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ABSTRACT

We consider the general problem of topologising spaces
of partial maps. We explore this problem in the first place
using standard methods of general topology, and then using
newer sheaf theoretic methods. We are trying to approach the

LI}

problem of finding the ''correct formal basis for our intuitive
ideas of continuity by considering some of the basic properties
of extensions which have been proposed of the idea of a topological
space.

In Chapter 1 we study the basic propertis of the upper
semi finite topology, which as far as we know have not been
studied.

In Chapter 2 we show that the set PC(Y,Z) of all partial
maps from a space Y to a space Z can not be topologised nicely.
We introduce the compact connected open topology which contains
the space of partial maps with closed domain and the space of
partial maps with open domain as subspaces.

Chapter 3 is an easy reference on the category of squential
Spaces and generating a convenient category of spaces.

In Chapter 4 we show that the category of subsequential
spaces is a quasitopos and give an explicit description of the
strong partial morphisms classifier.

In Chapter 5 we give Johnstone's description of his

topological topos.
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In chapter 6 we give more properties of the embedding
SEQ into Johnstone's topos, for instance we show that this
embedding preserves function spaces and function spaces in the
category of spaces over B, where B is Hausdorff. We also study

the subobject classifier.
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INTRODUCTION

We consider the general problem of topologising spaces of
partial maps. We explore this problem in the first place using
standard methods of general topology, and then using newer
sheaf theoretic methods. We are trying to approach the problem
of finding the "correct" formal basis for our intuitive ideas
of continuity by considering some of the basic properties of
extensions which have been proposed of the idea of a topological

space.

Our aim is to consider the topos proposed by Johnstone
in [J2] as an extension of the notion of sequential space.
To this end we study in detail relations between this topos and
the categories of sequential spaces and that of subsequential

spaces.

We note that the history of mathematics demonstrates that
when specific problems show up an inadequacy in current
formulations, then the extended and revised theories usually
turn out to have wide applications in mathematics. In the area
of analysis and continuity, the study of various kinds of
function spaces and their generalisation played a leading role

in the impetus towards new methods.

In the study of topologising spaces of partial maps, we

have an interesting case of an apparent breakdown in the standard

approaches using the notion of topological spaces.
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There is an extensive literature on topologies on spaces
of continuous functions Y =+ Z , in order to obtain a
cartesian closed category of spaces. It seems reasonable to
generalise these results to partial functions Y = Z because

of the following reasons:

(i) The first reason is the wide appearance of partial
functions in mathematics, 1log x , 1/]x-2] , sin—l(ex) , are
all examples of partial functions IR + IR , and indeed in

analysis it is a rare example which is defined everywhere.

(ii) There have been two generalisations to partial
functions with closed domain [B;Bl] and to partial functions
with open domain [Eh], [A-B] . The first type is important in
the theory of fibrations ([B-B1,2] and the second type seems
appropriate for uses in analysis and differential topology [A-B] .
It therefore seems reasonable to ask for a topological space

including both of these special cases.

We also want them to be subspaces because of the following

reason:

Let f£: R

> R be a partial map. Consider the adjoint
f: R - Part(IR,IR) %(x)(y) = f(x,y) , where
D%(x) = (D), = ly | (x,y) « pel o Then it is easy to see

that there are situations where Df is neither open nor closed

and (Df)x is sometimes open, sometimes closed and sometimes
neither open nor closed. For instance let
. ) o oy
f: R - R , f(x,y) = J/x+y - .

x“+y~-1
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. . B 7
Then: (Uf)x is open if x = % -
(Df)x is closed if x < - %; or 1 < x

(Df)x 1s neither open nor closed otherwise.

However if Df is open then (Df)X is open. So we

expect to be able to factorise

B——ds Part [B,R]

4

P(R,R)

where PO(H{,HQ) 1s the space of partial maps with open
domain, (Chapter 2). It is possible to do so if i is strong.
Similarly for the closed domain case. However, this cannot

in general be done (Chapter 2).

In the above generalisations to spaces of maps with closed
or with open domain, a particular trick is used in [B-Bl1l and
LA-B] namely the representability of these types of partial
map. Lef f: Y > Z be a partial map, and let 2" be the union
of Z and a point @ not in Z . Then we can define

+

£y » 27 by

£ = (f) oy e,

( w y ¢ Df "

+ .
we would like a topology on Z  so that the continuous functions
Y + 27 determine particular partial functions Y - Z . This is

done in [B-B1] and [A-B] for partial functions with closed




I/4

and with open domain respectively. Such techniques have not

been found for spaces of all partial maps.

The category Top , of spaces and continuous functions, is
not a convenient category for practising topologists to work
with. One reason is that in Top there is no function space
which satisfies an exponential law, that is there is no topology

on the set Top(Y,Z) such that there is a natural equivalence

Top(X xY,Z) ¥ Top (X, Top(Y,z) ) ,

for any objects X, Y and Z. of Top . Equivalently the
functor

- x Y: Top =+ Top

does not always have a right adjoint

Y

( )7+ Top » Top .

A category with a product in which the product functor has a

right adjoint is known as a cartesian closed category, as defined

by S. Eilenberg and G.M. Kelly [E-K] . Because of the important
property, cartesian closedness, which Top fails to satisfy,
working topologists have to restrict themselves to full
subcategories of Top that are large enough to include all

interesting spaces and are cartesian closed.

