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Preface

This book is an exposition of some basic algebraic topology at the border between ho-
mology and homotopy. The emphasis is explained as follows. A Leverhulme Emeritus
Fellowship was awarded to the first author for 2002–2004 to support making available,
in one volume and in a consistent style, the work on crossed complexes and related
higher homotopy groupoids carried out from 1974 to 2005 mainly by the first two au-
thors. This work resulted in 12 joint papers as well as a number of other collaborations.

The project arose from the question formulated in about 1965 as to whether or not
groupoids could be useful in higher homotopy theory. Could one develop theories and
applications of higher groupoids in a spirit similar to that of combinatorial group theory,
enabling both understanding and calculation, and thus continuing J. H. C. Whitehead’s
project of ‘Combinatorial homotopy’? This aim also explains the term ‘Higher dimen-
sional group theory’ in [Bro82].

This account also elucidates fully, as did [BH81a], a paragraph near the end of the
Introduction to [Bro67] which mentioned an n-dimensional version of the Seifert–van
Kampen Theorem, but really referred speculatively to an intuition of a proof, still then
in search of a theorem. The necessary machinery of strict cubical higher homotopy
groupoids was set up over the years to express that intuition. Surprisingly, it worked
out as intended, though the task involved many new ideas and inputs from many people.
However the key notion of higher homotopy groupoid has not attracted much attention
in algebraic topology. So a full exposition is needed.

We also try to include references to work directly relevant to the main themes, and
hope this book will also be useful as a reference on related work. It is not intended
to be a survey of all work on, for example, crossed modules. Also we cannot claim
that the historical references are full and definitive, but we hope they will give a useful
entrée to the literature.

The organisation and some new details have been worked out by Brown and Sivera
who carry full responsibility for the final result and in particular for errors and obscuri-
ties. However the main thrust of this exposition comes from the joint papers of Brown
and Higgins; the contribution of Philip Higgins to this research by imagination, powers
of organisation of material, algebraic insight and expository skills are seen throughout
this book, and so he is rightly a joint author.

Obtaining these results depended on other fortunate collaborations, particularly
initial work on double groupoids and crossed modules with Chris Spencer in 1971–73
under SERC support, see [BS76a], [BS76b]. Collaboration at Bangor over the years
with Tim Porter and Chris Wensley has been especially important. Other collaborators
on joint papers relevant to the ‘groupoid project’ were: Lew Hardy, Jean-Louis Loday,
Sid Morris, Phil Heath, Peter Booth, Johannes Huebschmann, Graham Ellis, Heiner
Kamps, Nick Gilbert, Tim Porter, David Johnson, Edmund Robertson, Hans Baues,
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Razak Salleh, Kirill Mackenzie, Marek Golasinski, Mohammed Aof, Rafael Sivera,
Osman Mucuk, George Janelidze, Ilhan Icen, James Glazebrook; research students at
Bangor (with date of completion, supervised by Brown unless marked P for Porter
or W for Wensley): Lew Hardy (1974), Tony Seda (1974), A. Razak Salleh (1975),
Keith Dakin (1976), Nick Ashley (1978), David Jones (1984), Graham Ellis (1984),
Fahmi Korkes (1985, P), Ghafar H. Mosa (1987), Mohammed Aof (1988), Fahd Al-
Agl (1988), Osman Mucuk (1993), Andy Tonks (1993), Ilhan Icen (1996), Phil Ehlers
(1994, P), J. Shrimpton (1990, with W), Zaki Arvasi (1995, P), Murat Alp (1997, W),
Ali Mutlu (1998, W), Anne Heyworth (1998 with W), Emma Moore (2001, with W).

It is a pleasure to acknowledge also:
(i) The influence of the work of HenryWhitehead, who was Brown’s supervisor until

1960, when Henry died suddenly in Princeton at the age of 55. It was then that Michael
Barratt guided Brown’s doctoral work towards the homotopy type of function spaces, a
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ahead, by that very strong thread (roughly: understand non commutative
cohomology of topoi!) which I kept trying to sell for about ten or twenty
years now, without anyone ready to “buy” it, namely to do the work. So
finally I got mad and decided to work out at least an outline by myself.





Prerequisites and reading plan

The aim is for the major parts of this book to be readable by a graduate student ac-
quainted with general topology, the fundamental group, notions of homotopy, and some
basic methods of category theory. Many of these areas, including the concept of group-
oid and its uses, are covered in Brown’s text ‘Topology and Groupoids’, [Bro06]. The
only theory we have to assume for the Homotopy Classification Theorem in Chapter 11
is some results on the geometric realisation of cubical sets.

Some aspects of category theory perhaps less familiar to a graduate student, or for
which we wish to emphasise a viewpoint, are given in Appendices, particularly the
notion of representable functor, the notion of dense subcategory, and the preservation
of colimits by a left adjoint functor. This last fact is a simple but basic tool of algebraic
computation for those algebraic structures which are built up in several levels, since
it can often show that a colimit of such a structure can be built up level by level. We
also give an account of fibrations and cofibrations of categories, which give a general
background to the notions and techniques for dealing with colimits of mathematical
structures with structures at various levels. Indeed it is the use in algebraic topology
of algebraic colimit arguments rather than exact sequences that is a key feature of this
book.

We make no use of classical tools such as simplicial approximation, but some
knowledge of homology and homotopy of chain complexes could be useful at a few
points, to help motivate some definitions.

We feel it is important for readers to understand how this theory derives from the
basic intuitions and history of algebraic topology, and so we start Part I with some
history. After that, historical comments are given in Notes at the end of each chapter.

This book is designed to cater for a variety of readers.
Those with some familiarity with traditional accounts of relative homotopy theory

could skip through the first two chapters, and then turn to Chapter 6, and its key
account of the homotopy double groupoid �.X;A;C / of a pair of spaces .X;A/ with
a set C of base points. This construction avoids two problems with second relative
homotopy groups, namely that a choice has to be made in their definition, and all
their group compositions are on a single line. The quite natural construction of the
homotopy double groupoid is the key to proving a 2-dimensional Seifert–van Kampen
Theorem, and so giving the applications in Chapters 4 and 5. Part I does develop a lot of
the algebra and applications of crossed modules (particularly coproducts and induced
crossed modules) and the full story of these can be skipped over.

Part II gives the major applications of crossed complexes, with the proofs of key
results given in Part III, using the techniques of cubical !-groupoids.

Finally, those who want the pure logical order could read the book starting with
Part III, and referring back for basic definitions where necessary; or, perhaps better,
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start with Chapter 6 of Part I for the pictures and intuitions, and then turn to Part III.
The book [Bro06] is used as a basic source for background material on groupoids

in homotopy theory. Otherwise, in order not to interrupt the flow of the text, and to
give an opportunity for wider comment, we have put most background comments and
references to the literature in notes at the end of each chapter. Nonetheless we must
make the usual apology that we might not have been fair to all contributors to the
subject and area.

We have tried to make the index as useful as possible, by indexing multi-part terms
under each part. To make the Bibliography more useful, we have used hyperref to list
the pages on which an item is cited; thus the Bibliography serves to some extent as a
name index.

Because of the complexity and intricacy of the structure we present, readers may
find it useful to have the e-version with hyperref as well as the printed version.
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This diagram aims to give a sketch of some influences and interactions leading to
the development of nonabelian algebraic topology, and higher dimensional algebra, so
that this exposition is seen as part of a continuing development. There are a number of
other inputs and directions which were not easy to fit in the diagram, for example the
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contribution of Seifert to the Seifert–van Kampen Theorem, and the work of C. Ehres-
mann on n-fold categories. He was a pioneer in this, and his definition and examples of
double categories in [Ehr65] were in 1965 a starting input for this project on groupoids
in higher homotopy theory.

The theory of groupoids and categories gets more complicated in higher dimensions
basically because of the complexity of the basic geometric objects. Thus in dimension 2
we might take as basic objects the 2-disk, 2-globe, 2-simplex, or 2-cube as in the
following pictures:

In this book we will use principally the 2-disks, which give us crossed modules,
and the 2-cubes, which give us double groupoids, while in higher dimensions the disks
and cubes give us crossed complexes and cubical!-groupoids respectively. In essence,
the cubical model leads to conjectures and then theorems, partly through the ease of
expressing multiple compositions, see p. xxii, and Remark 6.3.2, while the disk model
leads to calculations, and clear relations to classical work.

In category theory rather than groupoid theory the disk model is not available. There
is however important work, even a majority, in higher category theory which takes a
globular or simplicial rather than cubical route, so there is still much work to be done
to relate and evaluate all these models, for the aims of this treatise, or for current and
future applications.



Introduction

The theory we describe in this book was developed over a long period, starting about
1965, and always with the aim of developing groupoid methods in homotopy theory
of dimension greater than 1. Algebraic work made substantial progress in the early
1970s, in work with Chris Spencer. A substantial step forward in 1974 by Brown and
Higgins led us over the years into many fruitful areas of homotopy theory and what
is now called ‘higher dimensional algebra’2. We published detailed reports on all we
found as the journey proceeded, but the overall picture of the theory is still not well
known. So the aim of this book is to give a full, connected account of this work in
one place, so that it can be more readily evaluated, used appropriately, and, we hope,
developed.

Structure of the subject

There are several features of the theory and so of our exposition which divert from
standard practice in algebraic topology, but are essential for the full success of our
methods.

Sets of base points: Enter groupoids

The notion of a ‘space with base point’ is standard in algebraic topology and homotopy
theory, but in many situations we are unsure which base point to choose. One example
is if p W Y ! X is a covering map of spaces. Then X may have a chosen base point
x, but it is not clear which base point to choose in the discrete inverse image space
p�1.x/. It makes sense then to take p�1.x/ as a set of base points.

Choosing a set of base points according to the geometry of the situation has the
implication that we deal with fundamental groupoids �1.X;X0/ on a set X0 of base
points rather than with the family of fundamental groups �1.X; x/, x 2 X0. The
intuitive idea is to considerX as a country with railway stations at the points ofX0; we
then want to consider all the journeys between the stations and not just what is usually
called ‘change of base point’, the somewhat bizarre concept of the set of return journeys
from the individual stations, together with ways of moving from a return journey at
one station to a return journey at another.

Sets of base points are used freely in what we call ‘Seifert–van Kampen type situa-
tions’ in [Bro06], when two connected open sets U; V have a disconnected intersection
U \ V . In such case it is sensible to choose a set X0 of base points, say one point in
each component of the intersection.3
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The method is to use a Seifert–van Kampen type theorem to pass from topology
to algebra by determining the fundamental groupoid �1.U [ V;X0/ of a union, and
then to compute a particular fundamental group �1.U [ V; x/ by using what we call
‘combinatorial groupoid methods’, i.e. using graphs and trees in combination with the
groupoid theory. This follows the principle of keeping track of structure for as long as
is reasonable.

Groupoids in 2-dimensional homotopy theory

The successful use of groupoids in 1-dimensional homotopy theory in [Bro68] sugg-
ested the desirability of investigating the use of groupoids in higher homotopy theory.
One aspect was to find a mathematics which allowed ‘algebraic inverse to subdivision’,
in the sense that it could represent multiple compositions as in the following diagram

7! (multcomp)

in a manner analogous to the use of .a1; a2; : : : ; an/ 7! a1a2 : : : an in categories and
groupoids, but in dimension 2. Note that going from right to left in the diagram is
subdivision, a standard technique in mathematics.

Traditional homotopy theory described the family �2.X; x/ of homotopy groups,
consisting of homotopy classes of maps I 2 ! X which take the edges of the square
I 2 to x, but this did not incorporate the groupoid idea, except under ‘change of base
point’.

Also considered were the relative homotopy groups �n.X;A; x/ of a based pair
.X;A; x/ where x 2 A � X . In dimension 2 the picture is as follows, where thick
lines denote constant maps:

1

2

��

��

A

Xx x

x

That is, we have homotopy classes of maps from the square I 2 to X which take the
edge @�

1 to A, and the remaining three edges to the base point.
This definition involves choices, is unsymmetrical with respect to directions, and

so is unaesthetic. The composition in �2.X;A; x/ is the clear horizontal composition,
and does give a group structure, but even large compositions are still 1-dimensional,
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i.e. in a line:

A

In 1974 Brown and Higgins found a new construction, finally published in [BH78a],
which we called �2.X;A;X0/: it involves no such choices, and really does enable
multiple compositions as wished for in Diagram (multcomp). We considered homotopy
classes rel vertices of maps Œ0; 1�2 ! X which map edges to A and vertices to X0:

1

2

��

��

�

X

AX0 X0

A

X0

�

A

�
A X0

�

Part of the geometric structure held by this construction is shown in the diagram:

�2.X;A;X0/
����
��
�� �1.A;X0/

���� X0

where the arrows denote boundary maps.
A horizontal composition in �2.X;A;X0/ is given by

hh˛ii C2 hhˇii D hh˛ C2 hC2 ˇii
as shown in the following diagram, where h is a homotopy rel end points inA between
an edge of ˛ and an edge of ˇ, and thick lines show constant paths.

1

2

��

��

˛ h ˇ

The proof that this composition is well defined on homotopy classes is not entirely
trivial and is given in Chapter 6. With a similar vertical composition, we obtain the
structure of double groupoid, which enables multiple compositions as asked for in
Diagram (multcomp).

There is still more structure which can be given to �2, namely that of ‘connections’,
which we describe in the section on cubical sets with connections on p. xxviii.

Crossed modules

A surprise was that the investigation of double groupoids led back to a concept due
to Henry Whitehead when investigating the properties of second relative homotopy
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groups, that of crossed module. Analogous ideas were developed independently by
Peiffer and Reidemeister in [Pei49], [Rei49], the war having led to zero contact be-
tween mathematicians in Germany and the UK4. It is interesting that Peiffer’s paper
was submitted in June, 1944. Work by Brown with C. B. Spencer in 1971–73 led
to the discovery of a close relation between double groupoids and crossed modules.
This, with the construction in the previous section, led to a 2-dimensional Seifert–
van Kampen Theorem, making possible some new computations of nonabelian second
relative homotopy groups which we give in detail in Chapters 4, 5.

A crossed module is a morphism

� W M ! P

of groups together with an action of the group P on the right of the group M , written
.m; p/ 7! mp , satisfying the two rules:

CM1) �.mp/ D p�1.�m/p;

CM2) m�1nm D n�m,

for all p 2 P ,m; n 2M . Algebraic examples of crossed modules include normal sub-
groups M of P ; P -modules; the inner automorphism crossed module M ! AutM ;
and many others. There is the beginnings of a combinatorial, and also a related com-
putational, crossed module theory.

The standard geometric example of crossed module is the boundary morphism of
the second relative homotopy group

@ W �2.X;X1; x/! �1.X1; x/

where X1 is a subspace of the topological space X and x 2 X1.
Our 2-dimensional Seifert–van Kampen Theorem, Theorem 2.3.1, yields computa-

tions of this crossed module in many useful conditions whenX is a union of open sets,
with special cases dealt with in Chapters 4 and 5. These results deal with nonabelian
structures in dimension 2, and so are not available by the more standard methods of
homology and covering spaces.

The traditional focus in homotopy theory has been on the second homotopy group,
sometimes with its structure as a module over the fundamental group. However
Mac Lane and Whitehead showed in [MLW50] that crossed modules model weak
pointed homotopy 2-types; thus the 2-dimensional Seifert–van Kampen Theorem al-
lowed new computations of some homotopy 2-types. It is not always straightforward
to compute the second homotopy group from a description of the 2-type, but this can
be done in some cases.

An aim to compute a second homotopy group is thus reached by computing a larger
structure, the homotopy 2-type. This is not too surprising: a determination of the 2-
type of a union should require information on the 2-types of the pieces and on the way
these fit together. The 2-type also in principle determines the second homotopy group
as a module over the fundamental group.
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For all these reasons, crossed modules are commonly seen as good candidates
for 2-dimensional groups. The algebra of crossed modules and their homotopical
applications are the themes of Part I of this book.

In the proof of the 2-dimensional Seifert–van Kampen Theorem we use double
groupoid structures which are related to crossed modules of groupoids; the latter are
part of the structure of crossed complexes defined later.

Filtered spaces

Once the 2-dimensional theory had been developed it was easy to conjecture, par-
ticularly considering work of J. H. C. Whitehead in [Whi49b], that the theory in all
dimensions should involve filtered spaces, a concept central to this book. An approach
to algebraic topology via filtered spaces is unusual, so it is worth explaining here what
is a filtered space and how this notion fits into algebraic topology.

A filtered space X� is simply a topological space X and a sequence of subspaces:

X� W X0 � X1 � X2 � � � � � Xn � � � � � X1 D X:
A standard example is the filtration of a geometric simplicial complex by its skeleta:
Xn is the union of all the simplices in X of dimension 6 n. More generally, X would
be a CW-complex, the generalisation of the finite cell complexes in [Bro06], and Xn
is the union of all the cells of dimension 6 n. Here XnC1 is obtained from Xn by
attaching cells of dimension nC 1.

There are other simple examples, which are important for us. One is when .X;A; x/
is a pointed pair of spaces, i.e. x 2 A � X , and n > 2. Then we have a filtered space
X
Œn�� in which X Œn�i is fxg for i D 0, A for 0 < i < n and is X for i > n. It may be

asked: why go to this bother? Why not just stick to the pair .X;A; x/? The answer is
that for n > 3 we want to use conditions such as �i .X;A; x/ D 0; 1 < i < n, and to
this end we in some sense ‘climb up’ the above filtration X Œn�� .

Another geometric example of filtered space is when X is a smooth manifold and
f W X ! R is a smooth map. Morse theory shows that f may be deformed into a map
g which induces what is called a handlebody decomposition of X , which is a filtration
ofX in whichXnC1 is obtained fromXn by attaching ‘handles’of type nC1. This area
is explored by methods related to ours in ChapterVI of [Sha93]. A further refinement of
filtered space is the notion of topologically stratified space, which occurs in singularity
theory – see the entry in Wikipedia, for example, and also [Gro97], Section 5, which
is especially interesting for Grothendieck’s comments on the foundations of general
topology. But the methods of this book have not yet been applied in that area.

It is of course standard to consider the simplicial singular complex SX of a topolog-
ical spaceX , to obtain invariants from this, and then ifX has a filtration to make further
developments to get information on the filtered invariants. An example of this kind is
whenX is a CW-complex and we use the skeletal filtration. These ideas were developed
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by Blakers in [Bla48] for relating homology and homotopy groups, following work of
Eilenberg in [Eil44] and Eilenberg–Mac Lane in [EML45b], and are related to the use
of what are commonly called Eilenberg subcomplexes, see for example [Sch91].

In conclusion, we use filtered spaces because with them we can make this theory
work, for understanding and for calculation.

Crossed complexes

Central to our work is the association to any filtered spaceX� of its fundamental crossed
complex …X�. This is defined using the fundamental groupoid �1.X1; X0/ and the
family of relative homotopy groups �n.Xn; Xn�1; x/ for all x 2 X0 and n > 2, and
generalises the crossed module of a pointed pair of spaces.

A crossed complex C over C1, where C1 is a groupoid with object set C0, is a
sequence

: : : �� Cn
ın �� Cn�1

ın�1 �� : : : : : : ı3 �� C2
ı2 �� C1

of morphisms of groupoids over C0 such that for n > 2 Cn is just a family of groups,
abelian if n > 3; C1 operates onCn for n > 2; ın�1ın D 0 for n > 3; and other axioms
hold which we give in full in Section 7.1.iii. The axioms are in fact those universally
satisfied by …X�, as we prove in Corollary 14.5.4.

One crucial point is that ı2 W C2 ! C1 is a crossed module (over the groupoid C1).
The whole structure has analogies to a chain complex with a groupoid of operators; this
analogy is worked out in terms of a pair of adjoint functors in Section 7.4. However in
passing from a crossed complex to its associated chain complex with operators some
structure is lost. Crossed complexes have better realisation properties than these chain
complexes: the crossed module part in dimensions 1 and 2 in crossed complexes allows
the modelling of homotopy 2-types, unlike the chain complexes.

In the case X0 is a singleton, which we call the reduced case, the construction
of …X� is longstanding, but the general case was defined by Brown and Higgins in
[BH81], [BH81a].

Why crossed complexes?

• They generalise groupoids and crossed modules to all dimensions, and the functor…
is classical, involving relative homotopy groups.

• They are good for modelling CW-complexes.
• Free crossed resolutions enable calculations with small CW-models of K.G; 1/s

and their maps (Whitehead, Wall, Baues).
• Crossed complexes give a kind of ‘linear model’of homotopy types which includes

all 2-types. Thus although they are not the most general model by any means (they do no
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contain quadratic information such as Whitehead products), this simplicity makes them
easier to handle and to relate to classical tools. The new methods and results obtained
for crossed complexes can be used as a model for more complicated situations. This
is how a general n-adic Hurewicz Theorem was found in [BL87a], [Bro89].

• They are convenient for some calculations generalising methods of computational
group theory, e.g. trees in Cayley graphs. We explain some results of this kind in
Chapter 10.

• They are close to the traditional chain complexes with a group(oid) of operators,
as shown in MD6) on p. xxxii, and are related to some classical homological algebra
(e.g. identities among relations for groups). Further, if SX is the simplicial singular
complex of a space, with its skeletal filtration, then the crossed complex ….SX/ can
be considered as a slightly noncommutative version of the singular chains of a space.
However crossed complexes have better realisation properties than the related chain
complexes.

• The category of crossed complexes has a monoidal structure suggestive of further
developments (e.g. crossed differential algebras).

• They have a good homotopy theory, with a cylinder object, and homotopy colimits.
There are homotopy classification results (see Equation (MD9)) generalising a classical
theorem of Eilenberg–Mac Lane.

• They have an interesting relation with the Moore complex of simplicial groups
and of simplicial groupoids, [Ash88], [NT89a], [EP97].

• They are useful for calculations in situations where the operations of fundamental
groups are involved. As an example, in Example 12.3.13 we consider the spaces
K D RP 2 � RP 2 and Z, the space RP 3 with higher homotopy groups killed, and
give a part calculation of the based homotopy classes of maps from K ! Z which
induce the morphism .1; 1/ W C2 � C2 ! C2 on fundamental groups. This calculation
uses most of the techniques developed here for crossed complexes.

Higher Homotopy Seifert–van Kampen Theorem

The reason why we deal with the filtered spaces defined in the section on p. xxv of
this Introduction is the following. It is well known that many useful and geometrically
interesting topological spaces are built by processes of gluing, or what we call colimits,
from simpler spaces. Very often these simpler spaces have a natural, perhaps simple,
filtration so that we often get an induced filtration on the colimit. One of our central re-
sults is a Higher Homotopy Seifert–van Kampen Theorem (HHSvKT), which involves
the fundamental crossed complex functor … of previous sections. The theorem shows
that for a filtered space built as a ‘nice’ colimit of so called connected filtered spaces,
not only is the colimit also connected but we can compute the homotopical invariant
… of the colimit as a colimit of the … of the individual pieces from which the colimit
is built, and the morphisms between them.

From this result we deduce, for example:
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(i) the Brouwer Degree Theorem (the n-sphere Sn is .n � 1/-connected and the
homotopy classes of maps of Sn to itself are classified by an integer called the
degree of the map);

(ii) the Relative Hurewicz Theorem, which is seen here as describing the morphism

�n.X;A; x/! �n.X [ CA;CA; x/ ��!Š �n.X [ CA; x/

when .X;A/ is .n�1/-connected, and so does not require the usual involvement
of homology groups;

(iii) Whitehead’s theorem (1949) that �2.X [fe2�g; X; x/ is a free crossed �1.X; x/-
module;

(iv) a generalisation of that theorem to describe the crossed module

�2.X [f CA;X; x/! �1.X; x/

as induced by the morphism f� W �1.A; a/! �1.X; x/ from the identity crossed
module �1.A; a/! �1.A; a/; and

(v) a coproduct description of the crossed module �2.K [ L;M; x/ ! �1.M; x/

when M D K \ L is connected and .K;M/, .L;M/ are 1-connected and
cofibred.

Note that (iii)–(v) are about nonabelian structures in dimensions 1 and 2. Of course
proofs of the Brouwer Degree Theorem and Relative Hurewicz Theorem are standard
in algebraic topology texts, and the theorem of Whitehead on free crossed modules is
sometimes stated, but rarely proved. However it is not so well known that all of (i)–(v)
are applications of colimit results for relative homotopy groups published before 1985.
So one of our aims is to make such colimit arguments more familiar and accessible in
algebraic topology, and so perhaps lead to wider applications.

We explain later other applications of crossed complexes in algebraic topology.
However we are unable to prove our major results in the sole context of crossed comp-
lexes, and have to venture into new structures on cubical sets. The next section begins
the explanation of the background which leads to cubical higher homotopy groupoids.

Cubical sets with connections

An extra structure which we needed for �2.X;A;X0/ in order to express the notion of
cube with commutative boundary was what Chris Spencer and I called connections,
because of a relation with path-connections in differential geometry. The background
is as follows.

Even in ordinary category theory we need the 2-dimensional notion of commutative
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square:

��a

c��

d��

b
��

ab D cd .a D cdb�1 in the groupoid case/:

An easy result is that any composition of commutative squares is commutative. For
example, in ordinary equations:

ab D cd; ef D bg implies aef D abg D cdg:

The commutative squares in a category form a double category, and this fits with
Diagram (multcomp).

What is a commutative cube, or, more precisely, what is a cube with commutative
boundary? Here is a diagram of a 3-cube with labelled and directed edges:

� g ��

��
e

�

h

��

�
u

88::::::: c ��

a

��

�
v

88:::::::

d

��

� ��f �

�
b

��
z

88::::::: �
w

88:::::::

1

2

3

��

��

99;;;;;;

A prospective ‘commutativity formula’ involving just the edges is easy to write down.
However, we want a 2-dimensional notion of the ‘commutativity of the faces’. We
want to say what it means for the faces to commute! We might try to say ‘the top face
is the composite of the other faces’: so fold the other faces flat to give

which makes no sense as a composition! But notice that the two edges adjacent to a
corner ‘hole’ are the same, since we have cut the cube to fold it. So we need canonical
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fillers to express this as in the diagram:

These extra kind of degeneracies were called connections, because of a relation with
path connections in differential geometry, as explained in [BS76a]. They may also be
thought of as ‘turning left or right’. So we can obtain a formula which makes sense for
a particular kind of double groupoid with this extra structure. These connections also
need to satisfy enough axioms to ensure that composites of ‘commutative cubes’ in
any of three directions are also commutative. It turns out that the axioms are sufficient
for this and other purposes, including relating these kinds of double groupoids closely
to a concept well established in the literature, that of crossed module. This led to the
general concept of ‘cubical set with connections’, which is a key to the theory in all
dimensions.

We also need sufficient axioms to be able to prove that any well-defined composition
of commutative cubes is commutative. We give these axioms for this dimension in
Chapter 6. The idea has then to be carried through in all dimensions. This is part of the
work of Chapter 13, and clearly needs new ideas to avoid what might seem impossible
complications. While cubical sets have been used since 1955, the use of cubical sets
with connections and compositions is another departure from tradition.

Why cubical homotopy omega-groupoids with connections?

Standard algebraic topology uses a singular complex SX of a topological space, de-
velops homology, and then if X has a filtration, needs to relate the algebraic topology
ofX to that of the filtered structure. Our approach is to take a singular complex which
depends on the filtration; it is also necessary to work cubically.5

It was easy to conjecture that to generalise the construction �2.X;A;X0/ given
above, we should consider a filtered space X� and the family RnX� of sets of maps
I n ! X which map the r-skeleton of I n into Xr , i.e. the filtered maps I n� ! X�;
and then take homotopy classes of such maps relative to the vertices of I n, giving a
quotient mapp W RX� ! �X�. BothRX� and �X� have easily the structure of cubical
set, using well-known face and degeneracy maps. Cubical theory was initiated by
D. M. Kan in 1955, but was abandoned for the simplicial theory, on which there is now
an enormous literature. Nonetheless, multiple compositions are difficult simplicially,
while the natural context for them is cubical. Such a cubical approach does move away
from standard algebraic topology. Also it was necessary to introduce into the cubical
theory the notion of connections in all dimensions.
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It was not found easy to prove a central feature of our work that the easily defined
multiple compositions in RX� were inherited by �X�. A further difficulty was to
relate the structure held by �X� to the crossed complex …X� traditional in algebraic
topology. These proofs needed new ideas and are stated and proved in Chapter 14.

Here are the basic elements of the construction.
I n� : the n-cube with its skeletal filtration.
Set RnX� D FTop.I n� ; X�/. This is a cubical set with compositions, connections,

and inversions.
For i D 1; : : : ; n there are standard:

face maps @i̇ W RnX� ! Rn�1X�;

degeneracy maps "i W Rn�1X� ! RnX�;

connections �i̇ W Rn�1X� ! RnX�;

compositions a Bi b defined for a; b 2 RnX� such that @C
i a D @�

i b;

inversions �i W Rn ! Rn.

The connections are induced by �i̇ W I n ! I n�1 defined using the monoid struc-
tures max;min W I 2 ! I . They are essential for many reasons, e.g. to discuss the
notion of commutative cube.

These operations have certain algebraic properties which are easily derived from
the geometry and which we do not itemise here – see for example [AABS02]. These
were listed first in the Bangor thesis of Al-Agl [AA89]. (In the paper [BH81] the only
basic connections needed are the �C

i , from which the ��
i are derived using the inverses

of the groupoid structures.)
Here we explain why we need to introduce such new structures.
• The functor � gives a form of higher homotopy groupoid, thus confirming the

visions of topologists of the early 20th century of higher dimensional nonabelian forms
of the fundamental group.

• They are equivalent to crossed complexes, and this equivalence is a kind of cu-
bical and nonabelian form of the Dold–Kan Theorem, relating chain complexes with
simplicial abelian groups.

• They have a clear monoidal closed structure, and notion of homotopy, from which
one can deduce analogous structures on crossed complexes, with detailed formulae,
using the equivalence of categories.

• It is easy to relate the functor � to tensor products, but quite difficult to do this
for ….

• Cubical methods, unlike globular or simplicial methods, allow for a simple alge-
braic inverse to subdivision, involving multiple compositions in many directions, see
p. xxii, and Remarks 6.3.2 and 13.1.11, which are crucial for the proof of our HHSvKT
in Chapter 14; see also the arguments in the proof of say Theorem 6.4.10.

• The additional structure of ‘connections’, and the equivalence with crossed comp-
lexes, allows the notion of thin cube, Section 13.7, which subsumes the idea of comm-
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utative cube, and yields the proof that multiple compositions of thin cubes are thin. This
last fact is another key component of the proof of the HHSvKT, see Theorem 14.2.9.

• The cubical theory gives a construction of a (cubical) classifying space

BC D .BC/1
of a crossed complex C , which generalises (cubical) versions of Eilenberg–Mac Lane
spaces, including the local coefficient case.

• Many papers, including [BJT10], [BP02], [PRP09], [Mal09], [Gou03], [Koc10],
[FMP11], [Živ06], [HW08] show a resurgence of the use of cubes in for example alge-
braicK-theory, algebraic topology, concurrency, differential geometry, combinatorics,
and group theory.

