊆ P be normal subgroups of Q, so that Q acts on P
and M by conjugation. Let µ : M → P, ι : P → Q be the inclusions and let M denote
the crossed module (µ : M → P ) with the conjugation action. Then the induced crossed
Q-module ι∗M is isomorphic as a crossed Q-module to

(ζ :M × (Mab ⊗ I(Q/P )) → Q)

where for m,n ∈M, x ∈ I(Q/P ) :

(i) ζ(m, [n]⊗ x) = m ∈ Q;

(ii) the action of Q is given by

(m, [n]⊗ x)q = (mq, [mq]⊗ (q̄ − 1) + [nq]⊗ xq̄).

The universal map i : M → M × (Mab ⊗ I(Q/P )) is given by m 7→ (m, 0), and if
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(β, ι) is a morphism from M to the crossed module C = (χ : C → Q), then the morphism

C

χ

����
�
�
�
�
�
�
�
�
�
�
�
�

M

µ

��

i
//

β

77nnnnnnnnnnnnnn
Z

ζ
��

φ

??

P ι
// Q

(18)

φ :M × (Mab ⊗ I(Q/P )) → C induced by β is, for m,n ∈M, q ∈ Q, given by

φ(m, [n]⊗ (q̄ − 1)) = (βm) (βn)−1
(
β
(
nq

−1
))q

. (19)

The proof given in [BW96] is a direct verification of the universal property. The de-
scription of the action in (ii) of the last theorem is important and influences strongly
the homotopy type of the classifying space X of the induced crossed module. Corre-
spondingly, you should avoid thinking that it is only the additive structure of the second
homotopy group π2(X) which is of interest. I remember Whitehead saying that it was
the action which especially fascinated the early workers in homotopy theory. Of course
the deeper structures such as that given by the action, and by the crossed module itself,
are of even more interest when there is some means of getting information on them in
specific examples.

5.2 Induced crossed modules II: Topological applications

The following theorem is an easy consequence of Theorem 4.1.

Theorem 5.13 Suppose that the commutative square

W
f //

i
��

A

ı̄
��

V
f̄

// X

of based spaces satisfies one of the two following hypotheses:

HYPOTHESIS A: the maps i, f, ı̄, f̄ are inclusions of subspaces, W = V ∩ A, and X is
the union of the interiors of V and A;

HYPOTHESIS B: the map i is a closed cofibration and X is the adjunction space A∪f V.

Suppose also that (V,W ) is 1-connected and A is path connected. Then:

(C) (X,A) is 1-connected;

(I) π2(X,A) is the crossed π1(A)-module induced from π2(V,W ) by the morphism f∗ :
π1(W ) → π1(A).
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Proof Under these conditions we may take A = UA = U and VA =WA =W in Theorem
4.1. Writing P = π1(W ), Q = π1(A),M = π2(V,W ), and N = π2(X,A) we find that

(0, P, 0)
(0, ι)

//

��

(0, Q, 0)

��
(M,P, µ)

(ῑ, ι)
// (N,Q, ∂)

is a push-out of crossed modules, and this is equivalent to the assertion that N is the
induced module ι∗M . 2

We shall discuss below the relation with what is usually called the ‘homotopy excision
theorem’ (Example 5.19), but here move on to some other direct applications.

Corollary 5.14 (Relative Hurewicz Theorem in dimension 2) Suppose the pair (V,W )
is 1-connected. Then the space V ∪ CW is 1-connected and the group π2(V ∪ CW ) is
isomorphic to the group π2(V,W ) factored by the action of π1(W ).

Proof This follows from Theorem 5.13 with f the inclusion W → CW , Proposition 5.5,
and the fact that π2(V ∪CW,CW ) ∼= π2(V ∪ CW ). 2

This may seem odd since it is a relative Hurewicz Theorem without mention of
homology. However, since V ∪ CW is 1-connected, the absolute Hurewicz Theorem
implies π2(V ∪ CW ) ∼= H2(V ∪ CW ) and this last group is isomorphic to H2(V,W ) (by
the excision theorem for homology).

It is difficult to envisage any proof of the following theorem except that given here.

Corollary 5.15 Let X = A ∪f CW be the mapping cone of a map f : W → A, and
suppose that A,W are connected. Then (X,A) is 1-connected and the crossed π1(A)-
module π2(X,A) is isomorphic to ι∗π1(W ), where ι : π1(W ) → π1(A) is induced by f . In
particular, if π2(A) = 0, then π2(X) is isomorphic to the kernel of ∂ : ι∗π1(W ) → π1(A).

Proof The statements about π2(X,A) follow from Theorem 5.13, and the final statement
follows from the homotopy exact sequence of the pair (X,A). 2

As pointed out earlier, in the case P is a free group F (R) on a set R, and µ is
the identity, then the induced crossed module ι∗P is the free crossed Q-module on the
function ι|R : R→ Q. Thus the last corollary implies Whitehead’s theorem:

Theorem 5.16 Let X = A∪{e2λ}λ∈Λ be obtained from the connected space A by attach-
ing 2-cells. Then the second relative homotopy group π2(X,A) may be described as the
free crossed π1(A)-module on the 2-cells.

Whitehead’s original proof involved arguments of transversality and knot theory, and
was developed over the papers [Whi41, Whi46, Whi49].

A considerable amount of work has been developed from this result, because of
the connections with identities among relations, and methods such as transversality
theory and “pictures” which developed from Whitehead’s proof have proved success-
ful ([BH82, Pri91]), particularly in the homotopy theory of 2-dimensional complexes
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[HAM93]. However, the only route so far available to the wider geometric applications
of induced crossed modules is Theorem 5.13.

We now give some other applications of Theorem 5.13.

Corollary 5.17 Let µ :M → P be a crossed module, and let ι : P → Q be a morphism
of groups. Let β : BP → B(M → P ) be the inclusion. Consider the pushout

BP

β
��

Bι // BQ

��
B(M → P )

β′

// X.

(20)

Then the fundamental crossed module of the pair (X,BQ) is isomorphic to the induced
crossed module ι∗M → Q, and there is a map

X → B(ι∗M → Q)

inducing an isomorphism of π1, π2.

This shows that we have given a local-to-global computation of a homotopy 2-type. That
this can be done at all is remarkable.

Further, for many specific finite examples the resulting induced crossed module can
be computed completely.

Corollary 5.18 Let ι : P → Q be a morphism of groups. Then the fundamental crossed
module Π2(BQ∪BιCBP,BQ) is isomorphic to the induced crossed module ι∗P → Q, and
hence the second homotopy group π2(BQ ∪Bι C(BP )) is isomorphic to Ker (ι∗P → Q).
In particular, if P is normal in Q, then this second homotopy group is isomorphic to
P ab ⊗ I(Q/P ).

Thus information about even such an apparently simple computation as a second ab-
solute homotopy group of this mapping cone is tightly bound to information on crossed
modules. There is at present no alternative description of this second homotopy group
in algebraic terms. This highlights some basic difficulties of homotopy theory, and also
suggests that homotopy theory is an essentially non abelian subject. The abelian homo-
topy groups, even as modules over the fundamental group, give only a pale shadow of
the homotopical structures.

Part of the aim of finding models of these homotopical structures is the generic
importance of the notion of homotopy, or deformation, as a means of classification. New
methods developed here should prove their value in general areas of mathematics, in a
manner similar to that of the general applications of homological algebra.

Example 5.19 Theorem 5.13 implies the homotopy excision theorem [tDKP70, p.211]
in dimension 2. For suppose the based space X is the union of subspaces A,V , with
A,V and W = A ∩ V all path-connected. Assume either Hypothesis A or Hypothesis
B’ : A and V are closed and i : W → V is a cofibration. Let ι : π1(W ) → π1(A)
be induced by inclusion. If π1(V,W ) = 0, then π1(W ) → π1(V ) is surjective, and by
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Theorem 5.13, π2(X,A) = ι∗π2(V,W ); this gives an algebraic description of the excision
map ǫ : π2(V,W ) → π2(X,A). If also π1(A,W ) = 0, then ι is surjective and we obtain
from Proposition 5.5 the surjectivity of ǫ which is one part of the usual excision theorem;
but we can also, by Theorem 5.13 and Proposition 5.5, state the further result that if
K = Ker ι, then K acts on M = π2(V,W ), and Ker ǫ = [M,K]. Suppose further that

∂ : π2(A,W ) → π1(W )

is trivial (for example if π2(A,W ) = 0); then ι : π1(W ) → π1(A) is an isomorphism and
hence so also is ǫ. This is the final part of homotopy excision under hypotheses slightly
weaker than the usual ones.

Example 5.20 Let W,A,X be as in Corollary 5.15, and suppose that f∗ : π1(W ) →
π1(A) is surjective with kernel K. An application of Proposition 5.5 to the conclusion
of Theorem 5.13 gives π2(X,A) = π1(W )/[π1(W ),K], and it follows from the homotopy
exact sequence of the pair (X,A) that there is an exact sequence

π2(A) → π2(X) → K/[π1(W ),K] → 0. (21)

It follows from this exact sequence that if W = K(P, 1) and A = K(Q, 1), so that we
have an exact sequence 1 → K → P → Q→ 1 of groups, then π2(X) ∼= K/[P,K]. Since
X is simply connected, we get the same result for H2(X). Now the homology exact
sequence of the cofibre sequence W → A→ X gives an exact sequence

H2(P ) → H2(Q) → K/[P,K] → H1(P ) → H1(Q) → 0

(originally due to Stallings). In particular if P = F , a free group, or one with H2(F ) = 0,
then we obtain an exact sequence

0 → H2(Q) → K/[F,K] → F ab → Qab → 0.

This gives the famous Hopf formula

H2(Q) ∼=
K ∩ [F,F ]

[K,F ]

which is one of the starting points of homological algebra.

As another application of (21) we note that if π1(A) = π2(A) = 0, then π2(X) =
π1(W )ab. But π2(X) ∼= H2(X) ∼= H1(W ), and so we obtain the absolute Hurewicz
Theorem in dimension 1: if W is connected, then H1(W ) ∼= π1(W )ab.

The interest in this type of deduction of a well known and elementary result is as a
model for other situations, where the notion of abelianisation is less transparent.

Example 5.21 Let M be a normal subgroup of the group P and let ι : P → Q be a
morphism of groups. Let X be the homotopy pushout in the diagram

BP
Bf //

��

BQ

��
B(P/M) // X

(22)
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Then the homotopy 2-type of X is described by the induced crossed module ι∗M → Q.
This crossed module is determined completely in the case ι is an inclusion and M,P are
both normal in Q in Theorem 5.12, from [BW96].

Remark 5.22 These results set the scene for later generalisations. In particular, the
proof given here of the relative Hurewicz Theorem in dimension 2 led to its deduction
in dimension n from a Generalised Van Kampen Theorem for crossed complexes (see
Corollary 7.9). This in turn suggested an r-adic Hurewicz Theorem as a deduction from
an r-adic Van Kampen Theorem, via an r-cubical version of excision. This version of
the Hurewicz Theorem [BL87a, Bro89] has currently no other proof. Again, the above
proof of the Hopf formula led to a higher dimensional version of the Hopf formula given
by Brown and Ellis in [BE88], whose proof again uses the r-adic Hurewicz Theorem.

5.3 Coproducts of crossed P -modules

Here we give a brief review of another application of Theorem 4.1 to direct computation
of homotopy groups.

Theorem 5.23 LetM,N be normal subgroups of a group P , and let the space X be given
as the homotopy pushout in the following diagram, where BP denotes the classifying space
of the discrete group P :

BP //

��

B(P/M)

��
B(P/N) // X

(23)

Then the first two homotopy groups of X are given by

πi(X) ∼=

{
P/MN if i = 1,

(M ∩N)/[M,N ] if i = 2.
(24)

The proof uses an explicit description of the coproduct in the category XMod/P of
crossed P -modules – for more details, see [Bro84, HAM93]. In fact the results in [Bro84]
are more complete since the crossed module representing the 2-type of the homotopy
pushout X in Theorem 5.23 is described completely as the coproduct of the two crossed
P -modules M → P,N → P .