R. Brown [BZ,3,5] préposed that the category of
(Hausdorff) k-spaces might be adequate and convenient for all
purposes of topology. The function space in this category is the
k-ification of the function space C(Y,Z) with the compact
open topology. These ideas were taken over and proclaimed by

Steenrod in [St]
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Other categories are the category of quasitopological
spaces hy R. Thom [Thl and E. Spanier {Spl . R. Vogt vl ,
B. Day (D1l and O. Wyler LWzl suggested some coreflective
subcategories of Top and Haus (the category of Hausdorff
spaces) such as the category of compactly generated spaces which
is a coreflective hull of C-Haus (the category of compact-
Hausdorff spaces) in Top ; the category of compactly generated
Hausdorff spaces which 1s a coreflective hull of all compact
Hausdorff spaces in Haus ; and the category of all sequential
spaces which 1s the coreflective hull of all metrizable spaces
in Top

Some authors suggested embedding Top in a larger

cartesian closed category, Edgar C(E]l , ...

Topologists also 1ike to work with the category of spaces
over a fixed space B , that is the category whose objects are
continuous functions p: X > B, q:Y~>B, .- and a morphism

h: p+q 1s a commutative diagram

X — ¥

Then for suitable space B , namely Hausdorff or weakly Hausdorff,

that is the diagonal is closed in the k-topology, K + B is
cartesian closed where K 1is the category of k-spaces. The

origin of the cartesian closedness of K + B goes back to
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R. Thom ([Th] . The theory was developed further by

P.I. Booth [Boll [Bo2] , B. Day [D1] . P.I. Booth and
R. Brown [B-Bl] gave an explicit topology for K + B (pq)
and related the exponents (closedness) of K + B to the
space of partial maps with closed domain. G. Lewis [Lewl
proved that tﬁe category of open maps from a compactly
generated space into a compactly generated "base" space is
a convenient category, that is he proved that for open maps

p: X > B and q: Y+ B, K+ B (pq) is weakly Hausdorff.

There is an extensive literature on fibre bundles and
fibrations; the various notions of fibrations are essential
for solving many geometric problems. The crucial point about
working in.the category of spaces over B , p: X » B , is that
the set X is the disjoint union of the fibre p  (b) ,b ¢ B
Also the interest is not only in maps h: X - Y but in all

maps p_l(b) - q_l(b) » for all b ¢ B , as well.

The rise of topos theory has encouraged mathematicians
to look for a "super" convenient category of spaces, that is a

cartesian closed topological category which is actually a topos.

Some of the pleasant features of toposes, additional to
cartesian closedness and subobject classifier, are that in a topos
all partial maps are representable and that for any object X

of a topos E the category of objects of E over X 1is a topos.

Grothendieck considered a topos, in this sense a category
of sheaves defined on a site, as a natural generalisation of a

space [G-V] . J. Giraud [G-V] was the first mathematician

e




I/?

to construct a topos of topological spaces, Lawvere [J2] was
interested in finding better categories to do analysis but the
topos Lawvere constructed did not have good colimits preservation
as was shown by Isbell [J2] ,  Johnstone [J23 embedded the
category of sequential spaces, which is the smallest convenient

category, in a topos.

In Chapter 1 we study the basic properties of the upper
semi-finite topology, which as far as we know have not been

studied, on the set of all subsets of a topological space X .

In Chapter 2 we show that the set PC(Y,Z) of all partial

maps from a space Y to a space Z cannot be topologised

i

nicely even for Y Z =R . We also show that the modified
compact open topology is admissible, jointly continuous. We
introduce the compact connected open topology which contains the
space of partial maps with open domain and the space of partial
maps with closed domain as subspaces. This suggests that for
the compact open topology on C(Y,Z) it is sufficient to
consider all W(C,U) where C is compact connected in Y and

U 1is open in Z as a sub-basis, provided that Y 1is a nice

space.

In Chapter 3 we collect some known facts on generating a
convenient category of spaces, .and the category SEQ , of

sequential spaces.

In Chapter 4 we give an explicit description of the strong

partial morphism classifier in the category SuSEQ , of
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subsequential spaces. Also we investigate in detail the

embedding of SEQ into the quasitopos SuSEQ .

In Chapter 5 we give Johnstone's description of his
topological topos, however, we will give the proofs in more
detail in order to make them readable for non-experts in topos

theory.

An elementary topos 1s a cartesian closed category with

finite limits and finite colimits and with a subobject classifer.

Now cartesian closed categories are well studied in general

topology, often under the namé convenient categories, and

limits and colimits are also of long standing use in this area.
However, the notion of subobject classifer (or strong subobject
classifer, for quasitopos) has not been well studied in general
topology. One reason is the difficulty of defining this in a
convenient category using the notion of topological spaces.

One aim of Chapter 6 is an attempt to study the subobject
classifier, in Johnstone's topos. We also give more properties
of the embedding of SEQ and SuSEQ into Johnstone's topos,

and discuss the relation between them.
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CHAPTER 1

A TOPOLOGY ON THE POWER SET OF A TOPOLOGICAL SPACE

1.0 Introduction

In this chapter we will consider a topology on the set
P(X) , the set of all subsets of a space X . One of the
topologies that has been defined is the Vietoris topology,
defined as the join of the upper-semi finite and the lower

semi finite topology in the lattice of topologies.

However our interest is in the upper semi finite topology,
of which the basic properties have not been studied. One reason
that makes this topology a reasonable one to study is the
following. Our main concern is to consider topologies on the
set PC(Y,Z) , of all partial maps between spaces Y and 17 .
By considering the upper semi finite topology on P(YxZ) , it
turns out that the graph topology on PC(Y,Z) , which we will
introduce in section 4 as a generalisation of the graph topology
on C(Y,Z) , is the initial topology with respect to the ''graph

function'.

