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' CHAPTER 3

Convenient Categories of Spaces

3.0 Introduction

It is known that the category Top , of spaces and
continuous functions, is not cartesian closed. However there
are some cartesian closed subcategories of Top which are large

enough for topologists to work in tB2;51,

For ease of reference and completeness we will in this
chapter give some known facts on generating a convenient category
of spaces using a non-empty class of spaces, and some facts on

the category SEQ of sequential spaces.

A category C is said to be cartesian closed 1if:

(1) for any X and Y in |c| the product X x Y is
in C ;
(11) for Y ¢ |c| the functor

-xY c » C

has a right adjoint. That is ¢ has an exponentiation

for each Z ¢ |¢| there is an object (Z)Y and a morphism

e: (Z)Y

x Y > 2 ,
the evaluation morphism, for any object X and any

g: X x Y1

there is a unique

2 X - ()Y

such that e (gxidy) =g . That is the diagram
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commutes.

In 1963, 4, R. Brown [B2,3] discussed the notion of a
'convenient category of topological spaces" ( [B3] p 245 )
essentially as a cartesian closed category of topological spaces
which contains the usual spaces of homotopy theory, i.e. all
CW-complexes. He suggested two equivalent candidates, namely the
category of Hausdorff k-spaces and continuous maps, the the

category of Hausdorff spaces and k-continuous maps.

In the mid-1960's D. Husemoller and J.C. Moore showed
in unpublished work how to remove the Hausdorff condition. The
convenience of the category of Hausdorff k-spaces was proclaimed
in 1967 by N.E.Steenrod [St] . In section 1 we study in detail
ways of generating a convenient category of spaces using a class

of space.

3.1 Generating a convenient subcategory of Top

In this section we will discuss in detail ways of generating

a convenient subcategory of Top , using a non-empty class C

of spaces. We will assume that C contains the terminal object

1 = {*} . The results in this section may be found in Booth and

Tillotsen ([B-T] , Brown (B2,31, Day 1[D1,2] , Lamartin [Lal],

Vogt [V] and Wyler [W2]
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By an epireflective subcategory ¢ of Top we mean a

full subcategory with the following property:
For object X of C , every subspace of X is in C and

the product of spaces in € is also in C

Lemma 3.1.1 Let C be a subcategory of Top . Then C 1is an

N

epireflective subcategory if and only if for each space X there
is an object RX of (€ and a surjective h: X = RX such that any
morphism f: X =Y , Y ¢ |C] , factors uniquely through h

That is geh = f for a unique g: RX + Y

K e WY

N

Examples. The following are epireflective subcategories of Top

1) Top

2) T1 the category of T,-spaces.

3) Haus the category of Hausdorff spaces

4) R the category of regular spaces, assuming regular

implies T4

Let C be a category of spaces. For X in C 1let aX
be the set X with the final topology with respect to all
continuous functions A+X, AeC. That is, aX is the set X with
the finest topology for which all continuous functions A - X

are continuous.
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The space X 1is called an a-space if aX= X , and a

is a functor C > C

We denote by ConvC the category of a-spaces in C

b

the category generated by C . It is easy to see that a is a

right adjoint to the inclusion functor i: ConvC - C

So ConvC is a coreflective subcategory of C . 1In particular

if C = Top then ConvC is the coreflective hull of C , that

is the smallest coreflective subcategory of Top containing

each object of C .

The category ConvC is said to be a compactly generated

category if it can be generated by a class of compact Hausdorff

spaces in C and ConvC is coreflective in C . By letting C

be the class of all comgéct Hausdorff spaces in G s ConvC is

the largest compactly generated, coreflective, subcategory of

C . Also if € is Haus then Conv, is the category of k-spaces.

Let C be a class of spaces. The category generated by c,

ConvC , 1s said to be convenient if ConvC 1s cartesian closed

and contains the underlying spaces of all CW-complexes, metric

spaces and differentiable manifolds.

Proposition 3.1.2 Let C be a class of spaces such that ConvC

1s a cartesian closed category. Then the following are

equivalent.

1) N"  is an object of ConvC :
2) All sequential spaces are in Conv. , (c.f. next section
for definition).

3) ConvC is a convenient category of topological spaces.




3/5

Proposition 3.1.3 The category of sequential spaces is the

smallest convenient category of topological spaces.

We now give some examples of categories of a-spaces which
are cartesian closed, in fact some are convenient categories. In

the following let C = Top .

1. The category of sequential spaces is generated by any

of the following classes of spaces.

a) C = the class of compact countable Hausdorff spaces.
b) ¢ = {N"}

c) C = {[0,13}

Z o Let C be the class of finite discrete spaces. Then

the cartesian closed category generated by C is the category of

discrete spaces, this category is not convenient.

3 If C 1is the empty class, then the category generated

by C is the category of discrete spaces.

4. If C 1is the class of all n-cubes R I" where n is a
finite positive integer, then the category generated by C is
any one of the.following:
a) The category of all topological sums of cubes I' and
the quotients of those sums.
b) The category of all underlying spaces of CW-complexes

and their quotients.