5.4 The homotopy 2-type of a union of spaces

Consider the situation of the 2-dimensional Van Kampen Theorem 6.3, and suppose
that each of the spaces UA, VA,WA has trivial second homotopy group. Then the crossed
modules Π2(U,UA),Π2(V, VA),Π2(W,WA) determine the homotopy 2-types of the spaces
U, V,W respectively. Theorem 6.3 determines completely the crossed module π2(X,A)
as the pushout of the other crossed modules. It is not true in general that A then has
trivial second homotopy group, as is clear from the previous sections. However if this
does hold, then the homotopy 2-type of X has been determined. This crossed module
may in some cases be quite calculable – for example it might be finite. On the other
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hand, the second homotopy group, namely the kernel of the boundary map of Π2(X,A),
may be difficult to calculate.

It is often held that the invariant of chief interest is the second homotopy group. This
view may be because of the long familiarity of this invariant, and the previous difficulty
of calculating an invariant of the homotopy 2-type. In any case, the virtue of algebraic
models of homotopy types is that they fit naturally into algebraic constructions such as
colimits and limits, and into more general theories such as homotopy coherence.
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6 Homotopy double groupoids and the proof

of the 2-dimensional Van Kampen Theorem

6.1 Preliminaries on double groupoids

We now start on the definition and theory of the double groupoids used in the proof of
the 2-dimensional Van Kampen Theorem. Much of the following exposition is adapted
from [BH78, BS76b].

By a double groupoid we shall always mean a ‘special double groupoid with special
connection’ as defined in section 3 of [BS76b]. We recall this definition, adopting a
slightly different notation.

A double groupoid G = (G2, G1, G0) has, in the first place, the structure of a two-
dimensional cubical complex. Thus there are face maps ∂αi : Gn → Gn−1 (α = 0, 1, i =
1, 2, . . . , n, n = 1, 2) and degeneracy maps ǫi : Gn−1 → Gn (i = 1, 2, . . . , n, n = 1, 2)
satisfying the usual cubical relations.

Next, for n = 1, 2, the pair (Gn, Gn−1) has n groupoid structures each with objects
Gn−1 and arrows Gn. The groupoid ‘in the ith direction’ has initial and final maps
∂0i , ∂

1
i : Gn → Gn−1, and its identity elements are the degenerate elements ǫiy for y ∈

Gn−1. The notation we use for these groupoid structures is as follows. Let a, b ∈ Gn
satisfy ∂1i a = ∂0i b. If n = 1 (and therefore i = 1) the composite of the edges a, b is
written ab, and the identity edge ǫ1y (y ∈ G0) is written ey, or e. If n = 2 and i = 1, the
composite of the squares a and b is written a◦b, with identity squares 1y = ǫ1y (y ∈ G1);
we refer to this as ‘vertical composition’ of squares. If n = 2 and i = 2, the composite of
a and b is written a+b, with identities 0y = ǫ2y (y ∈ G1); this is ‘horizontal composition’
of squares. If a ∈ G1, the inverse of a is written a−1, while if a ∈ G2, its inverses with
respect to ◦ and + are written a−1 and −a respectively. We write ⊙y for the doubly
degenerate square 1ey = 0ey (y ∈ G0). We require also that the face maps G2 → G1 and
the degeneracy maps G1 → G2 are morphisms of groupoids in the following sense:

(i) if a+ b is defined then ∂α1 (a+ b) = (∂α1 a)(∂
α
1 b);

(ii) if a ◦ b is defined then ∂α2 (a ◦ b) = (∂α2 a)(∂
α
2 b);

(iii) if ab is defined then 0ab = 0a ◦ 0b and 1ab = 1a + 1b.

The vertical and horizontal compositions of squares are related by the interchange law,
namely, that if a, b, c, d ∈ G2 then

(a+ b) ◦ (c+ d) = (a ◦ c) + (b ◦ d)

whenever both sides are defined. It is convenient to use matrix notation for composition
of squares. If a ∈ G2, a subdivision of a is defined to be a rectangular array (aij) (1 6

i 6 m, 1 6 j 6 n) of elements of G2 satisfying

{
∂11ai−1,j = ∂01ai,j (2 6 i 6 m, 1 6 j 6 n),

∂12ai,j−1 = ∂21ai,j (1 6 i 6 m, 2 6 j 6 n),

such that

(a11 + a12 + · · ·+ a1n) ◦ (a21 + a22 + · · ·+ a2n) ◦ · · · ◦ (am1 + am2 + · · ·+ amn) = a.
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We call a the composite of the array (aij) and write a = [aij ]. The interchange law
implies that if in the array (aij) we partition the rows and columns into blocks Bkl and
compute the composite bkl of each block, then a = [bkl]. We call the subdivision (aij) a

refinement of (bkl) in this case. Note that a ◦ b, a+ c can also be written

[
a
b

]
, [a, c], and

that the two sides of the interchange law can be written

[
a b
c d

]
.

Before defining our further element of structure, we need one example of a double
groupoid [Ehr65, EH76]. Let H be a groupoid. The double groupoid H of commuting
squares in H agrees with H in dimension 1 and in dimension 2 consists of all quadruples

α =

(
a
b
d
c

)
of arrows of H such that ad = bc, and where ∂01α = b, ∂11α = d, ∂02α =

a, ∂12α = c. The two compositions of these commutative squares are the usual ones.

A thin structure on a double groupoid G is a morphism Θ : G1 → G of cubical sets
such that Θ is the identity in dimensions 0 and 1, and in dimension 2 preserves the two
compositions (and hence preserves identities and inverses also). Thus the specification
of a thin structure on a double groupoid G has the effect of singling out a set of squares
of G with commuting boundary, which we shall call thin, with the two rules:

T1) any quadruple (a, b, c, d) of elements of G1 such that ad = bc is the boundary of a
unique thin square;

T2) any well defined composite of thin squares is thin.

This structure is crucial for our proof of the 2-dimensional Van Kampen Theorem,
and for relating this proof to standard examples in homotopy theory.

There is clearly a category of double groupoids with thin structure, where the mor-
phisms are morphisms of double groupoids preserving the thin structure. This category
is written DbGpd. From now on the term ‘double groupoid’ will mean an object of this
category.

We now give a complete algebraic source of such double groupoids. This requires
generalising the notion of crossed module to the groupoid context.

Let Φ be a groupoid. A crossed Φ-module consists of:

(i) a totally disconnected groupoid M with the same object set as Φ;

(ii) a morphism µ :M → Φ of groupoids which is the identity on objects; and

(iii) an action of the groupoid Φ on the right of the groupoid M via µ.

This last condition means that if x ∈ Φ(a, b),m ∈M(p), then mx ∈M(b) and the usual
laws of an action apply, namely m1 = m, (mx)y = mxy, (mn)x = mxnx whenever the
terms are defined.

The axioms for a crossed module are:

CM1) µ(mx) = x−1(µm)x,

CM2) n−1mn = mµn,
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for all m,n ∈M,x ∈ Φ and whenever the terms are defined. Such a crossed Φ-module is
written (M,µ,Φ) or µ :M → Φ, or simply as M4.

A morphism from a crossed module µ : M → Φ to a crossed module ν : N → Ψ
consists of a pair of morphisms of groupoids f : Φ → Ψ, g :M → N such that νg = fµ
and g(mx) = (gm)fx whenever mx is defined. This yields the category XModGpd of
crossed modules and their morphisms.

Let G be a double groupoid in the sense above. Then we obtain a crossed module
γ(G) = (µ : M → G1) as follows. Its 1-dimensional part is just the groupoid G1. Let
x ∈ G0. Then M(x) consists of all squares α ∈ G2 such that ∂01α = ∂02α = ∂12α = 1x,
and µα = ∂11α. The multiplication in M is given by +. The action of G on M is given
by

αb = −1b + α+ 1b.

The rule CM1) for a crossed module is clear, while CM2) can be proved by evaluating
in two ways the composition [

−1b α 1b
−β ⊙ β

]

The functor λ : XModGpd → DbGpd is defined as follows. Let M = (µ : M → Φ)
be a crossed module. Then λMi = Φi for i = 0, 1. The squares of λM consist of

all quintuples

(
m : a

c
b
d

)
such that m ∈ M, a, b, c, d ∈ Φ and µm = d−1c−1ab. The

boundary shell of such a quintuple is just the part excluding m as should be expected,
analogously to the case of commuting squares, and the two compositions are defined by:

(
m : a

c
b
d

)
+

(
n : d

f
e
g

)
=

(
nme : a

cf
be
g

)
(25)

(
m : a

c
b
d

)
◦

(
l : u

b
v
w

)
=

(
mw l : au

c
v
dw

)
(26)

The axioms for a double groupoid are trivial to verify except for the interchange law.
This turns out to be equivalent to axiom CM2) for a crossed module.

Finally the thin squares are those of the form

(
1 : a

c
b
d

)
.

Theorem 6.1 (Brown and Spencer [BS76b], Brown and Higgins [BH81d]) The functors
γ, λ defined above give an equivalence between the categories XMod and DbGpd.

An interesting aspect of the proof is that the hardest part is to construct the natural
equivalence λγ ≃ 1. Usually when one has an equivalence of categories, the result is clear
once the functors are written down. That is not so in this case, and the problem gets
even more difficult in higher dimensions. Essentially, the result says that if G is a double
groupoid (with thin structure) then G can be reconstructed from the crossed module γG
it contains.

4It seems that the first appearance of axiom CM2) is in footnote 25 on p.422 of [Whi41], where JHCW
points to relation (6.3) which is exactly rule CM2) for a crossed module.
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6.2 The homotopy double groupoid of a triple of spaces

Throughout this section X∗ = (X,X1,X0) will be a triple of spaces, so that X1 is a
subspace of X and X0 is a subspace of X1. We shall construct its ‘homotopy double
groupoid’ ρ(X∗).

First we construct R = (R2, R1, R0) where R0 = X0, R1 is the set of maps (I, İ) →
(X1,X0), and R2 is the set of maps (I2, İ2, Ï2) → (X,X1,X0), where İ

2 is the set of
edges and Ï2 the set of vertices of the square I2.

X X1X1

X1

X1
X0 X0

X0 X0

Then R = R(X∗) has the structure of a two-dimensional cubical complex.

The set R1 has its usual composition of paths in X1 with end points in X0. The set
R2 has two similar compositions. In more detail, for positive integers m,n let ϕm,n :
I2 → [0,m] × [0, n] be the map (x, y) 7→ (mx,ny). An m × n subdivision of a square
α : I2 → X is a factorization α = α′ ◦ϕm,n; its parts are the squares αij : I

2 → X defined
by

αij(x, y) = α′(x+ i− 1, y + j − 1).

We then say that α is the composite of the squares αij , and we write α = [αij ]. Similar
definitions apply to paths and cubes.

Such a subdivision determines a cell-structure on I2 as follows. The intervals [0,m], [0, n]
have cell-structures with integral points as 0-cells and the intervals [i, i + 1] as closed 1-
cells. Then [0,m] × [0, n] has the product cell-structure which is transferred to I2 by
ϕ−1
m,n. We call the 2-cell ϕ−1

m,n([i− 1, i]× [j − 1]) the domain of αij.

We use the same notation for degenerate squares as in the previous section. If α ∈
R2, then α−1,−α denote respectively the elements of R2 defined by (r, s) 7→ α(1 −
r, s), (r, s) 7→ α(r, 1 − s).

The double groupoid ρ = (ρ2, ρ1, ρ0) is in dimensions 0 and 1 just the fundamental
groupoid π1(X1,X0), so that ρ0 = X0, and ρ1 consists of homotopy classes rel vertices
of maps (I, İ) → (X1,X0), with the usual composition. For dimension 2, the elements
of ρ2 are homotopy classes rel vertices of maps (I2, İ2, Ï2) → (X,X1,X0).

We write ≡ for the relation of homotopy on R1 and R2 and call it f-homotopy (or
filter homotopy), to distinguish it from homotopy of maps I → X1 or I2 → X which we
write ≃. The class in ρi of an element θ of Ri is written θ̄.

An element θ̄ of ρ2 is called thin if it has a representative θ such that θ(I2) is contained
in X1.