1.1 The upper semi finite topology on P(X)

Throughout this chapter'we consider a topological space
X with a topology T . As usual, we write P(X) for the set

of all subsets of X .
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Definition 1.1.1 [Mil Let Ty be the topology on P(X)

which has a basis the family of sets P(U) for all open U
of X .

That this family is a basis follows from the rule
P(U) n P(V) = P(U n V)

We assume that P(X) has the topology T

Proposition 1.1.2 (i) If A is an open set of P(X) , then

the union of the elements of A 1is an open set of X
(ii) If C 1is a non-empty closed set of P(X) , then

X e C .

Proof. (i) Since A is open, it is the union of basic open
sets P(Ui) , 1 € I , say. Then the union of the elements of

A is Ui e 1 Ui , which is an open set of X

(ii) If X does not belong to C then X belongs to
the complement A of C . Since A 1is open there is a basic
open set P(U) such that X € P(U) . Hence U=X and so
cC=¢ . O

We now consider to what extent the lattice operations .6f

union and intersection are continuous on P(X)

Proposition 1.1.3 The union function

(Al,...,An) — A1 1 uAn
is continuous as a function

..
64 Hi 1 P(X) — P(X) .
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Proof. Let U be an open set of X . Then clearly

-1 _ n
WTIPU) 1 = I PU) . O

The intersection map n on P(X) 1is not in general
continuous, as is seen by considering the case X =R , the
real line; if A = (0,11 , B = (0,1) v (1,2) , then no
neighbourhood of (A,B) in P(X) x P(X) 1is mapped into
P((0,1)) by n .

Let 0(X) , the set of open sets of X , have its

topology as a subspace of P(X) .

Proposition 1.1.4 The intersection map

(A .,An)-—~+ A1 B o wa nAn is continuous on

100"

n
m,_, 00X

Proof. A basis for the subspace topology on 0(X) 1is clearly

0(U) for all U open of X .

Let 0(U) be a basic open set in 0(X) such 0(U)
contains . A1 n...fwAn . Then intersection maps
O(Al) X ... ><O(An) into 0(U) . 0

Remark 1.1.5 a) The empty set is an element of P(X) and

clearly plays a special role. In fact let P'(X) = P(X)\{g} .

~

For any space Z , let Z be Zu{w} (where w ¢ Z) with

the topology in which C is closed in 2 if and only if

C=2 or C is closed in Z [B-B1l]l . Then we can identify
P(X) , given the above topology, with (P'(X))~ ’
b) This topology, on P(X) , is not a topological

topology. Recall that a topology on P(X) 1is called a
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topological topology if it makes finite intersection and

arbitrary union continuous operations [I1]

1.2 Basic properties of P(X)

In this section we will establish the basic properties of
the topology mp . Recall that we write P'(X) = P(X)\{2} .
Again, X will be a topological space with topology T and
P(X) will have the topology defined in 1.1, with P'(X) as

a subspace.

Proposition 1.2.1 (1) if X 1is non-empty, then P(X) 1is

not a Tl—space.

(i1) If X is a Tl—space, then P'(X) 1is a To—space.

(iii) If X has more than one point then P'(X) 1is not
a Tl—space.

(iv) If X 1is separable, then P'(X) is separable.

(v) If P(X) is first countable, then X 1is first
countable.

(vi) If P(X) is second countable, then 0(X) 1is

countable.

Proof. (i) This is obvious, since then {@} is not closed.

(ii) Let A and B be subsets of X such that for some
peX,p#éANB. Then P(X\{p}) is an open set containing

B but not A .

(iii) Consider X and {p} where p 1is 2 point of X .
(iv) Let x ¢ X . If {P(Un)}neN is a countable basis

for the neighbourhoods of {x} in P(X) , then '{Un} HeN is

" a countable basis for the neighbourhoods of X in X .
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(v) If {(u;)}; ; is a basis for the topology Ty
then any open set U of X is U; for some i . In
particular, if I is countable then the topology T of X
is countable.

(vi) Let Y be a countable dense subset of X . Then
it is easy to see that ¥ = {{y} |y eY } is a countable dense

subset of P(X) . O

Definition 1.2.2 A space is said to be unicompact if

is an open cover of X , then X = U. for

whenever {Ui} 5

iel
some 1 .
An example of the unicompact space is Z for any space

~

Z , where 1 is as in remark 1.1.5.

Proposition 1.2.3 If K 1is a subset of P(X) with the

property that there is Y ¢ K such that U K=Y , then K

is unicompact.

Proof. Let {V.} be an open cover of K . Then Y e V.

1" iel
for some i . But since Vi is open Vi = UieI P(Ui)
So Y ¢ Ui for some i . Hence K ¢ Vi . 0O
Corollary 1.2.4 P'(X) 1is unicompact.
Let X' be the n-fold product of X .

Proposition 1.2.5 The function

cn: X

(xl,xz,...,xn) —————S{xl,...,xn}

is continuous, and g4 is a homeomorphism onto a dense subset

of P(X) .
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Proof. Let U be an open set of X . Then

- _
o, [P(I = ;21 U.

Clearly gy is open and the image of 0, 1s a dense subset

of P(X) . @O

Corollary 1.2.6 If X 1is a space, then (P(X), 01) is a

compactification of X .