5. Let C be the class of all compact Hausdorff spaces.

Then Conv. is the convenient category of compactly generated

spaces.
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Remark 3.1.4 The convenient category of 5. above is the

gives the non-Hausdorff version of k-spaces referred to in the
introduction of this chapter. The topology on function space is

the test open topology which is defined as follows:

Let X and Y be objects of ConvC - A sub-basis for the

topology consists of all sets of the form

W(t,U) = {f e Conv. (X,Y) | ft(€) < U} for all € ¢ C

continuous t: ¢ > X and open U of Y

3.2 The category of sequential spaces SEQ

In Chapter 4 we will discuss the embedding of SEQ into
the quasitopos SuSEQ , of subsequential space, which contains

SEQ as a reflective subcategory. Also in Chapter 5 we will

investigate Johnstone [J2] embedding of SEQ 1in the topos Proc.

Therefore we devote this section to recalling some facts about

the category SEQ .

All facts given in this section may be found in [B-T] (B4],
[Dul , [F1,2,3,4] and [Ti] .

Definition 3.2.1 Let X be a topological space. A subset

U< X 1is sequentially open if €Very sequence converges to a -

point of U is eventually in U . The space X 1is said to be a

sequential space if every sequentially open set is open.

Let SEQ be the category of sequential spaces and

continuous function. We now recall some facts about SEQ
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The category SEQ contains nice spaces : first countable
spaces are sequential. In particular metric spaces, CW-complexes

and discrete spaces are sequential.

Remark  Some disadvantages of subsequential spaces are the

following:

1. The continuous image of a sequential space need not

be sequential.

2. There is,a compact Hausdorff space which is not

sequential.

3. The usual topologicai product of two sequential spaces

need not be sequential.

4. Subspaces of a sequential space need not be sequential.

Proposition 3.2.2 1. Quotients of a sequential space are

sequential.

2 The continuous open or closed image of a sequential

space is sequential.

3. If a product space is sequential then so is each of

its factors.

4. Let {X.} be a family of sequential spaces. Then

i"iel

X = U Xi , disjoint topological sum, 1is sequential.

iel
5. The category SEQ 1is cocomplete.
6. A closed, or open, subspace of a sequential space 1is

sequential.
7 Let X be a space with thq\final topology with respect

to a family (£;: X; > X); 1 where X, ¢ |SEQ|  for each 1 .

Then X issequential.
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8. Let X « [Top] . Then X has a unique sequential

limit, that is each S€quence has g unique limit, if and only if

the diagonal is closed in X x x .
ETOPQEiEEQE_é;E;E SEQ is a Coreflective subcategory of Top .

Proof. The category SEQ is a full subcategory of Top . We
need to define a right adjoint g Top » SEQ to the inclusion
functor I . et (X,T) be a topological space. Then it is
€asy to see that the Seéquentially open sets form a new topology

on X , which is the smallest sequential topology containing T

Thus we define S on objects.

Now let Y ¢ |Top| ang let X e [SEQ| . If £: x o Y is
continuous and U s Seéquentially open in Yy » then clearly
f_l(U) is Seéquentially open. That is f: x = S(Y) is continuous.

This establishes the required isomorphism.

Top (IX,Y) = SEQ(X,S(Y)) . q

Recall, see the remark above, that subspaces and products
of sequential Spaces need not be Sequential. However the functor
S , proposition 3.2.3 , can be used to sequentialise the subspace
and the product space. Then for a subset Y of g sequential
space X, S(Y) is a Subspace of X , and for Z e |SEQ] ,

S3(Y*Z) is the categorical product ip | SEQ]

'roposition 3.2.4. SEQ is cartesian closed.
L B__~___________
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CHAPTER 4

The Category of Subsequential Spaces as a Quasitopos

4.0 Introduction

We have shown, Chapter 2, that the set PC(X,Y) of
partial maps from a space X to a space Y can not be
topologised nicely. So we gave further evidence that the notion

of topology is not always appropriate and is even inadequate

One main aim of this chapter is to try to answer the
following: |

Can we solve the problem of finding a space which contains
PC(X,Y) and PO(X,Y) as subspaces in a quasitopos or do we need

a topos?

Our claim is that we need a topos. The following

technique is used to justify this claim.

Let Y be a sequential space. Recall (2.3) the spaces

~

Y and Y which gave representability for partial maps with

closed domain and for partial with open domain.

(1) We give an explicit description of the object Y°

that represents strong partial morphisms in SuSEQ.

(2) We g&ve a description of the subsequential structure
N\

on Y~ and ? . We conclude that
~ !
Y > Y
A T
and Y > Y

are monics in SuSEQ which are not strong monics. That is

S e o i

TR I G T A
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A

~ !
neither Y nor Y are subspaces of Y°

Hence in SuSEQ , in general PC(X,Y) and PO(X,Y) are
not subspaces of SPart (X,Y) = SuSEQ (X,Y:) , Where SPart(X,Y)
denote the strong partial morphisms from X to Y . So in a
quasitopos, in particular in SuSEQ , the problem remains

unsolved.

However, in a topological topos and in particular in Proc
(cf. Chapter 5-6) subobject , ""subspace'" , include all continuous
injections, so the problem is solved in Proc. But the whole

notion of '"subspaces" is not so clear in Proc.

4.1 Toposes

In this section we will recall some basic definitions and
facts about toposes. The following material may be found in

[(B-WJ , [Frl , [J1) , C[K-W] , [K-M1 , [M-R] or ([Wr] .

Definition 4.1.1 An elementary topos is a category E

satisfying the following conditions:
(i) E is finitely complete, has all finite limits;
(ii) E 1is Cartesian closed;

(iii) E has a subobject classifier.

