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1 Symmetry in analogues of set theory

This lecture gives background to and results of work of my student John Shrimpton [19, 20, 21].
It advertises the joining of two themes: groups and symmetry; and categorical methods and
analogues of set theory.

Groups are expected to be associated with symmetry. Klein’s famous Erlanger Programme
asserted that the study of a geometry was the study of the group of automorphisms of that
geometry.

The structure of group alone may not give all the expression one needs of the intuitive idea of
symmetry. One often needs structured groups (for example topological, Lie, algebraic, order, ...).
Here we consider groups with the additional structure of directed graph, which we abbreviate to
graph. This type of structure appears in [18, 14].

We shall associate with a graph A a group AUT(A) which is also a graph. The vertices
of AUT(A) are the automorphism of the graph A and the edges between automorphisms give
an expression of “adjacency” of automorphisms. The vertices of this graph form a group, and
so also do the edges. The automorphisms of A adjacent to the identity will be called the inner
automorphisms of the graph A. One aspect of the problem is to describe these inner automorphisms
in terms of the internal structure of the graph A.

The second theme is that of regarding the usual category of sets and mappings as but one
environment for doing mathematics, and one which may be replaced by others. We use the word
“environment” here rather than “foundation”, because the former word implies a more relativistic
approach.

The other environment we choose here is the category of directed graphs and their morphisms.
We define this category, and then use methods analogous to those of set theory within this category.

∗This paper is an account of a lecture “Groups which are graphs (and vice versa!)” given to the Fifth September
Meeting of the Irish Mathematical Society at Waterford Regional Technical College, 1992. It was published as [4].
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This allows set-theoretic intuition to be used to generate new results and methods, and is possible
because of the “good” properties of this category of graphs. The background here is that of topos
theory, which has given methods for considering many other environments for mathematics, and
for comparing these environments.

Topos theory takes a relative rather than absolute viewpoint towards sets. The topos of sets
is obviously an important, standard and basic kind of topos, but suffers from the defect of being
somewhat boring, reflecting the fact that the objects of the topos, namely the abstract sets, are
devoid of structure. The topos theory approach allows not only other versions of the category, or
topos, of sets, but also allows comparison of different versions, through the notion of functor and
natural transformation.

Thus different notions of set, or graph, can be evaluated by comparing the properties of the
associated category. This global viewpoint has proved fruitful. One point of appearance was in
topology, where the standard category of topological spaces was found not to have a function
space with convenient properties. So different categories of topological spaces were proposed with
“better” or more convenient function spaces.

The idea of emphasising the categorical aspects of sets is not so familiar outside of category
theory. For example, the article [1] does not mention any categorical approach. The traditional
viewpoint is that sets are defined by the membership relation. There is, however, a strong argument
that this approach is counter intuitive, since for many sets we wish to use, such as that of real
numbers, it is very difficult to get ones hands on any but a small fraction of their members.

The categorical approach is that sets are defined by the relations between them, namely the
functions, and this view has been strengthened by the success of topos theory. The book [15] is a
good introduction to topos theory for those with a foundation in category theory. For an article
relating the history of topos theory to notions of the foundations of sets, see [16]. The author
emphasises that the notion of topos was defined by Grothendieck as a replacement for the notion
of topological space. Thus it was intrinsic to the definition that many different toposes were to
be considered.

In the work of Lawvere, categories of other structures than sets are regarded as having equal
intuitive value to the category of sets. That is, the category of sets is not regarded as a foundation
for mathematics.

Some words have to be said on the advantages of categorical methods, whose objectives and
methodology have failed to be realised by some. The book by Reid [17] even writes

The study of category theory for its own sake (surely one of the most sterile of intell-
ectual pursuits) also dates from this time; Grothendieck can’t necessarily be blamed
for this, since his own use of categories was very successful in solving problems.

This quotation has aspects which should be noted. One is that it derides some vaguely specified
group of colleagues as essentially unprofessional. A second is its lack of adventure. Let me
propose a game: “I can think of a more sterile intellectual pursuit than you.” A third is that it is
hardly sensible to think of “blaming” Grothendieck for developments in mathematics. A fourth
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is its avoidance of historical analysis and of supporting evidence. This should be contrasted with
McLarty’s article [16].

A fifth is the view that the aim of mathematics is the solution of problems, which, by implica-
tion, are already formulated. By contrast, a historical view shows that the value of mathematics
for other subjects, and for its own ends, is that it has developed language for:

• the study of patterns and structures;

• the formulation of problems;

• the development of methods of calculation and deduction.