Proposition 6.2 The compositions on R(X∗) induce compositions on ρ(X∗) which with
the above thin elements make ρ(X∗) a double groupoid.
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Proof Since ρ1 is just the fundamental groupoid, the major task is to prove that the
compositions on R2 are inherited by ρ2.

Let ᾱ, β̄ ∈ ρ2 satisfy ∂12 ᾱ = ∂02 β̄. Then there is a square h in X1 with γ = [α h β]
defined and with ∂01h, ∂

1
1h constant paths in X0.We let ᾱ+ β̄ = γ̄ and prove this addition

to be well defined.
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Figure 1

Let γ′ = [α′ h′ β′] be alternative choices. Then there exist f-homotopies φt : α ≡
α′, ψt : β ≡ β′. Let k : I × İ2 → X1 be given by (r, s, 0) 7→ h(r, s), (r, s, 1) 7→
h′(r, s), (r, 0, t) 7→ φt(r, 1), (r, 1, t) 7→ ψt(r, 0). In terms of Figure 1, in which the thin
lines denote edges on which the maps are constant, k is the map defined on the four side
faces of the central hole. But k is constant on the edges of the bottom face, since all the
homotopies are rel vertices. So k extends over {1} × I2 → X1 extending k to five faces
of I3. By retracting I3 onto these five faces we obtain a further extension k : I3 → X1.
The composite cube [φ k ψ] is an f-homotopy γ ≡ γ′ as required: the key point is that
the extension maps the top face of the middle cube into X1, since that is true for all the
other faces.

It is now easy to see that this addition makes (ρ2, ρ1) a groupoid with initial and
final maps ∂02 , ∂

1
2 and identity elements 0s, where s ∈ ρ1. A similar procedure gives the

other groupoid structure.

To verify the interchange law, suppose that ᾱ, β̄, γ̄, δ̄ ∈ ρ2 are such that either of the
two composites [

ᾱ β̄
γ̄ δ̄

]

are defined. Then there are maps h, h′, k, k′ : I2 → X1 such that the following composi-
tions are defined except for the middle element:



α h β
k k′

γ h′ δ


 .

However because all homotopies are rel vertices, the middle square can be filled by
a constant map to give a composable array. Evaluating this in two ways gives the
interchange law.

Clearly a thin element of ρ2 has commuting boundary, and any commuting boundary
has a thin filler. We have to prove this filler is unique.

Let f0, f1 : (I
2, Ï2) → (X1,X0) be two maps which agree on İ2. Define F : I2 × I →

X1 as follows. On I2 × İ, F is defined by f0, f1, while on three of the remaining faces of
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I3 = I2 × I, F is given by constant homotopies of the corresponding edges of I2. Now
use a retraction of I3 onto these five faces to extend these maps to give an f-homotopy
F : f0 ≡ f1 as required.

Finally, it is clear from the homotopy extension property that any composite of thin
elements is thin. 2

The next proposition is one of the keys to our work. It shows that double groupoids
allow a convenient expression for the homotopy addition lemma in dimension 2. To this
end, we introduce the following convenient notation for certain thin elements:

(27)

Here a thick line denotes an identity edge. Because a thin element is entirely determined
by its boundary, which also must be commutative, it is easy to deduce relations between
the other edges of these thin squares. Also, the two rules for thin elements immediately
lead to equations such as:

[ ]
= (28)

[ ]
= (29)

The first of these is known as the transport law since it was borrowed from a related law
for path connections in differential topology [BS76b].

Part of the point of this is that 2-dimensional algebra is more complicated than 1-
dimensional algebra, as one would expect. In particular, in dimension 1 the only ‘thin’
elements are identities, which correspond to constant paths. In dimension 2 we can not
only stand still or turn around as in 1-dimensional algebra, we can also turn left or right.
This opens up quite new algebraic possibilities.

The last four thin elements of (27) can in ρ2 be defined by specific squares, of which
the basic one is called a ‘connection’ Γ : R1 → R2. It is given by

Γ(σ) : (s, t) 7→

{
σ(s) if 0 6 t 6 s 6 1,

σ(t) if 0 6 s 6 t 6 1.

Clearly ∂01Γ(σ) = ∂02Γ(σ) = σ and ∂11Γ(σ) = ∂12Γ(σ) = ǫ0y where y = ∂11σ. Also Γ satisfies
the transport law (28).

If h : I3 → X is a cube in X, then its faces are, as usual, given by ∂αi h = h ◦ ηαi ,
where ηαi (x1, x2) = (y1, y2, y3), the yj being defined by yj = xj for j < i, yi = α, and
yj = xj−1 for j > i. Also let η̃α1 (x1, x2) = (α, x2, x1).

Proposition 6.3 (the homotopy addition lemma). Let X∗, ρ be as in Proposition 6.2.
Let h be a cube in X with edges in X1 and vertices in X0, and let the elements aα, bα, cα
of ρ2 represented by its faces be respectively the classes of h ◦ η̃α1 , h ◦ η

α
2 , h ◦ η

α
3 (α = 0, 1).

Then

c1 =




α−1
0

−b0 c0 b1
a1




in ρ2 where the corner elements are thin elements as above.
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Proof Consider the maps ϕ0, ϕ1 : I2 → I3 defined by

ϕ0 =



−Γ−1 (η̃01)

−1 Γ−1

−η02 η03 η12
−Γ η̃11 Γ


 , ϕ1 =



−Γ−1 1 Γ−1

0 η13 0
−Γ 1 Γ


 .

Then ϕ0, ϕ1 agree on İ2 and so, since I3 is convex, are homotopic rel İ2. Hence h ◦ ϕ0 =
h ◦ ϕ1 in ρ2. But h ◦ ϕ0 is the composite matrix given in the proposition, and h ◦ ϕ1 = c1.

2

A map f : X∗ → Y∗ of triples clearly defines a morphism ρ(f) : ρ(X∗) → ρ(Y∗) of
double groupoids.

Proposition 6.4 If f : X∗ → Y∗ is a map of triples such that each of f : X → Y, f1 :
X1 → Y1, f0 : X0 → Y0 are homotopy equivalences, then ρ(f) : ρ(X∗) → ρ(Y∗) is an
isomorphism.

Proof This is an immediate consequence of (10.11) of [tDKP70]. (In fact the maps
Ri(X∗) → Ri(Y∗) are then homotopy equivalences, as it is not hard to deduce for i = 1, 2
from the cogluing theorem of [BH70].) 2

From the homotopy double groupoid ρ(X∗) we obtain according to the procedure of
the previous section a crossed module γ(ρ(X∗)).

Proposition 6.5 If x ∈ X0, then the group γ(ρ(X∗))2(x) may be identified with the
group of homotopy classes rel

J2 = (I × İ) ∪ ({0} × I)

of maps
(I2, {1} × I, J2) → (X,X1, x),

i.e. with the usual second relative homotopy group π2(X,X1, x).

Proof Clearly there is a group surjection

φ : π2(X,X1, x) → γ(ρ(X∗))2(x).

We have to prove φ is injective. Suppose then that φ(ᾱ) = 0. Then there is an f-
homotopy h : α ≡ 0. We have to prove there is a homotopy of maps of triples h′ : α ≃ 0
rel J2, and this is done by using a filling argument to deform h to a homotopy h′ of the
required type.

We write the elements of I4 as (r, s, t, u). We first define

F (r, s, t, 0) = h(r, s, t)

F (r, s, 0, u) = h(r, s, 0) = α(r, s)

F (r, s, 1, u) = x

where the first says that u = 0 gives the original homotopy, and the second and third
say that h0 = α and h1 are not altered in the homotopy of h. Next, the final homotopy,
i.e. when u = 1, must be rel J2. This means that we define

F (0, s, t, 1) = F (r, 0, t, 1) = F (r, 1, t, 1) = x.
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We need to define F on seven of the 3-faces of I4 and so far it is defined on only
three of them, as well as on three 2-faces. We start an extension process by defining F
to have value x on the elements (1, 1, t, u), and find that F is well defined on five of the
faces of the 3-cube given by s = 1. Hence F may be extended over this 3-cube. In a
similar way we get F defined on the 3-cubes given in turn by r = 0, next by s = 0, and
then by r = 1. Now F is defined on seven of the 3-faces of I4, and so extends over I4.
Then F (r, s, t, 1) is the required homotopy, since by definition it is a homotopy of α rel
J2, and it does map the points (1, s, t) into X1, since all the faces of the 3-cubes over
which we extended were mapped into X1. 2

On the face of it, this shows that the theory of the homotopy double groupoid ρ(X∗)
is equivalent to that of the classical second relative homotopy crossed module, and so the
question can be fairly put: Why introduce a new version? The answer is the usual kind of
answer, that sometimes the new version is useful for proving theorems. In particular, we
are unable to prove directly in terms of crossed modules the version of the 2-dimensional
Van Kampen theorem which gives a result in terms of the classical crossed modules.

The reason for conceiving of the homotopy double groupoid was to find an algebraic
gadget more appropriate than groups for giving an

algebraic inverse to subdivision.

This is the slogan underlying the work on higher dimensional Van Kampen Theorems.
Subdividing a square into little squares has a convenient expression in terms of double
groupoids, and much more inconvenient expressions, if they exist at all, in terms of
crossed modules. The 2-dimensional Van Kampen Theorem was conceived first in terms
of double groupoids, and it was only gradually that the link with crossed modules was
realised. In the end, the aim of obtaining Whitehead’s theorem on free crossed modules
(Corollary 5.16) as a corollary was a key impetus to forming a definition of a homotopy
double groupoid for a pointed pair of spaces, since that theorem involved a crossed
module defined for such a pair of spaces.

Further, the connections on double groupoids which were found necessary to make
precise the relations between crossed modules and double groupoids [BS76b] turned out
also to be exactly what was needed for the homotopy addition lemma and so allowed
Lemma 6.10 in the proof of our 2-dimensional Van Kampen Theorem in the next section.
This lemma shows that a construction of an element of a particular double groupoid is
independent of all the choices made. Applications of connections and thin structures for
double categories are given in [Spe77, SW83].

The more restricted structure of a homotopy 2-groupoid associated to a triple has
been indicated in [MS93]5, but again it is difficult to prove using this structure and in a
manner similar to that above the 2-dimensional Van Kampen Theorem.

Our theory gives in a sense an algebraic formulation of different ways which have been
classically used in considering properties of relative homotopy groups. We find that the
2-dimensional double groupoid viewpoint is useful for understanding the theory and for
proving theorems, while the crossed module viewpoint is useful for specific calculations,
and because of its closer relation to chain complexes. The importance of the algebraic
formulation of this equivalence is the equivalence between colimits, and in particular
pushouts, in the two categories.

5More detail on the construction of the 2-groupoid structure follows from the more general homotopy
double groupoid of a map in [BJ04].
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The reader will have noticed the common use of filling arguments in the above proofs.
These arguments become even more essential in the proof of results for higher dimensions,
as in [BH81a].

In higher dimensions we have found it necessary to take the connections as basic
structures, since it is relatively easy to define a cubical set with compositions and con-
nections [BH81d], but quite difficult, though necessary, to define inductively the notion
of ‘cube with commuting boundary’. The centrality of this and analogous problems, and
their long occurrence in the history of algebraic topology, is one of the fascinations of
higher dimensional algebra.

6.3 General statement and proof of the 2-dimensional Van Kampen

theorem

In this section we write X∗ for the triple (X,X1,X0) of spaces. All double groupoids will
be double groupoids with thin structure.

We say that X∗ is connected if the following conditions hold:

(‡)0 the maps π0(X0) → π0(X1) and π0(X0) → π0(X) are surjective;

(‡)1 the morphism of groupoids π1(X1,X0) → π1(X,X0) is piecewise surjective.

It may be shown that given (‡)0, the condition (‡)1 may be replaced by

(‡′)1 For each x ∈ X0, the homotopy fibre over x of the inclusion X1 → X is path
connected.

This explains the origin of the term ‘connected’ (see [BL87b]).