By a subobject classifier we mean an object @ together

with a morphism true: 1 + @ , such that for any monic
f: X —» Y there is a unique morphism ¢f: Y > Q@ , called the

Classifying map, making




a pullback diagram.

The term "elementary'" in the definition is just to

distinguish between a Grothendieck topos and a topos in this

sense. A Grothendieck topos is a category which is equivalent

to shv(C,J) where (C,J) 1is a site, a small category C

equipped with a Grothendieck topology J (definition in

Chapter 5).

Definition 4.1.2 Let E be a category with finite products.

A power object of an object X of E 1is an object

together with a monic morphism
€: ey P(X) xX

such that for any monic
r: R— Y xX

a relation, there is a unique morphism
¢r: Y—> P(X)

making

€x

a pullback diagram.
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A category E is said to have power objects if a power

object exists for each object of E .

Proposition 4.1.3 [Wr] A category E 1is a topos if and only

if E 1is finitely complete and has power objects.

Proof. Let E be a topos. Then for any object X let

P(X) = oX = E(X,2) and let

g ex——~+ QX><X

be the morphism whose classifying map is e , the evaluation

morphism. That is the diagram

€ X
£y N

true

X and € 1s

is a pullback. Then it is not hard to see that Q
a power object of X .
Conversely if E is finitely complete and has power

objects, then it is easy to check that

e — ol x 120! = p(1)
is in fact the subobject classifier.

Also it is not hard to show that E is Cartesian closed.

In the following proposition we list some basic properties
of a topos. The proofs may be found in the references given

above.
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Proposition 4.1.4 Let E be a topos. Then the following are
true:
1. A morphism £ in E 1is an iso if and only if f is

monic and epic; that is E 1is balanced.

da Every monic is an equaliser.
B Every epic is a coequaliser.
4. Every morphism has a unique factorisation as an epic

followed by monic.
5 Partial morphisms are representable; a partial morphism
f: X > Y in a category E 1is a diagram

£

X' = Y

X

with m monic. Partial morphisms with codomain Y are said to

be representable if there is a monic n: Y >~ Y~ such that for
any partial morphism f: X = Y there exists a unique -

f¥: X - Y™ making

| |
X i i
f
B
a pullback diagram. i
6. For any topos D , E x D 1is a topos. T
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7. For any object X of E , the category E + X of objects

of E over X 1is a topos.

8. The following are equivalent (see 4.2 for definitions):
(i) Regular monic.
(ii) Extremal monic.

(iii) Strong monic.

(iv) Monic,

4.2 Regular monic, extremal monic and strong monic A

Before defining quasitoposes and recalling some facts

about them we will discuss various kinds of monics for the

convenience of the reader, because these materials are not
available in standard text books. We will show that in SEQ f

the notions of strong, regular and extremal monics are equivalent.

Definition 4.2.1 [K] Let m be a monic in a category C . ‘?

1. m 1is called a strong monic if for any commutative diagram

of the form l

e
> ,
s
£ /
u e v
e
pd i
7
Ve
m
with e epic, there exists a unique t such that v = mt and
u = te . g
2 m is called an extremal monic if for m = ue with e

epic, then e 1is an 1iso.
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5, m is called a regular monic if m is an equaliser

Strong epic, extremal epié and regular epic are defined

dually.

Proposition 4.2.2 [K1l Strong monics are closed under

composition and pullback.

Proof. For composition, let m and m' be strong monics.

Then for any commutative diagram

e
o o
o yd
e 4
t ! P e
u ] - /ot v
7 g
& %
m' m

with e epic, there exists a unique t such that v = mt and
m'u = te . Again there is a unique t' such that u = t'e and
t = m't' . So t' 1is the unique morphism with v = (mm')t'

For pullback, let m' be the pullback of a strong monic
m . Then for any epic e with m'u = ve , consider the

commutative diagram
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Then there exists a unique t with fv = mt . But the bottom
square is a pullback. So there is a unique t' with v =m't'
and f = f't' . So m'u =ve =m't'e

Hence v =m't' and u = tle . 0O

Proposition 4.2.3 [KI1 (i) if m is a regular monic, then

m 1is a strong monic.
(ii) If m 1is a regular monic, then m is an extremal

monic.

Proof. Let m be the equaliser of £ and g . Let u , Vv

and e be any morphisms such that mu = ve and e 1is epic.

Now fve = gve , so fv = gv
But m is an equaliser so v factors uniquely through m ,
that is v = mt for a unique t . Also mu = ve = mte
So u = te

(ii) Again let m be the equaliser of f and g and
assume m = ue for some epic e . Then fue = fm = gm = gue ,

so fu =gu . But m is an equaliser so there is a unique

h with mh =u




¢
Y

Then m = ue = mhe , so he = id . That is e 1is an epic and

has a left inverse, so e 1s an iso . [:

Proposition 4.2.4 (K] If every epic in a category is a strong

epic then every monic is a strong monic.

Proof. Let m be a monic such that mu = ve for some u

>

v and e with e epic. Then e 1is a strong epic and the

existence of the unique t follows.

The following proposition gives a translation of

topological terms into categorical terms and vice versa.