Diagram of the relations between the main structures

The complete and intricate story has its main facts summarised in the following diagram
and comments:

filtered spaces

…

  <<<<<<<<<<<<<<<
�

::===============
C�DrB…

��

filtered
cubical sets

jj��

operator
chain

complexes ‚
�� crossed
complexes

r��

B

;;<<<<<<<<<<<<<<<
� �� cubical

!-groupoids
with connections�

��

j jBU�

<<===============
U�

--

Main Diagram

in which

MD 1) the categories FTop of filtered spaces, Crs of crossed complexes and !-Gpds
of !-groupoids, are monoidal closed, and have a notion of homotopy using˝
and unit interval objects;

MD 2) �, … are homotopical functors (that is they are defined in terms of homotopy
classes of certain maps), and preserve homotopies;

MD 3) �, � are inverse adjoint equivalences of monoidal closed categories, and � is
a kind of ‘nerve’ functor;

MD 4) there is a natural equivalence �� ' …, so that either � or … can be used as
appropriate;

MD 5) � preserves certain colimits and certain tensor products, and hence so also
does …;

MD 6) the category Chn of chain complexes with a groupoid of operators is monoidal
closed, and r is a monoidal functor which has a right adjoint ‚;
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MD 7) by definition, the cubical filtered classifying space is B D j j B U� B � where
U� is the forgetful functor to filtered cubical sets using the filtration of an
!-groupoid by skeleta, and j j is geometric realisation of a cubical set;

MD 8) there is a natural equivalence … BB ' 1;
MD 9) ifC is a crossed complex and its cubical classifying space is defined asBC D

.BC/1, then for a CW-complex X , and using homotopy as in MD1) for
crossed complexes, there is a natural bijection of sets of homotopy classes

ŒX;BC � Š Œ…X�; C �: (MD9)

Structure of the book

Because of the complications set out above in the Main Diagram, and in order to
communicate the basic intuitions, we divide our account into three parts, each with an
introduction giving the chapter structure of that part.

Part I is on the history and proofs of the 1- and 2-dimensional Seifert–van Kampen
Theorems, and the applications of the 2-dimensional theorem to crossed modules of
groups. This part covers the main nonabelian colimit results and is intended to convey
the context and intuitions in a case where one can easily draw pictures.

Part II is on the theory and applications of crossed complexes over groupoids,
using the fundamental crossed complex… of a filtered space, and giving a full account
of applications. The principal tools are: the Higher Homotopy Seifert–van Kampen
Theorem for …; the monoidal closed structure on the category of crossed complexes,
which gives a full context for homotopies and higher homotopies; and the cubical
classifying space of a crossed complex. A recurring theme is the relation of crossed
complexes with chain complexes with a groupoid of operators, which thus relates the
material to more classical considerations. An aim of the theory is Chapter 12, which
deals with cohomology and the homotopy classification of maps, and the relations of
crossed complexes with group and groupoid cohomology.

Part III justifies the theorems on crossed complexes by proving an equivalence
between crossed complexes and cubical!-groupoids, and then proving the main results
in the latter context. These main theorems were essentially, and maybe only have been,
conjectured in the latter context. Thus this part realises the intuitions behind the main
results.

Part III ends with a chapter on ‘Further directions?’ suggesting a number of open
areas and questions.

There are also three Appendices giving accounts of various aspects of category
theory which are helpful for understanding of the topics, and to give wider context.
This account of category theory does not claim to be complete but hopefully gives
a useful and somewhat different emphasis from other texts. There is an extended
account of fibrations and cofibrations of categories, to give background to the general
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use of pushouts and pullbacks, and as more examples of ‘categories for the working
mathematician’, in showing analogies between different areas of mathematics.

Notes

2 p. xxi The paper [Bro87], p. 124, suggested that “n-dimensional phenomena re-
quire for their description n-dimensional algebra”, and this led to the term ‘higher
dimensional algebra’, which widens the term ‘higher dimensional group theory’
used in [Bro82].

3 p. xxi Here we give some history on this theorem. The first result describing the
fundamental group of a union was that of Seifert in [Sei31], for the union of two
connected subcomplexes, with connected intersection, of a simplicial complex.
The next result was that of van Kampen in [Kam33]. He also gives a formula for
the case of nonconnected intersection. His proofs are difficult to follow. Some
further history of the subject is given in [Gra92].

The start of the modern approach is the paper of Crowell [Cro59], based on lectures
of R.H. Fox, which used the term colimit and the proof was by verification of the
universal property. The paper deals with arbitrary unions.

Olum in [Olu58] gave a proof for the case of a union of two sets with connected
intersection using nonabelian cohomology with coefficients in a group, and he also
carefully analyses Seifert–van Kampen’s local conditions. The Mayer–Vietoris
type sequence given by Olum was extended in [Bro65a], so that the fundamental
group of the circle, or a wedge of circles, could be computed.

It was then found that a more powerful result with simpler proof could be obtained
using groupoids, [Bro67]; this gave the fundamental groupoid on a set of base
points for the case of nonconnected intersection of two open sets. This result was
suggested by the use by Higgins in [Hig64] of free product with amalgamation
of groupoids. Thus an aim to compute a fundamental group was reached by first
computing a larger structure, a fundamental groupoid on a set of base points, and
then giving methods of a combinatorial character for computing the group from
the larger structure.

It was also noticed that this possibility ran contrary to the general scope of methods
in homological algebra and algebraic topology, which often used exact sequences
which did not give such complete results, since an invariant relating close dimen-
sions could often be described immediately only up to extension.

A generalisation to unions of families was given in [BRS84]. A general result for
the nonconnected case but still only for groups is in [Wei61], using the notion of
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the nerve of the cover to describe graph theoretic properties of the components of
the intersections of the open sets. A combination of the method of Olum with the
use of groupoids is given in [BHK83].

All these insights have been important for the generalisations to higher dimensions.
Thus we find it convenient to refer to theorems of these types as Seifert–van Kampen
Theorems.

We say more later on other extensions and analogues of the 1-dimensional theorem.

We note that the basic results here are referred to in the literature either as Seifert–
van Kampen Theorems or as van Kampen Theorems.

We feel it is important to recognise the great contribution of Seifert and the Ger-
man school of topology. The classic book, [ST80], first published in 1934, had
an influence well into the 1950s, and is still worth consulting for the geometric
background. It is also worth stating that Seifert was politically in opposition to the
Nazi regime in Germany, and was never officially nominated as a full Professor
at Heidelberg during the Nazi period. He was nominated after the war, and was
then the only scientist at Heidelberg University theAmerican administration would
accept to become the Dean of the newly introduced Faculty of Natural Sciences,
see [Pup99], [Pup97].

4 p. xxiv Reidemeister, like Seifert, was in opposition to the Nazi ideology and lost
his Professorship in Königsberg in 1933, but did, however, become Professor at
Marburg, [Art72], [Seg99]. By contrast, the British topologists M. H.A. Newman,
J. H. C. Whitehead, and S. Wylie were all working at Bletchley Park during the
war, along with many other mathematicians.

5 p. xxx This work progressed in the 1970s when we abandoned the attempt to define
a ‘higher homotopy groupoid’ for a space and instead worked with pairs of spaces
and for higher dimensions with filtered spaces. This enabled us to construct the
cubical homotopy!-groupoid �.X�/which is at the heart of this work. Nowadays
this would be called a ‘strict’!-groupoid. There is a tendency to call the simplicial
complex SX the ‘fundamental1-groupoid’ of the space X , and even to label it
…X , see for example [Lur09]. Our notation …X� is intended to reflect the close
relation to traditional concepts in homotopy theory, the relative homotopy groups.
In a similar manner, the notation…X is used in [BL87] to denote the strict structure
of what is there termed the fundamental catn-group of an n-cube of spaces X.
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1- and 2-dimensional results





Introduction to Part I

Part I develops that aspect of nonabelian algebraic topology related to the Seifert–van
Kampen Theorem (SvKT) in dimensions 1 and 2. The surprising fact is that in this part
we are able in this way to obtain in homotopy theory many nonabelian calculations
in dimension 2 which seem unavailable without this theory, and without any of the
standard machinery of algebraic topology, such as simplicial complexes or simplicial
sets, simplicial approximation, chain complexes, or homology theory.

We start in Chapter 1 by giving a historical background, and outline the proof of the
Seifert–van Kampen Theorem in dimension 1. It was an analysis of this proof which
suggested the higher dimensional possibilities.

We then explain in Chapter 2 the functor

…2 W .pointed pairs of spaces/! .crossed modules/

in terms of second relative homotopy groups, state a2-dimensional Seifert–van Kampen
Theorem (2dSvKT) for this, and give applications.

Chapter 3 explains the basic algebra of crossed modules and their relations to other
topics. The more standard structures of abelian groups or modules over a group are
but pale shadows of the structure of a crossed module, as we see over the next two
chapters.

Two important constructions for calculations with crossed modules, are coproducts
of crossed modules on a fixed base group (Chapter 4) and induced crossed modules
(Chapter 5). Both of these chapters of Part I illustrate how some nonabelian calcula-
tions in homotopy theory may be carried out using crossed modules. Induced crossed
modules illustrate well the way in which low dimensional identifications in a space can
influence higher dimensional homotopical information; they also include free crossed
modules, which are important in applications to defining and determining identities
among relations for presentations of groups. This last concept has a relation to the
cohomology theory of groups, which will become clear in Chapters 10 and 12.

Finally in this part, Chapter 6 gives the proof of the Seifert–van Kampen Theorem
for the functor …2, a theorem which gives precise situations where …2 preserves
colimits. A major interest here is that this proof requires another structure, namely
that of double groupoid with connection, which we abbreviate to double groupoid. We
therefore construct in a simple way as suggested on p. xxii a functor

�2 W .triples of spaces/! .double groupoids/;

and show that this is equivalent in a clear sense to a functor

…2 W .triples of spaces/! .crossed modules of groupoids/;



4 Introduction to Part I

which is a natural generalisation of our earlier …2 functor. Here a triple of spaces is
of the form .X;X1; X0/, where X0 � X1 � X , and the pointed case is when X0 is a
singleton. In Part I we do not make much use of the many pointed case, but it becomes
crucial in Part II. This final substantial chapter of Part I thus develops the 2-dimensional
groupoid theory which is then used in the proof of Theorem 6.8.2.

Note that all the results contained in Chapters 2–5 are about crossed modules over
groups, while in Chapter 6 we generalise to crossed modules over groupoids to prove the
2-dimensional Seifert–van Kampen Theorem. The fact that pushouts, and coequalisers,
give the same results in these two contexts follows from the fact that these two types
of colimit are defined by connected diagrams, and then applying Theorem B.1.7 of
Appendix B.

All this theory generalises to higher dimensions, as we show in Parts II and III,
but the ideas and basic intuitions are more easily explained and pictures drawn in
dimension 2.



Chapter 1

History

In this chapter we give some of the context and historical background to the main
work of this book, in order to show the traditions from which the eventually intricate
structures we describe have been found and developed. We think this background is
necessary to understand the direction of the research, and to help evaluate the successes
and the work still needed to be done for further developments and applications.

We will show how the extensions first from groups to groupoids, and then to certain
multiple groupoids and other related structures, enable new results and understanding
in algebraic topology.

It is generally accepted that the notion of abstract group is a central concept of math-
ematics, and one which allows the successful expression of the intuitions of reversible
processes. In order to obtain the higher dimensional, nonabelian, local to global results
described briefly in the Introduction, the concept of group has:

A) to be ‘widened’ to that of groupoid, which in a sense generalises the notion of
group to allow a spatial component, and

B) to be ‘increased in height’ to higher dimensions.

Step A) is an essential requirement for step B).
A major stimulus for this view was work of Philip Higgins in his 1964 paper [Hig64],

and this book is based largely on his resulting collaboration with Brown. Higgins writes
in the Preface to [Hig71] that:

The main advantage of the transition [from groups to groupoids] is that
the category of groupoids provides a good model for certain aspects of
homotopy theory. In it there are algebraic models for such notions as path,
homotopy, deformation, covering and fibration. Most of these become
vacuous when restricted to groups, although they are clearly relevant to
group-theoretic problems. : : : There is another side of the coin: in app-
lications of group theory to other topics it is often the case that the natural
object of study is a groupoid rather than a group, and the algebra of group-
oids may provide a more concrete tool for handling concrete problems.

In fact there is a range of intuitions which abstract groups are unable to express,
and for which other concepts such as groupoid, pseudogroup and inverse semigroup
have turned out to be more appropriate.

As Mackenzie writes in [Mac87]:

The concept of groupoid is one of the means by which the twentieth cen-
tury reclaims the original domain of applications of the group concept.
The modern, rigorous concept of group is far too restrictive for the range
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of geometrical applications envisaged in the work of Lie. There have
thus arisen the concepts of Lie pseudogroup, of differentiable and of Lie
groupoid, and of principal bundle – as well as various related infinitesi-
mal concepts such as Lie equation, graded Lie algebra and Lie algebroid
– by which mathematics seeks to acquire a precise and rigorous language
in which to study the symmetry phenomena associated with geometrical
transformations which are only locally defined.

A number of these concepts related to groupoids were initiated by C. Ehresmann
over many years, particularly the notion of differential or Lie groupoid ([Ehr83],
[Bro07], [Pra07]). The last paper shows how the work of Ehresmann extends the
famous Erlangen Programme of Felix Klein.

A failure to accept a relaxation of the concept of group made it difficult to develop a
higher dimensional theory modelling some key aspects of homotopy theory. To see the
reasons for this we need to understand the basic intuitions which a higher dimensional
theory is trying to express, and to see how these intuitions were dealt with historically.
This study will confirm a view that it is reasonable to examine and develop the algebra
which arises in a natural way from the geometry rather than insist that the geometry
has to be expressed within the current available concepts, schemata and paradigms.

1.1 Basic intuitions

There were two simple intuitions involved: One was that of an

algebraic inverse to subdivision.

The other was that of a

commutative cube.

To explain the first intuition, we know how to cut things up, but do we have available
an algebraic control over the way we put them together again? This is of course a
general problem in mathematics, science and engineering, where we want to represent
and determine the behaviour of complex objects from the way they are put together
from standard pieces. This is the ‘local-to-global problem’. Any algebra which gives
new insights into questions of this form, and yields new computations, clearly has
arguments in its favour.

We explain this a bit more in a very simple situation. We often translate geometry
into algebra. For example, a figure as follows,

� a ��� b ��� �c�� d ���
is easily translated into

abc�1d:
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For the second intuition, we first consider the easy notion of a commutative square,
which means that in the following diagram, going round one way agrees with going
round the other:

� a ��

c
��

�
b
���

d
���

(1.1.1)

it is easy to write
ab D cd; or a D cdb�1:

All this is part of the standard repertoire of mathematics. The formulae given make
excellent sense as part of say the theory of groups. We also know how to calculate with
such formulae.

The problem comes when we try to express similar ideas in one dimension higher.
How can one write down algebraically the following picture, where each small square
is supposed labeled?

� ��

��

�

��

��� ��

��

� ��

��

� ��

��

� ��

��

�

��� ��

��

�

��

��� ��

��

� ��

��

� ��

��

� ��

��

�

��� ��� ��� ��� ��� ��� ���

� ��

--

�

--

��� ��

--

� ��

--

� ��

--

� ��

--

�

--

(1.1.2)

Again, how can one write down algebraically the formulae corresponding to the
above commutative square (1.1.1) but now for the cube:

� ��

��

�

��

�

88::::::: ��

��

�

88:::::::

��

� ���

� ��

88::::::: �

88:::::::

(1.1.3)

What does it mean for the faces of the cube to commute, or for the top face to be
the composition, in some sense, of the other faces?

It is interesting that the step from a linear statement to a 2-dimensional statement
should need a lot of apparatus; it also took a lot of experimentation to find an appropriate
formulation. As we shall see later, the 2-dimensional composition (1.1.2) requires
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double categories (Section 6.1), while the second (1.1.3) requires double groupoids
with thin structure, or with connections (Section 6.4).

Thus the step from dimension 1 to dimension 2 is the critical one, and for this
reason most of Part I of this book is devoted to the 2-dimensional case. Further reasons
are that: the theory in dimension 2 is more straightforward than it becomes in higher
dimensions; illustrative pictures are easier to give; and the novel features of the 2-
dimensional theory need to be well understood before passing to higher dimensions. It
is also intriguing that so much can be done once one has the mathematics to express the
intuitions, and that then the mathematical structures control the ways the calculations
have to go. This requires an emphasis on universal properties, which are afterwards
interpreted to give formulae.

1.2 The fundamental group and homology

The above questions on 2-dimensional compositions did not arise out of the void but
from a historical context which we now explain.

The intuition for a Nonabelian Algebraic Topology was seen early on in algebraic
topology, after the ideas of homology and of the fundamental group�1.X; x/ of a space
X at a base point x of X were developed.

The motivation for Poincaré’s definition of the fundamental group in his 1895 paper
[Poi96], see also [Poi10], seems to be from the notion of monodromy, that is the change
in the value of a meromorphic function of many complex variables as it is analytically
continued along a loop avoiding the singularities. This change in value depends only
on the homotopy class of the loop, and this consideration led to the notion of the
group �1.X; x/ of homotopy classes of loops at x, where the group structure arises
from composition of loops. Poincaré called this group the fundamental group; this
fundamental group �1.X; x/, with its relation to covering spaces, surface theory, and
the later combinatorial group theory, came to play an increasing rôle in the geometry,
complex analysis and algebra of the next hundred years. Indeed Poincaré is also keen
on generators and relations for groups, and reading them off from a fundamental region.

It also seems possible that an additional motivation arose from dynamics, in the
classification of orbits in a phase space.

The utility of the group concept in homotopy theory is increased by the relations
between the fundamental group considered as a functor from based topological spaces
to groups

�1 W Top� ! Groups

and another functor called the classifying space

B W Groups! Top�;
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which is the composite of the geometric realisation and the nerve functor N from
groups to simplicial sets.

We shall review the properties of B in Section 2.4. Now let us note that B and
�1 are inverses in some sense. To be more precise, BP is a based space that has all
homotopy groups trivial except the fundamental group, which itself is isomorphic to
P . Moreover, if X is a connected based CW-complex and P is a group, then there is
a natural bijection

ŒX;BP �� Š Hom.�1X;P /;

where the square brackets denote pointed homotopy classes of maps.
It follows that there is a map

X ! B�1X

inducing an isomorphism of fundamental groups. It is in this sense that groups are
said to model homotopy 1-types, and a computation of a group P is also regarded as a
computation of the 1-type of the classifying space BP .

The fundamental group of a space may be calculated in many cases using the
Seifert–van Kampen Theorem (see Section 1.5), and in other cases using fibrations of
spaces. The main result on the latter, for those familiar with fibrations of spaces, and
the classifying space BP of a group P , is that if 1 ! K ! E ! P ! 1 is a short
exact sequence of groups, then the induced sequence BK ! BE ! BP is a fibration

sequence of spaces. Conversely, if F
i�! X

p�! Y is a fibration sequence of spaces,
and x 2 F then there is an induced exact sequence of groups and based sets

� � � ! �1.F; x/
i��! �1.X; x/

p��! �1.Y; px/
@�! �0.F /! �0.X/! �0.Y /:

This result gives some information on �1.X; x/ if the other groups are known and even
more if the various spaces are connected. We shall return to this sequence in Section 2.6,
and it will be used in other contexts, with more information on exactness at the last
few terms, in Section 12.1.ii. The classifying space of a group will be generalised to
the classifying space of a crossed complex in Chapter 11.

Much earlier than the definition of the fundamental group, higher dimensional
topological information had been obtained in terms of ‘Betti numbers’ and ‘torsion
coefficients’. These numbers were combined into the powerful idea of the abelian
homology groups Hn.X/ of a space X defined for all n > 0, and which gave very
useful topological information on the space. They measured the presence of ‘holes’ in
X of various dimensions and of various types. The origins of homology theory lie in
integration, the theorems of Green and Stokes, and complex variable theory.

The notion of ‘boundary’ and of a ‘cycle’ as having zero boundary is crucial in the
methods and results of this theory, but was always difficult to express precisely until
Poincaré brought in simplicial decompositions, and the notion of a ‘chain’ as a formal
sum of oriented simplices. It seems that the earlier writers thought of a cycle as in some
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sense a ‘composition’ of the pieces of which it was made, but this ‘composition’ was,
and still is, difficult to express precisely. Dieudonné in [Die89] suggests that the key
intuitions can be expressed in terms of cobordism. In any case, the notion of ‘formal
sum’ fitted well with integration, where it was required to integrate over a formal sum
of domains of integration, with the correct orientation for these:Z

C

f dz C
Z
C 0

f dz D
Z
CCC 0

f dz:

It was also found that if X is connected then the group H1.X/ is the fundamental
group �1.X; x/ made abelian:

H1.X/ Š �1.X; x/ab:

So the nonabelian fundamental group gave much more information than the first
homology group. However, the homology groups were defined in all dimensions.
So there was pressure to find a generalisation to all dimensions of the fundamental
group.

1.3 The search for higher dimensional versions of the
fundamental group

According to [Die89], Dehn had some ideas on this search in the 1920s, as would not be
surprising. The first published attack on this question was the work of Čech, using the
idea of classes of maps of spheres instead of maps of circles. He submitted his paper
on higher homotopy groups �n.X; x/ to the International Congress of Mathematicians
at Zurich in 1932. The story is that Alexandrov and Hopf quickly proved that these
groups were abelian for n > 2; and so on these grounds persuaded Čech to withdraw
his paper. All that appeared in the Proceedings of the Congress was a brief paragraph,
[Čec32].

The main algebraic reason for this abelian nature was the following result, in which
the two compositions B1, B2 are thought of as compositions of 2-spheres in two direc-
tions. The proof is often known as the Eckmann–Hilton argument.

Theorem 1.3.1. Let S be a set with two monoid structures B1, B2 each of which is a
morphism for the other. Then the two monoid structures coincide and are abelian.

Proof. The condition that the structure B1 is a morphism for B2 is that the function

B1 W .S; B2/ � .S; B2/! .S; B2/
is a morphism of monoids, where .S; B2/ denotes S with the monoid structure B2. This
condition is equivalent to the statement that for all x; y; z; w 2 S ,

.x B2 y/ B1 .z B2 w/ D .x B1 z/ B2 .y B1 w/:
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This can be interpreted as saying that the diagram�
x y

z w

�
1

2
��

��

has only one composition. Here the arrows indicate that we are using matrix conven-
tions in which the first coordinate gives the rows, and the second coordinate gives the
columns. This law is commonly called the interchange law.

We now use some special cases of the interchange law. Let e1, e2 denote the
identities for the structures B1, B2. Consider the matrix�

e1 e2
e2 e1

�
:

This yields easily that e1 D e2. We write then e for e1.
Now we consider the matrix composition�

x e

e w

�
:

Interpreting this in two ways yields

x B1 w D x B2 w:
So we write B for B1.

Finally we consider the matrix composition�
e y

z e

�
and find easily that y B z D z B y. This completes the proof.

Incidentally, it will also be found that associativity comes for free. We leave this to
the reader.

Remark 1.3.2. The above argument was formulated in generality in [EH62] and has
proved very useful. But the intuition that originally showed the higher homotopy
groups were abelian was probably something like the following. Consider two maps
˛, ˇ of a square I 2 toX which map the edges to the base point ofX . Their ‘composite’
may be considered as a map of a square into X in which most of it goes to the base
point but two disjoint small squares inside are mapped essentially by ˛ and ˇ. But now
we see that they can be moved around in the big square, so that, up to homotopy, the
order of composition does not matter.

This result seemed to kill any possibility of ‘nonabelian algebraic topology’, or of
any generalisations to higher dimensions of the fundamental group. In 1935, Hurewicz,
without referring to Čech, published the first of his celebrated notes on higher homotopy
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groups, [Hur35], and the latter groups are often referred to as the ‘Hurewicz homotopy
groups’. As the abelian higher homotopy groups came to be accepted, a considerable
amount of work in homotopy theory moved as far as possible from group theory and
the nonabelian fundamental group, and the original concern about the abelian nature
of the higher homotopy groups came to be seen as a quirk of history, an unwillingness
to accept a basic fact of life. Indeed, Alexandrov and Finikov in their Obituary Notice
for Čech, [AF61], referred to the unfortunate lack of appreciation of Čech’s work on
higher homotopy groups, resulting from too much attention to the disadvantage of their
abelian nature.

However J. H. C. Whitehead6 published important nonabelian work in dimension 2
in 1941, 1946 and 1949, with the second paper introducing the term crossed module
– these crossed modules are a central theme of this book. Brown remembers Henry
Whitehead remarking in 1957 that early workers in homotopy theory were fascinated
by the action of the fundamental group on higher homotopy groups. Many also were
dissatisfied with the fact that the composition in higher homotopy groups was indepen-
dent of the direction. Deeper reasons for this independence are contained in the theory
of iterated loop spaces (see the book by Adams, [Ada78], or the books and survey
articles by May et al [May72], [May77a], [May77b], [May82]).

A new possibility eventually arose in 1967 through the notion of groupoid, which
we discuss in the next section.

1.4 The origin of the concept of abstract groupoid

A groupoid G is defined formally as a small category in which every arrow is invertible.
For more details see the surveys [Bro84a], [Wei01], and the books [Bro06], [Hig71].
The category of groupoids and their morphisms will be written Gpds.

There are two important, related and relevant differences between groups and group-
oids. One is that groupoids have a partial multiplication, and the other is that the con-
dition for two elements of a groupoid to be composable is a geometric one, namely the
end point of one is the starting point of the other. This partial multiplication allows
for groupoids to be thought of as ‘groups with many identities’. The other is that the
geometry underlying groupoids is that of directed graphs, whereas the geometry un-
derlying groups is that of based sets, i.e. sets with a chosen base point. It is clear that
graphs are more interesting than sets with base point, and can reflect more geometry.
Hence people find in practice that groupoids can reflect more geometry than can groups
alone. It seems that the objects of a groupoid allow the addition of a spatial component
to group theory.

An argument usually made for groups is that they give the mathematics of reversible
processes, and hence have a strong connection with symmetry. This argument applies
even more strongly for groupoids. For groups, the processes all start and return to the
same position. This is like considering only journeys which start at and end at the same
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place. However to analyse a reversible process, such as a journey, we must describe the
intermediate steps, the stopping places. This description requires groupoids, since in
this setting the processes described are allowed to start at one point and finish at another.
Groupoids clearly allow a more flexible and powerful analysis, and this confirms a basic
intuition that, in dimension 1, groupoids are more convenient than groups for writing
down an ‘algebraic inverse to subdivision’.

The definition of groupoid arose from Brandt’s attempts to extend to quaternary
forms Gauss’ work on a composition law of binary quadratic forms, which has a strong
place in Disquisitiones Arithmeticae. It is of interest here that Bourbaki [Bou70],
p. 153, cites this composition law as an influential early example of a composition law
which arose not from numbers, even taken in a broad sense, but from distant analogues:

C’est vers cette même époque que, pour le premier fois en Algèbre, la
notion de loi de composition s’étend, dans deux directions différents, à
des élements qui ne présentent plus avec les hhnombresii (au sens le plus
large donné jusque-là à ce mot) que des analogies lointaines. La première
de ces extensions est due à C. F. Gauss, à l’occasion de ses recherches
arithmétiques sur les formes quadratiques : : :

Brandt found that each quaternary quadratic form had a left unit and a right unit, and
that two forms were composable if and only if the left unit of one was the right unit of
the other. This led to his 1926 paper on groupoids [Bra26]. (A modern account of this
work on composition of forms is given by Kneser et al. [KOKC86].).

Groupoids were then used in the theory of orders of algebras, see for example
[Jac43], Chapter 6, §11. Curiously, groupoids did not form an example in Eilenberg
and Mac Lane’s basic 1945 paper on category theory, [EML45b]. Groupoids appear in
Reidemeister’s 1932 book on topology, [Rei32], for handling the change of generators
of the (combinatorially defined) fundamental group of a closed surface induced by the
change of normal form of the surface, and for handling isomorphisms of a family of
structures. The fundamental groupoid �1.X/ of a space X was well known by the
1950s, but Crowell and Fox write in [CF63]:

A few [definitions], like that of a group or of a topological space, have a
fundamental importance to the whole of mathematics that can hardly be
exaggerated. Others are more in the nature of convenient, and often highly
specialised, labels which serve principally to pigeonhole ideas. As far as
this book is concerned, the notions of category and groupoid belong to
the latter class. It is an interesting curiosity that they provide a convenient
systematisation of the ideas involved in developing the fundamental group.

By contrast, we referred earlier to the extensive work of C. Ehresmann on groupoids
in differential topology, see again [Pra07]. One motivation for this work was his
strong interest in local-to-global situations. Problems of this kind are often central in
mathematics and in science.
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The fundamental groupoid �1.X;A/ on a set A � X of base points was intro-
duced in [Bro67] and the idea was developed in the 1968, 1988, and the final edition of
[Bro06]. It generalises both the fundamental group (whenA D fxg) and the fundamen-
tal groupoid (when A D X ). Its successes suggest the value of an aesthetic approach
to mathematics, and that the concept which feels right and gives ‘a convenient system-
atisation’ is likely to be the most powerful one, and may become quite generally useful.
Indeed groupoids are more general than groups and so are not ‘highly specialised’. In
this viewpoint, much good mathematics enables difficult things to become easy, and an
important part of the development of good mathematics is finding: (i) the appropriate
underlying structures, (ii) the appropriate language to describe these structures, and
(iii) means of calculating with these structures. Without the appropriate structures to
guide us, we may take many wrong turnings.

There is no benefit today in arithmetic in Roman numerals. There is also no benefit
today in insisting that the group concept is more fundamental than that of groupoid;
one uses each at the appropriate place. It is as well to distinguish the sociology of the
use of a mathematical concept from the scientific consideration of its relevance to the
progress of mathematics.

It should also be said that the development of new concepts and language is a
different activity from the successful employment of a range of known techniques to
solve already formulated problems.

The notion that groupoids give a more flexible tool than groups in some situations
is only beginning to be widely appreciated. One of the most significant of the books
which use the notion seriously is Connes book “Noncommutative geometry”, published
in 1994, [Con94]. He states that Heisenberg discovered quantum mechanics by con-
sidering the groupoid of transitions for the hydrogen spectrum, rather than the usually
considered group of symmetry of an individual state. This fits with the previously
expounded philosophy. The main examples of groupoids in his book are equivalence
relations and holonomy groupoids of foliations.

On the other hand, in books on category theory the role of groupoids is often
fundamental (see for example Mac Lane and Moerdijk [MLM96]). In foliation theory,
which is a part of differential topology and geometry, the notion of holonomy groupoid
is widely used. For surveys of the use of groupoids, see [Bro87], [Hig71], [Wei01],
[Mac05], [Bro07], [GS06].

1.5 The Seifert–van Kampen Theorem

We believe a change of prospects for homotopy theory came about in a roundabout
way, in the mid 1960s. R. Brown was writing the first edition of the book [Bro06] and
became dissatisfied with the standard treatments of the Seifert–van Kampen Theorem.
This basic tool computes the fundamental group of a spaceX given as the union of two
connected open subsets U1, U2 with connected intersection U12. For those familiar
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with the concepts, the result is that the natural morphism

�1.U1; x/ ��1.U12;x/ �1.U2; x/! �1.X; x/ (1.5.1)

induced by inclusions is an isomorphism. The group on the left-hand side of the
above arrow is the free product with amalgamation; it is the construction for groups
corresponding to U1[U2 for spaces, as we shall see later in discussing pushouts. This
version of the theorem was given by Crowell [Cro71], based on lectures by R.H. Fox.
One important consequence is that the fundamental group shared the same possibilities
and the same difficulties of computation as general abstract groups.

The problem was with the connectivity assumption onU12, since this prevented the
use of the theorem for deducing the result that the fundamental group of the circle S1 is
isomorphic to the group Z of integers. (See Section 1.7 where �1.S1/ is calculated.) If
S1 is the union of two connected open sets, then their intersection cannot be connected,
compare [Bro06], Section 9.2. So the fundamental group of the circle is usually deter-
mined by the method of covering spaces. Of course this method is basic stuff anyway,
and needs to be explained, but having to make this detour, however attractive the route,
is unaesthetic. It was regarding this situation as an anomaly needing correction which
in effect led to the whole of the work of this book.

It was found that a uniform method including the fundamental group of the circle
could be given using nonabelian cohomology, [Bro65a], but a full exposition of this
became turgid. Then Brown came across the paper by Philip Higgins entitled ‘Presen-
tations of groupoids with applications to groups’ [Hig64], which among other things
defined free products with amalgamation of groupoids. We will explain something
about groupoids in Section 1.7. It seemed reasonable to insert an exercise in the book
on an analogous result to (1.5.1) for the fundamental groupoid �1.X/, namely that the
natural morphism of groupoids

�1.U1/ ��1.U12/ �1.U2/! �1.X/ (1.5.2)

is an isomorphism. It then seemed desirable to write out a solution to the exercise, and
lo and behold! the solution was much clearer and more powerful than all the turgid
stuff on nonabelian cohomology. Further work showed that computations required
the generalisation from the fundamental group �1.X; x/ on one base point x to the
fundamental groupoid �1.X;A/ on a set A of base points chosen freely according to
a given geometric situation. In particular if U12 is not connected it is not clear from
which component of U12 a base point should be chosen. So one hedges one’s bets,
and chooses a set A � U12 of base points, at least one in each component of U12.
The following picture shows a union of two open sets whose intersection has four
components.