Now suppose we are given a cover U = {Uλ}λ∈Λ of X such that the interiors of the
sets of U cover X. For each ν ∈ Λn we write

Uν = Uν1 ∩ . . . ∩ Uνn ,

Uνi = Uν ∩ Xi, and Uν∗ = (Uν , Uν1 , U
ν
0 ). So the homotopy double groupoids in the

following ρ-sequence of the cover are well-defined:

⊔
ν∈Λ2 ρ(Uν∗ )

a //

b
//
⊔
λ∈Λ ρ(U

λ
∗ )

c // ρ(X∗) . (30)

Here
⊔

denotes disjoint union, which is the coproduct in the category of double groupoids.
It is an advantage of the approach using a set of base points that the coproduct in this
category is so simple to describe. The morphisms a, b are determined by the inclusions

aν : Uλ ∩ Uµ → Uλ, bν : Uλ ∩ Uµ → Uµ

for each ν = (λ, µ) ∈ Λ2, and c is determined by the inclusion cλ : Uλ → X for each
λ ∈ Λ.

Theorem 6.6 [BH78, Theorem B] Assume that for every finite intersection Uν of ele-
ments of U the triple Uν∗ is connected. Then

(C) the triple X∗ is connected, and
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(I) in the above ρ-sequence of the cover, c is the coequaliser of a, b in the category of
double groupoids.

The proof will take several stages. The first step is the following one.

Lemma 6.7 Let α ∈ R2(X∗) and let α = [αij ] be a subdivision of α such that each αij
lies in some U ij , a finite intersection of elements of U . Then there is an f-homotopy
h : α ≡ θ, with θ ∈ R2(X∗), such that, in the subdivision h = [hij ] determined by that of
α, each homotopy hij : αij ≃ θij satisfies:

(i) hij lies in U ij;

(ii) θij belongs to R2(X∗);

(iii) if a vertex v of the domain of αij is mapped into X0, then h is constant on v;

(iv) if for r = 0, 1 a cell e of the domain of αij is mapped by α into Xr, then e × I is
mapped by h into Xr, and hence θ(e) is contained in Xr.

Proof Let K be the cell-structure on I2 determined by the subdivision α = [αij ]. Let
Lm = Km×I ∪K×{0} and X2 = X.We construct maps hm : Lm → X2, for m = 0, 1, 2,
such that hm extends hm−1, where h−1 = α. Further we construct hm to satisfy the
following conditions, for each m-cell σ of K:

(am): hm | σ × {1} is an element of Rm(X∗);

(bm): if α maps σ into Xr, then hm(σ × I) ⊂ Xr;

(cm): if σ is contained in the domain of αij, then hm(σ × I) ⊂ U ij .

The construction of hm from hm−1 is as follows. We consider an m-cell σ of K, and
let r be the smallest integer such that α maps σ into Xr. If r 6 m, then hm−1 can be
extended to hm on σ × I by means of a retraction α × I → σ × {0} ∪ σ̇ × I. If r > m
let Uσ be the intersection of all the sets U ij such that σ is contained in the domain of
αij . The restriction of hm−1 to the pair (σ × {0} ∪ σ̇ × I, σ̇ × I) determines an element
of πm(U

σ
r , U

σ
m−1). (Here m 6 1 and Uσ−1 is taken to be ∅.) By (‡)m, hm−1 extends to hm

on σ × I mapping into Uσr and such that σ × {1} is mapped into Uσm. 2

The connectivity result (C) is immediate from this lemma, particularly (iv), applied
to doubly degenerate or to degenerate squares representing elements of an appropriate
π0 or π1.

We next prove the coequaliser result.

Suppose we are given a morphism

f ′ :
∐

λ∈Λ

π(Uλ∗ ) → G

of double groupoids such that f ′ ◦ a = f ′ ◦ b. We have to show that there is a unique
morphism f : ρ(X∗) → G of double groupoids such that f ◦ c = f ′.

Let pλ : R(Uλ∗ ) → ρ(Uλ∗ ) be the projection and let Fλ = f ′ ◦ pλ : R(Uλ∗ ) → G. We
first define f on ρ2(X∗) and to this end first construct F : R2(X∗) → G.
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Suppose that θ in R2(X∗) is such that θ in R2(X∗) is such that θ lies in some set Uλ

of U . Then θ determines uniquely an element θλ of R2(U
λ
∗ ) and the rule f ′ ◦ a = f ′ ◦ b

implies that
F (θ) = Fλ(θ

λ)

is determined by θ.

Suppose we are given a subdivision θ = [θij] of an element θ in R2(X∗) such that
each θij is in R2(X∗) and also lies in some Uν , for ν ∈ Λn. Then θij also lies in some
Uλ, with λ ∈ Λ, and since the composite [θij] is defined it is easy to check, again using
f ′ ◦ a = f ′ ◦ b, that the elements F (θij) compose in G to give an element g = [F (θij)],
which we write as F (α) although a priori it depends on the subdivision chosen.

We next wish to construct F (α) for an arbitrary element α of F2(X∗). This construc-
tion is based on Lemma 6.7.

Corollary 6.8 Let α ∈ R2(X∗). Then there is an f-homotopy h : α ≡ θ such that F (θ)
is defined in G2.

Proof Choose a subdivision α = [αij ] such that each αij lies in some set U ij of U. Then
apply Lemma 6.7. 2

This element F (θ) of the corollary we write F (α, (hij)) and prove first that it depends
only on α. Accordingly, let h′ : α ≡ θ′ be an alternative f-homotopy satisfying the
conditions of Lemma 6.7 with respect to a subdivision α = [α′

kl] in which each α′
kl lies

in some set V kl of U. Since any two subdivisions have a common refinement we may
assume, without loss of generality, that [α′

kl] is a refinement of [αij].

For each (kl), let W kl = V kl ∩ U ij where U ij is such that α′
kl is a part of αij . By

Lemma 1 there is an f-homotopy h† = [h†kl] from α to θ† such that each h†kl lies in W
kl.

The f-homotopy H = h̄′h† : θ′ ≡ θ† (where h̄′ is the reverse of h′) has the subdivision

H = [Hkl] where Hkl : θ
′ ≃ θ†kl and Hkl lies in V

kl.

Let θ∗ij be the composite of those θ†kl such that α′
kl is a part of αij. Then we also

have a subdivision h† = [h∗ij ], where h
∗
ij : αij ≃ θ∗ij lies in Uij . So H∗ = h̄†h : θ† ≡ θ is

an f-homotopy with subdivision H∗ = [H∗
ij ], where H

∗
ij : θ

∗
ij ≃ θij is a homotopy lying in

U ij .

It will follow from Lemma 6.10 below that [F (θ′kl] = [F (θ†kl)] and [F (θ∗ij)] = [F (θij)].

However [F (θ∗ij ] = [F (θ†kl)], since the latter is a refinement of the former. Hence [F (θ′kl] =
[F (θij)] and so F (α, (hij)) depends only on α.

Lemma 6.9 Let θ, θ∗ ∈ R2 and suppose we are given an f-homotopy H : θ ≡ θ∗. Let
H = [Hij ] be a subdivision such that each Hij lies in some set U ij of U. Let θ = [θij], θ

∗ =
[θ∗ij] be the subdivisions of θ, θ∗ induced by that of H, and suppose that θij, θ

∗
ij are in R2

for all (i, j). Then H is homotopic rel end maps to an f-homotopy Ĥ : θ ≡ θ∗ such that
for all i, j,

(i) Ĥij has its edges in X1,

(ii) Ĥij lies in U ij.
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Proof The proof is similar to that of Lemma 6.7. The subdivision θ = [θij] induces a
cell-structure K on I2, and the homotopy H ≃ Ĥ is constructed on Km × I × I ∪K ×
İ × I ∪K × I × {0} by induction on m. 2

NOTE. We do not claim that Ĥij is an f-homotopy θij ≡ θ∗ij.

Lemma 6.10 Let θ, θ∗,H, (Hij) be as in Lemma 6.9. Then in G2,

[F (θij)] = [F (θ∗ij)]

.

Proof We replace H by the Ĥ : θ ≡ θ∗ given by Lemma 6.9. Let F (θij) = cij , F (θ
∗
ij) =

c∗ij . Since Ĥij has its edges in X1 and vertices in X0, the homotopy addition lemma
(Proposition 6.3) gives, on applying F , a relation in G2 of the form

c∗ij =




a−1
i−1,j

−bi,j−1 cij bij
aij


 (†)

where the a′s and b′a are images in G2 of certain faces of the Ĥij.

The interchange law for G allows us to refine the subdivision c∗ = [c∗ij ] by the sub-
stitution (†) and to compose the parts in any convenient fashion. By cancellation of
pairs bij,−bij and aij, a

−1
ij , and by composing thin elements, including 0′s and 1′s, we

can obtain a new subdivision of c∗ of the form

c∗ =




a−1
0

−b0 c b1
a1


 (31)

where c = [cij ] and the elements ai, bi are composites in G2 of the images of squares lying
on the boundary of Ĥ. Since Ĥ is an f-homotopy, these squares are in X1 and so the
ai, bi are thin. Since the homotopies are rel vertices, the corner elements in (31) are ⊙.
It now follows that the ai are 1′s and the bi are 0′s, and therefore c∗ = c. 2

With the proof of Lemma 6.10 we have completed the proof that F (α, (hij)) depends
only on α.

Lemma 6.11 F (α, (hij)) depends only on the class of α in ρ2.

Proof Let K : α ≡ α′ be an f-homotopy. Then there is an (m × n × p)-subdivision
K = [Kijk] such that each Kijk lies in some set of U, say U ijk. Let α = [αij ], α

′ = [α′
ij ] be

the induced subdivisions of α,α′. A simple induction on p reduces us to the case where
p = 1, and so we may assume that the subdivision of K has a single layer K = [Kij ],
each Kij being a homotopy αij ≃ α′

ij lying in U ij . Then we choose h : α ≡ θ, h′ : α′ ≡ θ′

as in Lemma 6.7. Let H be the composite homotopy h̄kh′ : θ ≡ θ′. Then by Lemma 6.10,
[F (θij)] = [F (θ′ij)]. Hence F (α, (hij)) = F (α′, (h′i′j′)). 2

We have now proved that there is a well-defined map f : ρ(X∗) → G2, given by
f(ᾱ) = F (α, (hij)), and which satisfies f ◦ c = f ′ at least on 2-dimensional elements of ρ.
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The remainder of the proof of (I) is straightforward. It is easy to check that f
preserves addition and composition of squares, and it follows from (iii) of Lemma 6.7
that f preserves thin elements.

It is now easy to extend f to a morphism f : ρ(X∗) → G of double groupoids, since
the 1- and 0-dimensional parts of a double groupoid determine degenerate 2-dimensional
parts. Clearly this f satisfies f ◦ c = f ′ and is the only such morphism.

This completes the proof of Theorem 6.6. Of especial interest (but not essentially
easier to prove) is the case of Theorem 6.6 in which the cover U has only two elements;
in this case Theorem 6.6 gives a push-out of double groupoids. In the applications below
we shall consider only path-connected spaces and assume that Z = {ξ} is a singleton.
Taking ξ as base point, the double groupoids can then be interpreted as crossed modules
of groups to give the 2-dimensional analogue of the Seifert-van Kampen theorem given as
Theorem 6.6 earlier. We do not know how to prove that theorem without using groupoids
in some form. A higher dimensional form of this proof and theorem is given in [BH81a]
and the theorem is stated later as Theorem 7.6.

Proof of Theorem 4.1 In the case where (X,A) is a based pair with base point
ξ, ρ(X,A, ξ) is abbreviated to ρ(X,A). That we obtain a pushout of crossed modules
under Hypothesis A is simply a special case of Theorem 6.6, together with Proposition
6.5, which gives the equivalence between double groupoids and crossed modules.

The corresponding result under Hypothesis B follows from that under Hypothesis A
by standard techniques using mapping cylinders (see a similar proof in [Bro06, 8.4.2]).

2

Remark 6.12 An examination of the proof of Theorem 6.6 shows that condition (‡)m
is required only for 8-fold intersections of elements of U . However, it has been shown by
Razak-Salleh [RS76] that in fact one need only assume (‡)0 for 4-fold intersections and
(‡)1 for 3-fold intersections. Further, these conditions are best possible.