.Proposition 4.2.5 [H1] Let f be a morphism in Top . Then

1) f is monic if and only if f 1is injective.
2) f is epic if and only if £ 1is surjective.
3) The following are equivalent:

a) f 1is a strong monic.

b) f 1is a homeomorphism into .
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c) f 1s an extremal monic.
d) f 1is a regular monic.

4) f 1is an iso if and only if f 1is a homeomorphism.
Similar translations for the category Haus , of Hausdorff

spaces and continuous functions, are given in the following

proposition.

Proposition 4.2.6 [HI1] Let £ be a morphism in Haus.

Then 1%
1) f is a monic if and only if f 1is injective. lﬁ
2) f is epic if and only if f is dense. i
3) f 1is a strong monic if and only if f 1is a homeomorphism E
into . ‘E
4) f is an extremal monic if and only if f 1is a closed :

homeomorphism 1into

5) f 1is an iso if and only if £ 1is a homeomorphism. ‘

The following, well known, example shows that in Haus %

various kinds of monic are not equivalent.

Let i: Q * R be the inclusion, where Q 1is the set of
rationals and R is the set of real numbers. Then 1 is not an

extremal monic, since i is epic but not iso

Proposition 4.2.7 Let m: X > Y be a monic in SEQ . Then

the following are equivalent:

1) m is a regular monic.

2) m 1is an extremal monic. 31
3) m is a homeomorphism into .

4) m 1is a strong monic.
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Proof. In any category, a regular monic 1s extremal,

(4.2.3 (i1)).

Assume m 1is an extremal monic. Then there is a
commutative diagram

m

N/
mX//

with m* epic, i monic and mX has the smallest sequential

topology containing the relative topology on mX . So m* is
an iso and i =m . Now i: mX > Y is the equaliser of ¥x;
and <
A
mX——e—— ¥ —————s {0,1}
‘1

where <y is the constant function with value 1 and {0,1}
is the indiscrete space. So m 1is a regular monic.

Let m be an extremal monic. Then the following diagram

m
X — Y
m* i
mX
commutes in SEQ . Since m* is epic so m* 1is an 1iso in

SEQ . That is m is a homeomorphism into .
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Assume m 1s a homeomorphism into. Let m = ie for

any epic e and monic i , that is the diagram

m

X —m—m—m ,Y
Z

commutes. Then e 1s surjective, injective and

it (m*)~*

Z ———— mX ——e— X

1s an inverse of e . So e 1is an iso in SEQ .

Now assume m 1is a homeomorphism into. Let

be any commutative diagram in SEQ , with e epic. Then

u(Z) € m(X) , so the composite t = (m*)—1 u*

-1
*
g —Y px (B 7,

is the unique morphism with u =mt and v = te . So m is

strong monic.

Finally to show strong monic implies homeomorphism into;

consider the following diagram




*
X———m—-—‘* n_l)g
idX i
X — Y
m

Then there exists a unique t: mX » X which is the inverse of m

So m 1is a homeomorphism into . 0

4.3 Quasitoposes

Quasitoposes were introduced by Penon [P] as a

generalisation of toposes, and were also studied by Wyler [W3]

Definition 4.3.1 A quasitopos C 1s a category satisfying the

following properties.
(1) ¢ 1is finitely complete and cocomplete.
(ii) C 1is Cartesian closed.

(iii) Strong partial morphisms are representable in C

By a strong partial morphism £: X -~ Y we mean a diagram

£

Xt— Y

X

with d strong monic. Condition (iii) means for each Y in

1 1
|c| , there is an object Y' and strong monic n: Y > Y~ such

that for a strong partial morphism f: X ~ Y with codomain Y ,

1
there is a unique f£°: X » Y' making
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X! f .y
d n
¥ 1
X e I &
£

a pullback diagram. f

Clearly a quasitopos C is a topos if and only if each

monic in C is a strong monic.

We now give some examples of quasitoposes:

1) A relatively pseudo complemented lattice, known as a
Heyting algebra [W3]

2) The category of subsequential spaces (see next section).

In the following proposition we collect some properties

of a quasitopos; these facts may be found in [P] or [W3]

Proposition 4.3.2 Let C be a quasitopos. Then the following

are true:
(1) If f 1is a strong monic and epic in ¢ , then
f is aniso.
(ii) A strong monic is an equaliser.
(iii) A strong epic is a coequaliser.
(iv) Every morphism £ has a factorisation as f = nie 5
where m 1is a strong monic , e is a strong epic, and i is
an epic and monic. |
(v) The factorisation above is preserved by pullback.

(vi) Colimits are preserved by pullback.




[%

4/15

4.4  Subsequential spaces

The main concern of this chapter is to use the results of
Kuratowski [Kul to show that the category SuSEQ , of

subsequential spaces, is Cartesian closed.

Recall [Kil that an L-space is a pair (X,C) where X is a
set and C 1is a family of apirs ((xn),xw) of a sequence
(Xn) of X and a point X in X , thought of as a sequence

©

(x) converging to X, , such that

(1) For each xeX , ((x),x) 1is in C , that is the
constant sequence with value X CONVerges to X ;
(1i) 1If ((xn),xm) is in C , then for any subsequence

(xnk) of (xn) , ((xnk),xw) ig in €

An L-space which satisfies (*) , below, 1is called a

subsequential space. This term is due to Johnstone ([J2]

(*) For any sequence (Xn) of X , if x_ 1is a point
of X such that every subsequence (xnk) of (xn) has a

subsequence (X

n } such that ((xp ),x,) is in C, then
k kgl

'3
[(Xn),Xw) is in C

Remark 4.4.1 a) A subsequential space was earlier called an

L*-space by Kisynski [Kil and Kuratowski [ Ku]

b) The notion of sequential convergence is not
properly described by the notion of L-space. For example
sequences which are eventually constant need not converge.