One finds that the natural morphism of groupoids

�1.U1; A/ ��1.U12;A/ �1.U2; A/! �1.X;A/ (1.5.3)

is also an isomorphism and that the proof of this result using groupoids is simpler than
the original proof of (1.5.1) for groups. One also obtains a new range of calculations.
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U1

U1

U2 U2

Figure 1.1. Example of spaces in a Seifert–van Kampen type situation.

For example, U1, U2, U12 may have respectively 27, 63, and 283 components, and
yet X could be connected – a description of the fundamental group of this situation in
terms of groups alone is not really sensible.7

A feature of this groupoid version of the Seifert–van Kampen Theorem was that it
yielded quite precise results on fundamental groups, even in nonconnected situations.
This was surprising since in algebraic topology, invariants in situations involving a
pair of adjacent dimensions, in this case 0 and 1, are often related by exact sequences,
and so are not determined precisely: this reasoning showed that the result in terms
of groupoids was more powerful than the previous results referred to above obtained
using nonabelian cohomology. The underlying basis for this power seemed to be that
groupoids had structure in dimensions 0 and 1, and so could model well the gluing
process of spaces. It was therefore natural to seek for homotopically defined invariants
with structure in dimensions 0, 1, 2, …, n, again with a version of the Seifert–van
Kampen Theorem, but they took a number of years to find; they are the subject matter
of this book.

In view of these results on groupoids, the writing of the first edition, [Bro68], of
the book [Bro06] was redirected to give a full account of groupoids and the Seifert–van
Kampen Theorem. A conversation with G. W. Mackey in 1967 informed Brown of
Mackey’s work on ergodic groupoids (see the references in [Bro87]). It seemed that if
the idea of groupoid arose in two separate fields, then there was more in this than met
the eye. Mackey’s use of the relation between group actions and groupoids suggested
the importance of strengthening the book with an account of covering spaces in terms
of groupoids, following the initial lead of Higgins in [Hig64] for applications to group
theory, and of Gabriel and Zisman in [GZ67], for applications to topology.

Later Grothendieck was to write (1985):

The idea of making systematic use of groupoids (notably fundamental
groupoids of spaces, based on a given set of base points), however evident
as it may look today, is to be seen as a significant conceptual advance,
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which has spread into the most manifold areas of mathematics. …In my
own work in algebraic geometry, I have made extensive use of groupoids -
the first one being the theory of the passage to quotient by a ‘pre-equivalence
relation’ (which may be viewed as being no more, no less than a groupoid
in the category one is working in, the category of schemes say), which
at once led me to the notion (nowadays quite popular) of the nerve of a
category. The last time has been in my work on the Teichmüller tower,
where working with a ‘Teichmüller groupoid’ (rather than a ‘Teichmüller
group’) is a must, and part of the very crux of the matter …

The relevance of groupoids to the notion of quotient structure is discussed in App-
endix C, Section C.8.

1.6 Proof of the Seifert–van Kampen Theorem (groupoid case)

In this section we give the full proof that the morphism of groupoids induced by
inclusions

	 W �1.U1; A1/ ��1.U12;A12/ �1.U2; A2/! �1.X;A/ (1.6.1)

is an isomorphism when U1, U2 are open subsets of X D U1 [ U2 and A meets each
path component of U1, U2 and U12 D U1 \ U2. Here we write A� D U� \ A for
� D 1; 2; 12.

What one would expect is that the proof would construct directly an inverse to 	.
Alternatively, the proof would verify in turn that 	 is surjective and injective.

The proof we give might at first seem roundabout, but in fact it follows the important
procedure of verifying a universal property. One advantage of this procedure is that
we do not need to show that the free product with amalgamation of groupoids exists
in general, nor do we need to give a construction of it at this stage. Instead we define
the free product with amalgamation by its universal property, which enables us to go
directly to an efficient proof of the Seifert–van Kampen Theorem. It also turns out that
the universal property guides many explicit calculations. More importantly, the proof
guides other results, such the higher dimensional ones in this book.

We use the notion of pushout in ExampleA.4.4 ofAppendixA. Here is the definition
for groupoids. We say that the groupoid G and the two morphisms of groupoids
b1 W G1 ! G and b2 W G2 ! G are the pushout of the two morphisms of groupoids
a1 W G ! G1 and a2 W G ! G2 if they satisfy the following two axioms:

Pushout 1. The diagram

G0
a1 ��

a2

��

G1

b1

��
G2

b2

�� G
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is a commutative square, i.e. b1a1 D b2a2.

Pushout 2. The previous diagram is universal with respect to this type of diagram, i.e.
for any groupoidK and morphisms of groupoids k1 W G1 ! K and k2 W G2 ! K such
that the following diagram is commutative

G0
a1 ��

a2

��

G1

k1

��
G2

k2

�� K

there is a unique morphism of groupoids k W G ! K such that kb1 D k1, kb2 D k2.
The two diagrams are often combined into one as follows:

G0

a2

��

a1 �� G1

b1

�� k1

==

G2
b2 ��

k2 ��

G

k

>>
K:

We think of a pushout square as given by a standard input, the pair .a1; a2/, and
a standard output, the pair .b1; b2/. The properties of this standard output are defined
by reference to all other commutative squares with the same .a1; a2/. At first sight
this might seem strange, and logically invalid. However a pushout square is somewhat
like a computer program: given the data of another commutative square of the right
type, then the output will be a morphism (k in the above diagram) with certain defined
properties.

It is a basic feature of universal properties that the standard output, in this case the
pair .b1; b2/ making the diagram commute, is determined up to isomorphism by the
standard input .a1; a2/. See [Bro06], Section 6.6, and further discussion of the more
general colimits will be found in Appendix A.4.

We now state and prove the Seifert–van Kampen Theorem for the fundamental
groupoid on a set of base points in the case of a cover by two open sets. The reason for
giving this in detail is that the proofs of the analogous theorems in higher dimensions
are modelled on this one, but need new gadgets of higher homotopy groupoids to realise
them, see Chapters 6 and 14.8

Theorem 1.6.1. Let U1, U2 be open subsets of X whose union is X and let A be a
subset of U12 D U1 \U2 meeting each path component of U1, U2, U12 (and therefore
of X ). Let Ai D Ui \ A for i D 1; 2; 12. Then the following diagram of morphisms
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induced by inclusion

�1.U12; A12/
a1 ��

a2

��

�1.U1; A1/

b1

��
�1.U2; A2/

b2

�� �1.X;A/

is a pushout of groupoids.

Proof. We suppose given a commutative diagram of morphisms of groupoids

�1.U12; A12/
a1 ��

a2

��

�1.U1; A1/

k1

��
�1.U2; A2/

k2

�� K.

We have to prove that there is a unique morphism k W �1.X;A/! K such that kb1 D
k1; kb2 D k2.

We write b12 W �1.U12; A12/ ! �1.X;A/ for the composite b1a1 D b2a2, write
k12 D k1b1 D k2b2, and also write bi for the map of spaces Ui ! X .

Let us take an element Œ˛� 2 �1.X;A/ with representative ˛ W .I; @I / ! .X;A/.
Suppose first ˛ has image in U� for � D 1 or 2. Then ˛ D a�ˇ for ˇ W .I; @I / !
.U�; A�/ and we define kŒ˛� D k�Œˇ�. The condition k1a1 D k2a2 ensures this
definition is independent of the choice of � if ˛ has image in U1 \ U2, but it still has
to be shown the definition is independent of the choice of ˛ in its class.

We now consider a general Œ˛�. By the Lebesgue Covering Lemma ([Bro06], 3.6.4)
there is a subdivision

0 D t0 < t1 < � � � < tn�1 < tn D 1
of I into intervals by equidistant points such that ˛ maps each Œti ; tiC1� into U1 or
U2 (possibly in both). Choose one of these written U i for each i . The subdivision
determines a decomposition

˛ D ˛0˛1 : : : ˛n�1
such that ˛i has image in U i . Of course the point ˛.ti / need not lie in A, but it lies in
U i \U i�1 and this intersection may beU1; U2 orU12. By the connectivity conditions,
for each i D 0; 1; : : : ; n � 1, we may choose a path �i in U i \ U i�1 joining ˛.ti / to
A. Moreover, if ˛.ti / already lies in A we choose �i to be the constant path at ˛.ti /.
In particular �0 and �n are constant paths. The following figure shows the path ˛ in
black and the paths �i in white.

Now for each 0 6 i < n the path ˇi D ��1
i ˛i�iC1 lies in U i and joins points of

A. Notice that ˇi also represents a class in �1.U i ; A/, which maps by bi (which may
be b1; b2; b12) to �1.X;A/. It is clear that

Œ˛� D b0Œˇ0�b1Œˇ1� : : : bn�1Œˇn�1� 2 �1.X;A/:
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U1

U1

U2 U2

Figure 1.2. A decomposition of a path ˛ in a Seifert–van Kampen type situation.

If there exists the homomorphism k of groupoids that makes the external square com-
mute then the value of k.Œ˛�/ is determined by the above subdivision as

k.Œ˛�/ D k.b0Œˇ0�b1Œˇ1� : : : bn�1Œˇn�1�/
D k0Œˇ0�k1Œˇ1� : : : kn�1Œˇn�1�:

This proves uniqueness of k, and also proves that �1.X;A/ is generated as a groupoid
by the images of �1.U1; A1/, �1.U2; A2/ by b1, b2 respectively.

We have yet to prove that the element k.Œ˛�/ is independent of all the choices made.
Before going into that, notice that the construction we have just made can be interpreted
diagrammatically as follows. The starting situation looks like the bottom side of the
diagram

� ˇ0 ������ � ˇ1 ������ � � ˇn�2 ������ � ˇn�1 ������ �

�
�0

˛0
�� B
�1

--

˛1
�� B
�2

--

B
�n�2

--

˛n�2
�� B
�n�1

--

˛n�1
�� �
�n (1.6.2)

where the solid circles denote points which definitely lie in A, and in which �0, �n are
constant paths. The path ˇi may be obtained from the other three paths in its square
by composing with a retraction from above, as shown in Figure 1.3.

This retraction also provides a homotopy

u W ˛ ' ˇ D .b0ˇ0/.b1ˇ1/ : : : .bn�1ˇn�1/ (1.6.3)
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Figure 1.3. Retraction from above-centre.

rel end points. This is the first of many filling arguments where we define a map on
parts of the boundary of a cube and extend the map to the whole cube using appro-
priate retractions. This technique is studied in all dimensions in Section 11.3.i, using
‘expansions’ and ‘collapses’, and is essential for the main results of this book, which
is why we emphasise it here.9

We shall use another filling argument in I 3 to prove independence of choices.
Suppose that we have a homotopy rel end points h W ˛ ' ˛0 of two maps .I; @I / !
.X;A/. We can perform the construction of a homotopy in (1.6.3) for each of ˛, ˛0,
and then glue the three homotopies together. Here thick lines denote constant paths.

� ˇ

u

�

� ˛

h

�

�
˛0
�u0
�

�
ˇ0 �

(1.6.4)

So, replacing ˇs by ˛s, we can assume the maps ˛, ˛0 have subdivisions ˛ D Œ˛i �,
˛0 D Œ˛0

j � such that each ˛i , ˛0
j has end points in A and has image in one of U1, U2.

Since h is a map I 2 ! X , we may again by the Lebesgue covering lemma make
a subdivision h D Œhlm� such that each hlm lies in one of U1, U2. Also by further
subdivision as necessary, we may assume this subdivision of h refines on I � @I the
given subdivisions of ˛, ˛0.

The problem is that none of the vertices of this subdivision are necessarily mapped
into A, except those on @I � I (since the homotopy is rel vertices and ˛, ˛0 both map
@I to A) and those on I � @I determined by the initial subdivisions of ˛, ˛0. So the
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situation looks like the following:

˛

� ��� ��B ��� ��B ��� ���

� ��B ��

--

B ��

--

B ��

--

B ��

--

B ��

--

�

� ��B

--

��B ��

--

B ��

--

B ��

--

B

--

���

� ��B ��

--

� ��

--

� ��

--

˛0
� ��

--

B ��

--

�

(1.6.5)

Again thick lines denote constant paths. We want to deform the homotopy h to a new
homotopy Nh W N̨ ' N̨ 0 again rel end points such that:

Œ˛� D Œ N̨ �, Œ˛0� D Œ N̨ 0� in �1.X;A/;
h0 has the same subdivision as does h;
any subsquare mapped by h into Ui , i D 1; 2; 12 remains so in h0;
and any vertex already in A is not moved.

This deformation is constructed inductively on dimension of cells of the subdivision
by what we call ‘filling arguments’ in the cube I 3.

Let us imagine the 3-dimensional cube I 3 as I 2 � I where I 2 has the subdivision
we are working with in h. Define the bottom map to be h. We have to fill I 3 so that in
the top face we get a similar diagram but with all the vertices solid, i.e. in A, and each
subsquare in the top face lies in the same Ui as the corresponding in the bottom one.

The following picture shows the initial stage of the deformation needed.

� � � � �

� �

� �

� � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

Figure 1.4. Extending to the edges.
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We start by defining the deformation on all ‘vertical’ edges fvg � I arising from
vertices v in the partition of I 2. If the image of a vertex lies in A, then v is to be
deformed by a constant deformation; otherwise, we consider the 4, 2, or 1 squares of
which v is a vertex, let U v be the intersection of the sets of the cover into which these
are mapped, and choose a path in U v joining h.v/ to a point of A. Let us write elm for
the path we have chosen between the vertex h.sl ; tm/ and A. (These elm are constant
if h.sl ; tm/ lies already in A). This gives us the map on the vertical edges of I 3 as in
Figure 1.4.

From now on, we restrict our construction to the part of I 3 over the square Slm D
Œsl ; slC1� � Œtm; tmC1� and fix some notation for the restriction of h to its sides, 
lm D
hjŒsl ;slC1��ftmg and �lm D hjfsl g�Œtm;tmC1�. Then, using the retraction of Figure 1.3 on
each lateral face, we can fill all the faces of a 3-cube except the top one. Now, using
the retraction from a point on a line perpendicular to the centre of the top face, as in
the following Figure 1.5

......

� �

� �

� �

� �

Figure 1.5. Extending to the lateral faces.

we get at the top face a map that looks like

�
������� �

�������

B
�lm hlm

B

B

lm

elm������� B
�������

� �

(1.6.6)

and in particular is a map into U i sending all vertices into A.

If we do the above construction in each square of the subdivision, we get a top
face of the cube that is a homotopy Nh rel end points between two paths in the same
classes as ˛ and ˛0, and subdivided in such a way that each subsquare goes into some
U� and sends all vertices of the subsquare into A. Each of these squares produces a
commutative square say 
ij of path classes in one of �1.U�; A/, � D 1; 2. Thus the
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diagram can be pictured as follows:

N̨
� ��� ��� ��� ��� ��� ���
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� ��
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�

� ���

--

��� ��

--

� ��

--

� ��

--

�

--

���

� ��� ��

--

� ��

--

� ��

--

N̨ 0
� ��

--

� ��

--

�

Applying the appropriate k� to a subsquare 
ij we get a commutative square lij in
K. Since k1a1 D k2a2, we get that the lij compose in K to give a square l in K.

Now comes the vital point. Since any composite of commutative squares in a
groupoid is itself a commutative square, the composite square l is commutative.

But because of the way we constructed it, two sides of this composite commutative
square l in K are identities, as the images of the class of constant paths. Therefore
the opposite sides of l are equal. This shows that our element k.Œ˛�/ is independent of
the choices made, and so proves that k is well defined as a function on arrows of the
fundamental groupoid �1.X;A/.

The proof that k is a morphism is now quite simple, while uniqueness has already
been shown. So we have shown that the diagram in the statement of the theorem is a
pushout of groupoids.

This completes the proof.

There is another way of expressing the above argument on the composition of
commutative squares being a commutative square, namely by working on formulae for
each individual square as in the expression a D cdb�1 for (1.1.1). Putting together
two such squares as in

� a ��

c
��

�
b
��

e �� �
f
���

d
�� �

g
�� �

(1.6.7)

allows cancelation of the middle term

ae D .cdb�1/.bgf �1/ D cdgf �1

which if c D 1, f D 1 reduces to ae D dg. This argument extends to longer gluings
of commutative squares, and hence extends, by induction, and in the other direction,
to a subdivision of a square.
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We would like to extend the above argument to the faces of a cube, and then to an
n-dimensional cube.

For a cube, the expression of one of the faces in terms of the others can be done
(see the Homotopy Commutativity Lemma 6.7.6) and then can be used to prove a
2-dimensional Seifert–van Kampen Theorem. That will be done in Section 6.8.

It is much more difficult to follow this route in the general case and a more round-
about method is developed in Chapter 14. We need an algebra of ‘thin .nC 1/-cubes’,
each of which can be seen to have ‘commuting boundary’, and for which it is automatic
that compositions of thin cubes are thin. The algebra to carry out this argument in all
dimension is given in Chapter 13. It is interesting that such a complicated and subtle
algebra seems to be needed to make it all work. We emphasise that the purely algebraic
work of Chapter 13 is essential for the applications in the following two chapters of
Part III, and that Part III gives the theoretical underpinning for the whole of Part II.

Remark 1.6.2. One of the nice things about proving the theorem by verifying the
universal property is that the proof uses some calculations in a general groupoid K,
and groupoids have, in some sense, the minimal set of properties needed for the result.
This avoids a calculation in�1.X;A/, and somehow makes the calculations in the proof
as easy as possible. Also the proof does not require a knowledge of how to compute
pushouts, or more general colimits, of groupoids, or even that they exist in general. The
same advantages hold in some other verifications of universal properties, for example in
the computation of the fundamental groupoid of an orbit space in [Bro06], Chapter 11.
We will see a similar situation later for double groupoids in Chapter 6, and in all
dimensions in Chapter 14.

1.7 The fundamental group of the circle

In order to interpret the last theorem, one has to set up the basic algebra of computational
groupoid theory. In particular, one needs to be able to deal with presentations of
groupoids. This is done to a good extent in [Hig71], [Bro06]. Here we can give only
the indications of the theory.

The theory of groupoids may be thought of as an algebraic analogue of the theory
of groups, but based on directed graphs rather than on sets.10

Let us explain some basic definitions in groupoid theory. A groupoid G is called
connected if G.a; b/ is nonempty for all a; b 2 Ob.G/.11 The maximal connected
subgroupoids of G are called the (connected) components of G .

If a is an object of the groupoid G, then the set G.a; a/ inherits a group structure
from the composition on G, and this is called the object group of G at a and is written
also G.a/ . The groupoid G is called simply connected if all its object groups are
trivial. If it is connected and simply connected, it is called 1-connected, or an indiscrete
groupoid .
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A standard example of an indiscrete groupoid is the groupoid I.S/ on a set S . This
has object set S and arrow set S � S , with s; t W S � S ! S being the first and second
projections. The composition on I.S/ is given by

.a; b/.b; c/ D .a; c/; for all a; b; c 2 S:

A special case is the groupoid we will write � D I.f0; 1g/ . This has two nonidentity
elements which we write � W 0! 1 and ��1 W 1! 0. This apparently ‘trivial’ groupoid
will play a key role in the theory, since it determines homotopies. It is also called the
‘unit interval groupoid’.

A directed graphX is called connected if the free groupoidF.X/ onX is connected,
and is called a forest if every object group F.X/.a/ of F.X/, a 2 Ob.X/, is trivial. A
connected forest is called a tree . If X is a tree, then the groupoid F.X/ is indiscrete;
an indiscrete groupoid is also called a tree groupoid.

Let G be a connected groupoid and let a0 be an object of G. For each a 2 Ob.G/
choose an arrow �a W a0 ! a, with �a0 D 1a0

. Then an isomorphism

 W G ! G.a0/ � I.Ob.G// (1.7.1)

is given by g 7! ..�a/g.�b/�1; .a; b// when g 2 G.a; b/ and a; b 2 Ob.G/: The
composition of  with the projection yields a morphism � W G ! G.a0/which we call
a deformation retraction since it is the identity on G.a0/ and is in fact homotopic to
the identity morphism of G, though we do not elaborate on this fact here.

It is also standard [Bro06], 8.1.5, that a connected groupoid G is isomorphic to
the free product groupoid G.a0/ � T where a0 2 Ob.G/ and T is any wide, tree
subgroupoid of G. The importance of this is as follows.

Suppose that X is a graph which generates the connected groupoid G. Then X is
connected. Choose a maximal tree T in X . Then T determines for each a0 in Ob.G/
a retraction �T W G ! G.a0/ and the isomorphisms

G Š G.a0/ � I.Ob.G// Š G.a0/ � F.T /

show that a morphism G ! K from G to a groupoid K is completely determined by
a morphism of groupoids G.a0/! K and a graph morphism T ! K which agree on
the object a0.

We shall use later the following proposition, which is a special case of [Bro06],
6.7.3:

Proposition 1.7.1. LetG,H be groupoids with the same set of objects, and let W G !
H be a morphism of groupoids which is the identity on objects. Suppose that G is
connected and a0 2 Ob.G/.

Choose a retraction � W G ! G.a0/. Then there is a retraction 
 W H ! H.a0/
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such that the following diagram, where 0 is the restriction of ,

G
� ��

�

��

G.a0/

�0

��
H 	

�� H.a0/

(1.7.2)

is commutative and is a pushout of groupoids.

This result can be combined with Theorem 1.6.1 to determine the fundamental
group of the circle S1.

Corollary 1.7.2. The fundamental group of the circle S1 is a free group on one gen-
erator.

Proof. We represent S1 as the union of two semicircles E1C, E1� with intersection
f�1; 1g. Then both fundamental groupoids �1.E1C; f�1; 1g/ and �1.E1�; f�1; 1g/ are
easily seen to be isomorphic to the connected groupoid � with object set f�1; 1g
and trivial object groups. In fact this groupoid is the free groupoid on one generator
� W � 1! 1.

Also, �1.f�1; 1g, f�1; 1g/ is the discrete groupoid on these objects f�1; 1g. Con-
sider the following two squares of morphisms of groupoids:

f�1; 1g

��

�� �

��

�� f1g

��
� �� �1.S1; f�1; 1g/ �� �1.S1; 1/:

By an application of Theorem 1.6.1 the lefthand square is a pushout of groupoids; from
the previous proposition, the right-hand square is a pushout of groupoids. It follows
that the outside composite square is a pushout of groupoids, and the result follows by
an easy universal argument.

Note that S1 may be regarded as a pushout in the category of topological spaces

f�1; 1g ��

��

f1g

��
Œ�1; 1� �� S1:

(1.7.3)

Exercise 1.7.3. By regardingS1_S1 as obtained from the interval Œ0; 2� by identifying
f0; 1; 2g to a single point, use the SvKT to prove that �1.S1 _ S1; x/ is isomorphic to
the free group on two generators. (Compare [Bro06], p. 343.) We will use this example
as part of a higher dimensional result in Remark 8.3.16.
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The correspondence between this pushout of spaces and the previous composite
pushout of groupoids was for R.Brown a major incentive to exploring the use of group-
oids. Here we have a successful algebraic model of a space, but of a different type from
that previously considered. An aspect of its success is that groupoids have structure in
two dimensions, namely 0 and 1, and this is useful for modeling the way spaces are
built up using identifications in dimensions 0 and 1.

Another interesting aspect is that the groupoid � is finite, and it is very easy to
explore all its internal properties. By contrast, the integers form an infinite set, and
discussion of its properties usually requires induction.

The problem suggested by these considerations was to find analogous methods in
higher dimensions.

1.8 Higher order groupoids

The successes of the use of groupoids in group theory and then in 1-dimensional homo-
topy theory as exposed in the books [Bro06], [Hig71] suggested the potential interest in
the use of groupoids in higher dimensional homotopy theory. In particular, it was sugg-
ested in [Bro67] that a Higher Homotopy Seifert–van Kampen Theorem (HHSvKT)
could be proved, the intuition being that the ‘right’ higher homotopy groupoids could
be constructed, with properties analogous to those which enabled the proof of this
theorem in dimension 1.

Experiments by Brown to obtain such a construction in the years 1965–74 proved
abortive. However in 1971 Chris Spencer came to Bangor as a Science Research
Council Research Assistant, and in this and a subsequent period considerable progress
was made on discovering the algebra of double groupoids. It was in this collaboration
that the relation with crossed modules was found, so linking the notion of double
groupoids with more classical ideas.

Crossed modules had been defined by J. H. C. Whitehead in 1946 [Whi46] in order
to express the properties of the properties of the boundary map

@ W �2.X;X1; x/! �1.X1; x/

of the second relative homotopy group, a group which is in general nonabelian. As
explained in more detail on p. 32, he gave the first nontrivial determination of this group
in showing that when X is formed from X1 by attaching 2-cells, then �2.X;X1; x/
is isomorphic to the free crossed �1.X1; x/-module on the characteristic maps of the
2-cells.

This result was a crucial clue to Brown and Higgins in 1974. On the one hand it
showed that a universal property, namely freeness, did exist in 2-dimensional homotopy
theory. Also, if our proposed theory was to be any good, it should have this theorem as a
corollary. However, Whitehead’s theorem was about relative homotopy groups, which
suggested that we should look at a relative theory, i.e. a space X with a subspace X1.
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With the experience obtained by then, we quickly found a satisfactory, even simple,
construction of a relative homotopy double groupoid �2.X;X1; x/ and a proof of a
2-dimensional Seifert–van Kampen Theorem, as envisaged.

The equivalence between these sorts of double groupoids and crossed modules
proved earlier by Brown and Spencer, then gave the required Seifert–van Kampen type
theorem for the second homotopy crossed module, and so new calculations of second
relative homotopy groups.

So we have a pattern of proof:

A) construct a homotopically defined multiple groupoid;
B) prove it is equivalent to a more familiar homotopical construction;
C) prove a Seifert–van Kampen Theorem in the multiple groupoid context; and
D) interpret this theorem in the more familiar context.

These combined give new nonabelian, higher dimensional, local-to-global results. This
pattern has been followed in the corresponding result for crossed complexes, which is
dealt with in our Part II, and in results for the catn-groups of Loday, [Lod82]. We give
a brief indication of results on crossed squares in Appendix B, Section B.4.

Crossed modules had occurred earlier in other places. They were used in work on
the cohomology of groups, [ML49], and in extensive work of Dedecker on cohomology
with coefficients in a crossed module, for which we refer to [Ded60].

In the mid 1960s the great school of Grothendieck in Paris had considered sets with
two structures, that of group and of groupoid, and had proved these were equivalent to
crossed modules. However this result was not published, and so was known only to a
restricted group of people.

It is now clear that once one moves to higher version of groupoids, the presence of
crossed modules is inevitable, and is an important part of the theory and applications.
This is why Part I is devoted entirely to the area of crossed modules and double group-
oids. It should be said that the double groupoids we need for this book are not the most
general kind, but are the kind most closely related to classical aspects of homotopy
theory, and the ones which for us lead to explicit calculations in homotopy theory.

Notes

6 p. 12 The papers of Whitehead [Whi41b], [Whi39], [Whi41a] show a thorough
understanding of work of Reidemeister, [Rei34], and are very original. They
were worked up in new language in his papers after the war [Whi49a], [Whi49b],
[Whi50b]. At Oberwolfach in 1957, Brown met R. Baer, who on learning of
Brown’s supervisor immediately quipped: ‘Ah! The English Heraclitus!’. White-
head was very pleased to be invited to Paris in the 1950s to talk on his theorem
on homotopy equivalences, and said he was even more pleased when he found
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that they had got it wrong! Brown also met H. Cartan in 1982, and his remark on
Whitehead was: ‘Il à une idée toute minute!’.

7 p. 16 If one considers paths as rail journeys and the set A as the set of stations,
then one wants to list all journeys between stations. It is not common sense to
put the emphasis on return journeys from each station, and then to add ways of
changing from one set of return journeys to another, called in the literature ‘change
of base point’. Complicated combinatorial situations with even infinitely many
components arise in group theory, for example in proving the Kurosch Subgroup
Theorem using covering spaces or covering groupoids, [Hig64], [Hig71], [Bro06].
Many authors get around the problem of really needing many base points by
choosing a base point in a connected graph and then a maximal tree: again, the
result is usually unaesthetic.

8 p. 18 This proof differs from that in [Bro06] in working directly with path classes
in �1.X;A/ instead of first doing the caseA D X and then using a retraction. That
retraction argument is not so easy to extend to the case of an arbitrary open cover of
X , and, more importantly, seemingly impossible to extend to higher dimensions.
So the proof we give returns in essence to the argument in [Cro59]. The result for
general covers with best possible connectivity conditions is given in [BRS84]. A
quotation from [Rot08], p. 48, is also relevant:

“What can you prove with exterior algebra that you cannot prove without
it?” Whenever you hear this question raised about some new piece of math-
ematics, be assured that you are likely to be in the presence of something
important. In my time, I have heard it repeated for random variables, Lau-
rent Schwartz’ theory of distributions, ideles and Grothendieck’s schemes,
to mention only a few. A proper retort might be: “You are right. There is
nothing in yesterday’s mathematics that could not also be proved without it.
Exterior algebra is not meant to prove old facts, it is meant to disclose a new
world. Disclosing new worlds is as worthwhile a mathematical enterprise
as proving old conjectures.

9 p. 21 These collapsing techniques were developed in [Whi41b] and [Whi50b] by
J. H. C. Whitehead and have become an important tool in geometric topology.

10 p. 25 For some discussion of the philosophy of moving from sets to directed graphs,
see [Bro94]. We refer to [Bro06], [Hig71] for the construction of a free groupoid
over a directed graph.

11 p. 25 Sometimes the term ‘transitive groupoid’ is used for what we have called a
connected groupoid. The former term is more convenient when dealing with, say,
topological or Lie groupoids.



Chapter 2

Homotopy theory and crossed modules

In this chapter we explain how crossed modules over groups arose in topology in the
first half of the last century, and give some of the later developments.

The topologist J. H. C. Whitehead (1904–1960) was steeped in the combinatorial
group theory of the 1930s, and much of his work can be seen as trying to extend the
methods of group theory to higher dimensions, keeping the interplay with geometry and
topology. These attempts led to greatly significant work, such as the theory of simple
homotopy types [Whi50b], the algebraic background for which started the subject of
algebraicK-theory. His ideas on crossed modules have taken longer to come into wide
use, but they can be regarded as equally significant.

One of his starting points was the Seifert–van Kampen Theorem for the fundamental
group. This tells us in particular how the fundamental group is affected by the attaching
of a 2-cell, or of a family of 2-cells, to a space. Namely, ifX D A[fe2i gi2I , where the 2-
cell e2i is attached by a map which for convenience we suppose is fi W .S1; 1/! .A; x/,
then each fi determines an element i in �1.A; x/, and a consequence of the Seifert–
van Kampen Theorem for the fundamental group is that the group �1.X; x/ is obtained
from the group �1.A; x/ by adding the relations i , i 2 I .

x
X D

A

Figure 2.1. Picture of an attached 2-cell.

The next problem was clearly to determine the effect on the higher homotopy
groups of adding cells to a space. So Whitehead’s 1941 paper [Whi41a] was entitled
‘On adding relations to homotopy groups’. If we could solve this problem in general
then we would in particular be able to calculate all homotopy groups of spheres. Work
since 1935 has shown the enormous difficulty of this task.