Remark 6.13 Theorem 6.6 contains 1-dimensional information which includes most
known results expressing the fundamental group of a space in terms of an open cover, but
it does not assume that the spaces of the cover or their intersections are path-connected.

An alternative proof of Theorem 4.1 is given in [BL87b] using cat1-groups, which
are equivalent to group objects in the category of groupoids, and to reduced crossed
modules [BS76b]. This proof uses many more results from algebraic topology. On the
other hand, this proof extends to catn-groups [BL87b] and has more powerful applications
than Theorem 7.6. A survey of the results, and some new ones, is given in [Bro92]. Some
remarks on this are given in our final section 8.
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7 The category of crossed complexes

The definition of a crossed complex generalises to the case of a set of base points defini-
tions given by Blakers [Bla48] (under the term ‘group system’) and Whitehead [Whi49],
under the term ‘homotopy system’ (except that he restricted also to the free case). We
recall this general definition from [BH81d]. Of course the case for not restricting to the
reduced case, i.e. of a single base point, is analogous to that for not restricting to reduced
CW -complexes.

A crossed complex C (of groupoids) is a sequence of morphisms of groupoids over C0

· · · // Cn

β
��

δn // Cn−1
//

β
��

· · · // C2
δ2 //

β
��

C1

δ1

��
δ0

��
C0 C0 C0 C0.

Here {Cn}n>2 is a family of groups with base point map β, and δ0, δ1 are the source and
targets for the groupoid C1. We further require given an operation of the groupoid C1

on each family of groups Cn for n > 2 such that:

(i) each δn is a morphism over the identity on C0;

(ii) C2 → C1 is a crossed module over C1;

(iii) Cn is a C1-module for n > 3;

(iv) δ : Cn → Cn−1 is an operator morphism for n > 3;

(v) δδ : Cn → Cn−2 is trivial for n > 3;

(vi) δC2 acts trivially on Cn for n > 3.

Because of axiom (iii) we shall write the composition in Cn additively for n > 3, but we
will use multiplicative notation in dimensions 1 and 2.

Let C be a crossed complex. Its fundamental groupoid π1C is the quotient of the
groupoid C1 by the normal, totally disconnected subgroupoid δC2. The rules for a
crossed complex give Cn, for n > 3, the induced structure of π1C-module.

The crossed complex C is reduced if C0 is a singleton, so that all the groupoids
Cn, n > 1 are groups. This was the case considered in [Bla48, Whi49] and many other
sources.

A morphism f : C → D of crossed complexes is a family of groupoid morphisms
fn : Cn → Dn (n > 0) which preserves all the structure. This defines the category Crs of
crossed complexes. The fundamental groupoid now gives a functor π1 : Crs → Gpd. This
functor is left adjoint to the functor i : Gpd → Crs where for a groupoid G the crossed
complex iG agrees with G in dimensions 0 and 1, and is otherwise trivial.

An m-truncated crossed complex C consists of all the structure defined above but
only for n 6 m. In particular, an m-truncated crossed complex is for m = 0, 1, 2 simply
a set, a groupoid, and a crossed module respectively.
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In order to give the basic geometric example of a crossed complex we first define a
filtered space X∗. By this we mean a topological space X∞ and an increasing sequence
of subspaces

X∗ : X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X∞.

A map f : X∗ → Y∗ of filtered spaces consists of a map f : X∞ → Y∞ of spaces such
that for all i > 0, f(Xi) ⊆ Yi. This defines the category FTop of filtered spaces and their
maps.

We now define the fundamental, or homotopy, crossed complex functor

Π : FTop → Crs.

If C = Π(X∗), then C0 = X0, and C1 is the fundamental groupoid π1(X1,X0). For n > 2,
Cn = πnX∗ is the family of relative homotopy groups πn(Xn,Xn−1, p) for all p ∈ X0.
These come equipped with the standard operations of π1X∗ on πnX∗ and boundary
maps δ : πnX∗ → πn−1X∗, namely the boundary of the homotopy exact sequence of the
triple (Xn,Xn−1,Xn−2). The axioms for crossed complexes are in fact those universally
satisfied for this example, but this cannot be proved at this stage.

We can now develop the following situation, discussed in more detail in later sections:

FTop

U ""F
FF

FF
FF

F

Π //
Crs

B
oo

B}}zz
zz
zz
zz

Top

(32)

Here the functor Π has already been defined. The functor U is the forgetful functor
X∗ 7→ X∞. The functor B is the full classifying space functor and the functor B = U ◦B
is the classifying space functor.

These functors have the following properties:

7.1 The functor Π satisfies a Generalised Van Kampen Theorem.

7.2 The composite functor Π ◦ B is naturally equivalent to the identity functor.

7.3 There is a natural transformation 1 → B◦Π in the weak homotopy category of FTop,
with convenient properties.

The first and third of these statements are vague. All three statements relate topology
and algebra. The functor Π goes from topology to algebra and the classifying space
functors go in the reverse direction. It is important that the functor Π is from structured
spaces to algebra. This was not the original expectation of this theory, but this is how
it has conveniently worked out.

The first statement allows for the computation of π to some extent. The amount of
this extent can only be judged when the proper statement is given, but here we can say
that the resulting computations allow one to get started.

The second statement relates closely the structure on the spaces and the algebra
under consideration.
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The final statement is more subtle, but it states essentially that the algebra captures
a slice of the homotopy structure of the original filtered space.

These properties are a kind of paradigm for relating topology and algebra. When
these properties hold, we have a tool which can directly relate topology and algebra. If
some of these properties are dropped, then we have more trouble in developing results.

For example, simplicial groups form an algebraic category strongly used in algebraic
topology. They could be considered as a kind of ‘higher dimensional group’. However,
we do not at present have a functor (topological data) → (simplicial groups) satisfying
a Van Kampen Theorem, and so simplicial groups cannot be used in the kind of way
described here for these other algebraic models. Some suggestions for developments on
these lines are given in [Ehl93].

In particular, the concept of induced crossed module and its application to specific
calculation of homotopy 2-types has not so far been directly linked with work on simplicial
groups. On the other hand, simplicial groups are used crucially in the proof of the
Generalised Van Kampen Theorem for catn-groups by Brown and Loday in [BL87b].
This suggests that there is much more work to be done on developing these links, and
exploiting the two areas together. This is the subject of current work, for example
[CC91, Por93, Ton94].

7.1 The Generalised Van Kampen Theorem for Crossed Complexes

Definition 7.4 A filtered spaceX∗ is called connected if the following conditions φ(X,m)
hold for each m > 0 :

φ(X, 0): If j > 0, the map π0X0 → π0Xj , induced by inclusion, is surjective

φ(X,m), (m > 1) : If j > m and ν ∈ X0, then the map

πm(Xm,Xm−1, ν) → πm(Xj ,Xm−1, ν)

induced by inclusion, is surjective.

The following result gives another useful formulation of this condition. We omit the
proof.

Proposition 7.5 A filtered space X is connected if and only if for all n > 0 the induced
map π0X0 → π0Xn is surjective and for all r > n > 0 and ν ∈ X0, πn(Xr,Xn, ν) = 0.

Suppose for the rest of this section that X∗ is a filtered space. Let X = X∞.

We suppose given a cover U = {Uλ}λ∈Λ of X such that the interiors of the sets of U
cover X. For each ζ ∈ Λn we set

U ζ = U ζ1 ∩ · · · ∩ U ζn , U ζi = U ζ ∩Xi.

Then U ζ0 ⊆ U ζ1 ⊆ · · · is called the induced filtration U ζ∗ of U ζ . Consider the following
Π-diagram of the cover:

⊔
ζ∈Λ2 ΠU

ζ
∗

a //

b
//
⊔
λ∈Λ ΠUλ∗

c // ΠX∗ (33)
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Here
⊔

denotes disjoint union (which is the same as coproduct in the category of crossed
complexes); a, b are determined by the inclusions aζ : U

λ ∩Uµ → Uλ, bζ : U
λ ∩Uµ → Uµ

for each ζ = (λ, µ) ∈ Λ2; and c is determined by the inclusions cλ : Uλ → X. The
following theorem is a main result of [BH81a].

Theorem 7.6 (The coequaliser theorem for crossed complexes) Suppose that for

every finite intersection U ζ of elements of U the induced filtration U ζ∗ is connected. Then

(C) X∗ is connected, and

(I) in the above Π-diagram of the cover, c is the coequaliser of a, b in the category of
crossed complexes.

A version of the Van Kampen Theorem tied to dimension n can now be formulated as
follows. First, we say the pair (X,A) is (n−1)-connected if A and X are path connected,
and the induced map of homotopy groups πi(A, x) → πi(X,x) is bijective for 1 6 i < n−1
and surjective for i = n − 1. This is equivalent to saying that the homotopy fibre over
x of the inclusion A→ X is (n− 1)-connected, or that the relative homotopy group (or
set for i = 1) πi(X,A) = 0 for 1 6 i 6 n− 1.

If G is a group and M is a G-module, then we call the pair (M,G) simply a module.
These modules form the objects of a category Mod, whose morphisms (φ,ψ) : (M,G) →
(N,H) are pairs of morphisms of groups φ : M → N,ψ : G → H which preserve the
action, i.e. φ(mg) = (φm)ψg for all m ∈ M,g ∈ G. This category is complete and
cocomplete.

If (X,A) is a pointed pair of spaces, we write Πn(X,A) for the module (πn(X,A), π1(A))
consisting of the group π1(A) and the π1(A)-module πn(X,A). This gives a functor from
the category of pairs of pointed spaces to Mod.

The following two results now follow by specialisation.

Theorem 7.7 (Brown and Higgins [BH81a]) Suppose that the commutative diagram of
based pairs of spaces

(W,WA)
f //

i
��

(U,UA)

ı̄
��

(V, VA)
f̄

// (X,A)

satisfies one of the two following hypotheses:

HYPOTHESIS A: the maps i, f, ı̄, f̄ are inclusions of subspaces, X is the union of the
interiors of the sets U and V , W = U ∩ V , and VA = A ∩ V,UA =
A ∩ U,WA = A ∩W ;

HYPOTHESIS B: the maps i : W → V, iA : WA → VA are closed cofibrations, WA =
W ∩ VA, and X,A are the adjunction spaces U ∪f V,UA ∪fA VA.

Let n > 3. Suppose further that all the pairs (U,UA), (V, VA), (W,WA) are (n − 1)-
connected. Then:
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(C) The pair (X,A) is (n− 1)-connected.

(I) The following diagram induced by inclusions

Πn(W,WA) //

��

Πn(U,UA)

��
Πn(V, VA) // Πn(X,A)

(34)

is a pushout of modules.

In a similar manner to the crossed module case n = 2 we obtain:

Theorem 7.8 (Brown and Higgins [BH81a]) Suppose that the commutative square

W
f //

i
��

A

ı̄
��

V
f̄

// X

of based spaces satisfies one of the two following hypotheses:

HYPOTHESIS A: the maps i, f, ı̄, f̄ are inclusions of subspaces, W = V ∩ A, and X is
the union of the interiors of V and A;

HYPOTHESIS B: the map i is a closed cofibration and X is the adjunction space A∪f V.

Let n > 3. Suppose further that (V,W ) is (n − 1)-connected and A is path connected.
Then:

(C) (X,A) is (n− 1)-connected;

(I) πn(X,A) is the π1(A)-module induced from πn(V,W ) by the morphism f∗ : π1(W ) →
π1(A).

It is not clear that this theorem is essentially any easier to prove than Theorem 7.6.

The notion of induced module is much more standard than that of induced crossed
module and may be found for example in books on representation theory although usually
only for the case of inducing from a module over a subgroup of a group. It is a key part of
the general subject of Mackey functors. One standard description for the Q-module ι∗M
induced from a P -module M by a morphism ι : P → Q of groups is ι∗M ∼= M ⊗ZP ZQ
where P acts on Q on the left via ι. This suggest a possible notation of M ⊗P Q for the
crossed module induced from a crossed module M → P by a subgroup inclusion P → Q.

We now obtain as a Corollary one of the basic theorems of homotopy theory.