The solution of problems is often a byproduct of this wider process and these wider aims. In this
process, the study of an area for its own sake is often a necessary developmental stage. Judgements
on the sterility or otherwise of such a study can be a matter of timing, or of gossip and snobbery,
and are not always based on comparison and scholarship. One of my hobbyhorses is that our
education of mathematicians is lacking in the development of faculties of value, judgement, and
scholarship. This leads to statements such as that quoted above, whose lack of sophistication and
hectoring tone could have the effect on the young of suppressing discussion and debate, and of
stultifying the development of ideas.

The origins of category theory help to explain its utility. It arose from attempting to explain
the meaning of the word “natural” in mathematics, and with a strong impetus from the axiomatic
approach to homology theories, developed by Eilenberg and Steenrod [7]. The original paper on
the subject by Eilenberg and Mac Lane [6], has an interesting discussion of the word “natural”
in terms of the map V → V ∗∗ of a vector space into its double dual. To define natural required a
definition of functors, and to define functors required a definition of category. This itself reflected
also the growing realisation that whenever a structure has been defined, it is usually necessary to
consider also the morphisms of that structure.

By now, the general notions of limit and colimit, whose formulation was possible with the use of
categories, and the later notion of adjoint functor, must be regarded as basic tools in mathematics.
For example, the fact that a functor which is a left adjoint preserves colimits, while a right adjoint
preserves limits, is a useful computational tool in many aspects of algebra and even combinatorics.
Graduate books will probably have to give initial sections on basic concepts of category theory,
in the same way as they have given basic sections on set theory, algebra and topology.

Category theory has been found useful for

• A global approach: i.e. constructions are defined by universal properties, which give the
relation of the constructed object to all other objects.

• Formulating definitions and theorems

• Carrying out proofs

• Discovering and exploiting analogies between various fields of mathematics
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Grothendieck’s work on the foundations of algebraic geometry led him to develop a vast range of
new categorical concepts. It is significant that his first important work was in analysis, and he
brought to algebraic geometry a local-to-global approach. In algebraic geometry, it seems that
“local” means “at a given prime p”, and “global” means “over the integers”. His approach was
also to take concepts seriously, recognising the effort required to “bring new concepts out of the
dark” ([8]), and to spend a lot of effort in turning difficult results into a series of tautologies.

As one other recent example, and an indication of a wide literature, the paper by Joyal and
Street [9] illustrates how an algebraic development initially formulated for metamathematical
reasons, and almost for its own sake, namely the notion of monoidal, or tensored, category, has
found striking applications in concrete problems in knot theory, and string theory in physics.

Thus one of the attractions of category theory is that the same algebraic tools are found
applicable at several levels, and in a variety of areas. This feature is also found in groupoid
theory, of which a survey was given by me in [3]. This notion has allowed the formulation of
important extensions of group theory and of notions of symmetry.

Thus category theory is par excellence the method which enables the recognition and exploita-
tion of many forms of analogy and comparison of structures. The point is that the algebraic study
of the structure of a theory involves studying the categories and functors associated to the theory,
and such a study leads to new algebraic notions of interest in their own right.

2 Applications to graph theory

There are several unfamiliar aspects of this approach as applied to graph theory.
1) In this approach, it is essential to use a category of graphs and their morphisms. By contrast,
it is not so easy to find a book on graph theory which defines a morphism of graphs.
2) An important categorical method used is that of universal property. In our setting, this defines
a construction on graphs by the relation of the construction to all graphs. This may seem curious
and far from logical. In fact, a construction by universal properties is analogous to a program,
which when given an input of particular graphs, or graphs and morphisms between them, gives
an output, namely new graphs and new morphisms. This analogy to programming is one reason
why computer scientists have found the methods of category theory useful.
3) We lift to the category of graphs standard methods available in the category of sets and
functions.

There are many possible definitions of graph and morphism of graph. We take one which gives
for our purposes the “best” properties of the corresponding category. This again is an example of
a “global” approach, and is simply a step or so up from a common approach in mathematics of
considering for example all numbers, or all the symmetries of a square.

We deal here only with directed graphs. So for us a graph will mean a set AE of edges, a set
AV of vertices and three functions s, t : AE → AV , ε : AV → AE such that sε = 1, tε = 1. Here
s and t are the source and target maps. If x, y ∈ AV , then A(x, y) denotes the set of edges with
source x and target y. Such an edge a is also written a : x → y. A loop is an edge with the same
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source and target.
This defines in essence a directed graph in which each vertex v has an associated loop εv at

that vertex. This extra structure makes no difference to the combinatorics of an individual graph,
but makes a considerable difference to the allowable graph morphisms. The associated loop at a
vertex v is often written • and given the vertex label v. Thus one of the simplest graphs, denoted
I, is pictured as

0 • // • 1

A morphism of graphs f : A → B is a pair of functions fE : AE → BE, and fV : AV → BV

preserving the source and target maps, and ε. The implication is that f maps edges to edges,
vertices to vertices, and f can map a general edge to the loop associated to a vertex. In effect,
this means edges may be mapped to vertices.