In this paper he gave important results in higher dimensions, but he was also able
to obtain information on the second homotopy groups of X D A [ fe2i gi2I . His
results were clarified by him in two subsequent papers using the notion of crossed
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module [Whi46], and then free crossed module, [Whi49b]. Whitehead’s highly origi-
nal method of proof (an exposition is given in [Bro80]) uses knot theory and what is
now called transversality, and has become the foundation of a technique called ‘pic-
tures’, for which references are [BH82], [HAMS93] for computing second homotopy
groups of 2-complexes. Free crossed modules are exploited rather differently and
in a more algorithmic way in [BRS99] to compute second homotopy modules, see
Section 10.3.ii.12

We begin this chapter by giving a definition of the fundamental crossed module

…2.X;A; x/ D .@ W �2.X;A; x/! �1.A; x//

of a based pair of spaces and explaining some of Whitehead’s work. Then we state two
central results:

• the 2-dimensional Seifert–van Kampen Theorem, in Section 2.3;
• the notion of classifying space of a crossed module, in Section 2.4.

It is these two combined which give many of the important homotopical applications
of crossed modules (including Whitehead’s results). However the construction of
the classifying space, and the proof of its properties, needs the methods of crossed
complexes of Part II, and is given in Chapter 11. We give applications of the 2-
dimensional Seifert–van Kampen Theorem in Chapters 4 and 5 and prove it in Chapter 6.
This sets the scene for the corresponding higher dimensional results of Part II, and the
substantial proofs of Part III.

Section 2.5 shows that crossed modules are equivalent to another algebraic structure,
that of cat1-groups. This is used in Section 2.6 to obtain the cat1-group of a fibration,
which yields an alternative way of obtaining the fundamental crossed module.

Section 2.7 shows that crossed modules are also equivalent to ‘categories inter-
nal to groups’, or, equivalently, to groupoids internal to groups. This is important
philosophically, because groupoids are a generalisation of equivalence relations, and
equivalence relations give an expression of the idea of quotienting, a fundamental pro-
cess in mathematics and science, because it is concerned with classification. We can
think of groupoids as giving ways of saying not only that two objects are equivalent,
but also how they are equivalent: the arrows between two objects give different ‘equiv-
alences’ between them, which can sometimes be regarded as ‘proofs’ that the objects
are equivalent.

Moving now to the case of groups, to obtain a quotient of a group P we need not
just an equivalence relation, but this equivalence relation needs to be a congruence, i.e.
not just a subset but also a subgroup of P � P . An elementary result in group theory
is that a congruence on a group P is determined completely by a normal subgroup of
P . The corresponding result for groupoids is that a groupoid with a group structure
is equivalent to a crossed module M ! P where P is the group of objects of the
groupoid.

This family of equivalent structures – crossed modules, cat1-groups, group objects
in groupoids – gives added power to each of these structures. In fact in Chapter 6 we
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will use crucially another related structure, that of double groupoids with connection.
This is equivalent to an important generalisation of a crossed module, that of crossed
module over a groupoid, which copes with the varied base points of second relative
homotopy groups.

2.1 Homotopy groups and relative homotopy groups

Recall that two maps f; g W X ! Y between two topological spaces are said to be
homotopic if f can be continuously deformed to g. Formally, they are homotopic,
and this is denoted by f ' g, if there is a continuous map

F W I �X ! Y

such that for all x 2 X

F.0; x/ D f .x/ and F.1; x/ D g.x/:

The map F is called a homotopy from f to g.
This definition gives an equivalence relation among the set of maps from X to Y .

The quotient set is denoted ŒX; Y � and the equivalence class of a map f is denoted by
Œf �.

Sometimes we are interested in considering only deformations that keep some subset
fixed. IfA � X , we say that two maps as above are homotopic relative to A, and denote
this by f ' g rel A, if there is a homotopy F from f to g satisfying F.t; a/ D f .a/
for all a 2 A, t 2 I . This definition gives another equivalence relation among the set
of maps from X to Y . The quotient set is written ŒX; Y �A and the equivalence class of
a map f is again denoted by Œf �.

Since all maps homotopic relative to, or rel to,Amust agree with a map u W A! Y ,
this set for a fixed u is written ŒX; Y Iu�. Thus ŒX; Y �A is the union of the disjoint sets
ŒX; Y Iu� for all u W A! Y .

A particular case of this definition is when we study maps sending a fixed subset A
of X to a given point y 2 Y . Then the quotient set corresponding to maps from X to
Y sending all A to y with respect to homotopy rel A, is written as Œ.X;A/; .Y; y/� or,
when A D fxg, as ŒX; Y ��.

To define the homotopy groups of a space, we consider homotopy classes of maps
from particular spaces. Namely if x 2 X , the n-th homotopy group of X based at x is
defined as

�n.X; x/ D Œ.I n; @I n/; .X; x/�
where @I n is the boundary of I n. The elements of �n.X; x/ are classes of maps that
can be pictured for n D 2 as in the following diagram:
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x

x X x

x

1

2

��

��

(2.1.1)

where we use throughout all the book a matrix like convention for directions. This is
convenient for handling multiple compositions in Chapter 6, see Remark 6.1.4, and in
Part III.

In the case n D 1 we obtain the fundamental group �1.X; x/. For all n > 1

there initially seem to be n group structures on this set induced by the composition of
representatives given for 1 6 i 6 n by

.˛ Ci ˇ/.t1; t2; : : : ; tn/ D
´
˛.t1; t2; : : : ; 2ti ; : : : ; tn/ if 0 6 ti 6 1=2;

ˇ.t1; t2; : : : ; 2ti � 1; : : : ; tn/ if 1=2 6 ti 6 1:

Remark 2.1.1. For the case n D 2 the following diagrams picture the two composi-
tions:

˛

�

˛ C1 �

˛ ˇ

˛ C2 ˇ

1

2

��

��

Theorem 2.1.2. If n > 2, then any of the multiplicationsCi , i D 1; : : : ; n on �n.X; x/
induce the same group structure, and all these group structures are abelian.

Proof. By Theorem 1.3.1, we need only to verify the interchange law for the compo-
sitionsCi ,Cj , 1 6 i < j 6 n. It is easily seen that if ˛; ˇ; �; ı W .I n; @I n/! .X; x/

are representatives of elements of �n.X; x/, then the two compositions obtained by
evaluating the following matrix in two ways

˛ ˇ

� ı i

j

��

��

in fact coincide. The rest of the argument is as in Theorem 1.3.1.

We shall need later that �n is functorial in the sense that to any map  W X ! Y

there is associated a homomorphism of groups

� W �n.X; x/! �n.Y; .x//

defined by �Œf � D Œf � satisfying the usual functorial properties . /� D � �,
1� D 1.
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Now we may repeat everything for maps of based pairs and homotopies among
them. By a based pair of spaces .X;A; x/ is meant a spaceX , a subspace A ofX and
a base point x 2 A. The nth relative homotopy group �n.X;A; x/ of the based pair
.X;A; x/ is defined as the homotopy classes of maps of triples

�n.X;A; x/ D Œ.I n; @I n; J n�1/; .X;A; x/�

where J n�1 D f1g � I n�1 [ I � @I n�1; that is we consider maps ˛ W I n ! X such
that ˛.@I n/ � A and ˛.J n�1/ D fxg and homotopies through maps of this kind.

The picture we shall have in mind as representing elements of �n.X;A; x/ is

A

x X x

x

1

2

��

��

(2.1.2)

As before, a multiplication on �n.X;A; x/ is defined by the compositionsCi in any
of the last .n�1/ directions. It is not difficult to check that any of these multiplications
gives a group structure and analogously to Theorem 2.1.2 these all agree and are
abelian if n > 3. Also, for any maps of based pairs  W .X;A; x/! .Y; B; y/, there is
a homomorphism of groups

� W �n.X;A; x/! �n.Y; B; y/

as before .
The homotopy groups defined above fit nicely in an exact sequence called the

homotopy exact sequence of the pair as follows:

� � � ! �n.X;A;x/
@n�! �n�1.A; x/

i��! �n�1.X; x/
j��! � � �

� � � ! �2.X;A; x/
@2�! �1.A; x/

i��! �1.X; x/

j��! �1.X;A; x/
@1�! �0.A/

i��! �0.X/;

(2.1.3)

where i� and j� are the homomorphisms induced by the inclusions, and the boundary
maps @ are given by restriction, i.e. for any Œ˛� 2 �n.X;A; x/ represented by a map
˛ W .I n; @I n; J n�1/ ! .X;A; x/, we define @Œ˛� D Œ˛0� where ˛0 is the restriction of
˛ to the face f0g � I n�1, which we identify with I n�1.

This exact sequence is of: abelian groups and homomorphisms until �2.X; x/; of
groups and homomorphisms until �1.X; x/; and of based sets for the last three terms.
The amount of exactness for the last terms is the same as for the exact sequence of
a fibration of groupoids, see [Bro06], 7.2.9, which we use again in Section 12.1.ii
(Theorem 12.1.15).
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There is a structure on relative homotopy groups which is deduced from the above
and which occurs when we have a triple .X3; X2; X1/ of pointed spaces, with base
point x, say. That is, we have

x 2 X1 � X2 � X3:
Then we have for n > 3 a morphism

ı W �n.X3; X2; x/! �n�1.X2; X1; x/

which is defined as the composition

�n.X3; X2; x/
@�! �n�1.X2; x/

i��! �n�1.X2; X1; x/:

We use this morphism ı, with .X3; X2; X1/ replaced by .Xn; Xn�1; Xn�2/, in Sec-
tion 7.1.v in constructing the fundamental crossed complex of a filtered space.

The final interesting piece of structure is the existence of a �1.A; x/-action on all
the terms of the above exact sequence which are groups. Let us define this action. For
any Œ˛� 2 �n.X;A; x/ and any Œ!� 2 �1.A; x/, we define the map

F D F.˛; !/ W I n � f0g [ J n�1 � I ! X

given by ˛ on I n � f0g and by ! on ftg � I , for any t 2 J n�1. Then we have defined
F on the subset of I nC1 indicated in Figure 2.2.

�
�
�
�
�
��������

�
�
�
�
�
��������

�������

�����

��
		

˛

x x

3x

!

x

x

A

1

2

Figure 2.2. Action of �1.A; x/.

We then compose with the retraction

r W I nC1 ! I n � f0g [ J n�1 � I
given by projecting from a point P D .0; 1

2
; 1
2
; : : : ; 1

2
; 2/ and indicated in Figure 2.3,

getting a map F r W I nC1 ! X extending F .
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� P

Figure 2.3. Retraction from above-lateral.

The ‘restriction’ map

I n Š I n � f1g ,! I nC1 F r��! X

represents an element Œ˛�Œ!� 2 �n.X;A; x/.
We leave the reader to develop proofs that the action is an action of a group on a

group, that is that various axioms are satisfied. However all this will follow in a more
algebraic fashion using the theory given in Chapter 14.

Notice that in this definition we use another of the filling arguments that we have
started using in the proof of Theorem 1.6.1 in Section 1.6. Arguments of the same kind
prove that the assignment just defined is independent of the several choices involved
(˛, ! and the extension of F ), and that it defines an action.

Remark 2.1.3. When n D 2 the map representing Œ˛�Œ!� could be drawn

!��

F

! ��

!
??>>>>>>>>> !

))?????????

!

�������������

!

��

!

�������������
1

2

��

��
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or, equivalently we could have chosen the one described as follows:

!��

F

! ��

!�� ! ��

!��

!
�������������

!

��

!

��

!

��

!

������������� ! ��
1

2

��

��

In a similar way, we may define an action of �1.X; x/ on �n.X; x/. In our case,
this gives an action of �1.A; x/ on both �n.A; x/ and �n.X; x/. Moreover, all maps
in the homotopy exact sequence are maps of �1.A; x/-groups.

These constructions can be repeated for based r-adsX� D .X IX1; X2; : : : ; Xr ; x/,
where allXi are subspaces ofX . Homotopy groups�nX� are defined for n > rC1 and
are abelian forn > rC2. There are various long exact sequences relating the homotopy
groups of .r C 1/-ads and r-ads. An account of these is in [Hu59]. The homotopy
groups of an .r C 1/-ad are also a special case of the homotopy groups of an r-cube
of spaces [Lod82], [BL87], [Gil87]. All these groups are important for discussing the
failure of excision for relative homotopy groups, to which we have referred earlier, and
whose analysis in some cases using nonabelian methods will be an important feature
of this book, see Section 5.4, Section 8.3.iii, and Section B.4.

2.2 Whitehead’s work on crossed modules

We start with the basic definition of crossed module. (From Chapter 6 onwards we will
need crossed modules over groupoids, but until then we stick to the group case).

Definition 2.2.1. A crossed module (over a group) M D .� W M ! P / is a morphism
of groups � W M ! P called the boundary of M together with an action13 .m; p/ 7!
mp of the group P on the group M satisfying the two axioms14

CM1) �.mp/ D p�1�.m/p,
CM2) n�1mn D m�n,

for all m; n 2M , p 2 P .

When we wish to emphasise the codomain P , we call M a crossed P -module.
Basic algebraic examples of crossed modules are:

• A conjugation crossed module is an inclusion of a normal subgroup N E G,
with action of G on N given by conjugation. In particular, for any group P
the identity map 1P W P ! P is a crossed module with the action of P on
itself by conjugation. Thus the concept of crossed module can be seen as an
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‘externalisation’ of the concept of normal subgroup. That is, an inclusion is
replaced by a homomorphism with special properties. This process occurs in
other algebraic situations, and is relevant to the process of forming quotients, see
Appendix C, Section C.8.

• IfM is a group, its automorphism crossed module is given by .� W M ! Aut.M//

where for m 2M , �m is the inner automorphism of M mapping n to m�1nm.
• The trivial crossed module 0 W M ! P whenever M is a P -module.
• A central extension crossed module, i.e. a surjective boundary .� W M ! P /with

kernel contained in the centre of M and p 2 P acts on m 2 M by conjugation
with any element of ��1p.

• Any homomorphism .� W M ! P /, with M abelian and Im� in the centre of
P , provides a crossed module with P acting trivially on M .

The category XMod=Groups has as objects all crossed modules over groups. Mor-
phisms in XMod=Groups from M to N are pairs of group homomorphisms .g; f /
forming commutative diagrams with the two boundaries,

M
g ��

�

��

N




��
P

f
�� Q,

and preserving the action in the sense that for all m 2 M , p 2 P we have g.mp/ D
.gm/fp . If P is a group, then the category XMod=P of crossed P -modules is the
subcategory of XMod=Groups whose objects are the crossed P -modules and whose
morphisms are the group homomorphisms g W M ! N such that g preserves the action
(i.e. g.mp/ D .gm/p , for all m 2M , p 2 P ), and �g D �.

Here are some elementary general properties of crossed modules which we will
often use.

Proposition 2.2.2. For any crossed module � W M ! P , �M is a normal subgroup
of P , in symbols �M E P .

Proof. This is immediate from CM1).

The centraliser C.S/ of a subset S of a groupM is the set of elements ofM which
commute with all elements of S . In particular, C.M/ is written ZM and called the
centre of M and is abelian. Any subset of ZM is called central in M .

Proposition 2.2.3. Let � W M ! P be a crossed module. Then

(i) Ker� is central in M .

(ii) �.M/ acts trivially on ZM .

(iii) ZM and Ker� inherit an action of Cok� to become .Cok�/-modules.
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Proof. Axiom CM2) shows that ifm; n 2M and�n D 1 thenmn D nm. This proves
(i). On the other hand, and by CM2) and CM1), mn D nm implies m�n D m, and
this proves (ii). Then (iii) follows using these and Proposition 2.2.2, which implies
Cok� D P=�.M/.

The commutator of elements m; n of a group M is the element

Œm; n� D m�1n�1mn:

The commutator subgroup ŒM;M� of M , is the subgroup of M generated by all
commutators, and it is a standard fact that this is normal in M . We write M ab for the
abelian group M=ŒM;M�, the abelianisation of M .

Proposition 2.2.4. Let � W M ! P be a crossed module. Then P acts on M ab and
�.M/ acts trivially on M ab which inherits an action of Cok� to become a .Cok�/-
module.

Proof. Since Œm; n�p D Œmp; np� for m; n 2 M , p 2 P , we have ŒM;M� is P -in-
variant, so that P acts on M ab. However the equation

m�n D n�1mn D m mod ŒM;M�:

for m; n 2M show that in this action �.M/ acts trivially.

Remark 2.2.5. Thus for any crossed module .� W M ! P /we have an exact sequence
of .Cok�/-modules

Ker� �!M ab �! .�M/ab �! 1:

The first map is not injective in general. To see this, consider the crossed module
� W M ! Aut.M/ associated to a group M . Then Ker � D ZM , the centre of M .
There are groups M for which

1 ¤ ZM � ŒM;M�;

for example the quaternion group, the dihedral groups and many others. For all these
the composite map Ker� ! ZM ! M ab is trivial and so not injective. These
examples give point to the following useful result.

Proposition 2.2.6. If there is a section s W �M !M of � which is a group homomor-
phism (but not necessarily a P -map) thenM is isomorphic as a group to Ker���M .
Further ŒM;M� \ Ker� D 1, and the map Ker�!M ab is injective.

Proof. Because s is a section (i.e. �s is the identity on �M ) we have that M D
.Ker�/.Im s/ and .Ker�/ \ .Im s/ D f1g. Because the action of Im s on Ker� is
trivial, we have an internal product decompositionM D .Ker�/�.Im s/. Furthermore,
by Proposition 2.2.3 we know that Ker� is abelian so ŒM;M� D ŒIm s; Im s�.

So, ŒM;M� \ Ker� D f1g and Ker�!M ab is injective.
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An important example where the section s exists is when �.M/ is a free group.
The well-known Schreier Subgroup Theorem of combinatorial group theory,15 that a
subgroup of a free group is itself free, assures us that such a section exists when P is
free. The previous proposition is developed in Definition 7.4.23.

The result of the following exercise will be used in Example 10.3.10.

Exercise 2.2.7. Let � W M ! P be a crossed module. If M has a single generator as
P -group, and P is abelian, then M is abelian.

Example 2.2.8. Crossed modules � W M ! P in which both M and P are abelian
form an interesting subcategory of that of crossed modules. As an example, let Cn be
the cyclic group of order n, let � W C2 � C2 ! C4 be the morphism which maps each
C2 summand injectively, and where C4 operates by switching the two summands. This
gives a crossed module which as we shall see in Example 12.7.12 is in a key sense
nontrivial.

Other algebraic examples of crossed modules arise from two important construc-
tions with homotopical applications: coproducts of crossed P -modules developed in
Chapter 4 and induced crossed modules in Chapter 5.

The major geometric example of a crossed module is the following, where the basic
definitions were given in the last section. Let .X;A; x/ be a based pair of spaces, that
isX is a topological space and x 2 A � X . Whitehead showed that the boundary map

@ W �2.X;A; x/! �1.A; x/; (2.2.1)

from the second relative homotopy group of .X;A; x/ to the fundamental group
�1.A; x/, together with the standard action of �1.A; x/ on �2.X;A; x/,16 has the
structure of crossed module. We shall denote this crossed module by…2.X;A; x/ and
it will be called the fundamental crossed module of the based pair .X;A; x/. This
result and its proof will be seen in various lights in this book. Because of this example
it is convenient and sensible to regard crossed modules � W M ! P as 2-dimensional
versions of groups, with P ,M being respectively the 1- and 2-dimensional parts. This
analogy also will be pursued in more detail later. At this stage we only note that the
full description of the 2-dimensional part requires specification of its 1-dimensional
foundation and of the way the two parts fit together: that is, we need the whole structure
of crossed module.

We have a functor from based pairs of topological spaces to crossed modules

…2 W Top2� ! XMod=Groups (2.2.2)

which sends the based pair .X;A; x/ to the crossed module given in (2.2.1) above. (In
Chapter 6 we will formulate a groupoid version of this functor, allowing the base point
to vary, but it is best to get familiar with this special case). Since all pairs are based in
Chapters 2–5, we drop the base point from the notation from now on.



42 2 Homotopy theory and crossed modules

The work of Whitehead on crossed modules over the years 1941–1949 contained
in [Whi41a], [Whi46], [Whi49b] and mentioned in the introduction to this chapter can
be summarised as follows.

He started trying to obtain information on how the higher homotopy groups of a
space are affected by adding cells. For the fundamental group, the answer is a direct
consequence of the Seifert–van Kampen Theorem:

adding a 2-cell corresponds to adding a relation to the fundamental group,
adding an n-cell for n > 3 does not change the fundamental group.

So the next question is:

how is the second homotopy group affected by adding 2-cells?, i.e. if
X D A [ fe2i g, what is the relation between �2.A/ and �2.X/?

In the first paper ([Whi41a]), he formulated a geometric proof of a theorem in this
direction. In the second paper ([Whi46]) he gave the definition of crossed module and
showed that the second relative homotopy group �2.X;A; x/ of a pair of spaces could
be regarded as a crossed module over the fundamental group �1.A; x/. In the third
paper ([Whi49b]) he introduced the notion of free crossed module and showed that his
previous work could be reformulated as showing that the second relative homotopy
group �2.X;A; x/ was isomorphic to the free crossed module17 on a set of generators
corresponding to the 2-cells. This concept of free crossed module will be studied in
detail in Section 3.4.

Whitehead was not able to obtain any detailed computations of second homotopy
groups from this result, but he used it in his work on the classification of homotopy
2-types, and on a range of realisation problems.18 We develop some of his results in
Part II, particularly the relation with chain complexes with operators, and homotopy
classification results.

The proof he gave was difficult to read, since it was spread over three papers, with
some notation changes, and that is why a repackaged version of the proof by Brown
was accepted for publication as [Bro80]. The main ideas of the proof included knot
theory, and also transversality, techniques which became fashionable only in the 1960s
(see also [HAMS93]).19 A number of other proofs have been given, including the one
we give in this book, see Corollary 5.4.8, in which the result is seen as one of the
applications of a 2-dimensional Seifert–van Kampen type theorem.

The way this work was developed by Whitehead seems a very good example of what
Grothendieck has called ‘struggling to bring new concepts out of the dark’ through the
search for the underlying structural features of a geometric situation.

2.3 The 2-dimensional Seifert–van Kampen Theorem

Whitehead’s theorem on free crossed modules referred to in Section 2.2 demonstrated
that a particular universal property was available for homotopy theory in dimension 2.
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This suggested that there was scope for some broader kind of universal property at this
level.

It also gave a clue to a reasonable approach. Such a universal property, in order to
be broader, would clearly have to include Whitehead’s theorem. Now this theorem is
about the fundamental crossed module of a particular pair of spaces. So the broader
principle should be about the fundamental crossed modules of pairs of spaces. The
simplest property would seem to be, in analogy to the Seifert–van Kampen Theorem,
that the functor

…2 W Top2� ! XMod=Groups

described in (2.2.2) preserves certain pushouts. This led to the formulation of the next
theorem. Also there had been a long period of experimentation by Brown and Spencer
on the relations between crossed modules and double groupoids [BS76b], [BS76a],
and by Higgins on calculation with crossed modules, so that the proof of the theorem,
and the deduction of interesting calculations, came fairly quickly in 1974.

The next two theorems correspond to Theorem C of this Brown and Higgins paper
([BH78a]). We separate the statement into two theorems for an easier understand-
ing. The first one is about coverings by two (open) subspaces, the second one about
adjunction spaces.

First, we say the based pair .X;A/ is connected ifA andX are path connected and
for x 2 A the induced map of fundamental groups �1.A; x/! �1.X; x/ is surjective,
or, equivalently, using the homotopy exact sequence, when �1.X;A; x/ D 0.

Having in mind that all pairs are based but not including the base point in the
statement, we have:

Theorem 2.3.1 (2-dimensional Seifert–van Kampen Theorem 1). Let A, U1, and U2
be subspaces ofX such that the total spaceX is covered by the interiors of U1 and U2.
We define U12 D U1 \ U2, and A
 D A \ U
 for � D 1; 2; 12. If the pairs .U
 ; A
/
are connected for � D 1; 2; 12, then:

(Con) The pair .X;A/ is connected.

(Iso) The following diagram induced by inclusions

…2.U12; A12/ ��

��

…2.U2; A2/

��
…2.U1; A1/ �� …2.X;A/

(2.3.1)

is a pushout of crossed modules.

Remark 2.3.2. Recall that this statement means that the above mentioned diagram
is commutative and has the following universal property: For any crossed module
M and morphisms of crossed modules 
 W …2.U
 ; A
/ ! M for � D 1; 2 mak-
ing the external square commutative, there is a unique morphism of crossed modules
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 W …2.X;A/!M such that the diagram

…2.U12; A12/ ��

��

…2.U1; A1/

�� �1

@@

…2.U2; A2/ ��

�2 33

…2.U;A/
�

��
M

commutes.

There is a slightly more general version of the theorem for adjunction spaces that can
be deduced from the preceding theorem by using general mapping cylinder arguments.

Theorem 2.3.3 (2-dimensional Seifert–van Kampen Theorem 2). Let X and Y be
spaces, A a subset of X and f W A! Y a map. We consider subspaces X1 � X and
Y1 � Y and define A1 D X1 [ A and let f1 D f j W A1 ! Y1 be the restriction of f .
If the inclusions A � X and A1 � X1 are closed cofibrations and the pairs .Y; Y1/,
.X;X1/, .A;A1/ are connected, then:

(Con) The pair .X [f Y;X1 [f1
Y1/ is connected.

(Iso) The following diagram induced by inclusions

…2.A;A1/ ��

��

…2.Y; Y1/

��
…2.X;X1/ �� …2.X [f Y;X1 [f1

Y1/

(2.3.2)

is a pushout of crossed modules.

Remark 2.3.4. The term closed cofibration included in the hypothesis of the theorem
can be intuitively interpreted as saying that the placing of A in X and of A1 in X1
are ‘locally not wild’. The condition is satisfied in a great number of useful cases, see
Section 7.3 in [Bro06].

The interest in these theorems is at least seven fold:

• The theorem does have Whitehead’s theorem on free crossed modules as a con-
sequence (see Corollary 5.4.8).

• The theorem is a very useful computational tool and gives information unobtain-
able so far by other means.20

• The theorem is an example of a local-to-global theorem. Such theorems play an
important rôle in mathematics and its applications.

• The theorem deals with nonabelian objects, and so cannot be proved by traditional
means of algebraic topology.
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• The two available proofs use groupoid notions in an essential way.
• The existence of the theorem confirms the value of the crossed module concept,

and of the methods used in its proof. We should be interested in algebraic
structures for which this kind of result is true.

• It shows the difficulty of homotopy theory since one has, it appears, to go through
all this just to determine, as we explain in Section 5.8, the second homotopy
groups of certain mapping cones.

A further point is that the proof we shall give later does not assume the general
existence of pushouts of crossed modules. Instead, it verifies directly the required
universal property for this case, and so that this pushout does exits.

We conclude this section by stating an analogue of Theorem 2.3.1, but for general
covers of a space X ; this also will be deduced from Theorem 6.8.2.

Letƒbe an indexing set and suppose we are given a family U D fU�g�2ƒ of subsets
ofX such that the interiors of the sets of U coverX . For each � D f�1; : : : ; �ng 2 ƒn,
we write

U
 D U
1
\ � � � \ U
n

:

Let A be a subspace of X , and define A
 D U
 \ A; for any � 2 ƒn. Suppose also
given a base point x 2 A which is contained in every A� and so also in every A
 .

Theorem 2.3.5. Assume that for every � 2 ƒn, n > 1; the pair .U
 ; A
/ is connected.
Then

(Con) the pair .X;A/ is connected, and

(Iso) the crossed module …2.X;A/ satisfies the following universal property: for
any crossed module M and any family of morphisms of crossed modules

f� W …2.U�; A�/!M j � 2 ƒg
such that for any �;� 2 ƒ the diagram

…2.U��; A��/ ��

��

…2.U�; A�/

��

��
…2.U�; A�/

�� �� M

commutes, there is a unique morphism of crossed modules  W …2.X;A/!M

such that all triangles of the form

…2.U�; A�/

))????????????
�� …2.X;A/

�

��
M

commute.
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The universal property of the theorem can be expressed as what is called a ‘co-
equaliser condition’ (see Appendix A, Example A.4.4). It is in this way we rephrase
the theorem in its double groupoid version in Theorem 6.8.2. We will also follow the
groupoid philosophy and so have a many base point version, using crossed modules of
groupoids.

Remark 2.3.6. It can be easily seen from the proof that the conditions on n-fold
intersections for all n > 1 can be relaxed to path connectivity of all 4-fold intersections,
and 1-connectivity of all pairs given by 8-fold intersections. More refinements of the
arguments, using Lebesgue covering dimension, reduce these numbers to 3 and 4
respectively.21

The proof of Theorem 2.3.5 will be given in Chapter 6 via another algebraic struc-
ture, that of double groupoids, since these have properties which are more appropriate
than are those of crossed modules for expressing the geometry of the proof, which
is analogous to that of the 1-dimensional theorem. Indeed the proof of the theorem
was first conceived in terms of double groupoids, and the crossed module application
appeared later.

2.4 The classifying spaces of a group and of a crossed module

We are going to construct in the second part of this book, in Chapter 11, a ‘classifying
space’ of a crossed complex; this construction includes as particular cases (cubical
versions of) the classifying space of a group and of a crossed module.

Nevertheless, this is a good point to state some of the properties of this classifying
spaces for the special cases which classify the weak pointed homotopy 1-type and the
2-type of a space.

The classifying space of a group P is a functorial construction

B W Groups! Top�
assigning a reduced CW-complex BP to each group P so that

Proposition 2.4.1. The homotopy groups of the classifying space BP of the group P
are given by

�i .BP / Š
´
P if i D 1;
0 if i > 2:

This gives a natural equivalence from �1B to the identity. There is also a relation
between B�1 and the identity, given by:

Proposition 2.4.2. Let X be a reduced CW-complex and let  W �1.X/ ! P be a
homomorphism of groups. Then there is a map

X ! BP



2.4 The classifying spaces of a group and of a crossed module 47

inducing the homomorphism  on fundamental groups.

As a consequence we find thatB�1 captures all information on fundamental groups.

Theorem 2.4.3. Let X be a reduced CW-complex and let P D �1.X/. Then there is
a map

X ! BP

inducing an isomorphism of fundamental groups.

It is because of these results that groups are said to model pointed, connected
homotopy 1-types.

Next, we state some properties of the classifying space of a crossed module. It is
a functor

B W XMod! Top�
assigning to a crossed module M D .� W M ! P / a pointed CW-space BM with the
following properties:

Proposition 2.4.4. The homotopy groups of the classifying space of the crossed module
M are given by

�i .BM/ Š

8̂<̂
:

Cok� for i D 1;
Ker � for i D 2;
0 for i > 2.

There is a twofold relation with the classifying space of a group defined before. On
the one hand, the classifying space of a crossed module generalises that for groups, i.e.

Proposition 2.4.5. If P is a group then the classifying space B.1! P / is exactly the
classifying space BP discussed before.

On the other hand

Proposition 2.4.6. Let M G P be a normal subgroup of the group P . Then the
morphism of crossed modules .M ! P / ! .1 ! P=M/ induces a homotopy
equivalence of classifying spaces

B.M ! P /! B.P=M/: �

This follows from another famous theorem of Whitehead that a map of CW-
complexes inducing an isomorphism of all homotopy groups is a homotopy equiv-
alence.22

Proposition 2.4.7. The classifying space BP is a subcomplex of BM, and there is a
natural isomorphism of crossed modules

…2.BM; BP / ŠM: (2.4.1)
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Theorem 2.4.8. Let X be a reduced CW-complex, and let …2.X;X
1/ be the crossed

module �2.X;X1/! �1.X
1/, where X1 is the 1-skeleton of X . Then there is a map

X ! B.…2.X;X
1// (2.4.2)

inducing an isomorphism of �1 and �2.