However the fact that P'(X) » 1s compact is because the
set X , regarded as a point of P'(X) , plays a special role,

as Definition 1.2.7 and Proposition 1.2.8 show.

Definition 1.2.7 A point x of a space X is said to be

f-indiscrete if whenever {Ui}iel 1s a family of distinct

neighbourhoods of x , then X = U.., v ... u U. for finite n .
11 in

In the space Z =2 v {w} the point w is f-indiscrete.

Proposition 1.2.8 If X has an f-indiscrete point then X

is compact,

Proof. For a given open cover of X » consider the subfamily

of neighbourhoods of an f-indiscrete point. [

Proposition 1.2.9 The space P'(X) is sequentially compact.

Proof. Let {An}neN be a sequence in P(X) . Then

A A where A= Un€N An ,

since any open set of P'(X) containing A contains A, for

all ne N.Q[Q
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Proposition 1.2.10 P'(X) 1is connected.

Proof. Assume P'(X) = M u N where M and N are disjoint

open sets of P(X) , so X e M say. But then P(X) =M . O

Remark 1.2.11 tDol A space X 1is an Ro—space if for

open U and for x e U, {x} ¢ U . It follows, from

1.1.2 (ii), that P(X) 1is not an Ro—space.

1.3 Some applications

In this section we will study certain functions from and

to P(X)

1.3.2a Let X and Y be spaces such that X is compact.

Consider the set C(X,Y) , of all continuous functions from X
to Y . If C(X;Y) is given the compact-open topology, then
the range function
R:C(X,Y) —— P(Y)
f —> Range (f)

1s continuous.
Proof. Clearly for open U in X ,

R Pl = wx,u) . O

1.3.b Let f:X —— Y bhe a continuous function between two

topological spaces. Then
foir PX) — P(Y)
A — f(A)

i1s such that:
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(1) f, 1s continuous if and only if f is continuous;
(ii) f. 1s bijective if and only if f 4is bijective;
(iii) £, 1is a homeomorphism if and only if f is a

homeomorphism.

Proof. Assume £, 1s continuous. Let U be an open set of Y.
Since £,TIP(U)1 = P(£71(U)) 1is open, so

P(f—l(U)) = P(Vi) where P(Vi) is a basic open set

1el

for all i . Hence fdl(U) =V for some 1

i
Now assume f is continuous. Then f*"l(P(U)) = P(f-l(U))
is open.

The proof of (ii) and (iii) are trivial. [

1.3.¢c If £:X —— Y 1is an open injective continuous function
then the inverse image function
£:1P(Y) — P(X)
A —— £
is continuous.
Proof. Clearly (f ) 1(P(W)) = P(£(U)) , which is open if U

is open in X . @O

The following two examples show that the injectivity and

openess of f cannot be dropped.

Example 1.3(i) Let X = {a,b} be the Sierpinski space with

{a} open but not closed. Define f:X— X by b
f(a) = £(b) = a .

*
Then f is continuous, open but not injective and f 1s not

continuous. A
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Example 1.3(ii) Let X be as in example (i) and X4

be the discrete space. Define g:Xd~—+ X by g(a) = b and
*
g(b) = a . Then g is injective but not open and g is

not continuous,

Remark 1.3.1 Our idea of defining a topology on the set

P(X) for a space (X,T) , was as follows: Consider any
sub-basis S for a topology T . Then consider
P(S) = {P(U) |UeS} as a sub-basis for a topology Ty on

P(X) . If 8 =T then m. is the finest topology defined in

T
this manner, and the topology T is just the upper semi

finite topology, Definition 1.1.1.

For the rest of this section we will consider topologies

on P(X) by specifying a sub-basis for T .

1.3.d Let . IR be the set of all real numbers with

{(-»,b),(a,») |a,b e R} as a sub-basis.
Consider the function f : RxR —— R

(m,n) ——= m+Ain

A e R . Let AA = Image (fx) . Then
Ay is dense in R if A is irrational
AA is closed and discrete in R if A is rational,
in fact AA = é Z where A = p/q 1in its lowest terms.
Let A:R — P(R)
A Ay

Then A 1is continuous where P(R) has as a sub-basis

{P(-=,b) , P(a,») |a,b e R}.

The proof is easy.
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1.3.e (Let (X,<) be an order space with the topology that

has as a sub-basis all sets of the form

Ay = {xeXla<x<b } ,
A2 = {xeXla<x}
Ay = {xeXlx<b } .

Let P(X) have as a sub-basis for its topology all sets of
the form P(A;), P(A)), P(A5)
Then the function f£:X-—= P(X)
Xx—> {yeXlxsy}
is continuous.

The proof is easy.

1.4 - Relation to -topologies on spaces of partial maps ‘and to

the Vietoris topology on spaces of subsets.

In this section we will discuss the relation of the
topologies T to the graph topology, the compact-open
topology, the pointwise convergence topology and the Vietoris
topology.

We now introduce the graph topology on BE(Y, 2] ,
the set of all partial maps from Y to Z , as a generalisation
of the graph topology on C(Y,Z) . The graph topology on
C(Y,Z) 1is defined in (N1

Let Y and Z be topological space. For an open set

U of YxZ let = {f ePC(Y,Z) | graph (f) < U}

Fy
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Definition 1.4.1 The graph topology T on PC(Y,Z) 1is the

one which has as a basis '{FU | U is open in Y x 2 } ,

Remark 1.4.2 Let P(YXZ) be given the topology in which a

basis is {P(U) | U is open in Y x Z} , and consider the
graph function
G:PC(Y,Z) ——-> P(YXZ)

f ——— G(f) = graph(f)

Then the initial topology, G , with respect to G coincides
with the graph topology, since G—IEP(U)] = Fy -

Also . C(Y,Z) with the graph tonology is a subspace of

PC(Y,Z) .