The category DG of directed graphs has objects the graphs and arrows the morphisms, and
DG(A,B) denotes the set of graph morphisms A → B. Lawvere in [13] calls this the category of
reflexive graphs.

This category has a terminal object, written •, with the property that for any graph A the
vertices of A are naturally bijective with DG(•, A). The edges of any graph A are naturally
bijective with DG(I, A).

Continuing with the categorical approach, we define the product of graphs.
A product of graphs A and B consists of a graph A × B with morphisms p : A × B → A, q :

A×B → B such that for any graph C the function

DG(C,A×B) → DG(C, A)×DG(C, B)

f 7→ (pf, qf)

is a bijection. This says that a morphism to A × B is completely described by its component
morphisms to A and B. The definition is also analogous to the law for numbers (ab)c = acbc.

It may be proved from the definition that the vertices of A×B are pairs of vertices from A and
B, and the edges of A× B are pairs of edges from A and B. One way of proving this is to show
that if SETS denotes the category of sets and functions, then the two functors DG → SETS
given by the edges and the vertices have left adjoints, and so preserve limits, and in particular
products. This deduction is one example of the “comparison” of environments referred to earlier.
An important aspect of this procedure is that the product is defined by the universal property,
which is the property that is most often used, and then a specific construction is deduced from
the universal property. This verifies existence of the product.

As a typical example of the product of graphs, associated with the simplest graph I we have
the product I × I, illustrated by the following diagram:

• //

²² ÂÂ?
??

??
??

??
??

•

²²• // •
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Given sets B and C there is a set CB of functions B → C. In our category of graphs, the
analogous construction is of course a graph of morphisms DIGRPH(B, C).

In the category of sets we have the standard exponential law

CA×B ∼= (CB)A.

This corresponds to the law for numbers cab = (ca)b. In graph theory, we have the analogous law:
For graphs A,B, C, there is a natural bijection

DG(A×B, C) ∼= DG(A, DIGRPH(B, C)).

Here the morphism graph DIGRPH(B, C) is in effect defined by this formula. From this
formula, we can deduce the specific construction as follows. Let B and C be graphs. The graph
DIGRPH(B, C) is to have vertices the morphisms of graphs B → C and to have edges the triples
(ρ, f, g) such that f and g are morphisms of graphs B → C and ρ : B → C is a function from
edges to edges such that if b is an edge of B then

sρb = fsb, tρb = gtb.

Define
s(ρ, f, g) = f, t(ρ, f, g) = g, ε(f) = (f, f, f).

Then each edge b of B yields the diagram

• ρεsb //

fb

²²

ρb

ÂÂ?
??

??
??

??
??

??
??

??
?fsb gsb

ftb gtb

•

gb

²²•
ρεsb

// •

COMMENTS:
1. If you define a directed graph by omitting ε then product and morphism graph are defined,
but the vertices of the morphism graph are not the morphisms of graphs. Instead, the morphisms
correspond to the loops at vertices. From the categorical viewpoint, this is not surprising. The
morphisms B → C should correspond to the morphisms • → DIGRPH(B,C), where • is the
terminal object in the category, i.e. the graph such that there is exactly one morphism A → •
for any graph A. If the associated loop is omitted from the definition of graph, then the terminal
object again has one vertex and one loop, and the morphisms of graphs are then not the vertices
of the morphism graph, but are instead the loops of this morphism graph. The relations between
these two categories of directed graphs are considered by Lawvere in [13].
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2. There is another analogy between the category DG and the category of sets and functions. We
can define in DG a graph Ω

•
0 1"" •bb ee

and a morphism of graphs

{1} true // Ω

called the sub-object classifier because it classifies subgraphs in a manner analogous to the way
the inclusion

{1} → {0, 1}
in sets classifies subsets via the characteristic function of a subset.

With this sub-object classifier, with the constructions defined earlier, and with the construction
of limits (a more general notion than product), DG becomes what is called a topos. The name is
due to Grothendieck, and was envisaged by him as a replacement of the notion of topological space
by the category of sheaves on that space. For our purposes, the idea is to carry out arguments
in the topos DG as if it were the category of sets and functions, but never to use the law of
the excluded middle. The reason for this is that the lattice of subgraphs of a given graph is not
Boolean, since for example the complement A \ (A \ B) of the complement A \ B of a subgraph
B is usually not the original subgraph B. Thus this theory is intuitionistic, an approach which
is seen in this context as a practical mathematical tool for dealing with situations where the
notion of membership is not the primary aspect. In the case of graphs, the “elements” have to
be the vertices, but these capture only a small part of the structure. For more information on
this approach in graph theory, see [13], while for the general body of theory, see the book by Mac
Lane and Moerdijk [15].