It is because of these results that it is reasonable to say that crossed modules model
all pointed connected homotopy 2-types.23

We shall use cubical sets and crossed complexes to give in Definition 11.4.18 an
elegant description of the cells of the classifying space B.M ! P /.24 The existence
and properties of the classifying space show that calculations of pushouts of crossed
modules, such as those required by the 2-dimensional Seifert–van Kampen Theorem,
may also be regarded as calculations of homotopy 2-types. This is evidence that the
fundamental crossed module of a pair is an appropriate candidate for a 2-dimensional
version of the fundamental group, as sought by an earlier generation of topologists
(see Section 1.3), and indeed that crossed modules may be regarded as one kind of
2-dimensional version of groups.25

The situation we have for crossed modules and pairs of spaces comes under a format
very similar to part of the Main Diagram on page xxxii of the Introduction:

Top2
… ��

U ��@@@@@@@@ XMod
B

��

B  <<<<<<<<<

Top

(2.4.3)

We suppose the following properties:

(i) The functor … preserves certain colimits.
(ii) There is a natural equivalence …B ' 1.

(iii) B D UB.
(iv) There is a convenient natural transformation1 ' B…preserving some homotopy

properties.

Property (i) is a form of the Seifert–van Kampen Theorem. This enables some
computations to get started.

Property (ii) shows that the algebraic data forms a reasonable mirror of the topo-
logical data.

Property (iii) allows the classifying space to be defined: U is some kind of forgetful
functor.

Property (iv) is difficult to state precisely in general terms. The intention is to show
that the structure B… captures some slice of the homotopy properties of the original
topological data.



2.5 Cat1-groups 49

We shall not use any general format of or deduction from these properties, but it
should be realised that the material we give on groups and on crossed modules forms
part of a much more general pattern.

Let us finish this section by giving also some indications of how to go up one
dimension further. First we give a theorem about the behaviour of the classifying space
functor on crossed modules when applied to a short exact sequence. This theorem will
be deduced from a more general result, Corollary 12.1.14, on the classifying space of
crossed complexes, where more machinery is available for the proof.

Theorem 2.4.9. Suppose the commutative diagram

1 �� L
i ��

�

��

M
p ��

�

��

N ��




��

1

1 �� K
j

�� P
f

�� Q �� 1

(2.4.4)

is such that the vertical arrows are crossed modules, the squares are morphisms of
crossed modules, and the rows are exact sequences of groups. Then the diagram of
induced maps of classifying spaces

B.L! K/! B.M ! P /! B.N ! Q/

is a fibration sequence.

In the above situation we say that the crossed module L ! K is a kernel of the
morphism .p; f / of crossed modules. Note that the groups L, K may be considered
as normal subgroups of M;P respectively. There is an additional property: if k 2 K,
m 2 M , then p.m�1mj.k// D 1, so that m�1mj.k/ 2 Im i . This gives rise to a
function h W K � M ! L. The properties are summarised by saying that the first
square of diagram (2.4.4) is a crossed square. These structures give the next stage after
crossed modules for modeling homotopy types, that is they model homotopy 3-types.
There seem to be good reasons why the analysis of kernels should give rise to a higher
order structure modeling a further level of homotopy types. Such structures are quite
subtle and cannot be pursued in this book, though we give a brief indication on crossed
squares in Appendix B, Section B.4.26

2.5 Cat1-groups

There are several algebraic and combinatorial categories that are equivalent to the
category of crossed modules.27

Of the categories equivalent to XMod=Groups, perhaps the most used is the category
Cat1- Groups of cat1-groups. It is also useful in some cases when describing the
colimits used in the 2-dimensional Seifert–van Kampen Theorem.
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In this section, we explain this equivalence and some of the applications. Let us
begin by expressing the basic properties of a crossed module M D .� W M ! P / in
an alternative way.

The action of P on M can be encoded using the semidirect product P ËM , and
the projection s W P Ë M ! P , .p;m/ 7! p. The map � gives a homomorphism
t W P ËM ! P ËM by the rule .p;m/ 7! .p�.m/; 1/; that t is a homomorphism of
groups follows from CM1).

It is a bit more difficult to find the way CM2) can be translated, but after playing
for a while it can be seen that it gives that the elements of Ker s and those of Ker t
commute in the semidirect product. This is the kind of algebraic object we need.

A cat1-group is a triple G D .G; s; t/ such that G is a group and s; t W G ! G are
group homomorphisms satisfying

CG1) st D t and ts D s,
CG2) ŒKer s;Ker t � D 1.

A homomorphism of cat1-groups between .G; s; t/ and .G0; s0; t 0/ is a homomor-
phism of groups f W G ! G0 preserving the structure, i.e. such that s0f D f s and
t 0f D f t . These objects and morphisms define the category Cat1- Groups of cat1-
groups.

Example 2.5.1. The category of groups, Groups, can be considered a full subcategory
of Cat1- Groups using the inclusion functor

I W Groups! Cat1- Groups

given by I.G/ D .G; 1G ; 1G/.
Having in mind the discussion at the beginning of this section, we define a functor

� W XMod=Groups! Cat1- Groups

by�.� W M ! P /D .P ËM; s; t/, where s.g;m/D .g; 1/ and t .g;m/D .g.�m/; 1/.
Proposition 2.5.2. If � W M ! P is a crossed module, then �.� W M ! P / is a
cat1-group.

Proof. It is clear that s is a homomorphism. To check that t is also a homomorphism ,
let us consider elements .g;m/; .g0; m0/ 2 P ËM . Then, we have

t ..g;m/.g0; m0// D t .gg0; mg0

m0/
D .gg0�.mg0

/�m0/; 1/ D .gg0g0�1�mg0�m0/; 1/ by CM1)

D .g�mg0�m0/; 1/ D t .g;m/t.g0; m0/:

It is also easy to prove that s, t satisfy CG1).
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To check CG2), let us consider elements .1;m/ 2 Ker s and .�m0; m0�1/ 2 Ker t .
Then, we have

.1;m/.�m0; m0�1/ D .�m0; m�m0

m0�1/ D .�m0; m0�1mm0m0�1/ by CM2)

D .�m0; m0�1m/ D .�m0; m0�1/.1;m/: �

Example 2.5.3. Thus, associated to any normal subgroup M of G, we have a cat1-
group M ËG, where G acts on M by conjugation.

To define the functor back, let us check that all cat1-groups have a semidirect product
decomposition.

Proposition 2.5.4. For any cat1-group .G; s; t/:
i) The maps s; t have the same range, i.e. s.G/ D t .G/ D N , and are the identity

on N .
ii) The morphisms s and t are ‘projections’, i.e. t2 D t and s2 D s.

Proof. i) As st D t , we have Im t � Im s and as ts D s, we have Im s � Im t .
ii) We have ss D sts D ts D s. Similarly, t t D t .
As an easy consequence, we have:

Corollary 2.5.5. There are two split short exact sequences

1 �� Ker s �� G
s �� N �� 1;

1 �� Ker t �� G
t �� N �� 1: �

Remark 2.5.6. Thus G is isomorphic to both semidirect products N Ë Ker s and
NËKer t , whereN acts on each of the kernels by conjugation. The mapNËKer s ! G

is just the product and the inverse isomorphism G ! N Ë Ker s is given by g 7!
.s.g/; s.g�1/g/.

We can also define an inverse functor

� W Cat1- Groups! XMod=Groups

given by �.G; s; t/ D .t j W Ker s ! Im s/ where Im s acts on Ker s by conjugation.

Proposition 2.5.7. If .G; s; t/ is a cat1-group, then �.G; s; t/ is a crossed module.

Proof. With respect to CM1), for all g 2 Im s and m 2 Ker s, we have

t .mg/ D t .g�1mg/ D .tg/�1.tm/.tg/:
Since g 2 Im s D Im t , by Proposition 2.5.4, we have tg D g. Thus, t .mg/ D
g�1.tm/g.
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On the other hand, with respect to CM2) for all m;m0 2 Ker s, we have

m0.tm/ D .tm�1/m0.tm/ D .tm�1/m0.tm/m�1m:

But .tm/m�1, m0 commute since .tm/m�1 2 Ker s and m0 2 Ker s, and so

m0.tm/ D .tm�1/.tm/m�1m0m D m�1m0m

as required.

Proposition 2.5.8. The functors � and � give an equivalence of categories.

Proof. On the one hand we have ��.G; s; t/ D .Im t Ë Ker s; s0; t 0/ where s0.g;m/ D
.g; 1/ and t 0.g;m/ D .gt.m/; 1/. Clearly there is a natural isomorphism of groups
 W G ! Im t Ë Ker s given by .g/ D .s.g/; s.g/�1g/ that is an isomorphism of
cat1-groups.

On the other hand, ��.� W M ! P / D .Ker
t! Im s/where s W P ËM ! P ËM

is given by s.g;m/ D .g; 1/. There are obvious natural isomorphisms Ker s ŠM and
Im s Š P giving a natural isomorphism of crossed modules.

2.6 The fundamental crossed module of a fibration

In this section the proofs will be omitted or be sketchy, since background in fibrations
of spaces is needed. Throughout we assume that ‘space’ means ‘pointed space’.

We are going to show that for any fibration F D .F i�! E
p�! X/ the induced map

i� W �1.F /! �1.E/

is a crossed module …2.F / which we call the fundamental crossed module of the
fibration F . This is an observation first made by Quillen and from it can be deduced
the fundamental crossed module of a pair of spaces.

Perhaps it is better first to recall in some detail the action of �1.E/ on �1.F / for
any fibration F .

Let us consider Œ�� 2 �1.F / and Œ˛� 2 �1.E/. The projection to X of the loop
˛�1�˛ is homotopic to the constant through a homotopy of loops H W I � I ! X .
Since p is a fibration, using the homotopy lifting property, we get a homotopy of loops
xH W I � I ! E from ˛�1�˛ to a loop projecting to the constant, i.e. Im xH1 � F . We

define
Œ��Œ˛� D Œ xH1� 2 �1.E/:

We omit the proof that this action is well defined. This is a good exercise on fibration
theory.
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To prove that i� is a crossed module, we proceed in a roundabout way. Clearly, it
is equivalent to prove that the semidirect product �1.E/ Ë �1.F / given by the action
just defined is a cat1-group. Again, this is not done directly, but instead we prove that
there is a natural isomorphism of groups

�1.E �X E/ Š �1.E/ Ë �1.F /

and that the former is a cat1-group, where E �X E is the pullback of p along p, i.e.

E �X E D f.e; e0/ 2 E �E W p.e/ D p.e0/g:
First, let us prove that �1.E �X E/ decomposes to the expected semidirect product.

Proposition 2.6.1. For any fibration F D .F
i�! E

p�! X/, there are two splitting
short exact sequences

1! �1.F /
il� �� �1.E �X E/ pl� �� �1.E/ ! 1 for l D 1; 2

where il is the inclusion of F in the l th factor. Moreover both sequences are natural
with respect to maps of fibrations.

Proof. Recall that the projection in the first factor E �X E ! E is a fibration with
fibre F since it is the pullback of p along itself. Also, the diagonal map gives a section
of this fibration. Thus, its homotopy exact sequence decomposes into a sequence of
splitting short exact sequences. In particular,

1 �� �1.F /
i1� �� �1.E �X E/ p1� �� �1.E/ �� 1

is a splitting short exact sequence. The same is true in the second case.

Now, we are able to prove that .�1.E �X E/; s; t/ where s (resp. t ) is the homo-
morphism induced on the fundamental groups by the composition of the projection in
the first (resp. second) factor and the diagonal is a cat1-group for any fibration F . We
shall call it the fundamental cat1-group of the fibration F .28

Proposition 2.6.2. Let F D .F i�! E
p�! X/ be a fibration. Then .�1.E �X E/; s; t/

is a cat1-group.

Proof. It clearly satisfies CG1) since the maps s, t are in essence projections.
To prove CG2), using the exact sequence of Proposition 2.6.1, we have Ker s D

Im i1� and Ker t D Im i2�
Also by Proposition 2.6.1 the elements of Ker s are of the form Œ.ct; �/� where �

is a loop in the fibre and the elements of Im s are of the form Œ.˛; ˛/� where ˛ is a loop
in E.
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We choose elements Œ.ct; �/� 2 Ker s and Œ.�; ct/� 2 Ker t where� and � are loops
in the fibre. Then

Œ.�; ct/�Œ.ct; �/� D Œ.�; �/� D Œ.ct; �/�Œ.�; ct/�

which gives the commutativity of these elements.

Now, we proceed to identify the crossed module associated with .�1.E�XE/; s; t/.
Proposition 2.6.3. The crossed module .t j W Ker s ! Im s/ associated to the cat1-
group �1.E �X E/ is naturally isomorphic to …2F D .�1.F /! �1.E//.

Proof. There are natural isomorphisms �1.F / Š Ker s and �1.E/ Š Im s, given by
Œ�� 7! Œ.ct; �/� and Œ˛� 7! Œ.˛; ˛/� respectively. It remains only to check that these
isomorphisms preserve actions.

The action of Ker s on Im s is given by conjugation in �1.E �X E/. Under these
isomorphisms the result of the action of Œ˛� 2 �1.E/ on Œ�� 2 �1.F /, is the homotopy
class of any loop � in F satisfying

Œ.ct; �/� D Œ.˛�1˛; ˛�1�˛/�:

Recalling the definition of the �1.E/ action on �1.F / at the beginning of the
section, we see that Œ��Œ˛� is represented by just this same element.

To define the fundamental cat1-group functor on maps of general topological spaces
we need some more homotopy theory. There is no space to develop this here in full,
and so we just sketch the ideas.29

A standard procedure in homotopy theory is to factor any map f W Y ! X through
a homotopy equivalence i and a fibration Nf W xY ! X where xY D f.�; y/ 2 XI �
Y W �.1/ D f .y/g and Nf .�; y/ D �.0/.

This gives a functor Fib W f 7! Nf from maps to fibrations. We define the cat1-group
functor on maps of general topological spaces by composition with the cat1-group of
fibrations functor.

Let us sketch a direct description of the composite functor30

Maps! Cat1- Groups:

The functor is defined by

.f W Y ! X/ 7! .�1. xY �X xY /; p1�; p2�/:

Using the homeomorphism

xY �X xY � f.y1; �; y2/ 2 Y �XI � Y j �.0/ D f .y1/ and �.1/ D f .y2/g
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the projections in the factors correspond to the maps

p1.y1; �; y2/ D .y1; �1/; where �1.t/ D �.t=2/;
p2.y1; �; y2/ D .y2; �2/; where �2.t/ D �.1 � .t=2//:

Via the same homeomorphism, the elements of�1. xY �X xY / correspond to homotopy
classes of triples, Œ.˛; �; ˇ/�, where� W I�I ! X maps I�f0; 1g to the base point and
˛; ˇ W I ! Y are loops on Y lifting�.0;�/ and�.1;�/ respectively. The homotopies
correspond to triples, .F;H;G/, the map H W I � I � I ! X sending I � f0; 1g � I
to the base point, and F;G W I � I ! Y being homotopies of loops, relative to the end
points, lifting H.0;�;�/ and H.1;�;�/, respectively.

The description of p1� and p2� follows easily.
To assure consistency, let us point out that if f is already a fibration, both definitions

of the fundamental cat1-group produce the same group up to isomorphism.
Iff is a fibration, f and Nf are fibre homotopy equivalent. It can be checked directly

that Y �X Y and xY �X xY are also homotopy equivalent, but it is also a consequence
of the following ‘cogluing theorem’.31

Theorem 2.6.4. Suppose given maps over X ,

Z
i ��

f ���������� xY
Nf���������

Z
j ��

g
���������� xZ

Ng���������

X , X ,

such that f , Nf , g, Ng are fibrations, and i , j are homotopy equivalences. Then the
induced map on pullbacks

i �X j W Y �X Z ! xY �X xZ
is also a homotopy equivalence, and in fact a fibre homotopy equivalence.

In the particular case in which we are mostly interested, we consider a pair of
topological spaces .X;A/. Associated to the inclusion i W A! X there is the fibration
xA ! X where xA is the space of paths in X starting at some point of A and the map

sends each path to its end point. The fibre of this fibration is the space

Fi D f� 2 XI j �.0/ 2 A; �.1/ D �g
whose homotopy groups are, by definition, those of the pair .X;A/, i.e.

�n.Fi / D �nC1.X;A/:

In particular, the fundamental crossed module of a pair functor

…2 W Top2� �! Fib �! XMod=Groups
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is given by
…2.X;A/ D .@ W �2.X;A/! �1.A//

with the usual action already known and used by Whitehead.
Finally in this section, we mention some relations of crossed modules with algebraic

K-theory, for those familiar with that area.
Let R be a ring. A basic structure for algebraicK-theory is the homotopy fibration

F.R/! BGL.R/! BGL.R/C:

This yields the crossed module

�1.F.R//! �1.BGL.R//

which is equivalent to
St.R/! GL.R/

which has cokernelK1.R/ and kernelK2.R/. The group St.R/ is called the Steinberg
group of the ring R, and is usually given a direct definition in terms of generators and
relations.

Now let I be an ideal of R, and let GL.R; I /, the congruence subgroup, be the
kernel of GL.R/! GL.R=I /. By the same trick, we get a crossed module

St.R; I /! GL.R; I /

which has cokernel K1.R; I / and kernel K2.R; I /.32

2.7 The category of categories internal to groups

In this section, we study another category equivalent to XMod=Groups, namely the
category of categories internal to groups, written CatŒGroups�. This category has easy
generalisations both to higher dimensions and to other algebraic settings.

This category has two features that make it very interesting. On the one hand it can
be used as an intermediate step to get a simplicial equivalent of crossed modules which
can be generalised to crossed n-cubes.33

On the other hand, we shall see that the category CatŒGroups� is formed by group-
oids, being also the category of group-groupoids. This will be generalised in Chapter 6
to an equivalence from the category XMod of crossed modules over groupoids to a
category of double groupoids, and then to higher dimensions in Chapter 13.

First, let us recall that the definition of a small category C is given by two sets, the
object set, Ob C, and the morphism set, Mor C, and four maps, the identity i , the source
and target s, t , and the composition of morphisms B, satisfying several axioms. Note
that B is considered as a function on its domain.
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We say that C is a category internal to Groups, if both Ob C and Mor C have a group
structure and the maps s, t , i and B are homomorphisms of groups. Thus, a category
internal to Groups is also a group in the category of all small categories. This principle
for algebraic structure that ‘an A in a B is also a B in an A’ is of wide applicability.

Similarly, a functor f W C! C0 between two categories is a pair of maps Ob f and
Mor f commuting with the structure maps (source, target, identity and composition).

A functor between categories internal to Groups is a functor internal to Groups if
both maps are homomorphisms of groups.

Then, CatŒGroups� is the category whose objects and morphisms are categories and
functors internal to Groups.

For any object C in CatŒGroups�, we will write the product in Mor C additively and
the product in Ob C multiplicatively. Then, if 1 and 0 are the identities in Ob C and
Mor C, we have i.1/ D 0, s.0/ D 1 and t .0/ D 1. So, the elements of Ker s (resp.
Ker t ) are the morphisms with source 1 (target 1).

The next property shows that, for any category internal to Groups, we can define
the composition of morphisms in terms of the other structure maps.

Proposition 2.7.1. For any two composable morphisms u and v we have

(i) v B u D v � i tuC u D v � isv C u,

(ii) v B u D u � i tuC v D u � isv C v.

Proof. (i) We have

v Bu D .vC 0/ B .i tuC .�i tuCu// D .v B i tu/C .0 B .�i tuCu// D v� i tuCu:
The second equality is immediate: i tu D isv because the morphisms are compos-

able.
The proof of (ii) is similar.

Remark 2.7.2. Thus, to prove that a category where the objects and morphisms are
groups, and the source, target and identity are homomorphisms, is internal to groups,
all we need to check is that the composition defined using Proposition 2.7.1 is a homo-
morphism.

Proposition 2.7.3. A category internal to groups is a groupoid, with the inverse of a
morphism u given by

u�1 D isu � uC i tu:
Proof. You can easily check that this definition gives the appropriate source and target
and that both compositions u B u�1, u�1 B u are identities.

Remark 2.7.4. As a consequence of this property, a category internal to groups is a
groupoid internal to groups, or, equivalently, is a group in the category of groupoids.34

Considering that a group is just a groupoid with only one object, it is reasonable
to study the category of ‘groupoids of groupoids’, or ‘double groupoids’. We shall do
this in Chapter 6.
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To end this section, we state the relation of CatŒGroups� to the previous categories.
The equivalence with Cat1- Groups is easily defined.

In one direction, we assign to the cat1-group .G; s; t/ the category having Im s D
Im t as set of objects, G as set of morphisms, s and t as source and target, identity
the inclusion Im s � G and composition defined by g0 B g D g0 � i tg C g, for any
g; g0 2 G with tg D sg0. It can be easily checked that this gives a category internal to
Groups.

In the other direction, to any category C internal to Groups we assign the cat1-group
.Mor C; i B s; i B t /.

Thus, the categories XMod=Groups and CatŒGroups� are equivalent, since both are
equivalent to Cat1- Groups.35 However, it is convenient to record for further use the
functors giving this equivalence.

The functor one way is defined as C 7! .sj W Ker t ! Ob C/, where C is a cat1-
group. The reverse functor assigns to any crossed module M D .� W M ! P / the
category having P as set of objects, P ËM as set of morphisms; identity map given
by the inclusion; source and target maps given by s.g;m/ D g and t .g;m/ D g.�m/
and composition given by any of the formulae in Proposition 2.7.1.

Nevertheless, there is a simpler expression for the composition in this case. Notice
first that two morphisms .g0; m0/; .g;m/ 2 P ËM are composable when g�m D g0.

Proposition 2.7.5. The composition of morphisms in P ËM ,

B W P ËM s �t P ËM ! P ËM

is given by .g.�m/;m0/ B .g;m/ D .g;mm0/.

Proof. This is not difficult to prove using the definition of composition given in Propo-
sition 2.7.1 (i).

With this property we can get another model of the category internal to Groups
associated to a crossed module.

Proposition 2.7.6. The map A W Mor C s �t Mor C! P ËM ËM defined by

A..g0; m0/; .g;m// D .g;m;m0/

is an isomorphism carrying the composition to the map

B0 W P ËM ËM ! P ËM

sending .g;m;m0/ to .g;mm0/.

Proof. Clearly A is bijective and transforms the composition to the afore mentioned
map. It remains to check thatA is a homomorphism and that is left as an exercise.
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Let us consider now the composite functor

Fib! Cat1- Groups! CatŒGroups�

i.e., mapping F first to the cat1-group �1.E �X E/ and then to the category internal
to Groups associated to that.

Using the isomorphism Im pi� Š �1.E/, this category is isomorphic to the category
that has �1.E/ as objects, �1.E �X E/ as morphisms, source and target given by
projections, identity given by the diagonal and composition the only one possible to
make this a category internal to groups.

As seen before, this category is also isomorphic to the one associated to �1.E/ Ë
�1.F /, that has �1.E/ as objects, �1.E/Ë�1.F / as morphisms, .Œ˛�; Œ��/ 7! Œ˛� and
.Œ˛�; Œ��/ 7! Œ˛� � i�.Œ��/ as source and target maps and composition given by

.Œ˛� � i�Œ��; Œ�0�/ B .Œ˛�; Œ��/ D .Œ˛�Œ� � �0�/:

We finish by stating a description of the composition in �1.E �X E/.
Proposition 2.7.7. Let Œ.˛; ˇ/�; Œ.ˇ0; � 0/� 2 �1.E �X E/ be such that Œˇ� D Œˇ0�,i.e.
there is a homotopy G W ˇ0 Š ˇ. Since p is a fibration there is a homotopy H lifting
pG and starting with � 0. Then

Œ.ˇ0; � 0/� B Œ.˛; ˇ/� D Œ.˛;H1/�:
Proof. 36 It is clear that Œ.ˇ0; � 0/� and Œ.ˇ;H1/� are homotopic using the homotopy
.G;H/. Then, Œ.ˇ0; � 0/� B Œ.˛; ˇ/� D Œ.ˇ;H1/� B Œ.˛; ˇ/�. So, we only have to consider
the composition in the case Œ.ˇ; �/� B Œ.˛; ˇ/�. Using that F is a fibration there are
unique Œ��; Œ�0� 2 �1.F / with

Œ.˛; ˇ/� D A.Œ˛�; Œ��/ D Œ.˛ � ct; ˛ � �/�
and

Œ.ˇ; �/� D A.Œˇ�; Œ�0�/ D Œ.ˇ � ct; ˇ � �0/�:
Clearly, Œˇ� D Œ˛� � i�.Œ��/, and

Œ.ˇ; �/� B Œ.˛; ˇ/� D A.Œˇ�; Œ�0�/ B A.Œ˛�; Œ��/
D Œ.ˇ � ct; ˇ � �0/� B Œ.˛ � ct; ˛ � �/�
D Œ.˛ � ct; ˛ � �0 � �/�
D Œ..˛ � ct/ � ct; ˛ � �0 � �/�
D Œ.˛ � ct; ˇ � �0/�
D Œ.˛; �/�: �

We can also describe easily the functor

Maps! CatŒGroups�:
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Notice that �1. xY / is isomorphic to �1.Y / under the projection. So the associated
category internal to groups is equivalent to the one having�1.Y / as objects,�1. xY �X xY /
as morphisms, source and target given by Œ.˛; �; ˇ/�! Œ˛� and Œ.˛; �; ˇ/�! Œˇ�, and
composition given by Œ.ˇ; �0; �/� B Œ.˛; �; ˇ/� D Œ.˛; �0 � �; �/�.

Note that if � is a homotopy from ˇ to ˇ0, the composition of Œ.˛; �; ˇ/� with
Œ.ˇ0; �0; �/� is given by Œ.˛; �0 � � � �; �/� since Œ.ˇ0; �0; �/� D Œ.ˇ; �0 � �; �/�.

Notes

12 p. 32 The method in Section 10.3.ii of constructing inductively a universal cover
and its contracting homotopy has been developed by Ellis into a substantial GAP
package for computing the homology of groups, [Ell04].

13 p. 38 The standard axioms for such an action are:

m1 D m; .mn/p D mpnp; mpq D .mp/q

for all p; q 2 P , m; n 2 M . In such case M is also called a P -group. Note that
P itself is also a P -group with action given by conjugation. Later we will need
actions of a groupoid on a family of groups.

14 p. 38 The earliest statement of the axiom CM2 known to us is as footnote 25
on page 422 of [Whi41a], and therefore we call this the Whitehead axiom. The
definition of crossed module appeared in [Whi46]. Related ideas were in [Pei49],
submitted in 1944.

15 p. 41 See books on combinatorial group theory, for example [LS01], [Joh97] and
also [Hig71], or [Bro06], 10.8.2, for a groupoid proof.

16 p. 41 Note that if A D fxg then this action is trivial, and so this action does
not include the action of �1.X; x/ on �2.X; x/. Whitehead proposed a more
general operation to include both cases in [Whi48]. This area was then developed
in [Hu48]. The former paper also includes important results on automorphisms
of crossed modules which have been developed in [Lue79], [Nor90], [BG89a],
[Bİ03a].

17 p. 42 Whitehead’s work on free crossed modules parallelled independent work
by Reidemeister and his student Renee Peiffer at about the same time on the
closely related notion of identities among relations [Rei49], [Pei49], which we
deal with in Section 3.1. Whitehead also acknowledged in [Whi46] that some
of his results on second homotopy groups were also obtainable from work of
Reidemeister, [Rei34], on universal coverings and chain complexes with operators,
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now recognised as given by the complex of cellular chains of the universal cover of
the space, and which has been extensively used for example in simple homotopy
theory, [Coh73]. Relations between crossed modules and chain complexes are
discussed in our Section 7.4, developing work of Whitehead in [Whi49b], and
related to the cellular chains of universal covers in Section 8.4.

18 p. 42 There is a general statement of such kind of problem as follows. Let T W A!
B be a functor. One realisation problem is that for objects: characterise the objects
b of B are isomorphic in B to some T .a/ where a is an object of A? Another
realisation problem is for morphisms: let f W T .a/ ! T .a0/ be a morphism in
B where a; a0 are objects of A. Determine whether or not f D T .g/ for some
morphism g W a ! a0 in A. These problems are of interest in the case when T is
a functor from a category of topological data to one of algebraic data. For further
discussion of these and related problems see the expository article [Ste72].

19 p. 42 Developments of these ideas are seen in [BH82], [Hue09] and the references
there. The result is used in [Pap63] in relation to the Poincaré Conjecture. Most
texts on algebraic topology and homotopy theory opt out of giving a proof. Among
other proofs of Whitehead’s theorem we mention [Rat80], [GH86]. The fact that
this result does not fit into the usual approach to algebraic topology should be seen
as an anomaly, needing correction.

20 p. 44 Example applications are given in [KFM08], [FM09].

21 p. 46 These improvements were originally shown by Razak Salleh in his thesis
[RS76].

22 p. 47 This is an important standard theorem in algebraic topology, first proved in
[Whi49a], and is found in many texts on homotopy theory or algebraic topology.
The proof is outlined in Exercises 7–10 of [Bro06], Section 7.6. The theorem is put
in the general context of model categories for homotopy theory as Theorem B.8.1
in Section B.8.

23 p. 48 This result is originally due to Mac Lane and Whitehead [MLW50] (they
use the term 3-type for what later came to be called 2-type), and with a different
proof which uses essentially the notion of free crossed module. It is generalised by
Eilenberg–Mac Lane [EML50], Ando [And57] who consider the cohomological
invariant, often called Postnikov invariant, or k-invariant, for a space X with
�i .X/ D 0 for 1 < i < n, n > 2. See also Section 12.7.

24 p. 48 The simplicial construction is given in [BH91], see also [Bro99]. Two recent
papers using crossed modules are [FM09], [KFM08]. A general background to
crossed modules is in [Jan03].
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25 p. 48 See [Bro82], [Bro96], and the use of the term ‘2-group’ in for example
[BL04] for related and also more general constructions of 2-dimensional versions
of groups.

26 p. 49 For a discussion of normal sub crossed module, see [Nor90], and a web
search will give further references.

27 p. 49 Some of these equivalences were already known to Verdier in the late 60s,
but the first published account seems to have been by Brown and Spencer in 1976
[BS76b]. Later, these equivalences have been generalised by Porter, [Por87], to
a more categorical setting. A paper on the general setting for this kind of result
is [Jan03]. One of the advantages is the naturality of the generalisation to higher
dimensions, namely to catn-groups, and in this way was used by Loday in [Lod82].
These objects have been shown by Ellis and Steiner in [ES87] to be equivalent to
what they call ‘crossed n-cubes of groups’, a rich algebraic structure.

28 p. 53 This fundamental cat1-group of a fibration has been generalised by several
authors, and the most general is the ‘fundamental double groupoid of a map’,
[BJ04]. This process is the first step in constructing the fundamental catn-group
of an n-cube of maps, [BL87].

29 p. 54 These ideas are well covered in books on abstract homotopy theory, for
example [KP97].

30 p. 54 We follow ideas of Gilbert in [Gil87]. A general construction of a double
groupoid on a map of spaces (without base point) is given in [BJ04], which also
takes care to show the precise relation between the description of the composition
given by the algebra and that given by the geometry.

31 p. 55 This is a special case of the results of [BH70]. The dual of this result, namely
a ‘gluing theorem’, is proved in [Bro06], 7.5.7, and in an abstract setting in [KP97],
Theorem 7.1.

32 p. 56 This is Loday’s definition of the relative K2 [Lod78]. It differs from that of
Milnor’s in [Mil71] by relations corresponding to those of the second rule CM2)
for a crossed module. One advantage of this procedure is the generalisation to
multirelative groups K2.RI I1; : : : ; In/ [GWL81], [Ell88a]. The relevant algebra
is that of crossed n-cubes of groups. All this was one of the motivations for the
Seifert–van Kampen Theorem for n-cubes of spaces [BL87], based on Loday’s
subtle notion of the fundamental catn-group of an n-cube of spaces, described in
[Lod82] and elucidated further in [BL87], [Gil87].

33 p. 56 A way of deriving crossed n-cubes of groups from simplicial groups has been
given by T. Porter in [Por93].
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34 p. 57 This has led such structures being called 2-groups, but this term is also
used for related structures but with a weakening of the axioms. See for example
[BL04]. The notions of internal category and groupoid have proved important.
See for example [BJ01], [MLM94].