Proposition 1.4.3[N]} If Y is Hausdorff and Z 1is an arbitrary

space, then the compact-open topology on C(Y,Z) 1is contained
in G . Moreover if Y is compact then G coincides with the

compact open-topology.

Proof. Let W(C,U) = {feC(Y,Z) | £(C) < U } be a sub-basic

open set of the compact open-topology. Then
V= [(Y\NC)xZJu (YxU)
is an open set of YxZ . So W(C,U) = G—l[ (V)1 .

The proof of the second part is trivial. [

Proposition 1.4.4 Let PC(Y,Z) and C(Y,Z) be given the

graph topology. Then
(i) the range function R:PC(Y,Z)—— P(Z) 1is continuous.

(ii) the range function R:C(Y,Z) —— P(Z) 1is continuous.
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Proof. The proof follows from the fact that
-1 _ -1
G "[PUXxV)] = RT[P(V)I . Qg

The pointwise convergence topology on PC(Y,Z) 1is

defined as having a sub-basis all sets of the form

W(x,U) = {£ePC(Y,Z) | f xeU or x ¢ Dom(f) }

Proposition 1.4.5 If Y is a Tl—space then the pointwise

convergence topology is contained in the graph topology on

PC(Y,Z)

Proof. Let W(x,U) be a sub-basic open set of the pointwise

convergence topology. Then clearly W(x,U) = Fy where V is

the open set (YxU) v [(Y\{x})xZ 1 .0

The Vietoris topology:

We recall the definition and some basic facts about the

Vietoris topology on P'(X) [Mil.

Definition 1.4.6 ([Mi]l Let X be a topological space. For a

collection {U; |ieI} of open sets of X , let <U;> ;g denote

Yy eX|Y ¢ U;e7 Uy and Yoo U; 79 for all i eI} , and

.. . n
for finite I we write <Ui> ie1 3S <Ui> j=1 OF
<U1,U2,...,Un> - The Vietoris topology on P'(X) 1is defined

'bas the one with sub-basis all sets of the form <U1,U2,...,Un> N

where U,,U

1> 2,...,Un are open in X

Proposition 1.4.7 [Mi] Let Ul’UZ""’U , be open in X

n

n

§=T » form a

Then the set of all elements of the form <Ui>

basis for the Vietoris topology.
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Proof. The set X 1is open since P'(X) = <X> . Now let

U= <u.> .- and V = <V.> }i Then clearly
1 1i=I 1 1=I
Unv = <U1 nB, ,Un nB, VlrwA, ,an1A> where
A =U i=1 Ui and B = U =1 V1 U

As we mentioned before, the topology which we considered

on P'(X) 1is called the upper semi-finite topology. On the
other hand the lower semi-finite topology on P'(X) 1is defined

as the one which has as a sub-basis all sets of the form

{YeX|YnU#9} where U 1is an open set of X
Clearly the Vietoris topology is the join of the upper semi

finite and the lower semi finite in the lattice of topologies

on P'(X) .

Proposition 1.4.8 [Mil] Let X be a topological space and

let P'(X) have the Vietoris topology. Then a function
f:X — P'(X)

1x nU#0¢ 1}

is continuous if and only if the set {xeX | f
is open whenever U is open and is closed whenever U is

closed.

The following two examples show that the upper semil
finite is more appropriate, for our purpose, than the Vietoris

topology.

Example 1.4.9 Consider PC(Y,Z) with the graph topology,

let P(YxZ) be given the Vietoris topology. Then the graph
function G:PC(Y,Z) —— P(YxZ)
f —————— graph(f)

is not continuous , even if Y = Z = R,
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Proof. Let U and V be disjoint open sets of Y xZ . Then

we claim that G"1 (<U,V>) 1is not open. To show this let

£ & G_1 (<U,V>) . Then G(f) < Uvu V and

G(f) nU # ¢ and G(f) nV # 0

Now for any open W of YxZ with f ¢ F, , F, ¢ G_1 (<U0,V>)
For otherwise, Fy .y € Fy ¢ g=i (<U,V>) which is impossible,
because the function whose graph is a subset of U would be
an element of G_1 (<u,v>) . O

Example 1.4.10 Let PC(Y,Z) be given the graph topology and

P'(Z) the Vietoris topology. Then the range function
R:PC(Y,Z) — P(Z)

is not continuous, even if Z =1R .

Proof. Let U and V be open sets of YxZ . Let
1

f e R™ (<U,V>) where £(x) ¢ U\V for some x e Y . Then

=1

there isno open W with f ¢ F,; ¢ R (<U,V>) , since the

W
constant function with value f(x) for all y € Y 1is an

1

element of F, but not of R™™ (<U,Vv>) . O

Similar argument shows that the graph function is not
continuous as a function G:C(Y,Z) — P'(Z) , where P'(Z)

has the Vietoris topology and C(Y,Z) the graph topology.