Consider a set X with more than one point with (xn) > X

if and only if X, = X for all n , for x_, in X . Then X
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is an L-space. However if x, yeX , y # x , then the
sequence y,X,X,... does not have a limit in X . This is

an example of an L-space which is not a subsequential space.

We now state some facts about L-spaces and subsequential

spaces due to Kisynski [Ki]

Let X be an L-space with C as its family of

convergent sequences. Let G be a subset of X . Then G is
open if whenever (xn) converges to a point of G , then all i
but finitely many terms of X, are elements of G

Proposition 4.4.3 [Ki] Let T(C) be the set of all open sets

of X . Then T(C) 1is a topology on X , making X a To—space.

An  L-space (X,C) 1is said to have unique limits or be %

sequentially Hausdorff if when ((xn),x) and ((xn),y) are in

C, them x =y . Note that in Dudley [Dul L-spaces are
sequentially Hausdorff. The following fact also may be found

in [Dul]

Proposition 4.4.4 [Kil 1If (X,C) is a sequentilly Hausdorff

subsequential, then C(T(C)) = C where C(T(C)) is the family

of convergent sequences in T(C).

The following example shows that the sequentially

Hausdorff condition is necessary.

Example 4.4.5 [J2] Let (X,C) be such that X = {x,y,z} and

C 1is defined as follows:

For any sequence (xn) s ((xn),x) and ((xn),y) are in

C and ((xn),z) is in C if finitely many terms of the

i

|

;
4
by
o
s o

g
o
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sequence (xn) are x . Then clearly (X,C) 1is a
subsequential space, since condition (i) and (ii) are
trivially satisfied. For (*) 1if ((xn),xm) ¢ C , then

X, = Z and the constant sequence (x) 1is a subsequence of

o]

(xn) with no subsequence converging to 2z = X . Now T(C) 1is

indiscrete, SO c(T(C)) #C . O

We now give some examples of subsequential spaces.

1) Sequential spaces. Recall that a topological space X

ijs said to be sequential if every sequentially open set 1s
open (cf. Chapter 3). For a sequential space X, let C be
the family of all convergent sequences in X . Then (i) and
(ii) are satisfied. For (*) see Proposition 4.4.9 below.
In particular all pseudo-metric spaces may be given the
structure of subsequential space such that convergence 1s the

usual convergence.

2) Pointwise convergence. Let 7 be the set of functions

X - Y where (Y,CY) is a subsequential and X an arbitrary
topological space. Then (Z,Cp) is subsequential where in

Cp , fn + £, if and only if for all Xx € X, ((fn(i)Lﬁm(x)) € CY

Definition 4.4.6 [Kul Let X be a subsequential space,

Y < X . Define the closure Y of Y as

¥ = {x ¢ X | there exists (x,) 1in Y with x> X }

Definition 4.4.7 [Kul A function f: X =Y , between

subsequential spaces is continuous if it preserves convergent

sequences.
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Proposition 4.4.8 [Kul Let X and Y be subsequential

spaces. Then £: X > Y is continuous if and only if

£(Z) < £(Z) for each subset Z of X

Let SuSEQ denote the category of subsequential spaces
and continuous functions. Let X e |SuSEQ| , and let U be a

subset of X . Then U 1is sequentially open if and only if

whenever a sequence (xn) converging to a point in U then
(Xn) is eventually in U . The following proposition relates

the category SEQ , of sequential spaces, and SuSEQ

Proposition 4.4.9 [Hyl SEQ is a reflective subcategory of

SuSEQ .

Proof. Define
k: SEQ -+ SuSEQ

as follows:

for (X,T) in |[SEQ| , k(X,T) = (X,C(T)) and k 1is the
identity on morphisms. We show (X,C(T)) 1is a subsequential
space. Clearly condition (i) and (ii) are satisfied. For
the proof of (*) , assume that ((xn),xm) ¢ T(C) . Then there
exists a neighbourhood U of x, such that E = {n|x_ ¢ U}

is infinite. So E determines a subsequence of (xn) with no
convergent subsequence. Thus (X,C(T)) 1is subsequential, and

so we have defined i on objects. Clearly k is full and
faithful functor. So we can cénsider SEQ as a full subcategory

of SuSEQ .

Now to define a left adjoint k' to k , let X be an

object of SuSEQ . Then the sequentially open sets define a
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topology which is sequential. Clearly this defines a functor

k' which is a left adjoint to k . O

Remark. For the rest of the thesis we will refer to the
functors k: SEQ - SuSEQ and k': SuSEQ + SEQ of Proposition
4.4.9.

Proposition 4.4.10 [Kul The category SuSEQ has arbitrary

products.

Proof. Let (Xi,Ci) be objects of SuSEQ , i ¢ I . Let

X = HieI Xi and define convergence in X componentwise.