35 p. 58 An example of groupoid object in groups is the fundamental groupoid of
a topological group. This example is considered in [BS76b], and is also used in
[BM94] to analyse in the nonconnected case topological groups which are also
covering spaces of a given topological group. The theory here turns out to be
related to the extension theory of groups given in Chapter 12. This equivalence
between crossed modules and category objects in groups should also be considered
in the more general light of the papers [Jan03], [MM10].

36 p. 59 This proof is related to a proof in [BJ04] which verifies that in the construc-
tion of a homotopy double groupoid of a map of spaces, a composition defined
geometrically agrees with that derived from Generalised Galois Theory, [BJ01].
Such a verification is also necessary in the notion of the fundamental catn-group
of an n-cube of maps, compare [BL87], [Gil87].



Chapter 3

Basic algebra of crossed modules

In this chapter we analyse what historically was the second source of crossed modules
over groups: identities among relations in presentations of groups. This also leads
to the area of crossed resolutions of groups, and groupoids with which we deal in
Chapter 10.

A central problem in mathematics is the representation of infinite objects in manip-
ulable, and preferably finite, terms. One method of doing this is by what is called a
resolution. There is not a formal definition of this, but we can see several examples.

This notion first arose in the 19th century study of invariants. Invariant theory
deals with subalgebras of polynomial algebras ƒ D kŒx1; : : : ; xn�, where k is a ring.
Consider for example, the subalgebra A of ZŒa; b; c; d � generated by

a2 C b2; c2 C d2; ac C bd; ad � bc:
It is called an invariant subalgebra since it is invariant under the action of Z2 which
switches the variables a, b and c, d . As pointed out in [Gar80], p. 247, ‘these generators
satisfy the relation

.ac C bd/2 C .ad � bc/2 D .a2 C b2/.c2 C d2/
which is classically called a syzygy, and the algebra A of invariant polynomials turns
out to be the homomorphic image of the polynomial algebra in four variables given by
the quotient algebra

ZŒx; y; z; w�=.z2 C w2 � xy/:
In particular, the algebra is finitely generated by four explicit polynomials, and the
ideal of relations is finitely generated by a single explicit relation.’

Hilbert solved also the so-called second main problem of invariant theory, in show-
ing that the ideal of relations among the invariants was also finitely generated.37 In
[Gar80], p. 253–254, we have:

Since the second main problem had succumbed so easily, it was natural to
turn to chains of syzygies, studying relations among the generating set of
relations and so on. More precisely, this work involved the sequence of
finitely generated kŒx1; : : : ; xn�-modules

0 �� J1 �� F1 �� B1 �� 0;

0 �� J2 �� F2 �� J1 �� 0;

: : : : : : : : :

0 �� Jq �� Fq �� Jq�1 �� 0;
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where the Fi are free with rank equal to the minimal number of generators
of the i ’th syzygy Ji . Hilbert’s main theorem on the chains of syzygies
says that if k is a field then Jq D 0 if q > n. In effect, this launched the
theory of homological dimension of rings.

It was also natural to splice the morphisms Fq ! Jq�1 ! Fq�1 together to get a
sequence

: : :
@qC1 �� Fq

@q �� Fq�1
@q�1 �� : : : @2 �� F1

@1 �� B1

which was exact in the sense that

Ker @q D Im @qC1

for all q. This sequence was called a free resolution of the module B1.
A basic question was the dependence of this sequence on the choices made. It

was found that given any two such free resolutions F� ! B1, F 0� ! B1, then there
was a morphism F� ! F 0� and any two such morphisms were homotopic. It was also
later found that the condition ‘free’ could conveniently be replaced by the condition
projective.

Another source for homological algebra was the homology and cohomology theory
of groups. As pointed out in [ML78], the starting point for this was the 1942 paper of
Hopf [Hop42]. Let X be an aspherical space (i.e. connected and with �iX D 0 for
i > 1), and let

1! R! F ! �1X ! 1

be an exact sequence of groups with F free. Hopf proved the formula

H2X Š R \ ŒF; F �
ŒF;R�

:

We shall see in Section 5.5 that this formula follows from our 2-dimensional Seifert–
van Kampen Theorem for crossed modules. Thus we see the advantage for homotopy
theory of having a 2-dimensional algebraic model of homotopy types. (A higher
dimensional version of Hopf’s result appears in Proposition 8.3.21).

Later work of Eilenberg–Mac Lane [EML47] found an algebraic formula forHnX ,
n > 2 as follows. Produce sequences of ZG-modules

0 �� J1 �� F1 �� Z �� 0;

0 �� J2 �� F2 �� J1 �� 0;

: : : : : : : : :

0 �� Jq �� Fq �� Jq�1 �� 0;
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in which Z is the trivial ZG-module, and each Fn is a free ZG-module. Splice these
together to give a free resolution of Z:

F� W � � � ! Fn ! Fn�1 ! � � � ! F2 ! F1 ! Z:

Form the chain complex C D F ˝ZG Z. Then HnC Š HnX . Using particular
choices of the Fn, the Hopf formula may be deduced [Bro94], p. 46.

Thus we see an input from the homotopy and homology theory of spaces into the
development of homological algebra. The use of homological methods across vast
areas of mathematics is a feature of 20th century mathematics. It seems the solution
of Fermat’s last theorem depended on it, but it has also been applied in differential
equations, coding theory and theoretical physics.

In its 20th century form, homological algebra is primarily an abelian theory. There
is considerable work on nonabelian homological algebra, but this is only beginning to
link with work in homotopical algebra, differential topology, and related areas. This
book has an aim of showing one kind of start to a more systematic background to such
an area.

Now the elementary, computational and example-oriented approach to groups con-
siders presentations hX IRi of a group P : that is X is a subset of P and there is an
exact sequence

1 �� N �� F.X/
� �� P �� 1; .�/

where F.X/ is the free group on generators Œx�, x 2 X ; p is defined by pŒx� D x,
x 2 X ; and R is a set of generators of N as normal subgroup of F.X/. Thus, each
element of N is a consequence

c D .r"1

1 /
u1 : : : .r"n

n /
un ;

ri 2 R, "i D ˙1, ui 2 F.X/ and ab D b�1ab. However, this representation of
elements of N , and the persistent use of N and F.X/ as nonabelian groups, rather
than of modules derived from them, plays a small role in the homological algebra of
groups. One would expect, a priori, that the sequence .�/ would be the beginning of
a ‘nonabelian resolution’ of the group P . We will show that this is so in Chapter 10.

Another curiosity is that there are a number of results in homotopy theory which are
satisfactory for 1-connected spaces, but for which no formulation has been given when
this assumption has been dropped, particularly when some nonabelian group has to be
described. As long as interest was focussed on high-dimensional, or stable, problems,
this restriction seemed not to matter. In many problems of current interest (for example
low-dimensional topology and homology of groups, algebraicK-theory) this restriction
has proved irksome, but few appropriate constructions have been generally seen to be
available. This is one of the reasons for promoting the subject matter of this book.

In Section 3.1 we recall what is a presentation hX j !i of a group P , and show
that the ‘identities among the relations’ can be seen as the elements of the kernel of
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a morphism � W F.R � P / ! P which satisfies CM1) in the definition of crossed
modules.

This gives good reason to relax the concept of crossed module. In Section 3.3 we
define precrossed modules in terms of axiom CM1) and also the functor that associates
to every precrossed module a crossed module. This construction .�/cr is adjoint to the
inclusion of categories XMod=Groups ,! PXMod=Groups.

The morphism � W F.R � P / ! P has some extra freeness properties, making it
what is called a ‘free precrossed module’. These are studied in Section 3.4.

The chapter ends with the definition of a category of algebraic objects equivalent
to that of precrossed modules and generalising the equivalence defined in Section 2.5.

3.1 The context of presentation of groups and identities among
relations

3.1.i Introduction

We now show how crossed modules arise in combinatorial group theory.38

A group G is of course defined as a set with a multiplication satisfying certain
axioms. In some cases this multiplication can be specified by a formula involving the
elements: notable examples are certain matrix groups, such as the Heisenberg group
H of matrices of the form 241 x y

0 1 z

0 0 1

35
for x; y; z 2 Z. Thus the elements of H are given by triples .x; y; z/ of integers with
multiplication

.x; y; z/.u; v; w/ D .x C u; y C v C xw; z C w/:

This is known as a ‘polynomial group law’. So we have a formula for the elements of
the group H and for the multiplication.

The reader should not be surprised that this could raise difficulties in other cases.
Part of the problem may be to give a useful formula for the elements of the group,
let alone a formula for the multiplication. In mathematics as a whole, the question of
‘presenting’ information on a structure is often a key part of a problem.

An often useful way of representing the elements of a group is by giving generators
for the group.

Example 3.1.1. Let D8 be the dihedral group of order 8, i.e. the group of symme-
tries of the square. This group is generated by the elements x; y where x is rotation
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anticlockwise through 90B and y is reflection in a vertical bisector of the square. The
elements of D4 can then be written as

1; x; x2; x3; y; yx; yx2; yx3

and this is quite a convenient labeling of the elements. However if you try to work out
the multiplication table in terms of this labeling you find you need more information,
namely relations among the generators, for example

x4 D 1; y2 D 1; xyxy D 1:
If you are not already familiar with these, particularly the last one, then you are expected
to verify them using some kind of model of a square. It turns out that every relation you
might need in working out the multiplication table is a consequence only of these three.
Thus we can specify the group completely also in terms of what we call a ‘presentation’

P D hx; y j x4; y2; xyxyi:
We shall write D8 D gp P .

We need a definition of the concept of a presentation. The first thing to note is that
the term x4 in the presentation P is not an element of the group D8, since the 4th
power of the element x in D8 is 1. Rather, as is common with the mathematical use
ofD, one side of theD sign in x4 D 1 is in fact an instruction: ‘multiply x by itself 4
times’, while the other side tells you what will be the result. A convenient language to
express both an ‘instruction for a procedure’ and the result of the procedure is that of
a morphism defined on a free group.

A free group F.X/ on a set X is intuitively a group F.X/ together with an
inclusion mapping i W X ! F.X/ such that X generates the group F.X/ and ‘there
are no relations among these generators’. There are two useful ways of expressing this
precisely.

One of them is to give what is called a ‘universal property’: this is that a morphism
g W F.X/! G to a group G is entirely determined by its values on the set X . Put in
another way, given any function f W X ! G, there is a unique morphism g W F.X/!
G such thatgi D f . This ‘external’definition thus defines a free group by its relation to
all other groups, and is a model for the notion of ‘freeness’ in other algebraic situations.
A set X generating a free group plays a rôle similar to that of a basis for a vector
space, and we also talk about X as a basis for the free group F.X/. However, unlike
vector spaces, not every group is free. The simplest example is the group Z2 with
two elements: it is not free because there is only one morphism Z2 ! Z, the zero
morphism.

The other ‘internal’ way of specifying a free group is to specify its elements and
the multiplication, and this can be done in terms of ‘reduced words’: every nonidentity
element of F.X/ is uniquely expressible in the form

x
r1
1 x

r2
2 : : : x

rn
n (3.1.1)
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where n > 1, xi 2 X , ri 2 Z, ri ¤ 0, and for no i is xi D xiC1, i.e. no cancelation
in the expression (3.1.1) is possible. In this specification, work is needed to give the
multiplication since adjoining two reduced words often yields a nonreduced word, and
the reduction process has to be given.39 Reduced words are commonly used to store
elements of a free group in computer implementations of combinatorial group theory.

We assume now that we have free groups, and this allows us to give our first
definition of a presentation of a group.

Definition 3.1.2. A presentation P D hX j Ri of a group P consists of a set X and a
subset R of the free group F.X/ together with a surjective morphism  W F.X/! P

such that Ker  is the normal closure in F.X/ of the set R.
We also write P D gp P .

We explain in more detail the notion of normal closure, since this gives a useful
model of an important general process. First recall that for any normal subgroup
K C P , the group P acts on the group K by conjugation. A basic aspect of group
theory is that a normal subgroup is a kernel of a morphism (in this case, for example,
of the quotient morphism P ! P=K), and that the kernel of any morphism from P

to a group is normal in P .
IfR is a subset of the groupP then the normal closure hRiP ofR inP is the smallest

normal subgroup of P containing R. The elements of hRiP are all consequences of
R in P , namely all products

c D .r"1

1 /
p1 : : : .r"m

m /pm (3.1.2)

where ri 2 R, "i D ˙1, pi 2 P and m > 1. An important point is that if  W P ! Q

is any morphism to a group Q such that .R/ D f1g, then .hRiP / D f1g, since
Ker  is normal. Thus  factors as P ! P=hRiP ! Q where the first morphism is
the quotient morphism.40

Now we can see that there might be what are called identities among relations.41

Intuitively, such an identity is a ‘formal’ product such as (3.1.2) which is 1 when
evaluated in the group P . This is formalised in Definition 3.2.1. Here we consider
some examples.

Example 3.1.3. For any elements r , s of R, we have the identities

r�1s�1rsr D 1;
rs�1r�1s.r�1/ D 1:

These identities hold always, whatever R.

Example 3.1.4. Suppose r 2 R, p 2 P and r D pm, m 2 Z. Then rp D pr , i.e. p
belongs to the centraliser C.r/ of r in P . We have the identity

r�1rp D 1: (3.1.3)
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It is known that if the group P is free and r 2 R then there is a unique element p of
P such that r D pm with m 2 N maximal and then C.r/ is the infinite cyclic group
generated by p. This element p is called the root of r and if m > 1 then r is called a
proper power.

Example 3.1.5. Suppose the commutators Œp; q� D p�1q�1pq, Œq; r�, Œr; p� lie in R.
Then the well-known rule

Œp; q�Œp; r�q Œq; r�Œq; p�r Œr; p�Œr; q�p D 1 (3.1.4)

is an identity among the relations of the presentation, since Œq; p� D Œp; q��1.

Example 3.1.6. Let S3 be the symmetric group on three letters with presentation
hx; y j r; s; ti where r D x3, s D y2, t D xyxy. The fact that each relation is a
proper power gives rise to three identities among relations, namely

r�1rx; s�1sy ; t�1txy :

However there is also a fourth identity namely

.s�1/x�1

ts�1.r�1/y�1

tx.s�1/xr�1tx�1

:

We leave it to you to verify that this is an identity among relations by writing out the
formula in the free group on x, y. This identity can also be interpreted as a kind of
composition of 2-cells in the following picture:

x2

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

��
yx

BB2222222222222

CC

y

��9999999999999



xy��

DD
1 ��

EE

X

FFBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
GG

We shall discuss this a bit more in the next section in terms of van Kampen diagrams.
The general notion of ‘composition of 2-cells’ makes more sense with our discussion
of computing identities among relations in Section 10.3.ii.
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3.1.ii Van Kampen diagrams

These diagrams give a geometric method of deducing consequences of relations, and
can, as we shall see, be used to show exactly how to write a word as a consequence
of the relations. We do not give a general definition or description, but illustrate it
with examples. The idea has been used extensively in some sophisticated theorems in
combinatorial group theory. For our purposes, the idea illustrates geometric aspects of
the use of crossed modules.

The idea of these diagrams come from the fact that a relation in a presentation can
be represented by a based cell whose sides are labeled by the letters of the relation in
such way that when they are read clockwise from the base point we get the relation.

Then, we can get new relations by gluing two or more of these cell along some
common sides. Let us consider a simple case.

Example 3.1.7. Suppose for a given presentation we have the relations t D db�1 and
s D abc. They can be represented as based cells as follows:

B

��d

t

� ��
b

C

B ��b C

AA�����

c

�����

A

HHBBBBB
a

BBBBB
s

��
We write ıs D abc, ıt D db�1. Now, we glue t and s alongside b getting

B

��d

t

� �� b C

AA�����

c

�����

A .

HHBBBBB
a

BBBBB
s

��
The boundary of this new cell is

adc D abc � c�1b�1 � db�1 � bc D .ıs/.ı.tbc//:
Of course tbc makes sense in the context of crossed modules over groupoids, since t
is based at B whereas tbc is based at A.

Here is a more complex example.

Example 3.1.8. The quaternion group of order 8 may be presented in the form

Q8 D gphx; y j x4; x2y�2; y�1xyxi:
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However the following diagram shows that the relation x4 is a consequence of the other
two relations. Set r D x4, s D x2y�2, t D y�1xyx and consider the drawing

F
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�� x
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��							 y
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BBBBBD
�

t

KKDDD x

DDD

&&DDD
yDDDD

A�
�
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-- x
LL!!!!!!!!

y

!!!!!!!!

B .

�
��
x

In this diagram, each cell has a base point, represented by a �, which is where the
reading of the boundary starts in clockwise direction. This explains why we have an s
and s�1, since the latter is s read counterclockwise.

Now we have to show how we can deduce from this diagram the expression we
want.

We take the outside loop starting from A (which has a base point for the outside
‘cell’) and then change it to traverse the boundary of each internal cell, obtaining the
rule which you can easily verify:

xxy�1y�1 � yx�1x�1y � y�1xyx � x�1 � y�1xyx � x D x4:
This can be reread as

s � yx�1x�1y � t � x�1 � t � x D x4:

But yx�1x�1y D yx�1x�1 � yyx�1x�1 � xxy�1 D .s�1/xxy�1
. So our final result

is that
s � .s�1/xxy�1 � t � tx � r�1

is an identity among relations, or, alternatively, shows in a precise way how x4 is a
consequence of the other relations.

One context for van Kampen diagrams is clarified by the notion of shelling of such
a diagram.42 It is a sequence of 2-dimensional subcomplexes K0; K1; : : : ; Kn each
of which is formed of 2-dimensional cells, with K0 consisting of a chosen basepoint
�, K1 being a 2-cell s1 with � on its boundary, and such that for i D 2; : : : ; n, Ki is
obtained from Ki�1 by adding a 2-cell si such that si \Ki�1 is a nonempty union of
1-cells which form a connected and 1-connected set, i.e. a path. Such a shelling will
yield a formula for the boundary of Kn in terms of the boundaries of each individual
cell, provided each cell is given a base point and orientation.

Here is a clear way of getting the formula (explained to us by Chris Wensley):
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Choose � D K0 as base point for all theKi . The relation forK0 is the trivial word.
IfB1 is the base point for s1 andP1 is the anticlockwise path around s1 fromB1 to� and
w1 is the word in the generators read off along P1, then the relation forK1 is ı.s1w1/.
For i > 2, let Bi be the base point for si , and let Ui ; Vi be the first and last vertices in
the intersection si \ Ki�1 met when traversing the boundary of Ki�1 in a clockwise
direction (so that the intersection is a path Ui : : : Vi ). Then ifBi lies on Ui : : : Vi let Pi
be the pathBi : : : Ui : : :�, otherwise letPi be the pathBi : : : Vi : : : Ui : : :� (traversing
the boundary of si in an anticlockwise direction and the boundary ofKi�1 clockwise).
If wi is the word in the generators read off along Pi then

.relation for Ki / D .relation for Ki�1/ � ı.siwi /:

We finish this short section with a more involved example.

Example 3.1.9. These methods can be used to prove the not obvious fact that the
relations

r D x2yxy3; s D y2xyx3

have x7 as a consequence. We leave it as an exercise to prove this by inserting base
points and orientations to the cells in the next picture, and then, which is harder, to give
x7 as an explicit consequence of r , s.43
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Here is a more formal definition of a van Kampen diagram.
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A complete Higher Homotopy van Kampen diagram is a finite regular CW-complex
K on a compact subset of the sphere S2. Regularity here means that each attaching
map fs W .S1; 1/! .K1; K0/ of a 2-cell s is a homeomorphism into. By omitting one
2-cell s1 from K and using stereographic projection we can also regard K n s1 as a
subset of the plane R2. The projection ofK n s1 gives a planar van Kampen diagram.

Whitehead’s theorem (Corollary 5.4.8) says essentially that ….K;K1; K0/ is the
free crossed �1.K1; K0/-module on the characteristic maps of the 2-cells of K.

3.2 Presentations and identities: 2

In Section 3.1 we have discussed examples of identities among relations for a presen-
tation of a group. Note that in all these examples conjugation is crucial. This is related
to the fact that the kernel K of a morphism from a group P should be thought of not
just as a subgroup K of the group P but also as a subgroup with an action of P on K.
This principle, that a kernel in nonabelian situations has more structure than just that
of subobject, is of general applicability; it is of direct applicability to the definition of
an identity among the relations for a presentation of a group P .

Definition 3.2.1. Let R be a set and P a group. We define the free P -group on R,
to be a P -group FP .R/ and function i W R! FP .R/ with the universal property that
for any function f W R ! M where M is a P -group, there is a unique morphism of
P -groups f 0 W FP .R/!M such that f 0i D f .

Proposition 3.2.2. The free P -group on R exists and may be constructed as the free
group on R � P , with action defined by .r; p/q D .r; pq/ for r 2 R, p; q 2 P and
with i W R! FP .R/ defined by r 7! .r; 1/.

The proof is easy.44

In discussing identities among relations and the corresponding geometric situation
of adding 2-cells, it is convenient to allow for repeated relations. Another reason for this
is that we may have some difficulty in recognising algorithmically that two elements of
P specified say by words in generators are in fact the same. So we consider functions
say ! W R ! P . By the definition of FP .R/, ! determines a unique morphism of
P -groups

� W FP .R/! P

such that � i D !. Note that as a morphism ofP -groups, � satisfies �.hp/ D p�1�.h/p
for all h 2 FP .R/, p 2 P . We recognise this as rule CM1) for a crossed module. The
image of � is the normal closure h!RiP of !R in P , i.e. the group of consequences of
!R inP . The elements ofFP .R/will be called the formal consequences of! W R! P

(as against the actual consequences, which lie in P itself).
If P D F.X/ is the free group onX , then imposing the relationsR on F.X/ gives

a groupG, say, and we have a presentation P D hX j !i ofG. Nevertheless, we keep
the notation hX j Ri whenever R � F.X/ and ! is the inclusion.
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Our next definition is that an identity among the relations of ! W R! P is an ele-
ment ofE D Ker � . Equivalently, an identity among relations is a formal consequence
which gives 1 when evaluated as an actual consequence in P .

The idea of specifying an identity among relations is thus analogous to that of
specifying a relation as an element of the free group F.X/, but here we must take
into account the action of F.X/. This leads to an appropriate concept of ‘free’ (see
Section 3.4). However, we are not yet at our final position.

Note that because � W FP .R/! P is a P -morphism, if h; k 2 FP .R/ we have

�.h�k/ D �.k/�1�.h/�.k/
and so

k�1h�1kh�k 2 Ker �:

We call such an element a basic Peiffer commutator and write45

ŒŒk; h�� D k�1h�1kh�.k/:

These should be thought of as ‘twisted commutators’.46 The wider context for these
is that of the precrossed modules of the next section.

3.3 Precrossed and crossed modules

Following the concepts introduced in Section 3.2, we need to study morphisms having
the same formal properties as � W FP .R/! P . One way of describing the distinctive
feature of � is to say that � is a morphism of P -groups, where P acts on itself by
conjugation.

Definition 3.3.1. Let P be a group andM a P -group. Then a morphism of P -groups
of the form � W M ! P is called a precrossed module47. A morphism between two
precrossed modules M D .� W M ! P / and N D .� W N ! Q/ is a pair .g; f / of
homomorphisms of groups g W M ! N and f W P ! Q such that

i) the diagram

M
g ��

�

��

N




��
P

f
�� Q

commutes, i.e. f� D �g, and
ii) the actions are preserved, i.e. g.mp/ D .gm/fp for any p 2 P and m 2M .

These objects and morphisms define the category PXMod=Groups of precrossed mod-
ules and morphisms.
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Example 3.3.2. Given a map ! W R! P the associated map � W FP .R/! P defined
in Section 3.2 is a precrossed module.

Remark 3.3.3. We affix the term Groups to the name for this category as later we will
need an analogous category with groups replaced by groupoids, and this we will denote
simply by PXMod.

Analogously to our method in the example � W FP .R/! P determined by! W R!
P , we can define Peiffer elements in any precrossed module. Let M D .� W M ! P /

be a precrossed module and let m, m0 be elements of M . Their Peiffer commutator is
defined as48

ŒŒm;m0�� D m�1m0�1mm0�m:
The precrossed modules in which all Peiffer commutators are trivial are precisely

the crossed modules. Thus the category of crossed modules is the full subcategory of
the category of precrossed modules whose objects are crossed modules.

Since the Peiffer elements are always defined in a precrossed module, it is a natural
idea to factor out by the normal subgroup that they generate and consider the induced
map from the quotient. Let us check that this produces a crossed module.

The Peiffer subgroup ŒŒM;M�� of M is the subgroup of M generated by all Peiffer
commutators.49 We now prove that this subgroup inherits the P -action and, as for the
usual commutator subgroup, is a normal subgroup.

Theorem 3.3.4. For any precrossed module� W M ! P , the Peiffer subgroup ŒŒM;M��

of M is a P -invariant normal subgroup.

Proof. The Peiffer subgroup is P -invariant since for any m;m0 2 M and p 2 P , we
have

ŒŒm;m0��p D .m�1m0�1mm0�m/p

D .mp/�1.m0p/�1mpm0.�m/p

D .mp/�1.m0p/�1mpm0p.�m/p

D .mp/�1.m0p/�1mpm0p.�mp/

D ŒŒmp; m0p��:

It is also normal since for any m;m0; n 2M we have

n�1ŒŒm;m0��n D n�1m�1m0�1mm0�mn
D n�1m�1m0�1m.nm0�mn.m0�1/�mnn�1/m0�mn
D ..mn/�1m0�1mnm0�mn/...m0�m/�n/�1n�1m0�mn/
D ŒŒmn;m0��ŒŒn;m0�m���1: �

For future computations it is interesting to have as small a set of generators of the
Peiffer subgroup as possible. The following property is useful for this.
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Proposition 3.3.5. Let � W M ! P be a precrossed module and let V be a subset of
M which generates M as a group and is also P -invariant. Then the Peiffer subgroup
ŒŒM;M�� of M is the normal closure in M of the set of Peiffer commutators

fŒŒa; b�� j a; b 2 V g:
Proof. Let Z be the normal closure of W D fŒŒa; b�� j a; b 2 V g. Since ŒŒM;M�� is
normal and contains W , it is clear that Z � ŒŒM;M�� � Ker�. On the other hand W
is P -invariant since ŒŒa; b��p D ŒŒap; bp�� as was proved in Theorem 3.3.4. So Z is also
P -invariant. Thus � induces a homomorphism of groups N� W M=Z ! P which is
P -invariant, so that we have a precrossed module. Let us check that it is also a crossed
module.

Let xV be the image of V in M=Z, i.e. xV is the set of cosets of all elements in V .
Notice that we have

y N�x D x�1yx D yx .��/
for any x and y lying in xV , which is a set of generators of M=Z. It is easy to see
that for a fixed x inM=Z the set Px of y’s satisfying this equation .��/ is a subgroup
containing xV so Px has to be all of M=Z.

Consider now the setQ of x inM=Z satisfying .��/ for all y inM=Z. It is closed
under multiplication (since

y N�.xx0/ D .y N�x/ N�x0 D .yx/ N�x0 D .yx/x0 D yxx0

and also under inversion (since if w D yx
�1

, we have wx D y and wx D x�1wx,
so that x�1wx D y and w D xyx�1). So Q D M=Z and thus N� W M=Z ! P is a
crossed module. It follows that ŒŒM;M�� � Z.

Corollary 3.3.6. Let ! W R! P be a function to the group P and let � W FP .R/! P

be the associated precrossed module. Then the Peiffer subgroup ŒŒFP .R/; FP .R/��
of FP .R/ is the normal closure in FP .R/ of the basic Peiffer elements ŒŒa; b�� D
a�1b�1ab�a where a; b 2 R � P .

Now for any precrossed module � W M ! P we define

M cr D M

ŒŒM;M��
;

and let  W M !M cr denote the quotient morphism By the previous property, M cr is
a P -group. Let us see that the homomorphism � induces a crossed module.

Proposition 3.3.7. Let � W M ! P be a precrossed module. Then
(i) the induced map gives a crossed module

Mcr D .�cr W M cr ! P /;

(ii) if � W N ! P is a crossed module and ˛ W M ! N is a morphism of precrossed
modules over P , then ˛ determines a unique morphism ˛0 W M cr ! N such that
˛0 D ˛.
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Proof. (i) It is easy to see that for each m;m0 2 M , �ŒŒm;m0�� D 1, so � induces a
homomorphism of groups �cr. Clearly �cr satisfies CM1) because it was already satis-
fied by �. It also satisfies CM2) because all Peiffer commutators have been quotiented
out.

(ii) This follows because in a crossed module, all Peiffer commutators vanish.

The association of the crossed moduleM cr ! P to a precrossed moduleM ! P

gives a functor
.�/cr W PXMod=Groups! XMod=Groups:

That is, a morphism .g; f / of precrossed modules yields a morphism .gcr; f / of crossed
modules, and this association satisfies the usual functorial rules. Clearly .�/cr is left
adjoint to the inclusion of categories XMod=Groups! PXMod=Groups.

3.4 Free precrossed and crossed modules

In any algebraic structure, the notion of free structure usually plays an important role.
This also for holds for the structures of precrossed modules and crossed modules.
They will also be seen later in Chapter 5 as arising as induced precrossed and crossed
modules, so they give an introduction to that topic.

We first note:

Proposition 3.4.1. If P is a group, and ! W R ! P is a function from a set R, then
the precrossed P -module � W FP .R/ ! P determined by ! has with the function
i W R ! FP .R/ the property that for any precrossed P -module � W N ! P and
function f W R! N such that �f D !, there is a unique morphism ˛ W FP .R/! N

of P -groups such that �˛ D � .

Proof. The morphism ˛ is defined by its values on the P -generators by ˛.r; 1/ D
f .r/; r 2 R. The equation �˛ D � holds on FP .R/ because it holds on generators.

Because of this result we call � W FP .R/! P with i the free precrossedP -module
on !.

Definition 3.4.2. Let ! W R ! P be a function from the set R to the group P . The
free crossed P -module on ! is a crossed module @ W FX.!/ ! P with a function
i W R! FX.!/ such that @i D ! and with the universal property that for any crossed
module � W N ! P and function f W R ! N such that �f D !, there is a unique
morphism ˛ W FX.!/! N of crossed P -modules such that ˛i D f .

Proposition 3.4.3. The free crossed P -module on ! exists and may be constructed as

FX.!/ D FP .R/cr ! P

together with the composite function R
i�! FP .R/

��! FX.!/.
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Proof. This follows easily from the universal properties already discussed.

Example 3.4.4. Suppose ! W R ! P has image only the identity of P . Then
@ W FX.!/! P is trivial, and FX.!/, which we may write in this case as FX.R/, is the
freeP -module on the setR. Its elements may be written as formal sums

Pn
iD1 xi .ri /pi

where xi 2 Z, ri 2 R, pi 2 P , n > 0. The function i W R! FX.R/ is injective.

Remark 3.4.5. This construction will be generalised to free crossed modules over
groupoids in Section 7.3.ii.50

From the construction of the free precrossed module as a free group, it is clear
that R ! FP .R/ is injective. It is not so clear that R ! FX.!/ D FP .R/

cr is also
injective. This is a consequence of the following property:

Proposition 3.4.6. Given a free crossedP -module M D .� W M ! P / on! W R! P

with basis i W R!M , then M ab is a free (Cok�)-module with basis the composition

R
i�!M !M ab.

Proof. Let G D Cok�. We know by Proposition 2.2.4 that M ab may be given the
structure aG-module, derived from the crossed P -module structure onM . To see that
M ab is free on the given basis we will verify the appropriate universal property.

Let N be a G-module. The projection P �N ! P becomes a crossed P -module
when P acts on P � N by conjugation on P and via the G-action on N . For any
map f W R ! N we define f 0 D .�!; f / W R ! P � N . Since � W M ! P is a
free crossed P -module we get a unique morphism of P -crossed modules  W M !
P � N such that f 0 D !. The composite M ! N factors through a G-morphism
N W M ab ! N which is the only morphism of G-modules satisfying N!ab D f .

Remark 3.4.7. This result can be seen later in the context of fibrations of categories
and induced crossed modules. (See Section 7.3.ii.)