Corollary 7.9 (Relative Hurewicz Theorem) Let n > 3. Let (V,W ) be an (n − 1)-
connected pair of connected spaces, and let X = V ∪ CW . Then X is (n − 1)-connected
and πn(X) is isomorphic to the group πn(V,W ) factored by the action of π1(W ).
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Notice that again we have a Relative Hurewicz Theorem without any mention of
homology. The usual version follows from this result and the absolute Hurewicz Theorem,
since X is (n − 1)-connected implies that πn(X) is isomorphic to Hn(X), which itself is
simply Hn(V,W ).

This deduction of the Relative Hurewicz Theorem from a Generalised Van Kampen
Theorem was later modelled in the formulation and proof of an n-cubical Hurewicz
Theorem [BL87b, Bro89] giving it as a form of abelianisation, and interpreting this for
triad groups. The interpretation in terms of the passage from n-adic homotopy to n-
adic homology requires the definition of crossed n-cube of groups [ES52], since this tells
you precisely what structure has to be factored in this passage. Another feature of the
proof of the n-adic Hurewicz Theorem is that it requires the notion of n-pushout, i.e. an
n-cubical version of a pushout square, and that it follows from an n-cubical version of
excision.

Another useful result is the following higher dimensional version of Whitehead’s The-
orem.

Theorem 7.10 Let n > 3. Let X = A ∪ {enλ}λ∈Λ be obtained from the connected space
A by attaching n-cells. Then the n’th relative homotopy group πn(X,A) may be described
as the free π1(A)-module on the n-cells.

However this result is not as impressive as the 2-dimensional version, since it may
be and usually is deduced from the Relative Hurewicz Theorem, which can be proved
separately. On the other hand, this mode of deduction is used in [BL87a, Ell93]to obtain
free crossed squares arising in topological situations.

Corollary 7.11 If X∗ is the filtered space of the skeletons of a CW-complex, then the
crossed complex πX∗ is a free crossed complex.

Remark 7.12 The proof of Theorem 7.6 follows a line analogous to the proof of Theo-
rem 4.1. However, it is much harder work establishing the necessary algebra and defining
the necessary higher homotopy groupoids. The proof itself needs some new ideas to make
the intuition work. For these reasons, we omit further exposition.

An account of covering morphisms of crossed complexes is given in [BRS99]. This
enables one to give an n-dimensional version of the Cayley graph for a presentation of a
group, and this leads to a kind of algorithm for calculating identities among relations.

7.2 The nerve and classifying space of a crossed complex

We let ∆n be the cell complex of the standard n-simplex, with its skeletal filtration. The
crossed complex Π∆n is then written Π[n]. The nerve NC of a crossed complex C is
defined to be the simplicial set given in dimension n by

(NC)n = Crs(Π[n], C). (35)

The simplicial operators (NC)m → (NC)n are induced by the standard maps ∆n → ∆m.
So N is a functor Crs → SimpSet. It should be noted that this definition is analogous
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to that of the well known Dold-Kan functor from chain complexes to simplicial abelian
groups.

The crossed complex Π[n] is a free crossed complex on the cells of ∆n, and the
boundaries are determined by the universal example, namely δ : Π[r] → Π[r − 1], which
is itself given by the homotopy addition lemma [Whi78, p.175].

For n > 2 the crossed complex Π[n] involves non-Abelian groups in dimension 2 and a
groupoid in dimension 1 which acts on the groups of the crossed complex. The homotopy
addition lemma, which says, intuitively, that the boundary of a simplex is the sum of its
faces, therefore needs to be stated with care.

If σ is an r-simplex with r > 4, then, analogously to the purely additive theory of
homology, we have the formula

δσ = (∂0σ)
−a +

r∑

i=1

(−)i∂iσ,

where a = ∂2∂3 . . . ∂rσ. Here the action of −a transports the base point of ∂0σ to the
common basepoint 0 of the other faces so as to make addition possible. For a 3-simplex
σ, we have the non-Abelian formula

δσ = (∂0σ)
−a + ∂2σ − ∂1σ − ∂3σ

(compare with equation (13)) and for a 2-simplex σ, we have the groupoid formula

δσ = (∂2σ)(∂0σ)(∂1σ)
−1.

One easily verifies that
δδσ = 0

for an r-simplex σ with r > 5 and that

δ0δσ = δ1δσ

for a 2-simplex σ. A direct proof that δδσ = 0 when σ is a 4-simplex is not so easy, because
one has to apply the crossed module rules carefully [Whi78, p.176]. The easiest proof of
which I know uses the primary identity property and its characterisation in [BH82, Prop.
16, p.177]. Cubical versions of the homotopy addition lemma are also well known (see, for
example, [BH81d]). It is interesting that a proof of the homotopy addition lemma came
quite late in the development of the subject [Hu53]. The proof in [Whi78] assumes all
the main results of singular homology together with basic material on relative homotopy
groups, and is an inductive proof combined with a proof of the Relative and Absolute
Hurewicz Theorems. By contrast, the proof of the cubical homotopy addition lemma
and Relative Hurewicz Theorem in [BH81d, BH81a] takes about 60 pages, starting from
very little, and is but one application of the Generalised Van Kampen Theorem which
yields many more results on the way, including of course results on crossed modules
unobtainable from theories dealing only with abelian objects.6

The simplicial set NC has an additional structure of thin elements, defined as follows.
Let f : Π[n] → C be an element of (NC)n. Let cn ∈ Π[n]n represent the top dimensional
free generator of Π[n]. We say f is thin if fcn = 0.

6A proof of the simplicial homotopy addition lemma for a simplex is given in [BS07] using the formulae
for the tensor product of crossed complexes. This leads to a different formula then that given here.
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Theorem 7.13 The thin elements of NC satisfy the following axioms of K. Dakin
[Dak76]:

T1) Any degenerate element of NC is thin.

T2) Any horn in NC has a unique thin filler.

T3) If all faces except possibly one of a thin element are thin, then so also is the re-
maining face.

The proof of T1) is easy. A proof of T2) can be given using the GVKT (Theorem
7.6) for the homotopy crossed complexes of the skeleta of a CW -complex, while a proof
of T3) is easy from the homotopy addition lemma.

We say that NC is a simplicial T -complex. There is a category SimpT of simplicial
T -complexes in which the morphisms are simplicial maps which map thin elements to
thin elements.

Theorem 7.14 [Ash88] The nerve functor gives an equivalence between the category of
crossed complexes and the category of simplicial T -complexes.

This theorem is quite hard to prove. A version in a general category is given in [NT89a].
The theorem is of course a non abelian analogue of the Dold-Kan theorem which gives an
equivalence between chain complexes and simplicial abelian groups. There is a related
result giving an equivalence between a category of so-called ‘ω-categories’ (these are the
same as the ∞-categories of [BH81b]) and simplicial sets with thin elements satisfying
weaker conditions than those given earlier [Str96, Str88]. Details are not yet available.

Actually there are now a number of categories equivalent to crossed complexes, as
shown in the following diagram

polyhedral
T-complexes

oo
[Jon88]

// cubical
T-complexes

ω-groupoids

[BH81b]

��

[BH81c]
oo

AA

[BH81d]

����
��
��
��
��
��
��
��
��
��
��
�

simplicial
J-groupoids ff [NT89b]

&&MM
MM

MM
MM

MM

simplicial
T-complexes

oo
[Ash88]

// crossed
complexes

oo
[BH81b]

// ∞-groupoids

in which each arrow denotes an explicit functor which is an equivalence of categories.
The symbols in square brackets give references for the proofs. This splitting of the notion
of higher dimensional groups into many equivalent formulations was one of the surprises
of the theory and also one of its very useful characteristics. You can carry out a piece of
theory or computation in whichever category is convenient for the purposes at hand. The
fact that the equivalences are non trivial means that if a result requires a number of these
different settings for its proof then you are inputting significant information (namely, the
proofs of the equivalences) and the theorem itself is more likely to be significant. From
a geometric viewpoint the splitting of higher dimensional group theory into different
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formulations is not so surprising: it reflects the variety of families of convex polyhedra
in dimensions greater than 1.

The comparative value of crossed complexes is:

i) the free crossed complexes are closely related to, though simpler than, CW -complexes
in their definition and construction,

ii) they require a smaller amount of data than ∞-groupoids, or the other categories,
and so are a suitable context for calculations,

iii) there is an explicit description of a useful monoidal closed structure [BH87], which
allows explicit equivalences of the Eilenberg-Zilber type [Ton03],

iv) it is easier to describe the relation with simplicial sets [Ash88, BH91], and so the
classifying space and homotopy coherence properties [Ton94, BGPT97, BGPT01],
than in the other cases,

v) relations with the classical homological algebra of chain complexes with operators
have been formulated [BH90].

The comparative value of ω-groupoids is:

i) the cubical structure allows easy formulations of multiple compositions, and so an
‘algebraic inverse to subdivision’ which is essential for the proofs of the Generalised
Van Kampen Theorems [BH81a],

ii) it is easy to formulate the monoidal closed structure in this context,

iii) there is a well worked out relation with cubical sets [BH81d],

iv) there is a renewed interest in cubical methods in areas such as concurrency, and so
the introduction of the connections has proved intriguing.

The comparative value of ∞-groupoids is as follows:

i) they are a specialisation of the ∞-categories [BH81b], which are becoming increas-
ingly used (though often under the name ω-categories, and so it is best to call these
globular ∞- or ω-categories to make the meaning clear),

ii) they require a smaller amount of data than the (cubical) ω-categories

iii) they are appropriate for relating with certain weaker structures, the bi- and tri-
categor-ies, and various forms of weak ∞-categories and groupoids.

Using ∞-groupoids in preference to crossed complexes has in some cases disadvantages
analogous to those of using equivalence relations, more precisely, congruences, rather
than normal subgroups in order to describe quotients of groups. Another difficulty in that
there is currently no theory of free ∞-groupoids, and the description of tensor products
is the so-called Gray tensor product, which does not have convenient formulae. On the
other hand, the description of quotients of monoids or categories requires congruences,
and relations with weaker structures such as bi-categories seem not possible with crossed
complexes. Thus continued experiment is needed.
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The relation with simplicial sets and simplicial groupoids is important because of the
wide use of simplicial methods in mathematics.

The relation of the ‘polyhedral multiple groupoids’ of [Jon88] with the ‘polyhedral
multiple categories’ of [Ste93] has not yet been determined.

The geometric realisation of the nerveNC of a crossed complex C gives the classifying
space BC of the crossed complex C.

If C is a crossed complex, then C(n) denotes the subcrossed complex which coincides
with C in dimensions 6 n and in higher dimensions is trivial. So we obtain a filtered
crossed complex and a corresponding filtered space BC = (BC)∗.

Theorem 7.15 There is natural equivalence of functors Π ◦ B ≃ 1.

The proof goes as follows. The nerve NC of a crossed complex C is a Kan complex,
and so the crossed complex Π ◦ BC may be directly calculated from the corresponding
filtration of NC. It is then easy to identify the elements of the appropriate relative
homotopy groups as represented by morphisms Π[n] → C which give rise to elements of
C by evaluation on the top dimensional cell of ∆n.

Let X∗ be a filtered space, then we may define R∆(X∗) to be the simplicial set of
filtered maps ∆n

∗ → X∗, n > 0, where ∆n
∗ denotes the standard n-simplex with its skeletal

filtration. The quotient of R∆(X∗) by the relation of filter homotopy rel vertices is written
ρ∆(X∗). A basic fact with a tricky proof is that the quotient map R∆(X∗) → ρ∆(X∗) is
a Kan fibration (this is proved in [Ash88] modelling the proof in the cubical case given
in [BH81d]). This result is used in [Ash88] to prove that ρ∆(X∗) has the structure of
simplicial T -complex whose associated crossed complex is exactly Π(X∗), so that the
underlying simplicial set of ρ∆(X∗) is just NΠ(X∗). If X = X∞, then there is an
inclusion i : R∆(X∗) → S(X) where S(X) is the usual singular complex of X. There are
useful conditions for i to be a homotopy equivalence; for example this is true if X∗ is the
skeletal filtration of a CW -complex.