That is a sequence (X;’) in X converges to (x_ ) if and o]

Ly x;L for all ielI . Then it is easy to see

only if (Xn

|
that X is a subsequential space and the projection |
L X > X; is continuous for all i . Also for a subsequential 1

space Z and a family fi: Z - Xi of SuSEQ morphisms,

define f: Z » X as f(x) = (fi(x))iEI

Then trivially £ is continuous and £, = m, o f for all 1

Thus SuSEQ has arbitrary products. 0O

Definition 4.4.11 Let (X,C) be an object of SuSEQ , let

Y be a subset of X . Then (Y,Cy) is said to be a
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subsequential subspace of X if CY consists of those and

only those ((Yn)yw) which are in Cy .

Lemma 4.4.12 If (X,C) is an object of SuSEQ , then

C = SuSEQ (N',X)

Proposition 4.4.13 [Kul The category SuSEQ 1is Cartesian

closed.

Proof. Let X and Y be objects of SuSEQ . Then the formula

suSEQ(N™, YY) = SusEQ(NT x X,Y)

gives the subsequential structure on YX , if it exists.

Claim. The subsequential structure C on YX can be defined

as follows:

((fn),f ) is in € if and only if for each

((x),x,) in Gy , (E(x),E (x)) € Cy - (%%)

Proof of the claim. We show that C defines a subsequential

structure on v Clearly condition (i) 1is satisfied. For
(ii) 1let (fn) be a sequence which converges to f . Now for

any subsequence (fp,) of (£.) and ((xn),xm) in CX 5

nk n

define a new sequence (y_ ) as y, = X for all k

<ms<k. .
m n

n-1
Then ((yn)’yw) is in Cy . So ((fn(yn),f(xw)) is in Cy

But fnk(xn) is a subsequence of (fn(yn)) , SO

(fnk(xn),f(xm)) is in CY‘.
To show condition (*) . Let (fn) be a sequence such

that £ does not converge to f . Then there exists

((xn),xw) in CY_ such that (fn(xn),f(xw)) is not in CY

So there exists a subsequence (fnk(xnk)) such that none of
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its subsequences converge to £(Xe} - Now (fn,) is a

subsequence of (fn) such that none of its subsequences

converge to f . For otherwise there is a subsequence (fnk~)
1
of (fnk) with (fnki) -+ f . But then ((fnki(xnki)) s

f(x,)) 1is in CY

It

Now we need to show that C = SuSEQ(N+,YX) = SuSEQ(N+XX,Y)

Clearly C € SuSEQ(N' xX,Y) . ]

For the converse let f e SuSEQ(N+ xX,Y) . That is for

ip > i, and x> X, , fin(xn) - f; (x,) . But (in) is

a convergent sequence in N* . So (in) is eventually constant
or contains a subsequence which is also a subsequence of (n)

If (in) is eventually constant, then (fin) is eventually
constant and so ((fin)’fim) e C . Now assume (in) is not
eventually constant, then i = « . Assume ((fin)’fiw) £ C
Then there is a subsequence (fink) which contains no
subsequence converging to fj . But (ink) is a convergent
sequence of N* , which is not eventually constant, so (ink)
contains a subsequence (ink) which is also a subsequence of

> £ = f.

o 1

+ o ., So fi
nk 1)

(n). That is » @

1nk2
contradiction. Hence ((fin)’fim) e C. So C = SuSEQ(N+ x X,Y)

This completes the proof of the claim.

Clearly the evaluation map

e: YX x X+ Y

« . X . : .
is continuous, where Y" is given the subsequential structure

(**)
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Let Z be any object of SuSEQ . We will now show that

~

A: SUSEQ(X xY,Z) I SuSEQ(X,SuSEQ(Y,Z))

where %(x)(y) = f(x,y) . For £ € SuSEQ(X5<Y,Z) and x ¢ X ,
it is easy to see that %(x) and f are continuous. Also if
£ is continuous then £ 1is continuous. It is easy to see that

A is an isomorphism in SuSEQ . 0O

4.5 The category SuSEQ 1is a topological guasitopos

In this section we will show that SuSEQ 1is a
topological category. First we recall the definition of a

topological category.

A concrete category C 1is one with a faithful functor

u: C »Set. We interpret this as a category whose objects are
pairs (X,C) where X 1is a set and C 1is a C-structure on
X and for objects X and Y C(X,Y) cSet(X,Y) . Also the
operation of composition is the usual composition of functions,

and u is the forgetful functor.

Definition 4.5.1 [HZ] A topological category is a category

C satisfying the following conditions:
(i) C 1is a concrete category;
(ii) Fibre-smallness:

u_l(X) is a set for each set X ;

(iii) Terminal separator property:

If X 1is a set with one element then there is a unique

C-structure on X ;
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(iv) Existence of initial structures:

For any C-object (Z,C;) any set Y and any function
g: Y > Z there is a unique C-structure CY on Y such that
for any object (X,CX) , a function f: X > Y is a C-morphism

if and only if gf is a C-morphism.

In the following proposition we list some important

properties of a topological category.

Proposition 4.5.2 [(H4] Let C be a topological category.

The following hold. : ’ L

(1) There exists a final structure in C

(ii) C is complete and cocomplete and u: C > Set
preserves limits and colimits. |

(iii) Let f be a C-morphism. Then £ is monic 1if i
and only if f is injective. Also f is epic if and only if i
f is surjective. |

(iv) Let f: (X,CX) -+ (Y,CY) be a C-morphism. Then ?
the following are equivalent: i
1. f is an embedding,that is £ is injective and Cy is 2

initial with respect to (Y,Cy) -
2 f is extremal monic.