3.4.i Free crossed module as an adjoint functor

As indicated in Example A.6.2 of Appendix A, a free construction in a category of
algebraic structures is, in most cases the left adjoint of some forgetful functor. The
appropriate forgetful functor for crossed modules goes to the category of sets over
a group forgetting the algebra of the top group and considering only the underlying
boundary map. We recall the appropriate categories.

Let P be a group. We have defined the category XMod=P of crossed P -modules
in Section 2.2. In a similar way, we define the category PXMod=P by restricting to
precrossed modules over P .

Let P be a set or group. We define the category Set=P of sets over P to be the
category whose objects are functions ! W R ! P and whose morphisms ˛ W ! ! �
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where � W S ! P are commutative diagrams

R
˛ ��

!
DDFFFFFFF S

���:::::::

P .

We have a forgetful functor

U W XMod=P ! Set=P

and we define the free crossed module functor

FX W Set=P ! XMod=P

to be the left adjoint of this functorU . Thus for any function ! W R! P we have aP -
crossed module @ W FX.!/! P such that for any crossed P -module M D .� W M !
P / there is a natural bijection

 W .Set=P /.!; UM/ Š .XMod=P /.FX.!/;M/:

This is equivalent to saying that there is a map i W R ! U FX.!/ in Set=P , corr-
esponding to the morphism 1FX.!/ of crossedP -modules such that @i D ! and for any
map over f W R ! M over P there exists a unique morphism Nf W FX.!/ ! M of
crossed P -modules such that Nf i D f . (For more information on the relation between
adjoint functors and universal properties, see Appendix A, Section A.6).

We define in a similar way the free precrossed module using the forgetful functor
PXMod=P ! Set=P .

As always in universal constructions, the free crossed and free precrossed P -
modules on ! are unique up to isomorphism. For this reason we often talk about
the free crossed P -module on !. The previous sections prove the existence of these
free constructions.

We now give an example and a proposition which illustrate some of the difficulties
of working with free crossed modules.51

Let .@ W C.R/ ! F.X// be the free crossed module on the subset R of F.X/
and suppose that Y is a subset of X , and S a subset of R. Let M be the subgroup
of C.R/ generated by F.Y / operating on S , and assume that @.M/ � F.Y /. Let
M0 D .@0 W M ! F.Y // be the crossed module given by restricting @ toM . Then M0
is not necessarily a free crossed module.

Example 3.4.8. Let X D Y D fxg, R D fa; bg; S D fbg be such that @a D x,
@b D 1. Since @b D 1, we have ab D ba, whence bxb�1 D a�1bab�1 D 1.
Therefore M0 is not a free crossed module.

Proposition 3.4.9. Let @, @0 be as before and 	 W Cok @ ! Cok @0 be the morphism
induced by the inclusion i W F.Y /! F.X/. If 	 is injective, then M0 is the free crossed
F.Y /-module on S .
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Proof. Let d W C.S/! F.Y / be the free crossed F.Y /-module on S . It is clear that
d.C.S// D @.M/. Let j W C.S/ ! M be the morphism of crossed F.Y /-modules.
Clearly j is surjective, and the result is proved when we have shown that j is injective.

Suppose that u 2 C.S/ and j.u/ D 1. Then d.u/ D 1. Let k W C.S/ab ! C.R/ab

be the induced morphism of the abelianised groups. These abelianised groups are in
fact free modules over Cok @, Cok @0 respectively on the bases S;R respectively. Since
	 is injective, it follows that k is injective. Let Nu denote the class of u in C.S/ab. Then
k Nu D 0, and hence Nu D 0. But the morphism C.S/! C.S/ab is injective on Ker d .
It follows that u D 1.

3.5 Precat1-groups and the existence of colimits

In the two previous section we have seen that when working with crossed modules it
is sometimes convenient to consider the weaker structure of precrossed modules and
see the category XMod=Groups as a full subcategory of PXMod=Groups.

In Section 2.5 we have seen that the category Cat1- Groups of cat1-groups is equiv-
alent to the category XMod=Groups. It is an easy exercise to put both together and
construct a category bigger than Cat1- Groups and equivalent to PXMod=Groups.

So, a precat1-group is a triple .G; s; t/ where G is a group and s; t W G ! G are
endomorphisms satisfying st D t and ts D s. Thus we are omitting CG2) from the
axioms of a cat1-group, i.e. we do not impose commutativity between elements of Ker s
and Ker t .

As before, a morphism between pre-cat1-groups is just a homomorphism of groups
commuting with the s’s and t’s. These objects and morphisms define the category
PCat1- Groups. It contains Cat1- Groups as a full subcategory.

Proposition 3.5.1. The categories PCat1- Groups and PXMod=Groups are equivalent,
by an equivalence extending that between Cat1- Groups and XMod=Groups.

Proof. The definitions of both functors are the same as in Section 2.5, namely

� W PXMod=Groups! PCat1- Groups

is given by �.� W M ! P / D .P ËM; s; t/, s and t being defined as before, and

� W PCat1- Groups! PXMod=Groups

is defined by �.G; s; t/ D .t j W Ker s ! Im s/.
It is easily checked that both functors are well defined and both compositions are

naturally equivalent to the identity.

As in the Section 3.3, we may define a functor associating to each pre-cat1-group
a cat1-group

.�/cat W PCat1- Groups! Cat1- Groups
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defined by .G; s; t/cat D .G=N; s0; t 0/, where N = [Ker s, Ker t ].
It is easy to see that the functor .�/cat corresponds through the equivalences of

categories to
.�/cr W PXMod=Groups! XMod=Groups:

Then, it follows

Proposition 3.5.2. The functor .�/cat is a left adjoint of the inclusion.

Using this last property we can prove the existence of colimits in Cat1- Groups.
Since left adjoint functors preserve colimits (see [ML71] or Section A.7 of App-

endix A, for any indexed family G� D .G�; s�; t�/ of cat1-groups and morphisms
between them, we have

colimcatfG�g D .colimprefG�g/cat:

So, the existence of colimits in Cat1- Groups has been reduced to the existence of
colimits in PCat1- Groups.

It is not difficult now to check that in PCat1- Groups the colimits are as expected,
i.e. for an indexed family fG� j � 2 ƒg of pre-cat1-groups G� D .G�; s�; t�/ and
morphisms between them,

colimprefG�g D .colimgrfG�g; colimgrfs�g; colimgrft�g/:
From the existence of colimits in Cat1- Groups follows from the existence of col-

imits in XMod=Groups using the equivalence between these categories.

Remark 3.5.3. We have just added another way of computing colimits of crossed
modules. So, if we have an indexed family of crossed modules f�� W M� ! P�g, we
construct the associated family of cat1-groups f.M�ËP�; s�; t�/g getting their colimit
.G; s; t/ and the colimit crossed module is t j W Ker s ! Im t .

Even if it seems a long way around, it is worthwhile because for exampleM� ËP�
may be finitely generated, even if M� and P� are not. Also, there are some efficient
computer-assisted ways of getting colimits, kernels and images of finitely generated
groups and homomorphisms.

3.6 Implementation of crossed modules in GAP

To make any serious computational work in group theory it is usually necessary to
use a computational group theory package. Some of these packages have evolved
to accommodate more structures becoming veritable computational discrete algebra
packages.

Work at Bangor (in particular by M. Alp and C. D. Wensley) has produced the
GAP module XMOD which includes a number of constructions on crossed modules,
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cat1-groups and their morphisms. In particular: derivations, kernels and images; the
Whitehead group; cat1-groups and their relation with crossed modules; induced crossed
modules.

This package has already been in use for some time, and has been incorporated into
GAP4.52

In Section 5.9 we will show how XMOD has been used to determine explicitly some
induced crossed modules whose computation do not follow from general theorems and
seem too hard to compute by hand.

Notes

37 p. 64 This finiteness no longer holds for groups. A group may be finitely generated,
but not finitely presented; finitely presented but not finitely identified; and so on.
For more information see Wikipedia on finitely presented groups.

38 p. 67 The subject of identities among relations for groups was founded by Peiffer
and Reidemeister in the papers [Pei49], [Rei49], with the intention of working
towards normal forms for 3-manifolds. This work was related to, but independent
of, work by Whitehead on crossed modules, to which we have already referred.
Interest in the work of Peiffer and Reidemeister was widened by the exposition in
[BH82]; the historical investigation, as reported there, is due to J. Huebschmann.
The exposition here, and some of the results, e.g. Proposition 3.3.5, follows that
article to some extent. Reidemeister, as one of the founders of knot theory, was
aware of the intuitive relations between the identities for crossed modules and
those for knots and links.

39 p. 69 Accounts of this are in many books on combinatorial group theory, for
example [Joh97], [LS01], [Coh89]. The notion of free groupoid on a directed
graph is described in [Bro06] and [Hig71]: the construction in the former is in
terms of reduced words, and in the latter the reduced words come after the formal
definition in terms of the universal property. Free groupoids are important to us in
Section 10.3.ii.

40 p. 69 In Chapter 5 we construct for a subgroup R of a group P a crossed module
i�.R/! P whose image is hRiP and which has an important universal property
as a so called ‘induced crossed module’.

41 p. 69 This term was introduced by Peiffer and Reidemeister in [Pei49], [Rei49]
and given an exposition in [BH82]. A better term might be ‘identity among con-
sequences’, but the term we use is embedded in the literature. Another term used
is ‘homotopical syzygy’, [Lod00]. Because of the relation of this concept to the
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construction of a CW-complex, identities among relations are used in [Hue99] in
relation to a construction of free simplicial groups from a CW-complex, and this
is applied to lattice gauge theory to give a solution of a question of Atiyah as to
whether there is a finite-dimensional construction of the Chern–Simons function
on a 3-manifold.

42 p. 72 The concept of shelling and shellable is well known in combinatorics, and
the article [Bjö92] gives more information on this. The concept is also used in the
thesis [Jon88] to control the kinds of cell decompositions of a sphere to be allowed.
The contrast between the 2-dimensional van Kampen diagram and the formula for
a consequence can be viewed as that between a 2-dimensional and a 1-dimensional
form of algebra. The two views illuminate each other, but the 1-dimensional view
is more susceptible to calculation and computer implementation.

43 p. 73 These examples are from the book [Joh97]. Other examples on van Kampen
diagrams may be found there, and by a web search. The geometric and metric
analysis of van Kampen diagrams has proved important in aspects of combinatorial
group theory.

44 p. 74 There is an alternative description ofFP .R/which we give for those familiar
with the group theoretic background; it is sometimes useful but does not immedi-
ately give the free property. The group FP .R/ is isomorphic to the normal closure
ofR in the free product P �F.R/. This result is [Pei49], Satz 3 on p. 69, see also
[Met79]. This result is a simple consequence of the Kurosch Subgroup Theorem
for free products, which may be found in books on combinatorial group theory
and in [Hig71], [Bro06] from a groupoid viewpoint.

45 p. 75 These elements were introduced in [Pei49], p. 70, and in [Rei49]. The term
‘Peiffer element’ was first used in [BH82]. This work is related to but independent
of that of Whitehead on free crossed modules; the war ensured a lack of commu-
nication. The goal of the program of Reidemeister in [Rei49] and of Peiffer was
to develop normal forms for 3-manifolds. A major use of Whitehead’s work was
in [Pap63], which reduced the 3-dimensional Poincaré Conjecture to problems in
combinatorial group theory, which were however difficult to solve.

46 p. 75 In this spirit, there is a ‘Peiffer commutator calculus’ whose study has been
advanced considerably by Baues and Conduché [BC90].

47 p. 75 The term ‘precrossed module’ was introduced in [BH82], following a sug-
gestion of P. J. Higgins.

48 p. 76 There is a substantial theory of Peiffer commutator calculus, see [CE89],
[BC90].

49 p. 76 The term Peiffer group was used in [Met79].
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50 p. 79 A more combinatorial description of free crossed modules is given in essence
in [Pei49]; this is explained in [BH82], Section 5, in terms of ‘Peiffer transforma-
tions on Y -sequences’, and related to an important ‘identity property’. The reader
may like to develop an analogous account for the groupoid case.

51 p. 80 These are due to Whitehead in [Whi50b].

52 p. 83 We note that Alp and Wensley have in [AW00] used this programme to list
many finite cat1-groups.



Chapter 4

Coproducts of crossed P-modules

In this chapter we start to show how the combination of the 2-dimensional Seifert–
van Kampen Theorem and the algebra of crossed modules allows specific nonabelian
calculations in homotopy theory in dimension 2. To this end, we study the coproduct
of crossed modules (mainly of two crossed modules) over the same group P . We
construct this coproduct of crossed P -modules, check some properties and, using the
2-dimensional Seifert–van Kampen Theorem, we apply these general results to some
topological cases.

Section 4.1 gives the construction of the coproduct of crossed P -modules. First,
we see what the definition of coproduct in a general category means in this case, and
then we prove its existence in two steps. As a first step, we prove that the free product
of groups gives the coproduct in the category of precrossed P -modules. Then, using
the fact that the functor .�/cr preserves coproducts, we see that its associated crossed
P -module is the coproduct in the category of P -modules.

This procedure is not immediately suitable for computations, because the free prod-
uct of groups is always a very big group (it is normally infinite even if all the groups
concerned are finite). So in Section 4.2 we give an alternative description of the co-
product of two crossed P -modules. This is obtained by dividing the construction of
the associated crossed module for this case into two steps, of which the first gives a
semidirect product. Thus the coproduct of two crossed P -modules is a quotient of a
semidirect product. Hence we can get presentations of the coproduct using the known
presentations of the semidirect product.

This has topological applications as explained in Section 4.3. First, we know that the
coproduct of two crossed P -modules is just the pushout of these two crossed modules
with respect to the trivial crossed module 1 ! P . Thus if the topological space X
is the union of two open subsets U1, U2 such that both pairs .U1; U12/, .U2; U12/
are 1-connected, then the crossed module…2.X;U12/ is the coproduct…2.U1; U12/ B
…2.U2; U12/ (Theorem 4.3.3) and we can use the previous results to get information on
the second homotopy group ofX . We end this section by studying some consequences
in this case.

In the last section (4.4) we study the coproduct in a particular case used later. We
begin with two crossed P -modules M D .� W M ! P / and N D .� W N ! P /

satisfying the condition

�.N / � �.M/ and there is an equivariant section of �: (�)

In this case we get a description of their coproduct using the displacement subgroupNM
(Theorem 4.4.8). This case is not uncommon and we get some topological applications
when the space X is got from Y by attaching a cone CA, that is, X is a mapping cone.
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We finish this last section with a description of the coproduct for an arbitrary set of
indices satisfying the above condition .�/. This result will be used at the end of the
next chapter (see Section 5.8).

4.1 The coproduct of crossed P-modules

We give a construction of coproducts in the category XMod=P of crossed modules
over the group P . We do this for a general family of indices since this causes no more
difficulty than the case of two crossed modules.

From the general definition of the coproduct in a category given in Example A.4.4
of Appendix A, we see that the coproduct of a family fMt j t 2 T g of crossed modules
over P is given by a crossed module M and a family of morphisms of crossed P -
modules fit W Mt ! M j t 2 T g satisfying the following universal property: for any
family fut W Mt ! M0 j t 2 T g of morphisms of crossed modules over P , there is a
unique morphism u W M!M0 of crossed modules overP such that ut D uit for each
t 2 T . Diagrammatically, there exists a unique dashed arrow such that the following
diagram commutes:

Mt
it ��

ut >>GGGGGGGG M

u

��H
H
H

M.

As with any universal construction, the coproduct is unique up to isomorphism.
As we have seen in Section 3.3, the functor .�/cr from precrossed modules to

crossed modules, obtained by factoring out the Peiffer subgroup, is left adjoint to the
inclusion of crossed modules into precrossed modules, and so takes coproducts into
coproducts. Thus to construct the coproduct of crossed P -modules we construct the
coproduct in PXMod=P , the category of precrossed modules over the group P and
apply the functor .�/cr to it. The coproduct in PXMod=P is simply obtained using the
coproduct in the category Groups of groups, and this is the well-known free product
�t2T Gt of a family fGtg of groups.53

Proposition 4.1.1. Let T be an indexing set, and for each t 2 T let Mt D .�t W Mt !
P / be a precrossed P -module. We define �t2T Mt to be the free product of the groups
Mt , t 2 T . There is an action of P on �t2T Mt defined by the action of P on each
Mt . Consider the morphism

�t2T Mt D .@0 W �t2T Mt ! P /;

together with the homomorphisms it W Mt ! �tMt given by the inclusion in the free
product, and where @0 D �t2T �t is the homomorphism of groups induced from the
homomorphisms �t using the universal property of the coproduct of groups. Then
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the above defined �t2T Mt is a precrossed P -module and the homomorphisms it
are morphisms of precrossed modules over P giving the coproduct in the category
PXMod=P .

Proof. Let M D �t2T Mt . If we represent by p# the action by p 2 P , then the action

p# W M!M of p is defined by the composite morphisms Mt

p#�!Mt

it�!M.
In terms of the normal form of an element of the free product, this means that the

action is given by the formula

.mt1 : : : mtn/
p D .mt1/p : : : .mtn/p; mti 2Mti :

As already pointed out, the homomorphisms �t extend uniquely to a homomorphism
�t�t . So

.�t�t /..mt1 : : : mtn/p/ D .�t�t /.mpt1 : : : mptn/
D .�t1.mpt1// : : : .�tn.mptn//
D p�1.�t1mt1/p : : : p�1.�tn.mtn//p
D p�1..�t1mt1/ : : : .�tn.mtn//p

and �t�t is a precrossed module.
The verification of the universal property is straightforward.

We now easily obtain:

Corollary 4.1.2. If Mt D .�t W Mt ! P /; t 2 T is a family of crossed P -modules,
then applying the functor .�/cr to �t2T Mt to give

@0cr W .�t2T Mt /
cr ! P

with the morphisms jt W Mt

it�! �t2T Mt ! .�t2T Mt /
cr, where the second morphism

is the quotient homomorphism, gives the coproduct of crossed P -modules.

We denote this coproduct by

	t2T Mt D .@ W 	t2T Mt ! P /

where the morphisms jt W Mt !	t2T Mt are understood to be part of the structure.
These morphisms need not be injective. In the case T D f1; 2; : : : ; ng, this coproduct
will be writtenM1 B : : : BMn ! P . As is standard for coproducts in any category, the
coproduct in XMod=P is associative and commutative up to natural isomorphisms.

Remark 4.1.3. 1. There is a generalisation of this universal property given in Exer-
cise B.1.10 in Appendix B. The proof uses a pullback construction of crossed modules
given in Section 5.1.

2. If all the crossed modules Mt ! P , t 2 T are the same then their coproduct is
called the copower construction

MBT D	t2T M: �
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4.2 The coproduct of two crossed P-modules

Throughout this section we suppose given two crossedP -modules M D .� W M ! P /

and N D .� W N ! P /, and we develop at some length the study of their coproduct
in XMod=P

M BN D .� B � W M BN ! P /

and the canonical morphisms from M;N into M BN .54

The basic observation is thatM BN may be obtained as a quotient of the semidirect
product groupMËN whereM operates onN viaP . This result makes the coproduct of
two crossed modules computable and from this we get some topological computations.

For convenience, we assume M;N are disjoint. To study M BN D .M �N/cr in
some detail we should have a closer look at ŒŒM �N;M �N��, the Peiffer subgroup of
M �N . As seen in Section 3.3, ŒŒM �N;M �N�� is the subgroup ofM �N generated
by all Peiffer commutators

ŒŒk; k0�� D k�1k0�1kk0.��
/k

for all k, k0 2M �N .
Notice that by Proposition 3.3.5, ŒŒM � N;M � N�� is also the normal subgroup

generated by the Peiffer commutators of any given P -invariant set of generators. Now
M [ N generates M � N and is P -invariant. Since M and N are crossed modules,
we have ŒŒm;m0�� D 1 and ŒŒn; n0�� D 1, for all m;m0 2 M and n; n0 2 N . Thus
ŒŒM �N;M �N�� is the normal subgroup of M �N generated by the elements

r.m; n/ D n�1m�1nmn and s.m; n/ D m�1n�1mnm

for all m 2M , n 2 N .
The process of quotienting out by the Peiffer subgroup may be divided into two

steps. First, we consider the quotient ofM �N by the groupU generated by all Peiffer
commutators of the formfs.m; n/ j m 2M;n 2 N g, and show that this quotient is the
well-known semidirect product.

Proposition 4.2.1. Let U be the normal P -invariant subgroup of M � N generated
by the set fm�1n�1mnm j m 2M;n 2 N g. Then the precrossed P -module

.M �N /=U D .� � � W .M �N/=U ! P /

is isomorphic to
M Ë N D .� Ë � W M ËN ! P /

where the semidirect product is associated to the action of M on N via � and the
P -action.

Proof. The inclusions M ! M Ë N and N ! M Ë N extend to a homomorphism
of groups

' W M �N !M ËN:
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Let us check that '.U / D 1 by computing ' on all generators:

'.m�1n�1mnm/ D .m�1; 1/.1; n�1/.m; 1/.1; nm/
D .m�1; n�1/.m; nm/
D .m�1m; .n�1/mnm/
D .1; 1/:

So we have an induced homomorphism of P -groups

x' W .M �N/=U !M ËN:

We define a homomorphism in the other direction

 W M ËN ! .M �N/=U
by  .m; n/ D Œmn� the equivalence class of the element mn 2M �N . To check the
homomorphism property, we compute

 .m0; n0/�1 .m; n/�1 ..m; n/.m0; n0// D Œn0�1m0�1�Œn�1m�1� .mm0; nm0

n0/

D Œn0�1m0�1n�1m�1mm0nm0

n0�

D Œn0�1.m0�1n�1m0nm0

/n0�
D Œ1�

since m0�1n�1m0nm0 2 U .
Clearly x' D 1. Since  x' is a homomorphism, to prove that it is 1 it is enough to

check this on the generators Œmn�; m 2M; n 2 N , and this is clear.
It now follows, as may be proved directly, that � Ë � W M Ë N ! P , .m; n/ 7!

.�m/.�n/ is a homomorphism which with the action of P given by .m; n/p D

.mp; np/ is a precrossed P -module.

So M Ë N is a precrossed module containing M and N as submodules. Let us see
that it satisfies a universal property with respect to maps of the crossed modules M and
N to any given crossed P -module M0.

Proposition 4.2.2. Let M0 D .�0 W M 0 ! P / be a crossedP -module and letf W M !
M 0 and g W N ! M 0 be morphisms of crossed P -modules. Then there is a unique
map of precrossed P -modules extending f and g, namely f Ë g W M Ë N ! M 0,
.m; n/ 7! .f m/.gn/.

Proof. Uniqueness is obvious.
To prove existence we check that the morphism of precrossed P -modules

f � g W M �N !M 0
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sends all elements of U to 1, where U is the subgroup specified in Proposition 4.2.1.
On generators of U we have

.f � g/.m�1n�1mnm/ D f .m�1/g.n�1/f .m/g.nm/ D g.n�1/�0fmg.n/�m D 1

since �0 W M 0 ! P is a crossed module and �0f D �.

Therefore it is clear that the coproduct of two crossed P -modules � W M ! P and
� W N ! P is the crossed module associated to the precrossed module�Ë� W MËN !
P , i.e.

M BN D ..� Ë �/cr W .M ËN/cr ! P / D .M BN ! P /:

This has some striking consequences.

Remark 4.2.3. If M ! P , N ! P are crossed P -modules such that M and N are
finite groups (resp. finite p-groups), then so also is the semidirect productM ËN and
hence their coproduct as crossed modules M B N is also a finite group (resp. a finite
p-group). This result was not so clear from previous descriptions of the coproduct of
crossed P -modules.

Remark 4.2.4. If .� W M ! P /, .� W N ! P / are crossed P -modules such that
each of M , N act trivially on the other via P , then M Ë N D M � N , the product
of the groups, with action of P given by .m; n/p D .mp; np/ and with boundary
@ W M �N ! P given by .m; n/ 7! .�m/.�n/.

The Peiffer subgroup ŒŒM Ë N;M Ë N�� of M Ë N is of course the subgroup
of M Ë N generated by the Peiffer commutators of all elements of M Ë N , and
we write it as fM;N g. Alternatively, fM;N g is generated by the images by ' of
r.m; n/ D n�1m�1nmn, i.e. by

ffn;mg j m 2M;n 2 N g:

Lemma 4.2.5. The elements fn;mg satisfy

fn;mg D .Œm; n�; Œn;m�/;

where Œm; n� D m�1mn and Œn;m� D n�1nm.

Proof. Notice that any m, m0 2M and n 2 N satisfy the relation

n0.mn/ D ..n0n�1

/m/n D n�1.nn0n�1/mn D n�1nmn0m.n�1/mn: .�/
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Thus,

fn;mg D n�1m�1nmn

D .1; n�1/.m�1; 1/.1; n/.mn; 1/

D .m�1; .n�1/m�1

/.mn; .nm/n/

D .m�1mn; ..n�1/m�1

/m
n

.nm/n/

D .m�1mn; n�1nm/ using .�/
D .Œm; n�; Œn;m�/

as required.

Using the previous result and some well-known facts on the semidirect product, we
get a presentation of the coproduct of two crossed modules as follows. First, recall that
the semidirect product has a presentation with generators the elements .m; n/ 2M �N
and relations

.m; n/.m0; n0/ D .mm0; nm0

n0/
for all m;m0 2 M and n; n0 2 N . The set of relations may equivalently be expressed
as

.m; nm
0�1

/.m0; n0/ D .mm0; nn0/:
To get a presentation of M B N we add the relations corresponding to the Peiffer
subgroup fM;N g. By the preceding property the relation fm; ng D 1 is equivalent to
Œm; n� D Œn;m��1, giving .mn/�1m D n�1nm, or n.m�1/n D .nm

�1
/�1m�1. This

may be expressed, taking m0 D m�1, as

nm0n D .nm0

/�1m0

suggesting the next theorem.

Theorem 4.2.6. If M ! P , N ! P are crossed P -modules, then the group M BN
has a presentation with generators fm B n j m 2M;n 2 N g, and relations

mm0 B nn0 D .m B nm0�1

/.m0 B n0/ D .m B n/.m0n B n0/;

for all m;m0 2M and n; n0 2 N .

Proof. Let K be the group with this presentation. Then P acts on K by .m B n/p D
mp B np , and the map

� W K ! P; m B n 7! .�m/.�n/;

is a well-defined homomorphism. It is routine to verify the crossed module rules for
this structure.

It is also not difficult to check that this crossed module together with the morphisms
i W M ! K,m 7! m B 1, and j W N ! K, n 7! 1 B n, satisfy the universal property of
the coproduct. We omit further details.
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We describe some extra facts about fM;N g, for example the expression of the
products and inverses of the elements fn;mg.
Proposition 4.2.7. For any m;m0 2M and n; n0 2 N we have

fn;mgfn0; m0g D .Œm; n�Œm0; n0�; Œn0; m0�Œn;m�/:

Proof.

fn;mgfn0; m0g D .Œm; n�; Œn;m�/.Œm0; n0�; Œn0; m0�/
D .Œm; n�Œm0; n0�; Œn;m�Œm0;n0�Œn0; m0�;

and, using .�/ in Lemma 4.2.5 for the fourth equality in the following:

Œn;m�Œm
0;n0�Œn0; m0� D .n�1nm/m0�1

m0n0

n0�1n0m0

D ..n�1/m0�1

.nm/m
0�1

/m
0n0

n0�1n0m0

D n0�1n0m0

n�1nm.n0�1/m0

n0n0�1n0m0

D n0�1n0m0

n�1nm

D Œn0; m0�Œn;m�:

Thus

fn;mgfn0; m0g D .Œm; n�Œm0; n0�; Œn0; m0�Œn;m�/

as required.

Remark 4.2.8. This result extends to any finite product of elements fni ; mig with
mi 2M , ni 2 N .

Corollary 4.2.9. For any m 2M and n 2 N we have

fn;mg�1 D fn�1; mng: �

The proof is left to the reader.

4.3 The coproduct and the 2-dimensional Seifert–van Kampen
Theorem

The 2-dimensional Seifert–van Kampen Theorem as stated in Theorem 2.3.1 allows for
topological applications of the coproduct of crossed P -modules, since the coproduct
of two crossed P -modules may also be interpreted as a pushout, as follows.
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Proposition 4.3.1. If .� W M ! P /, .� W N ! P / are crossed P -modules then the
following diagram

.1! P / ��

��

.N ! P /

��
.M ! P / �� .M BN ! P /

(4.3.1)

is a pushout in the category XMod=P and also in the category XMod=Groups.

Proof. The equivalence of the pushout property in the category XMod=P with the
universal property of the coproduct is easy to verify. We defer the proof of the pushout
property in the category XMod=Groups until we have introduced in Section 5.2 the
pullback functor f � W XMod=Q ! XMod=P for a morphism f W P ! Q of groups.

Remark 4.3.2. The relation between these two pushouts also follows from a general
result in Appendix B, see Remark B.1.9.

One of the simpler cases of the 2-dimensional Seifert–van Kampen Theorem is the
following.

Theorem 4.3.3. Suppose that the connected spaceX is the union of the interior of two
connected subspaces U1, U2, with connected intersection U12. Suppose that the pairs
.U1; U12/ and .U2; U12/ are 1-connected. Then the pair .X;U12/ is 1-connected and
the morphism

…2.U1; U12/ B…2.U2; U12/! …2.X;U12/

induced by inclusions is an isomorphism of crossed �1.U12/-modules.

Proof. We apply Theorem 2.3.1 to the cover of X given by U1 and U2 with A D U12.
The connectivity result is immediate. Also by the same theorem the following diagram
is a pushout of crossed modules:

…2.U12; U12/ ��

��

…2.U1; U12/

��
…2.U2; U12/ �� …2.X;U12/.

Since …2.U12; U12/ D .1 ! �1.U12//, the result follows from Proposition 4.3.1.

We would like to extract from this result some information on the absolute homotopy
group �2.X/. Consider the following part of the homotopy exact sequence of the pair
.X;U12/ stated in page 35 (see (2.1.3)),

� � � ! �2.U12/
i��! �2.X/

j��! �2.X;U12/
@�! �1.U12/! � � � :
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It is clear that we have an isomorphism

�2.X/

i�.�2.U12//
Š Ker @ D Ker.@1 B @2/: (4.3.2)

Notice than, in particular, this result gives complete information on �2.X/ when
�2.U12/ D 0.

To identify the kernel of the coproduct of two crossedP -modules in a more workable
way, we introduce the pullback of crossed P -modules. Given two crossed modules
M D .� W M ! P /, N D .� W N ! P / we form the pullback square

M �P N p1 ��

p2

��

M

�

��
N 


�� P

(4.3.3)

whereM �P N D f.m; n/ 2M �N j �.m/ D �.n/g, p1 and p2 are the projections.
Obviously M �P N is a P -group, with P acting diagonally.

Proposition 4.3.4. The pullback M �P N is isomorphic as P -group to Ker.� Ë �/.
Proof. We check that

 W M �P N !M ËN
defined as .m; n/ D .m; n�1/ is a morphism of groups. Let m;m0 2 M and n; n0 2
N ; then

.m; n/.m0; n0/ D .m; n�1/.m0; n0�1/

D .mm0; .n�1/m0

n0�1/

D .mm0; .n�1/n0

n0�1/

D .mm0; n0�1n�1n0n0�1/
D .mm0; .nn0/�1/
D .mm0; nn0/:

Clearly,  is a bijection onto Ker.� Ë �/ which preserves the P -actions.

Now to any m 2M and n 2 N we associate the element of M �P N defined by

hm; ni D .m�1mn; .n�1/mn/: (4.3.4)

Correspondingly, we write hM;N i for the normal subgroup ofM �P N generated by
fhm; ni j m 2M;n 2 N g. It follows that .hM;N i/ D fM;N g.