The exponential law in DG has a number of consequences. One is that there is a composition
morphism

DIGRPH(B,C)×DIGRPH(A,B) → DIGRPH(A,C)

which is associative and with identity. Hence

END(A) = DIGRPH(A,A)

has the structure of both a monoid and a graph. In the category of sets, monoids have maximal
subgroups. This is also true in a topos. In the case of graphs, the maximal subgroup of the monoid
END(A) is called

AUT(A).

It is a group which is also a graph, or a graph which is also a group. Its set of vertices is the group
Aut(A) of automorphisms of A.
EXAMPLE: Let ∆n be the complete graph on n vertices, and let Dn be the discrete graph on n
vertices. These graphs have the same automorphism group, Sn, the symmetric group on n letters.
But AUT(∆n) is the complete graph, while AUT(Dn) is discrete.
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In the graph AUT(A), the automorphisms adjacent to the identity form a normal subgroup of
Aut(A): these automorphisms are called the inner automorphisms of A.

This raises the problem of describing the inner automorphisms of a graph in terms of internal
properties of the graph. The solution is given is given by Shrimpton [20, 21] in terms of the
notion of inner subgraph. A subgraph B of a graph A is inner if it is maximal with respect to the
following properties:

1. complete (i.e. the sets B(x, y) have the same cardinality for all x, y ∈ BV );

2. full (i.e. B(x, y) = A(x, y) for all x, y ∈ BV );

3. any automorphism of B extends to an automorphism of A which is the identity on the
complement A \B of B in A.

CLAIM [20, 21]Any vertex belongs to a unique inner subgraph.
THEOREM [20, 21]An automorphism of a graph is inner if and only if it restricts to an automor-
phism of each inner subgraph.

This suggests that the inner subgraphs are a kind of atom of symmetry of the graph.
The consideration of group-graphs leads to another new notion, the centre of a graph.
A group-graph is defined by Ribenboim in [18] to consist of groups GE and GV and morphisms

s, t : GE → GV , ε : GV → GE such that sε = tε = 1. This concept has occurred elsewhere, for
example as a 1-truncated simplicial group [14], and as part of the structure of a group-groupoid,
as in Brown and Spencer [5], where this is called a G-groupoid. Loday in [14] found it natural to
consider the subgroup [Ker s, Ker t] and to say that the group-graph is a cat1-group if this subgroup
is trivial. If it is not trivial, we can form the quotient γGE = GE/[Ker s, Ker t] with the induced
morphisms to GV giving γG the structure of cat1-group. We call

(Ker s) ∩ (Ker t) ⊆ γGE

the second homotopy group of G and write it π2G.
In particular, if G = AUT(A), then π2(G) is called the centre Z(A) of the graph A. The centre

is always an abelian group, and in fact is a module over Out(A) = Aut(A)/Inn(A). The aim is
to describe this centre, in the case A is finite, in terms of the structure of A.

To this end, we introduce in the following proposition an equivalence relation on the edges of
a graph.
PROPOSITION: [20, 21] If A is a graph, then there is an equivalence relation on the edges of A
given by x is equivalent to y if and only if there are inner subgraphs I and J of A such that sx,
sy lie in I and tx, ty lie in J .
THEOREM: [20, 21] If A is finite, then the centre Z(A) of A is a direct sum of copies of the cyclic
group of order 2, the number of copies being the number of equivalence classes of edges of A which
contain multiple edge sets.
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3 Conclusion

We have now shown that the study of categorical aspects of graph theory can lead to new problems,
questions, and insights, and that it gives an interesting example of the relative viewpoint on set
theory as exemplified by topos theory. Further work that might be done is in the area of “actions”
of group-graphs, as well as the investigation of higher dimensional versions of AUT(A), such as
the notion of automorphisms of ordered simplicial complexes.

The category DG is an example of what is called a presheaf category, namely a functor category
Ĉ = (SETS)C

op
for a small category C. The specific constructions outlined above for directed

graphs are special cases of the fact that any such presheaf category Ĉ is a topos (see Mac Lane and
Moerdijk [15]). These, and other, toposes, yield a range of other “environments” for mathematics,
or for a particular study, while other types of categories than toposes may be more suitable for
other aims.

The notion of an internal group object in a category or in a topos is quite old. Thus the
surprise is that the detailed study of this particular example, and the elucidation of the properties
of the automorphism group-graph, had not earlier been considered. This suggests that there may
be considerable mileage to be had from applying in new ways and in new places these and other
concepts and methods of category theory.
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