3. f 1is regular monic.

(v) The forgetful functor u: C » Set has a full and
faithful left adjoint, as well as a full and faithful right
adjoint.

(vi) For non-empty set X

, any constant map

1 X CX) > (Y,CY) is a C-morphism.
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Proposition 4.5.3  There exists an initial structure in SuSEQ

Proof. Let (Z,CZ) be an object of SuSEQ and let Y be a

set. For a function f£: Y > Z let
Cy = 1 (rp)¥a) | ((EGy)) » £(L)) is in Cp b

Then (Y,C is an object of SuSEQ . To show this, clearly

y)
for each y ¢ Y , ((y),y) 1is in CY . Also if ((yn),yw) is

in CY then ((ynk),yw) is in CY .

For (*) , assume that ((y,),y,) 1is not in Cy -
Then ((f(yn)),f(ym)) is not in CZ , so there exists a
subsequence (f(ynk)) of (f(yn)) such that no subsequence of
(f(ynk)) converges to f(y,) . Then (ynk) has no subsequence

converging to y . SO (Y,CY) is in SuSEQ .

Now let (X,C be any object of SuSEQ and let

x)
g: X+ Y be a function . If fg 1is a morphism of SuSEQ and
((xn),xm) is in CX , then (f(g(xn),f(g(xw))) is in CZ

That is ((g(xn)),g(xm)) is in CY . Hence g 1s a

C-morphism. O

Theorem 4.5.4 The category SuSEQ is'a topological categoTry.

Proof. Clearly SuSEQ 1is concrete, fibre small, satisfies
the terminal separator property and by lemma 4.5.2 there exists

an initial structure in SuSEQ . U0

From the above theorem and Cartesian closedness of SuSEQ,

we conclude that SuSEQ 1is a quasitopos.

4.6 Representability'of strong partial morphisms

We have shown in the last section that SuSEQ is a

quasitopos. In this section we give an explicit description of
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the subsequential structure on Y; , the object that represents
strong partial morphisms with codomain Y . Note that a strong
monic in SuSEQ 1s an embedding (Proposition 4.5.2 (iv)).
Finally we conclude that the space P_(X,Y) of partial maps
with closed domain and the space PO(X,Y) of partial maps with

. [] )
open domain, in SEQ, are not subspaces of SuSEQ(X,Y") 1in SuSEQ .

Proposition 4.6.1 For any subsequential space Y , there is a

1 1
subsequential space Y ' and strong monic n: Y > Y® such that

for any strong partial morphism £: X - Y there is a unique

f!: X > Y1 such that

X! >

o
) =3

is apullback square.

Proof. This is modelled on Booth-Brown [B-Bl]

1
Let Y° =Y u {w} , w ¢ Y. Define a subsequential structure

1
C,' on Y  as follows:

Y.

1) If ((y,),Ys) 1is in Cy , then ((y,),y,) 1is in GCy:
!

2) 1f (yn) is a sequence in Y ' , y_ € Y , and the terms

¥ # w are either finite or form a subsequence (Ynk) of (yn)
such that ((ynk),ym) is in‘ Cy > then ((Y&LY;) is in Gy

3) Every sequence converges to

1

To check that Y® is in SuSEQ:

Condition (i) 1is clearly held. For (ii) let ((yQ,ym) be

in CY_ and (ynk) a subsequence of (y,)

Assume that y_ # w and let E = {ny|yp # w} . If E is
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finite then ((ynk)’yQ) is in CY? . Now if E 1is infinite
then E determines a subsequence of (ynk) that converges to

Yo - SO ((ynk),yw) is in CY? , (2)

For (*) , if ((y),y,) does not belong to Cy! , then

clearly E = {n |y, € Y} is infinite. So E determines a

subsequence (ynk) of (yn) such that ((ynk),ym) is not in

Cy - But then there is a subsequence (ynk2 ) for which none
'

of its subsequences converge to y, . Hence Y 1is a

subsequential space.

1
Now the inclusion n: Y + Y 1is a strong monic.

For consider any commutative diagram.

e
X —

Z
u ‘ v
1
Y — Y
n v

with e epic. Then e is surjective and for each x e X

ve(x) =nulx) # w

Define t: Z >+ Y by t(z) =v(z) . Then t is a SuSEQ-morphism,

since v 1is a SuSEQ-morphism. So n 1is a strong monic.

For astrong monic f: X + Y , that is a diagram

£
X' - Y

X

! 1
where d is a strong monic, let f°: X » Y be defined by
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) = (fx xedX")
(w otherwise .

. _
To show that £° is continuous, let ((xn),xw) be in CX .

)
If x_, ¢ d(X') then f'(xn) +~ £'x_ . So assume X, € d(x")

and let E = {n | X, € d(x')} . If E is infinite then E

determines a subsequence (xnk) that converges to x, . Now
d is strong, soO (xnk) + x, in X' . Then f(xnk) +~ £(x_)
and f!(xn) - f!(xw) . If E 1is finite then f:(xn) = W

for n > some finite k . Hence f:(xn) - f(x,) . So fI is

1
continuous. Now it is easy to see that £° is unique and the

diagram

is a pullback. U

1
Now when Y = {*}» =1, 1° classifies strong monics

1
(subspaces) in SuSEQ . The subsequential structure on 1° is

the indiscrete structure as shown below.