The exact sequence (at some base point) of the fibration R∆(X∗) → ρ∆(X∗) is of
interest. In the case X∗ is the skeletal filtration of a CW -complex, it coincides with
Whitehead’s famous exact sequence [Whi50], as is proved in the cubical case in [BH81a].

7.3 Homotopies of morphisms of crossed complexes

This is one of the points where the theory of crossed complexes gets technical, namely
in dealing with homotopies. The reason for this is that the natural geometric model for
a crossed complex is the n-cell En with the cell structure given by:

En =





e0 if n = 0,

e0+ ∪ e0- ∪ e
1 if n = 1,

e0 ∪ en−1 ∪ en otherwise.

(36)

However, the cell structure on a product En ×Em, and in particular on En ×E1 which
is the relevant case for homotopies, is more complicated, since En × Em has 9 cells for
m,n > 1. It is this cell structure on En × Em which determines in essence a tensor
product C ⊗D of crossed complexes [BH87], such that

Π(En × Em) ∼= Π(En)⊗Π(Em)
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but we have no time to deal with that here.

We follow the conventions for homotopies in [BH87]. Thus a homotopy f0 ≃ f of
morphisms f0, f : C → D of crossed complexes is a pair (h, f) where h is a family of
functions hn : Cn → Dn+1 with the following properties, in which βc for c ∈ C is c, if
c ∈ C0, is δ

1c, if c ∈ C1, and is x if c ∈ Cn(x), n > 2. So we require [BH87, (3.1)]:

βhn(c) = βf(c) for all c ∈ C; (37)

h1(cc
′) = h1(c)

fc′h1(c
′) if c, c′ ∈ C1 and cc′ is defined; (38)

h2(cc
′) = h2(c) + h2(c

′) if c, c′ ∈ C2 and cc′ is defined; (39)

hn(c+ c′) = hn(c) + hn(c
′) if c, c′ ∈ Cn, n > 3 and c+ c′ is defined; (40)

hn(c
c1) = (hnc)

fc1 if c ∈ Cn, n > 2, c1 ∈ C1, and c
c1 is defined. (41)

Then f0, f are related by [BH87, (3.14)]

f0(c) =





δ0h0c if c ∈ C0,
(h0δ

0c)(fc)(δ2h1c)(h0δ
1c)−1 if c ∈ C1,

{(fc)(h1δ2c)(δ3h2c)}
(h0βc)−1

if c ∈ C2,

{fc+ hn−1δnc+ δn+1hnc}
(h0βc)−1

if c ∈ Cn, n > 3.

(42)

The set of homotopy classes of crossed complex morphisms C → D is written [C,D].
If X,Y are spaces, then the set of homotopy classes of maps X → Y is also written
[X,Y ]. The main homotopy classification theorem for crossed complexes is:

Theorem 7.16 (Brown and Higgins [BH91]) If X∗ is the skeletal filtration of a CW -
complex, and C is a crossed complex, then there is a natural bijection of sets

φ : [X,BC] ∼= [ΠX∗, C]. (43)

Note that this bijection gives a translation from topology on the left to algebra on the
right, since the crossed complex ΠX∗ has a purely algebraic description which makes it
analogous to the chain complex of cellular chains of the CW-complex X. The theorem
gives a kind of ‘homotopy adjointness’ of Π andB. It includes many classical classification
theorems, including the case of maps into an Eilenberg-Mac Lane space K(G,n), n > 1
and also the case of local coefficients, by taking suitable choice of C. For more details,
see [BH91].

The proof of the theorem involves setting up a monoidal closed structure on the
category Crs, with an internal hom CRS(−,−) and tensor product − ⊗ − and natural
equivalence

Crs(A⊗B,C) ∼= Crs(A,CRS(B,C))

for any crossed complexes A,B,C. There is in this category a model I of the unit interval,
and this allows us to realise homotopies as morphisms B ⊗ I → C. In this way we
can establish much of the basic machinery of homotopy theory (cylinder objects, path
objects, fibrations, cofibrations, and so on) in the category of crossed complexes. This
extra structure is exploited in [BH87, BH91, BG92, BGPT97]. The last paper deals
explicitly with notions of homotopy coherence for crossed complexes.

Also necessary is the Eilenberg-Zilber theorem for crossed complexes, describing the
crossed complex Π(|K × L|) of the geometric realisation of a product of simplicial sets
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as homotopy equivalent to Π(|K|) ⊗ Π(|L|). This result is proved in detail in [Ton03]
and given applications in [BH91, Ton94, BGPT97, BGPT01]. Many specific properties
of the Eilenberg-Zilber equivalence are used in the last paper to describe and prove the
homotopy coherence properties of the adjoint functors N : Crs → Simp,Π : Simp → Crs.
Such results would seem to be more difficult to establish and apply for (globular) ∞-
groupoids than for crossed complexes.

Methods of contracting homotopies on universal covers of free crossed complexes are
used in [BRS99] to construct inductively free crossed resolutions of groups from a partial
free crossed resolution, and in particular from a presentation of a group. This gives a
geometric formula for a presentation of the module of identities among relations for a
group presentation.

7.4 Relation with chain complexes with operators

There is a functor D from crossed complexes to chain complexes of modules, described
for free reduced crossed complexes by Whitehead in [Whi49], and for general crossed
complexes in [BH90]. For simplicity we first describe this in the reduced case.

Given a reduced crossed complex as in the top line of the following diagram, we will
obtain the chain complex of modules in the bottom line and the diagram of functions
between them:

· · · // C4

h4
��

δ4 // C3
δ3 //

h3
��

C2
δ2 //

h2
��

C1

h1
��

φ // G

h0
��

· · · // C4
δ4

// C3
d3

// Cab
2 d2

// Dφ d1
// ZG

(44)

Here G = π1C = Coker δ2 and φ : C1 → G is the quotient map. For i > 3, hi is
the identity morphism, h2 is abelianisation, and d3 = h2δ3. The function h0 is given by
g 7→ g− 1. Then h0 is a derivation: h0(xy) = (h0x)y + h0y, for all x, y ∈ G. That leaves
the definition of Dφ, h1, d2, d1.

The function h1 : C1 → Dφ is defined to be the universal φ-derivation, by which is
meant

(i) Dφ is a G-module and h1(ab) = (h1a)
φb + h1(b), for all a, b ∈ C1, and

(ii) h1 is universal for property (i), so that if k : C1 → M is a φ-derivation to a G-
module M , then there is a unique G-module morphism k′ : Dφ → M such that
k′h1 = k.

This definition is due to Crowell [Cro71]. He callsMφ the derived module of the morphism
φ, and constructs it as the quotient of the free G-module on elements [a], a ∈ C1, by the
relations [ab]− [a]φb − [b] for all a, b ∈ C1.

If C1 is a free group on a set X, then a φ-derivation k : C1 →M is entirely determined
by its values on the basis X: the easiest way to see this is to regard a φ-derivation as a
section of the projection p1 : C1 ⋉M → C1 where C1 acts on M via φ.

It is easily verified that h0 : G → IG, g 7→ g − 1, is the universal 1G-derivation. In
fact we may also construct the derived module as IC1 ⊗C1

ZG, a 7→ (a− 1C1
)⊗ 1G.
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It is useful that if we regard D as a functor Groups2 → Mod from the category of
morphisms of groups to the category of modules, then D has a right adjoint

(H,M) 7→ (H ⋉M
p1
−→ H)

where p1 is the first projection of the semidirect product. It follows that D preserves
colimits. It is an easy deduction from this that if C1 is a free group on a set X, then Dφ

is isomorphic to the free G-module on the set X, with h0 given by x 7→ x, x ∈ X.

The following result is useful.

Proposition 7.17 [BH90]The morphisms of G-modules d2, d1 in diagram (44) may be
defined to give a commutative diagram. Further, if the sequence of groups

C3
δ3−→ C2

δ2−→ C1
φ

−→ G→ 1 (45)

is exact, so also is the sequence

C3
d3−→ Cab

2
d2−→ Dφ

d1−→ IG→ 0, (46)

and Im d2 ∼= (ker φ)ab.

The proof is given in the more general non reduced case in [BH90].

Parts of the exact sequence (46) occurs in many instances in the homological algebra
of groups. In the case that C2 → C1 is the free crossed module over a free group derived
from a presentation (X;R) of the group G, then the morphism of G-modules d2 agrees
with the Fox derivative in the free differential calculus

(∂r/∂x) : (ZG)R → (ZG)X .

The construction of this derivative from the free crossed module over a free group in the
above way occurs in Whitehead’s paper [Whi49, Lemma 8] which in fact antedates Fox’s
paper on this subject [Fox53]. See also [BH82] for an exposition.

It is important that Whitehead’s work in [Whi49] also dealt with the relations between
homotopies in the categories of crossed complexes and of chain complexes with operators,
and this aspect is studied also in [BH90]. In particular, Whitehead obtains a homotopy
classification

[X,Y ] ∼= [C(X̃), C(Ỹ )] (47)

for reduced CW -complexes X,Y such that X is n-dimensional and πi(Y ) = 0, 1 6 i < n,
and where C(X̃) denotes the chain complex of cellular chains of the universal cover
of X, with its operation of the fundamental group of X. However the result (47) is
not stated explicitly in [Whi49]. It is interesting that this result includes homotopy
classification results of Olum and others which were published later and were formulated
simplicially rather than cellularly. An exposition of this method with applications is
given in [Ell83, Ell88].

Further applications of the relations between crossed complexes and chain complexes
with operators established in [BH90] are given in [BC92, BT97].
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7.5 Some computations of Postnikov invariants of crossed modules

The exposition here is taken from [BW95].

Recall [Hue80, Bro94] that if G is a group and A is a G-module, then elements of
H3(G,A) may be represented by equivalence classes of crossed sequences

0 → A→M
µ

−→ P → G→ 1, (48)

namely exact sequences as above such that (µ :M → P ) is a crossed module. The equiv-
alence relation between such crossed sequences is generated by the basic equivalences,
namely the existence of a commutative diagram of morphisms of groups as follows

0 // A

1
��

//M
µ //

f
��

P

g
��

// G

1
��

// 1

0 // A //M ′

µ′
// P ′ // G // 1

such that (f, g) is a morphism of crossed modules. Such a diagram is called a morphism
of crossed sequences.

The zero cohomology class is represented by the crossed sequence

0 → A
1

−→ A
0

−→ G
1

−→ G→ 1,

which we sometimes abbreviate to
A

0
−→ G.

In a similar spirit, we say that a crossed module (µ : M → P ) represents a cohomology
class, namely an element of H3(Coker µ,Ker µ). Although this equivalence between
classes of crossed sequences and 3-dimensional cohomology classes has been known for a
long time, it is not so easy to find calculations of examples, and so we give some in this
section.

Example 7.18 Let Cn2 denote the cyclic group of order n2, written multiplicatively,
with generator u. Let γn : Cn2 → Cn2 be given by u 7→ un. This defines a crossed
module, with trivial operations. This crossed module represents the trivial cohomology
class in H3(Cn, Cn), in view of the morphisms of crossed sequences

0 // Cn
1 // Cn

0 // Cn
1 // Cn // 0

0 // Cn

1

OO

(1,0) //

1
��

Cn × C∞

p1

OO

g

��

h // C∞
λ //

λ

OO

µ

��

Cn //

1
��

1

OO

0

0 // Cn // Cn2 γn
// Cn2

// Cn // 0

where, if t denotes a generator of any cyclic group, then g(t, 1) = tn, g(1, t) = t, h(t, 1) =
1, h(1, t) = tn and λ, µ are surjections.
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Example 7.19 We show that the dihedral crossed module Dn of Example 5.7 represents
the trivial cohomology class. This is clear for n odd, since then δ is an isomorphism. For
n even, we simply construct a morphism of crossed sequences as in the following diagram

0 // C2
1 //

∼=
��

C2

f2
��

0 // C2

f1
��

1 // C2

∼=
��

// 0

0 // C2
// Dn

δ
// Dn

// C2
// 0

where if t denotes the non trivial element of C2 then f1(t) = x, f2(t) = un/2. Just for
interest, we leave it to the reader to prove that there is no morphism in the other direction
between these crossed sequences.

A crossed module M = (µ :M → P ) determines a cohomology class

kM ∈ H3(Coker µ,Ker µ).