Example 1.4.11 Let Y be a Hausdorff space. Then the compact-

open topology is contained in G , the graph topology.
So the range function R:C(Y,Z)—— P(Z) 1is not continuous,
if P'(Z) 1is given the Vietoris topology and C(Y,Z) 1is given

the compact-open topology.
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CHAPTER 2

TOPOLOGIES ON THE SET OF CONTINUOUS PARTIAL FUNCTIONS

2.0 Introduction

In this chapter we consider topologies on PC(Y,Z) ,
the set of all partial maps, partial continuous functions,

from Y to Z . We will show that there is no reasonable

topology on PC(Y,Z) even for nice spaces Y =2 =R ; more k.

precisely there is no splitting, proper, and jointly continuous,

admissible, topology on PC(Y,Z) . ﬁg

The technique we use is the following.

(1) Generalise the results on function spaces to the L
partial maps case, in particular, if U is splitting and T
is coarser than U then T 1s splitting.

(i1) Give a modified compact-open topology on PC(Y,Z) , i)
and show that this topology is the smallest topology which is
jointly continuous on compacta on PC(Y,Z) when Y 1is regular
or Hausdorff.

(iii) Show that even a small topology, such as the point-

wise convergence topology, on PC(Y,Z) , is not splitting.

We also introduce the compact connected open topology ik

B

on PC(Y,Z) which contains the space of partial maps with i
K

f

closed domain and the space of partial maps with open domain
as subspaces. We will also conclude that the graph topology

on PC(Y,Z) , defined in Chapter 1, is jointly continuous.

S e L T T A o g T P
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2.1 Basic results

In this section we will generalise the results of [A-D]
on C(Y,Z) to the set of partial maps. We now give the
definition of splitting and jointly continuous topology on

PC(Y,Z)

Definition 2.1.1 Let T be a topology on PC(Y,Z) . T is

said to be splitting or proper if for any X the continuity of

f: X xY —— 7
implies that of its adjoint

f: X — PC(Y,2) , 3% (xX)(y) = £ (x,y)

~

where Dom f

{x e X | (x,y) ¢ Dom f for some y e Y } and

m

Dom £(x) ={y v | (x,y) € Dom £ for some y ¢ Y }

T is said to be jointly continuous or admissible if the

evaluation map
e : PC(Y,2) x Y — Z
£, ¥) — f(y)
is continuous, where e is defined at (f,y) 1if and only if

f 1is defined at vy

Proposition 2.1.2 A topology T on PC(Y,Z) is jointly

continuous if and only if for any space X the continuity of

g : X —— PC(Y,2)
implies that of its adjoint

g 1 X % ¥oesa J ,
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Proof. Define h : X xY — PC(Y,Z) xY

(x,y) — (g(x),y) -

Now e: PC(Y,Z) xY sk T
is continuous and h is continuous so eh 1is continuous,

but g =eh . [

It is well known, for C(Y,Z) that if T 1is jointly
continuous and U 1is finer than T then U 1is jointly
continuous. Also if U 1is splitting and T 1is coarser than
U then T is splitting. And for topologies T and U on
C(Y,Z) where T 1is splittiﬁg and U is jointly continuous

then U 1is finer than T

The following propositions show that these results are in

fact true for partial maps as well.

Proposition 2.1.3 Let T and U be topologies on PC(Y,Z)

(1) If T 1is jointly continuous and U is finer than
T then U is jointly continuous.
(ii) If U 1is splitting and T 1is coarser than U

then T 1is splitting.

Proof. (i) Let T be jointly continuous and let U be finer

than T

Then id PCy(Y,2) — PCp(Y,2)

PC
is continuous. So the composite

idPC x id @

Ls pep(Y,2) xY —— 2

PCU(Y,Z) XY
is continuous, that is
e: PCU(Y,Z) XY— 1

is continuous.

(ii) The proof is similar to (i) . O
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Proposition 27.1.4 1f T 1is splitting on PC(Y,Z) and U

is jointly continuous then U 1is finer than T .

proof. Let U be jointly continuous. Then

e: PCU(Y,Z) x Y —> L

is continuous. But T is splitting so

idpe = e : pCy(Y,2) — PCr(Y,2)

is continuous. [

2.2 A jointly continuous topology on PC(Y,Z)

In this section we will show that the modified compact open
topology on pC(Y,Z) 1is jointly continuous, in fact is the
smallest topology jointly continuous on compacta. Using the
results of the last chapter it will be shown that for Hausdorff

spaces Y , the graph topology is jointly continuous.

We will also introduce the compact connected open topology.
It turns out that for nice spaces Y the compact connected open

topology 1is jointly continuous.

The main result of this chapter is Proposition 2.2.0, which

states that the set of partial maps cannot be topologised nicely.

Let U be a topology on PC(Y,z) . Then U 1s said to be

jointly continuous on compacta if ec: pPC(Y,Zz) *xC— Z 1s

continuous for all compact ¢ of Y , where e is the

restriction of the evaluation map.

The compact open topoiogy T on PC(Y,Z) 1is the one which
has as a sub-basis all sets of the form
w(c,u) = {fePC(Y,Z) ] £(C) ¢ U}
for all compact subsets C of Y and open U subsets of L,
~where f£(C) = £(C an) . The topology T is jointly

continuous on compacta.
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Proposition 2.2.1 If Y 1is regular or Hausdorff the topology

T is the smallest jointly continuous on compacta for PC(Y,Z)

Proof. Let C be a compact subset of Y and

ec PC(Y,Z) x C ~ Z

be the restriction of e

If U 1is an open set of Z containing ec(f,c) = fc
then there is a neighbourhood V of ¢ in C with f (V)c U
But then there is a compact neighbourhood A of ¢ in C such

that A <V . Hence feW(A,U) , ceA and eC(W(A,U) xA) < U

To show that T is the smallest such topology, assume

S is jointly continuous on compacta.