) . ? .
Proposition 4.6.2 Let Y = {(*} . Then {*}° = {*} v {w} 1is the

indiscrete subsequential space.

i
4
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Proof. Let (yn) be a sequence in {*}° . Then (yn) + W
To show that (yn) + * let E = {n Iyn_# w} . If E is
finite then (yn) + * . Now if E 1is infinite then E

determines the constant subsequence (*) . So (yn) + % L O

Let Y be a topological space. Recall from [B-B1l] ,
[A-B] (cf. Chapter 2), that there are spaces Y' and ¥ , both
with underlying sets Y u {w} with w ¢ Y , and with

topologies:

UcY 1is closed if and only if U =Y or U is closed

in Y . Then {w} is open but not closed.
Also the space Y =Y u {w} with the topology in

which U ¢ Y 1is open if and only if U =Y or U is open in

Y .

~

We now give the subsequential structure on Y and Y .

Proposition 4.6.3 Let Y ¢ |SEQ

~

(1) The convergent sequences in Y can be described as
follows:

1) If ((yp)s¥e) € Cy , then ((y),y,) ¢ Cy™

2) ((yn),w) € CY~ if and only if y, = w for all n =2

some finite Kk ;

~

3) If (yn) is a sequence in Y , y_ e Y and the terms

¥y # w are either finite or form a subsequence
(ynk) of (y,) such that ((ynk),ym) e Cy then
((y,)»¥.) € Cy~
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(i1) The convergent sequences in. Y can be described as
follows:

1) If ((¥),¥e) € Cy then ((yy),Ya) € Cg 5

2) For any sequence (yn) in ?v,((yn),w) € CQ ;
3) Let (y,) be such that y =« finitely often and
the terms Yy, # w form a subsequence converging to

y, in Y then ((y,)sYe) € (e

~ ”~

(iii) The spaces Y and Y are sequential.

Proof. The proof is easy. g B

Corollary 4.6.4 Let Y be a sequential space. Then the

functions

id Y =+ Y

Ty

and id + ¥~ Y'
y v

are monics in SuSEQ which are not strong monic.

In SuSEQ strong monic is an embedding, so for a

~ ~ 1
sequential space Y , Y and Y are not subspaces of Y’

The following result will be used to prove that the functor
k: SEQ —SuSEQ preserves function spaces, and will be used to

prove similar results in the next chapter.

Proposition 4.6.5 Let C and D be Cartesian closed categories.’

Let k: C + D be a functor such that:
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1) k is fully faithful;

2) k has a left adjoint ~ k' ;

3) For Y e JCl , k'(kY) =Y.

If for X,X' ¢ 191 , k'(X x X') = k'X x k'X" then k preserves |

function spaces. I

Proof. Let Y and Z € 1C) . Then for X € IDl there are

natural isomorphisms

p(x,k(zV)) 2 c(k'x, (zY))
C(k'X % Y,2)

e

e

C(k'X x k'(kY),Z)

n

C(k' (X x kY),Z)

e

D(X % kY, kZ)
(X, (k2)X%)

n

Hence k(z1) ¥ (x2)*¥ . O :

Proposition4.6.6 The functor k': SuSEQ » SEQ is such that

for X and Y ¢ |SuSEQ| , k'(X x Y) % k'X x k'Y .

k'X xk'Y. Then Z is the sequentialized product

Proof. Let Z

Chapter 3 . That is U < Z is open if and only if U 1is

sequentially open. But it is easy to see that z = (xn,yn)

converges to z_ = (x_,y,) if and only if X > X, and I
Also the sequential topology on k'(X x Y) 1is induced by

the sequentially open sets in X x Y . But the sequentially

open sets are then determined by the convergent sequences Cy X Cy -

That is x =+ X and y_ + vy, if and only if

((xpp¥)) » (x_,y,) - So k'(XxY) =k'Xxk'y. O
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Proposition 4.6.7 The functor k: SEQ + SuSEQ preserves

function spaces.

Proof. The functor k satisfies the conditions of

Proposition 4.6.5. 0

Now for sequential spaces X and Y ,

P.(X,Y) ¥ SEQ(X,Y)

and

P.(X,Y) * SEQ(X,D)

So the next result follows.

Proposition 4.6.8 Let X and Y be sequential spaces. Then

k [P_(X,Y)] ¥ SuSEQ(kX,kY )
and

k [P_(X,Y)] % SuSEQ(KX,kY)

We now state one main conclusion of this chapter.
Proposition 4.6.9 Let X and Y be sequential spaces.

Then k[PC(X,Y)J and kEPO(X,Y)] are not subspaces of

1

SUSEQ(X,Y") SPart (X,Y)

in SuSEQ , where SPart(X,Y) denote the space of strong

partial morphisms with codomain Y

Proof. Consider X = {*} and Corollary 4.6.4 . D




:
.

¥y
¢
:
B

4/32

We conclude, Proposition 4.6.9, that when we embed

. .
PO(X,Y) and PO(X,Y) in SuSEQ , then SuSEQ(X,Y") does not

contain PC(X,Y) and PO(X,Y) as subspaces. Hence SuSEQ ,
quasitopos in general, does not solve the problem of finding a

space which contains both PC(X,Y) and PO(X,Y) as subspaces.