The addition of such cohomology classes is determined by a sum of crossed sequences, of
the Baer type. An exposition of this is given, for example, by Danas in [Dan91].

If X is a connected, pointed CW -complex with 1-skeleton X1, then the class

k3X ∈ H3(π1X,π2X)

of the crossed module Π2(X,X
1) is called the first Postnikov invariant of X. This class

is also represented by Π2(X,A) for any connected subcomplex A of X such that (X,A)
is 1-connected and π2(A) = 0. It may be quite difficult to determine this Postnikov
invariant from a presentation of this last crossed module, and even the meaning of the
word “determine” in this case is not so clear. There are practical advantages in working
directly with the crossed module, since it is an algebraic object, and so it, or families
of such objects, may be manipulated in many convenient and useful ways. Thus the
advantages of crossed modules over the corresponding 3-cocycles are analogous to some
of the advantages of homology groups over Betti numbers and torsion coefficients.

However, in work with crossed modules, and in applications to homotopy theory,
information on the corresponding cohomology classes, such as their non-triviality, or
their order, is also of interest. The aim of this section is to give background to such a
determination, and to give two example of finite crossed modules representing non-trivial
elements of the corresponding cohomology groups.

It has been proved by Ellis [Ell97] that if G,A are finite, where A is a G-module,
then every element of H3(G,A) can be represented by a finite crossed module.

The natural context in which to show how a crossed sequence gives rise to a 3-cocycle
is not the traditional chain complexes with operators but that of crossed complexes,
as shown in [Hue80]. We explain how this works here. For more information on the
relations between crossed complexes and the traditional chain complexes with operators
than given here, see again [BH90], and for the relation with local cohomology, see [BH91].

A free crossed resolution of the group G is a free aspherical crossed complex F∗

together with an epimorphism φ : F1 → G with kernel δ2(F2). Here aspherical means
that Im δn+1 = ker δn for n > 2.
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Example 7.20 The cyclic group Cn of order n is written multiplicatively, with generator
t. We give for it a free crossed resolution F∗ as follows. Set F1 = C∞, with generator w,
and for r > 2, set Fr = (C∞)n. Here for r > 2, Fr is regarded as the free Cn-module on
one generator w0, and we set wi = (w0)

ti . The morphism φ : C∞ → Cn sends w to t,
and the operation of F1 on Fr for r > 2 is via φ. The boundaries are given by

(i) δ2(wi) = wn,

(ii) for r odd, δr(wi) = wiw
−1
i+1,

(iii) for r even and greater than 2, δr(wi) = w0w1 . . . wn−1.

Previous calculations show that δ2 is the free crossed C∞-module on the element
wn ∈ C∞. Thus F∗ is a free crossed complex. It is easily checked to be aspherical, and
so is, with φ, a crossed resolution of Cn.

Let A be a G-module. Let C(G,A, 3) denote the crossed complex C which is G in
dimension 1, A in dimension 3, with the given action of G on A, and which is 0 elsewhere,
as in the following diagram

· · · // 0 // A // 0 // G.

Let (F∗, φ) be a free crossed resolution of G. It follows from the discussions in [BH91,
BH82] that a 3-cocycle of G with coefficients in A can be represented as a morphism of
crossed complexes f : F∗ → C(G,A, 3) over φ. This cocycle is a coboundary if there is
an operator morphism l : F2 → A over φ : F1 → G such that lδ3 = f3.

F4

��

δ4 // F3

f3
��

δ3 // F2

l

~~||
||
||
||

��

δ2 // F1

φ
��

0 // A // 0 // G

To construct a 3-cocycle on F∗ from the crossed sequence (48), first construct a
morphism of crossed complexes as in the diagram

F4
//

��

F3
//

f3
��

F2
//

f2
��

F1
φ //

f1
��

G

1
��

0 // A //M µ
// P

ψ
// G

(49)

using the freeness of F∗ and the exactness of the bottom row. Then compose this with
the morphism of crossed sequences

0 //

��

A

1
��

//M
µ //

��

P
ψ //

ψ
��

G

1
��

0 // A // 0 // G
1

// G

Hence it is reasonable to say that the morphism f3 of diagram (49) is a 3-cocycle corre-
sponding to the crossed sequence.

We now use these methods in an example.
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Theorem 7.21 Let n > 2, and let ι : Cn → Cn2 denote the injection sending a generator
t of Cn to un, where u denotes a generator of Cn2. Let An denote the Cn-module which
is the kernel of the induced crossed module N = (∂ : ι∗Cn → Cn2). Then H3(Cn, An) is
cyclic of order n and has as generator the class of this induced crossed module.

Proof By Corollary 5.9 the abelian group ι∗Cn is the product V = (Cn)
n. As a Cn-

module it is cyclic, with generator v, say. Write vi = vt
i
, i = 0, 1, . . . , n − 1. Then each

vi is a generator of a Cn factor of V . The kernel An of ∂ is a cyclic Cn-module on the
generator a = v0v

−1
1 . Write ai = at

i
= viv

−1
i+1. As an abelian group, An has generators

a0, a1, . . . , an−1 with relations ani = 1, a0a1 . . . an−1 = 1.

We define a morphism f∗ from F∗ to the crossed sequence containing N as in diagram
(50), where

(i) f1 maps w to u,

(ii) f2 maps the module generator w0 of F2 to v = v0.

(iii) f3 maps the module generator w0 of F3 to a0.

(C∞)n

0

��

δ4 // (C∞)n

f3
��

δ3 // (C∞)n

l

zzttt
tt
tt
tt
t

f2
��

δ2 // C∞

f1
��

// Cn

1

��
0 // An // (Cn)

n
∂

// Cn2
// Cn

(50)

The operator morphisms fr over f1 are defined completely by these conditions.

The group of operator morphisms g : (C∞)n → An over f1 may be identified with
An under g 7→ g(w0). Under this identification, the boundaries δ4, δ3 are transformed
respectively to 0 and to ai 7→ ai(a

t
i)
−1. So the 3-dimensional cohomology group is the

group An with ai identified with ai+1, i = 0, . . . , n−1. This cohomology group is therefore
isomorphic to Cn, and a generator is the class of the above cocycle f3. 2

We now use Γ to denote the topological cone functor.

Corollary 7.22 The mapping cone X = BCn2 ∪Bι ΓBCn satisfies π1X = Cn, and π2X
is the Cn-module An of Theorem 7.21. The first Postnikov invariant of X is a generator
of the cohomology group H3(π1X,π2X), which is a cyclic group of order n.

This computation of a cohomology class is generalised in [BW96] to the case of
BQ ∪ ΓBP where P is a normal subgroup of Q such that Q/P is cyclic of order n. We
emphasise again that this shows that the 2-dimensional Van Kampen theorem can lead
to a complete determination of a non trivial integral homotopy 2-type, and this suggests
that the theory has some of the characteristics of a ‘2-dimensional group theory’ sought
by the workers in topology near the beginning of this century.

The following is another example of a determination of a non-trivial cohomology class
by a crossed module. The method of proof is similar to that of Theorem 7.21, and is left
to the reader.
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Example 7.23 Let n be even. Let C ′
n denote the Cn-module which is Cn as an abelian

group but in which the generator t of the group Cn acts on the generator t′ of C ′
n

by sending it to its inverse. Then H3(Cn, C
′
n)

∼= C2 and a generator of this group is
represented by the crossed module (νn : Cn × Cn → Cn2), with generators t0, t1, u say,
and where νnt0 = νnt1 = un. Here u ∈ Cn2 operates by switching t0, t1. It is not clear if
this crossed module can be an induced crossed module for n > 2. However, n = 2 gives
the case n = 2 of Theorem 7.21.

Remark 7.24 The crossed module (ν2 : C2 × C2 → C4) also appears as an example
in [Hue81, pp.332-333]. The proof given there that its corresponding cohomology class
is non-trivial is obtained by relating this class to the obstruction to a certain kind of
extension.

From the above we see an advantage in having a small free crossed resolution of a
group. This method is used to give computations in non abelian extension theory in
[BP96]. However the methods of constructing such resolutions are at present rather
limited, and are the subject of current research [BRS99, HW03]. The problem seems
more difficult than the widely researched subject of the computation of resolutions in
the usual sense of the cohomology of groups.
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8 Further work

The paper [Bro90] lists some 35 problems or problem areas in non Abelian homological
and homotopical algebra related to the work described here.

A general problem seems to be that of linking these methods with other techniques
and problems in algebraic topology. There is a considerable body of work by Graham
Ellis and his collaborators on applying in group theory techniques related to the non
abelian tensor product. This gives a lot of new results on p-groups and their homology,
and on combinatorial homotopy. This is related to the long term programme by Baues
on the classification problem in topology.

The category of crossed complexes has many satisfactory properties. Its monoidal
closed structure [BH87] has been exploited in for example [BG89, BH91, BC92, BB93,
BGPT97, BT97]. []This work is probably the beginning of work on crossed differential
algebras to be exploited in the homotopy theory of non simply connected spaces. That
is, there seems a lot more to be done and to be achievable in moving to the quadratic
homotopical information. At a low dimensional level this has been done in [Bau91] using
quadratic complexes, and from the viewpoint of crossed squares in [Ell93]. Are crossed
differential algebras the ‘right’ quadratic model for all dimensions?

The paper [Bro92] gives a general overview of the methods of crossed squares and
crossed n-cubes of groups. A striking application of the Van Kampen Theorem for crossed
squares and which cannot be obtained from using crossed complexes is the determination
of π3SK(G, 1), where S denotes suspension, as the kernel of a morphism determined by
the commutator map G×G→ G [BL87b]. Here the non abelian tensor square is universal
for ‘biderivations’ on G×G. This has led to a lot of work on non abelian tensor squares
and tensor products, and so to a number of explicit calculations of G⊗G and so of the
kernel of the commutator map κ : G⊗G→ G.

Note that, analogously to the case of induced crossed modules, a standard group
theory construction, in this case the commutator subgroup, is replaced by an in general
bigger group, the tensor square, with a universal property, and that the kernel of the
morphism from the universal construction to the standard construction contains infor-
mation on absolute homotopy groups. Further, the route to these applications is through
Generalised Van Kampen Theorems, whose methods of proof require higher order group-
oids.

It is a consequence of work of Loday [Lod82] that homotopy n-types are modelled
by n-fold groupoids. Grothendieck described this result to me as ‘Absolutely beautiful!’.
There is a lot more work to be done to develop the consequences. For example, this
result is so far of little use in describing the (n+ 2)-type of Sn.

There is also the problem of exploiting these methods in other areas of algebraic and
differential topology, granted the importance of the general notions of deformation and
homotopies. The work of Baues in setting up homotopy theory in a cofibration category
is important here.

We return to the idea that structures which can be the target of a functor satisfying
a Van Kampen type theorem have some special properties which make them suitable
for a non abelian local-to-global theorem. It would be good if these properties could be
exploited in other situations than has been done so far.
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Some wider general issues are also given in [Bro96b] and in the less technical web
page article [Bro96a].

Finally I must acknowledge with pleasure the very enjoyable collaborations which will
be evident from the publication list and the work of research students at Bangor who have
made key contributions to the subject of groupoids, multiple groupoids and related areas,
under the supervision and of and through discussion with Tim Porter, Chris Wensley and
the writer. Here are their names with dates of completion: Lew Hardy (1974), Tony Seda
(1974), A. Razak Salleh (1975), Keith Dakin (1976), Nick Ashley (1978), David Jones
(1984), Graham Ellis (1984), Fahmi Korkes (1985), Mohammed Aof (1988), Fahd Al-Agl
(1990), John Shrimpton (1990), Osman Mucuk (1993), Andy Tonks (1993), Phil Ehlers
(1994), Zaki Arvasi (1995), Ilhan İçen (1996), Murat Alp (1997), Ali Mutlu (1997), Anne
Heyworth (1998).
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[BGPT97] Brown, R., Golasiński, M., Porter, T. and Tonks, A. ‘Spaces of maps into
classifying spaces for equivariant crossed complexes’. Indag. Math. (N.S.)
8 (2) (1997) 157–172. 55, 57, 58, 65
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