Let W(C,U) be a sub-basic open set of T containing f

Now ec is continuous so ec_l(U) is open in PC(Y,Z) xC . ?

But {f} x C is a compact subset of ec—l(U)

= ]
C

feS'" < W(C,U) . O S

,» SO there exists

S' € S containing £ and S' x C c e (U) . That is Y

Corollary 2.2.2 If Y is Hausdorff then the graph topology on

PC(Y,Z) 1is jointly continuous.

Remark. It is better to use the test open topology, 3.1.4, to

avoid the Hausdorffness condition.

Now we introduce the compact connected-open topology on

PC(Y,Z)

Definition 2.2.3 The compact connected open topology on PC(Y,Z)

is defined as the one which has as a sub-basis all sets of the

form W(C,U) = {f ePC(Y,Z) | £(C) cU and CnDom f is compact}

for all compact C of Y and all open U of Z .
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Corollary 2.2.4 If Y 1is locally compact locally connected

and Hausdorff then the compact connected open topology is

jointly continuous on PC(Y,Z)

One might expect that there is a splitting jointly
continuous topology on PC(Y,Z) . However this is not the case.
The following examples show that the pointwise convergence
topology is not splitting. Then by 2.1.3 (ii) any finer

topology is not splitting.

Example 2.2.5 (a) Let PC(Y,Z) be given the topology p©

which has as a sub-basis all sets of the form
W(c,U) = {fePC(Y,Z) | f(c) eU,f 1is defined at c }

for all ceY and all open U of Z . Then P° is not

splitting even if Z=Y=R . To see this consider the function
f: RxR — R

2 | G, the restriction of the second projection
to G,

and G = R2 \ {(x,0) | x>0}

~

Now £ is continuous but f: R—— PC(IR,IR) 1is not
continuous, since if ¢ = 0 and U = (-a,a) , then

%(O) e W(Q,U) and clearly no neighbourhood V of 0 will
satisfy that £(V) < W(0,U)

Example 2.2.5 (b) Let PC(Y,Z) be given the topology p¢

which has as a sub-basis all sets of the form

W(c,U) = {£ePC(Y,Z) | f(c) e U} ,

where f(c) f({c} n Df) , for all ceY and open U of Z .
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Then P® is not splitting even for Z =Y = IR . To show this

let

f: R xR ——-—> IR , be the second projection
restricted to G° = R \ {0} .
Then f: R ——> PC(R,R) is not continuous.

We now state the main result of this chapter.

Proposition 2.2.6 There is no splitting jointly continuous

topology on PC(Y,Z) , even for the case Y = Z = R

Proof. This follows easily from 2,2.5(a) , (b) and 2.2.1. @O
Note that the situation for partial maps contrasts with that for

all maps in the sense that it seems more difficult to obtain the

proper condition.

2.3 Partial maps with open domain and with closed domain.

In the next section we will define a topology on PC(Y,Z) ,
namely the compact open connected topology, which contains the
space of partial maps with open domain and the space of partial
maps with closed domain as subspaces. So we devote this

section to recall some facts about these two spaces, all the

results in this section can be found in [B-B1] and [A-B]

1. Partial maps with closed domain.

A closed domain partial map from Y to Z , called parc
map, is a continuous function from a closed subspace C of Y
to Z . The set of all parc'maps from Y to Z is written as
PC(Y,Z) . The topology on PC(Y,Z) is the compact open topology
in which a sub-basis consists of sets of the form
W(C,u) = {f e P.(Y,Z) | fLC] = f(Cerf) c U}
for all compact C of Y and open U of Z

R
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For a space Z let Z =7 U {w} where w ¢ Z . Define

~

a topology on Z as follows:

~ ~ ~

A set C < Z is closed in Z if and only if C =27 or
C is closed in Z . Then {w} is open but not closed and
the functor
PC(—,Y) : Top —— Top
X g PC(X,Y)

is representable.

Proposition 2.3.1 Let 'Y and Z be any spaces. Then

C(Y,Z~) is homeomorphic to PC(Y,Z)
Proof. Define ¢: C(Y,Z~) Saa 2 PC(Y,Z)
as $(f) = £ lf_l(z)

Then it is easy to see that ¢ 1s a homeomorphism. 0

Recall that a pair (X,Y) is called an exponential pair

if for any space Z the exponential function
0: CXxY,Z) —— C(X,C(Y,2)) )

where 0 (f) (x)(y) = f(x,y) , 1is surjective where the

topology on C(Y,Z) 1is the compact open topology.

It is known that (X,Y) 1is an exponential pair if
(i) X xY is a Hausdorff k-space or
(ii) Y is locally compact.
Note that if Y is an initial object of Top, Y = @ , then
the only element of C(Y,Z) 1is the empty map and if Z = @

then C(Y,Z) = @ . Also the empty map is an elerent of PC(Y,Z)
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Proposition 2.3.2 (Exponential law for parc maps) .

The exponential function A

9: PC(Xx Y, ) === C(X,PC(Y,Z))
PEI)) = £x,y) ,  £eP (XxY,2), xeX, ye¥ ,
is well defined. Moreover
(1) if (X,Y) 1is an exponential pair then 6 is surjective;
(ii) the function 6 1is continuous if X 1is Hausdorff and is

a homeomorphism into if both X and Y are Hausdorff.

2 Partial map with open domain

A partial map with open domain is a continuous function

from an open subspace of Y to Z . Such a function is called

paro map, and the set of all paro maps from Y to Z is written
as PO(Y,Z)

Similarly the case of partial map with closed domain,
a topology on PO(Y,Z) is defined as the one which has as a

sub-basis all sets of the form

W(C,U) = {fePO(Y,Z) | £(C) < U and C c D¢ }
for all compact C of Y and open U of Z

For aspace Y let Y be the space Yulwl , wf Y,

T

with the topology in which U < Y s open if and only if

U=Y or U is open in Y . Then {w} is closed but not

SERLETT T

A

open in Y . o

Proposition 2.3.3 The function |

me Po(Y,2) —— C(Y,2)

u(f)(x) = ( f x if x e D¢
( w otherwise

is a homeomorphism.
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Proposition 2.3.4 Exponential law for paro maps.

The exponential function
Ar PO(XxY,2) — C(X,P (Y,Z2))
AE) (X)) (y) = £(x,y)
is well-defined. Furthermore
(i) if (X,Y) 1is an exponential pair then A 1is surjective;
(ii) the function A 1is continuous if X is Hausdorff and

is a homeomorphism if both X and Y are Hausdorff.

Proposition 2.3.5 (i) If Y 1is locally compact then the

evaluation map
& PO(Y,Z)><Y-w~ﬁ+ i
(£,y) —— £(y)

has an open domain.

(ii) If both X and Y are locally compact then the
composite mapping
P (Z,Y) xP_(Y,2) —=> P_(X,2)
(f,y) — gf

is continuous.

2.4 The compact connected open topology on PC(Y,Z)

The topology T on PC(Y,Z) that we will consider for

the rest of this chapter is the compact connected-open topology,

which has as a sub-basis all sets of the form

W(C,U) = {£f<PC(Y,2) | £(C) < U and CnD; is compact }

for all compact connected C of Y and open U of Z
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It will be shown that for nice space Y , namely locally
compact, locally connected and Hausdorff, (PC(Y,Z),TC)
contains PC(Y,Z) and PO(Y,Z) as subspaces. Write
pc®(Y,Z) for (PC(Y,2),T%)

The compact connected-open topology on PC(Y,Z) , the

underlying set, is defined as the one which has a sub-basis
all sets of the form

W(c,u) = {f ePC(Y,Z) | £(C) < U}
for all compact connected C of Y and open U of 2 i

where £(C) = £(C n Df)

Proposition 2.4.1 If Y 1is locally compact, locally connected

and Hausdorff then the compact connected-open topology is

splitting and jointly continuous on PC(Y,Z)

Proof. Since the compact-open topology is splitting and finer
than the compact connected-open topology, so the compact
connected-open topology is splitting. Also it is easy to see

that the compact connected-open topology is jointly continuous. [

Corollary 2.4.2 If Y 1is locally compact, locally connected

and Hausdorff then the compact-open topology coincides with the

compact connected-open topology on PC(Y,Z)

Proposition 2.4.3 If Y 1is locally compact, locally

connected and Hausdorff then PCC(Y,Z) contains PC(Y,Z)

as a subspace.

Proof. The proof is easy. 0O
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Let F be a subset of PO(Y,Z) . The compact connected

-open topology on F 1s defined as the topology with sub-basis

all sets of the form
W(C,u) = { £eFJ£(C) U and C < D¢ }

for all compact connected C of Y and open U of Z

Proposition 2.4.4 If Y 1is locally compact, locally

connected and Hausdorff then the compact-open topology coincides

with the compact connected-open topology on F

Proof. Let feW(C,U) where C 1is compact and U 1is open.
Then for each yeC there exists an open connected

neighbourhood Vy of y such that Vy is compact and

f(vy) < U . By compactness of C there exists yy,...,y,
. n no
with Ccu._y Vyi and  f£(u._4 Vyi) c U . But then

f e nin=1 W(V_ ,U) < W(C,U) . Hence W(C,U) is open in the
1

compact connected-open topology. 0O

Lemma 2.4.5 Let U be an open set of. Y , C 1is closed

connected. If U n C is closed then Un C =@ or CcU

Proof. If Un C 1is non-empty and C < U , then

C < U< v (C nU) . But this is a contradiction to the

connectedness of C . 0O

Proposition 2.4.6 If Y 1is locally compact, locally connected

and Hausdorff then PCC(Y,Z) contains PO(Y,Z) as a subspace.

Proof. Let f ¢ PO(Y,Z) and let C be a compact Hausdorff

space. If Dg n C 1is compact then C c D, . O

S

s
i
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Proposition 2.4.4 suggests that for locally compact,
locally connected Hausdorff space Y it is sufficient to
consider as a sub-basis for the compact-open topology on c(Y,Z)
sets of the form W(C,U) wherev C 1is compact connected and U
open.

It is clear that the compact connected-open topology
contains the pointwise convergence topology, since the family of
a1l sets {f | fxeU} for xeY and open U of Z 1is a sub-
basis for the pointwise convergence topology on c(y,z) .

The following two results are well known as true for the
compact-open topology, in fact they are true for the compact

connected-open topology.

Proposition 2.4.7 If Z 1is TO’ Tl or T, then so 1is

C(Y,Z) with the compact connected-open topology.

Proof. If £(a) # g(a) and U,V are separating open Sets
of f(a) and g(a) , then W({a},U) and W({a},V) are separating

open sets of f and g .

Proposition 2.4.8 If Z is regular then C(Y,Z) is regular,

with the compact connected-open topology.

Proof. This is proved by similar arguments to that for the

compact-open topology.
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