Thus, there is an induced map

N W M �P NhM;N i �!
M ËN
fM;N g DM BN:

We deduce immediately from the proposition:
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Corollary 4.3.5. The map N gives an isomorphism of P -modules

N W M �P NhM;N i Š Ker.� B �/:

Remark 4.3.6. Notice that this result has some purely algebraic consequences. Since
M BN is a crossed module, Ker .�B�/ is abelian; so hM;N i contains the commutator
subgroup of M �P N .

Now we can translate this algebraic result into a topological one.

Theorem 4.3.7. If .U1; U12/ and .U2; U12/ are 1-connected and �2.U12/ D 0, we
have,

�2.X/ Š �2.U1; U12/ ��1.U12/ �2.U2; U12/

h�2.U1; U12/; �2.U2; U12/i :

Proof. Since �2.U12/ D 0, from (4.3.2), we have �2.X/ Š Ker.@1 B@2/ and the result
follows from Corollary 4.3.5.

Let us study some other algebraic ways of computing Ker.� B �/ or, equivalently,
the quotient

M �P N
hM;N i :

We may also define a homomorphism of groups k W M �P N ! P by the formula
k.m; n/ D �.m/ D �.n/. This gives the following result.

Proposition 4.3.8. There is an exact sequence of P -groups

0! Ker�˚ Ker � !M �P N k�! �.M/ \ �.N /! 1:

Proof. It is immediate that k.M �P N/ D �.M/ \ �.N /. It remains to check that

Kerk D Ker� ˚ Ker�I
but this is clear since

Ker k D f.m; n/ j �.m/ D �.n/ D 0g
and all m 2 Ker� and n 2 Ker � commute.

Bringing the subgroup hM;N i into the picture, it is immediate that k.hm; ni/ D
Œ�.m/; �.n/�. Then we have k.hM;N i/ D Œ�.M/; �.N /� giving a homomorphism Nk
onto the quotient. This gives directly the next result.

Corollary 4.3.9. There is an exact sequence of P -modules

0! .Ker�˚ Ker �/ \ .hM;N i/! Ker�˚ Ker �

! M �P N
hM;N i D Ker.� B �/ Nk�! �.M/ \ �.N /

Œ�.M/; �.N /�
! 0:
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Remark 4.3.10. An easy consequence is that � B � W M B N ! P is injective if and
only if

i) Ker� ˚ Ker � � hM;N i, and
ii) Œ�.M/; �.N /� D �.M/ \ �.N /.
As above, we can apply this result to the topological case, getting a way to compute

the second homotopy group of a space in some cases.

Theorem 4.3.11. If .U1; U12/ and .U2; U12/ are 1-connected and �2.U12/ D 0, the
following sequence of groups and homomorphisms is exact:

0! .�2.U1/˚ �2.U2// \ h�2.U1; U12/; �2.U2; U12/i
! �2.U1/˚ �2.U2/! �2.X/ �! R1 \R2

ŒR1; R2�
! 1;

where Rl D Ker.�1.U12/! �1.Ul// for l D 1; 2.
If further �2.U1/ D �2.U2/ D 0, then there is an isomorphism

�2.X/ Š R1 \R2
ŒR1; R2�

:

Proof. Let us consider the crossed modules @l W �2.Ul ; U12/! �1.U12/. Recall from
(2.1.3) that the homotopy exact sequence of the pair .Ul ; U12/ is

� � � ! �2.U12/
il���! �2.Ul/

jl���! �2.Ul ; U12/
@l�! �1.U12/! � � � :

Directly from this exact sequence, we have

Im @l D Rl :

On the other hand,

Ker @l D �2.Ul/
using the same homotopy exact sequence and �2.U12/ D 0.

Thus the result is a translation of Corollary 4.3.9.

Remark 4.3.12. Whenever U1, U2 are based subspaces of X with intersection U12
there is always a natural map


 W �2.U1; U12/ B �2.U2; U12/! �2.X;U12/

determined by the inclusions, but in general 
 is not an isomorphism.55
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4.4 Some special cases of the coproduct

We end this chapter by giving a careful description of the coproduct of crossed P -
modules � W M ! P , � W N ! P in the useful special case when �.N / � �.M/ and
there is a P -equivariant section 
 W �M !M of �. Notice that this includes the case
when M D P and � is the identity.

This case is important because of the topological applications and also because it
is useful in Section 5.6 for describing as a coproduct the crossed module induced by a
monomorphism.

We start with some general results that will be used several times in this book.

Definition 4.4.1. If the group M acts on the group N we define ŒN;M� to be the
subgroup ofN generated by the elements, often called pseudo-commutators, n�1nm for
all n 2 N; m 2 M . This subgroup is called the displacement subgroup displacement
subgroup y and measures how much N is moved under the M -action.

The following result is analogous to a standard result on the commutator subgroup.

Proposition 4.4.2. The displacement subgroup ŒN;M� is a normal subgroup of N .

Proof. It is enough to prove that the conjugate of any generator of ŒN;M� lies also in
ŒN;M�.

Let m 2M , n; n1 2 N . We easily check that

n1
�1.n�1nm/n1 D ..nn1/�1.nn1/m/.n1�1n1m/�1

and the product on the right-hand side belongs to ŒN;M� since both factors are gen-
erators. So we have proved n1�1ŒN;M�n1 � ŒN;M�, whence ŒN;M� is a normal
subgroup of N .

Definition 4.4.3. We writeNM D N=ŒN;M� for the quotient ofN by the displacement
subgroup. The class in NM of an element n 2 N is written Œn�. It is clear that NM is a
trivial M -module since Œnm� D Œn�.
Proposition 4.4.4. Let � W M ! P , � W N ! P be crossed P -modules, so that M
acts on N via �. Then P acts on NM by Œn�p D Œnp�. Moreover this action is trivial
when restricted to �M .

Proof. To see that theP -action onN induces one onNM , we have to check that ŒN;M�

is P -invariant. This follows from

.n�1nm/p D .n�1/p.nm/p D .np/�1.np/mp

for all n 2 N , m 2M , p 2 P .
The action of �M is trivial since Œn��m D Œn�m� D Œnm� D Œn�.
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Now we study the homomorphism

� W M �NM ! P; .m; Œn�/ 7! �m:

We have just seen that NM is a P -group.

Proposition 4.4.5. WithP acting onM�NM by the diagonal action, � W M�NM ! P

is a precrossed P -module.

Proof. If m 2M , n 2 N;p 2 P then

�..m; Œn�/p/ D �.mp; Œnp�/
D �.mp/
D p�1.�m/p
D p�1.�.m; Œn�/p//p: �

Remark 4.4.6. In general � is not a crossed module. Nevertheless whenNM is abelian,
the actions of both factors on each other are trivial. In this case it follows from Re-
mark 4.2.4 that � W M � NM ! P is a crossed module. It is also an easy exercise to
prove this directly.

Proposition 4.4.7. Let � W M ! P , � W N ! P be crossed P -modules such that
�N � �M . Then NM is abelian and therefore � W M � NM ! P is a crossed
P -module.

Proof. Let n; n1 2 N . Choose m 2 M such that �n1 D �m. Then by the crossed
module rule CM2)

n1
�1nn1 D n
n1 D n�m

and so in the quotient Œn1��1Œn�Œn1� D Œn�m� D Œn�.
We now study the case where there is also a P -equivariant section 
 W �M ! M

of � defined on �M . We will see that in this case � W M �NM ! P is isomorphic to
the coproduct M BN of crossed P -modules.56

Theorem 4.4.8. Let � W M ! P , � W N ! P be crossed P -modules with �N � �M
and let 
 W �M !M be aP -equivariant section of�. Then the morphisms of crossed
P -modules

i W M !M �NM ; j W N !M �NM ;
m 7! .m; 1/; n 7! .
�n; Œn�/;

give a coproduct of crossed P -modules. Hence the canonical morphism of crossed
P -modules

M BN !M �NM
given by m B n 7! .m.
�n/; Œn�/ is an isomorphism.
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Proof. We need to verify that the pair .i; j / satisfies the universal property of the
coproduct of crossedP -modules. Consider an arbitrary crossedP -module � W C ! P

and morphisms of crossed P -modules ˇ W M ! C , and � W N ! C . We have the
following diagram:

M

i

������������

ˇ

��

N
j

&&DDDDDDDDDD

�

  

M �NM
�

��
C

and we want to prove that there is a unique  W M �NM ! C determining a morphism
of crossed P -modules closing the diagram i.e. such that i D ˇ, and j D � .

Let us consider uniqueness. For anym 2M;n 2 N , since  has to be a homomor-
phism, we have

.m; Œn�/ D ..m; 0/.
�n; 0/�1.
�n; Œn�//
D .ˇm/.ˇ
�n/�1.�n/:

This proves uniqueness of any such a . We now prove that this formula gives a
well-defined morphism.

It is immediate from the formula that  W M � NM ! C has to be ˇ on the first
factor and is defined on the second one by the map Œn� 7! .ˇ
�n/�1.�n/. We have to
check that this latter map is a well-defined homomorphism.

We define the function
 W N ! C

by n 7! .ˇ
�n�1/.�n/ and prove in turn the following statements.

4.4.9.  .N/ � Z.C/, the centre of C , and �.C / acts trivially on  .N/.

Proof of 4.4.9. Since �ˇ D � and �� D �, it follows that � D 0 and  .N/ �
Ker �. Since C is a crossed module, �.C / acts trivially on Ker � and Ker � � Z.C/.

4.4.10.  is a morphism of crossed P -modules.

Proof of 4.4.10. We have to prove that  is a morphism and is P -equivariant. The
latter is clear, since ˇ, � , 
 , � are P -equivariant. So let n; n1 2 N . Then

 .nn1/ D .ˇ
�n�1
1 /.ˇ
�n

�1/.�n/.�n1/
D .ˇ
�n�1

1 /. n/.�n1/

D . n/.ˇ
�n�1
1 /.�n1/ by (4.4.9)

D . n/. n1/: �
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Note that even if 
 is not P -equivariant,  is still a group homomorphism.

4.4.11. M acts trivially on  .N/.

Proof of 4.4.11. Let m 2M , n 2 N . Note that .ˇ
�m/.ˇm�1/ lies in Ker �; and so
belongs to Z.C/. Hence

. n/m D .ˇ
�nm/�1.�n/�m
D ˇ
..�m�1/.�n/.�m//�1.�n/ˇm

D .ˇ
�m�1/.ˇ
�n�1/.ˇ
�m/.ˇm�1/.�n/.ˇm/
D .ˇ
�m�1/.ˇ
�m/.ˇm�1/.ˇ
�n�1/.�n/.ˇm/
D .ˇm�1/. n/.ˇm/
D  n by (4.4.9). �

It follows that  induces a morphism  0 W NM ! C , Œn� 7!  n, and so we define

 D .ˇ;  0/ W M �NM ! C

by .m; Œn�/ 7! .ˇm/. n/. Since  n commutes with ˇm we easily verify that 
is a homomorphism, i D ˇ, j D � and � D � . Thus the pair of morphisms
i W M !M �NM , j W N !M �NM satisfies the universal property of a coproduct.
This completes the proof of the theorem.

A standard consequence of the existence of a homomorphism 
 W �M !M which
is a section of� on�M is thatM is isomorphic to the semidirect product�M ËKer�,
where �M acts on Ker� by conjugation, i.e. m0�m D m�1m0m. Moreover, in the
case when� is a crossed module and 
 isP -equivariant, the isomorphism is as crossed
P -modules. Thus we have a third expression for the coproduct.

Proposition 4.4.12. Let � W M ! P and � W N ! P be crossed P -modules with
�N � �M and let 
 W �M ! M be a P -equivariant section of �. There is an
isomorphism of crossed P -modules

M BN Š .�M � Ker�/ �NM
given by m B n 7! .m.
�m/�1; .�m/.�n/; Œn�/.

We now give a topological application.

Corollary 4.4.13. Let .Y; A/ be a connected based pair of spaces, and letX D Y [CA
be obtained from Y by attaching a cone onA. Then there is an isomorphism of crossed
�1.A/-modules

�2.X;A/ Š �1.A/ � �2.Y; A/�1.A/:
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Proof. We apply Theorem 4.3.3 with U1 D CA, U2 D Y , so that U12 D A. Then
�2.CA;A/ Š �1.A/, by the exact sequence of the pair .CA;A/, so that we have

�2.X;A/ Š �1.A/ B �2.Y; A/:
The result now follows from Theorem 4.4.8.

As another application of Theorem 4.4.8, we analyse the symmetry of the coproduct
in a special case.

The symmetry morphism � W M BN ! N BM is, as usual for a coproduct, given
by the pair of canonical morphisms M ! N BM , N ! N BM . Hence � is given by
m B n 7! .1 Bm/.n B 1/ D n Bmn:
Proposition 4.4.14. Let � W M ! P be the crossed module given by the inclusion of
the normal subgroupM of the group P . Then the isomorphism of crossed P -modules

� W M BM !M �M ab;

�.m B n/ D .mn; Œn�/;
transforms the twist isomorphism � W M BM !M BM to the isomorphism

��1�� W M �M ab !M �M ab;

.m; Œn�/ 7! .m; Œn�1m�/:

Proof. Notice that in this caseM ab DMM . The isomorphism � W M BM !M �M ab

is given in Theorem 4.4.8. The twist isomorphism is transformed into the composition

.m; Œn�/ 7! mn�1 B n 7! n B .mn�1/n D n B n�1m 7! .m; Œn�1m�/: �

For an application in Section 5.6, we now extend the previous results to more general
coproducts. We first prove:

Proposition 4.4.15. Let T be an indexing set, and let � W M ! P and �t W Nt ! P ,
t 2 T , be crossed P -modules. Let

N D	t2T Nt :

Suppose that �tNt � �M for all t 2 T . Then there is an isomorphism of P -modules

NM Š
M
t2T
W .Nt /M :

Proof. Since N D 	t2TNt is the quotient of the free product �Nt by the Peiffer
relations, NM can be presented as the same free product with the Peiffer relations

n�1
s n

�1
t nsn


sns
t D 1

and the relations n�mt D nt for all ns 2 Ns , nt 2 Nt , m 2M .
These relations are equivalent to the commutator relations Œns; nt � D 1 together

with n�mt D nt for all ns 2 Ns , nt 2 Nt , m 2M .
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Corollary 4.4.16. Suppose in addition that the restriction �j W M ! �M of � has a
P -equivariant section 
 . Then there are isomorphisms of crossed P -modules between

(i) M B .	t2T Nt /,
(ii) � W M �L

t2T .Nt /M ! P , �.m; n/ D �m, and

(iii) �	�1 W �M � Ker� �L
t2T .Nt /M ! P .

Under the first isomorphism, the coproduct injections i W M ! M B .	t2T Nt /,
jt W Nt !M B .	t2T Nt / are given by m 7! .m; 0/, nt 7! .
�tnt ; Œnt �/.

When T is well-ordered, we may also obtain explicit isomorphisms by writing a
typical element of	t2T Nt as	t2T nt , and by writing a finite product of elements
�tnt 2 P as

Q
t2T �tnt .

Corollary 4.4.17. Under the same assumptions, and also when T is well-ordered,
there are isomorphisms

M B .	t2T Nt / ŠM �
M
t2T

.Nt /M ;

m B .	t2T nt / 7!
�
m

� Y
t2T
.
�tnt /

�
;
M
t2T

Œnt �
�
;

and

M B .	t2T Nt / Š �M � Ker� �
M
t2T

.Nt /M ;

m B .	t2T nt / 7!
�
m.
�m�1/; .�m/

� Y
t2T

�tnt
�
;

M
t2T

Œnt �
�
: �

Notes

53 p. 87 The free product of groups is well studied in books on combinatorial group
theory such as [LS01], and is also a special case of a groupoid construction,
namely the universal group of a disjoint union of groups, viewed as a groupoid, as
in [Hig71], [Bro06].

54 p. 89 The coproduct of two crossed P -modules is the case that has been analysed
more deeply in the literature. Most of the results of this section were in print
for the first time in [Bro84a]. The basic observation in [Bro84a] is that M B N
may be obtained as a quotient of the semidirect product group M Ë N . Further
results were obtained in [GH89], and some more applications and results are also
given in [HAMS93]. An analogous construction for two groups M;N which act
on each other is also called the Peiffer product of M and N and is often written
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M ‰ N , see [GH89], [BG00]. The construction of this product as a quotient of the
free product really goes back to Whitehead [Whi41a], p. 428, but his topological
application is only to 2-dimensional cell complexes.

55 p. 97 Bogley and Gutiérrez in [BG92] have had some success in describing Ker 

and Coker 
 in the case when all the above spaces are connected. It would also
be interesting to know if these methods can be applied to the study of unions of
Cockcroft complexes, compare [Bog94].

56 p. 99 The condition �N � �M was used in this context in [GH89]. Theorem 4.4.8
contains the main result of [GH89] in the sense that it determines explicitly the
coproduct structure. We follow the later proof given in [BW96].



Chapter 5

Induced crossed modules

In the previous chapter we used coproducts of crossed modules to describe certain
relative homotopy groups. Essentially, we first obtain information on homotopy 2-
types, in terms of crossed modules, and then try to deduce from this information on
second homotopy groups as modules over the fundamental group. Traditional methods
of getting at this operation are usually via covering spaces, and are not so convenient
or direct.

Induced crossed modules, which are the subject of this chapter, give another con-
struction which allows detailed computations of nonabelian information on some sec-
ond relative homotopy groups; they arise topologically on applying the 2-dimensional
Seifert–van Kampen Theorem 2.3.3 to a pushout of pairs of spaces of the form of the
following left-hand square

.A;A/
.f;1/ ��

.i;i/

��

.X;A/

��
.Y; Y / �� .X [f Y; Y /;

.1! �1.A//

��

�� …2.X;A/

��
.1! �1.Y // �� …2.X [f Y; Y /

to give the right-hand pushout square of crossed modules. The left-hand square gives
a format for what is known topologically as excision, since if both maps i W A ! Y ,
f W A! X are closed inclusions then X [f Y with Y cut out, or excised, is the same
as X with A excised.

For homology, if .X;A/ is closed and cofibred, we end up with isomorphisms
Hn.X;A/! Hn.X [f Y; Y /.

This is by no means so for relative homotopy groups. The induced construction
illustrates a feature of homotopy theory:

identifications in low dimensions can strongly influence
high dimensional homotopy.

The Higher Homotopy Seifert–van Kampen Theorems give information on how this
influence is controlled, with some results not obtainable otherwise.

With these methods we obtain some standard result, for example: the Relative
Hurewicz Theorem in dimension 2; the theorem of Whitehead on free crossed modules;
and a formula of Hopf for the second homology of an aspherical space, which was one of
the starting points of the important theory of the homology and cohomology of groups.
These applications gave a model for the higher dimensional results in Chapter 8, and
for the stronger results of [BL87a].
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The constructions in this chapter can be elaborate and in places technical. This
illustrates the complications of 2-dimensional homotopy theory, and also the aspects
with which the algebra can cope.

The crossed module ‘induced’ by a homomorphism of groups f W P ! Q may
be seen as one of the family of ‘change of base’ functors of algebraic categories that
have proved useful in many fields from algebraic geometry to homological algebra. A
general account of induced constructions in the context of cofibred categories is given
in Section B.2 of Appendix B.

The construction of the induced crossed module follows a natural pattern. Given
the morphism f as above and a crossed P -module � W M ! P , we need a new group
N , depending on M and f , on which Q acts so that N is a candidate for a crossed
Q-module. Therefore we need new elements of the formmq form 2M;q 2 Q. Since
these do not for the moment exist, we form the free group on pairs .m; q/ and then add
appropriate relations. This is done in detail in Section 5.3.

In Section 5.1 we describe the pullback crossed module f �.M/ of a crossed P -
module M . This is quite easy to construct and the existence of the induced crossed
module f�.M/ defined in Section 5.2 is essentially the construction of a left adjoint
to the pullback construction. We prove by the universal property that the free crossed
module of Section 3.4 is a particular case of the induced crossed module and that an
induced crossed module is the pushout of M and the trivial crossed module 1 ! Q

over the trivial crossed module 1! P .
That leaves the induced crossed module ready to be used in applications of the

2-dimensional Seifert–van Kampen Theorem. In Section 5.4 we prove that when the
topological space X is the union of two path connected sets U1, U2 such that the pair
.U2; U12/ is 1-connected, then the pair .X;U1/ is 1-connected and the fundamental
crossed module …2.X;U1/ is the crossed module induced from …2.U2; U12/ by the
homomorphism i� W �1.U12/! �1.U2/ induced by the inclusion (Theorem 5.4.1). As
a consequence we get some homotopical results, in particular Whitehead’s theorem on
free crossed modules.

The second part of the chapter analyses in more detail the construction of the induced
crossed module. In particular we study in the next two sections the cases when f is
surjective or injective.

The surjective case (Section 5.5) is quite direct and we prove that f�.M/ is the
quotient ofM by the displacement subgroup ŒM;Ker f � defined in 4.4.1. This case has
some interesting topological applications, in particular the Relative Hurewicz Theorem
in dimension 2 and Hopf’s formula for the second homology group of a group.

The case when f is injective, i.e. a monomorphism (Section 5.6), is essentially the
inclusion of a subgroup. This case is much more intricate and we need the concept of
the copower constructionM BT where T is a transversal ofP inQ. We get a description
of the induced crossed module as a quotient of the copower (Corollary 5.6.6). Both
the group and the action have alternative descriptions that can be used to develop some
examples, so obtaining in particular a bound for the number of generators and relations
for an induced crossed module.
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It is also proved (in Section 5.7) that the induced crossed module is finite when both
M and the index ŒP W Q� are finite. This suggests the problem of explicit computation,
and in the last section of the chapter we explain some computer calculations in the
finite case obtained using the package GAP.

The next section (5.8) contains a detailed description of the induced crossed module
in a useful special case, with many interesting examples, namely when P and M are
both normal subgroups of Q. We start by studying the induced crossed module when
P is a normal subgroup of Q, getting a description in terms of the coproduct M BT .
Then we use the description of the coproduct given in the last section of the preceding
chapter to derive just from the universal property both the action (Theorem 5.8.6) and
the map (Theorem 5.8.7). When M is itself another normal subgroup included in P ,
we get some more concrete formulas.

This leaves many finite examples not covered by the previous theorems: the last
section gives some computer calculations.57

In Section 8.3.iii we will also indicate ways of generalising methods of this chapter
to the case of many base points.

The general categorical background to these methods is given in Appendix B.

5.1 Pullbacks of precrossed and crossed modules

The work of this section can be done both for crossed and for precrossed modules. We
shall state only the crossed case but, if nothing is said, it is understood that a similar
result is true for precrossed modules. We shall not repeat the statement, but we only
give indications of the differences.

Let us start by defining the functor that is going to be the right adjoint of the
induced crossed module, the ‘pullback’. This is an important construction which,
given a morphism of groups f W P ! Q, enables us to move from crossedQ-modules
to crossed P -modules.

Definition 5.1.1. Let f W P ! Q be a homomorphism of groups and let N D
.� W N ! Q/ be a crossed module. We define the subgroup of N � P

f �N D N �Q P D f.n; p/ 2 N � P j �n D fpg:

This is the usual pullback in the category Groups. There is a commutative diagram

f �N

N

��

Nf �� N




��
P

f
�� Q
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where N� W .n; p/ 7! p, Nf W .n; p/ 7! n. Then P acts on f �N via f and the diagonal,
i.e. .n; p/p

0 D .nfp
0

; p0�1pp0/. It is easy to see that this gives a P -action. The
pullback crossed module is

f �N D . N� W f �N ! P /:

It is also called the pullback of N along f and it is easy to see that f �N is a crossed
module.

This construction satisfies a crucial universal property, analogous to that of the
pullback of groups. To state it, we use also the morphism of crossed modules

. Nf ; f / W f �N �! N :

Theorem 5.1.2. For any crossed module M D .� W M ! P / and any morphism of
crossed modules

.h; f / W M �! N

there is a unique morphism of crossed P -modules .h0; 1/ W M ! f �N such that the
following diagram commutes:

M
h

��
�

BB

h0

��@
@

@
@

@

f �N

N

��

Nf
�� N




��
P

f �� Q.

Proof. The existence and uniqueness of the homomorphismh0 follows from the fact that
f �N is the pullback in the category of groups. It is defined by h0.m/ D .h.m/; �.m//.
So we have only to prove that h0 is a morphism of crossed P -modules. This can be
checked directly.

Using this universal property, it is not difficult to see that this construction gives a
functor

f � W XMod=Q! XMod=P:

Remark 5.1.3. These functors have the property that for any homomorphismsf W P !
Q and f 0 W Q ! R there are natural equivalences f �f 0� ' .f 0f /�. We refer to
Appendix B and in particular to Theorem B.1.7 for general background and on the use
of this pullback construction.
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5.2 Induced precrossed and crossed modules

Now we define a functor f� left adjoint to the pullback f � of the previous section.
In particular we prove that the free crossed module is a particular case of an induced
crossed module. Then we apply this to the topological case to get Whitehead’s theorem
(Corollary 5.4.8).

The ‘induced crossed module’functor is defined by the following universal property,
adjoint to that of pullback.

Definition 5.2.1. For any crossed P -module M D .� W M ! P / and any homo-
morphism f W P ! Q the crossed module induced by f from M should be given
by:

i) a crossed Q-module f�M D .f�� W f�M ! Q/;

ii) a morphism of crossed modules .; f / W M! f�M, satisfying the dual univer-
sal property that for any morphism of crossed modules

.h; f / W M �! N

there is a unique morphism ofQ-crossed modulesh0 W f�M ! N such that the diagram

N




��

M

h

OO

�
��

�

��

f�M
h0

99

f��

��
P

f �� Q

commutes.

Now we prove that this functor if it exists, forms an adjoint pair with the pullback
functor. Using general categorical considerations, we can deduce the existence of the
induced crossed module functor

f� W XMod=P ! XMod=Q

and, also, that they satisfy the ‘naturality condition’ that there is a natural equivalence
of functors f 0�f� ' .f 0f /�.

Theorem 5.2.2. For any homomorphism of groups f W P ! Q, f� is the left adjoint
of f �.

Proof. From the naturality conditions expressed earlier, it is immediate that for any
crossed modules M D .� W M ! P / and N D .� W N ! Q/ there are bijections

.XMod=P /.N ; f �N / Š fh W M ! N j .h; f / W M! N is a morphism in XModg;
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as proved in Proposition 5.1.2 , and

.XMod=Q/.f�M;N / Š fh W M ! N j .h; f / W M! N is a morphism in XModg
as given in the definition.

Their composition gives the bijection needed for adjointness.

We end this section by comparing the universal properties defining the induced
crossed module and two other constructions. The first one is the free crossed module
on a map. Using the induced crossed module, we get an alternative description of the
free crossed module.

Proposition 5.2.3. LetP be a group and f!r j r 2 Rg be an indexed family of elements
of P , or, equivalently, a map ! W R ! P . Let F be the free group generated by R
and f W F ! P the homomorphism of groups such that f .r/ D !r 2 P . Then the
crossed module f�.1F / W f�F ! P induced from 1F D .1F W F ! F / by f is the
free crossed P -module on f.1; r/ 2 f�F j r 2 Rg.
Proof. Both universal properties assert the existence of morphisms of crossed P -
modules commuting the appropriate diagrams. Let us check that the data in both
constructions are equivalent.

The data in the induced crossed module are a crossed module N and a morphism of
crossed modules .h; f / W 1F ! N . The data in the free crossed module are a crossed
module N and a map!0 W R! N lifting!. SinceF is the free group onR, the map!0
is equivalent to a homomorphism of groups h W F ! N lifting ! (i.e. h.r/ D !0.r/).
Moreover, h satisfies

h.rr
0

/ D h.r 0�1rr 0/ D h.r 0/�1h.r/h.r 0/ D .hr/
h.r 0/ D .hr/f .r 0/ (5.2.1)

for all r; r 0 2 R. Soh preserves the action and .h; f / is a morphism of crossed modules.
Thus the data in both cases are equivalent.

Remark 5.2.4. It is clear that the proof in Proposition 5.2.3 does not work for precrossed
modules since in proving the equality (5.2.1) we have used axiom CM2). It is easy to
see that the precrossed module induced from 1F W F ! F is not the free precrossed
module but its quotient with respect to the normal subgroup generated by all relations

.p; rr
0

/ D .p!.r/; r 0/

for p 2 P and r; r 0 2 R.
It is a nice exercise to find a precrossed module L.R/ ! F.R/ such that any

free precrossed Q-module on generators R is induced from L.R/ by a morphism
F.R/! Q.

We now give an important re-interpretation of induced crossed modules in terms of
pushouts of crossed modules. This is how we can show that induced crossed modules
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arise from a 2-dimensional Seifert–van Kampen Theorem. The proof is obtained by
relating the two universal properties. The general situation of which this proof is an
example is given using notions of fibrations of categories in Proposition B.2.8 and
Theorem B.3.2 of Appendix B.

Proposition 5.2.5. For any crossed module M D .� W M ! P / and any homomor-
phism f W P ! Q, the induced crossed module f�M is exactly given by the condition
that the commutative diagram of crossed modules

.1! P /
.0;f / ��

.0;1/
��

.1! Q/

.0;1/
��

.M ! P /
.�;f /

�� .f�M ! Q/

is a pushout of crossed modules.

Proof. To check that the diagram satisfies the universal property of the pushout, let
N D .� W N ! R/ be a crossed module, and .h; f 0/ W M! N and .0; g/ W 1Q ! N

morphisms of crossed modules, such that the diagram of full arrows commutes. We
have to construct the dotted morphism of crossed modules .k; g/:

.1! P /
.0;f /

��

.0;1/

��

.1! Q/

.0;1/

�� .0;g/

��

.M ! P /

.h;f 0/ ��

.�;f / �� .f�M ! Q/

.k;g/

))
.N ! R/:

It is immediate that f 0 D gf , k D h. So we can transform morphisms in turn

.M ! P /
.k�; gf /�����! .N ! R/

.M ! P /
.k�; 1/����! ..gf /�N ! P /

.M ! P /
. k�; 1/�����! .f �g�N ! P /

.f�M ! Q/
. N�; 1/���! .g�N ! Q/

.f�M ! Q/
.k; g/���! .N ! R/

as required.
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Remark 5.2.6. If f W P ! Q is a morphism of groups and M is a P -module, then
there is a well-known definition of an induced Q-module f�M as a tensor product
M ˝ZŒP �ZŒQ�where P acts onQ on the left via f . If f W P ! Q is the inclusion of
a subgroup, and T is a transversal of P inQ, then there is an alternative description of
f�M as the direct sum of copiesMt ofM for all t 2 T , with action .m; t/q D .mp; t 0/
where t; t 0 2 T , p 2 P , q 2 Q satisfy pt 0 D tq. Accounts of this will be found in
books on the representation theory of groups, e.g. [CR06]. These constructions are
also part of the general categorical setting of Appendix B, and Proposition 5.2.5 is a
special case of Proposition B.3.2.

5.3 Construction of induced crossed modules

We now give a direct construction of the induced crossed module, thus showing its
existence. The problem of evaluating particular examples is dealt with in later sections
of this chapter.

We are going to construct the induced crossed module in two steps, producing first
the induced precrossed module and then from this the associated crossed module by
quotienting out by its Peiffer subgroup.

Let us start with a homomorphism of groups f W P ! Q and a crossed module
M D .� W M ! P /.

First we consider the free precrossed Q-module generated by f�. As seen in
Section 3.4 it is

� W FQ.M/! Q

where FQ.M/ is the free group generated by the elements of M �Q (to make things
easier to remember, we think of .m; q/ as mq , i.e. m operated on by q), the Q-action
on FQ.M/ is given on generators by

.m; q/q
0 D .m; qq0/

for any q; q0 2 Q and m 2M and the map � is given on generators by

�.m; q/ D q�1f�.m/q:

It is a precrossed Q-module as seen in Section 3.4.
To get the induced precrossed module from this map � , we take into the picture

both the P -action and the multiplication on M , making a quotient by the appropriate
normal subgroup. Let S be the normal subgroup generated by all the relations of the
two following types:

.m; q/.m0; q/ D .mm0; q/; (5.3.1)

.mp; q/ D .m; f .p/q/ (5.3.2)
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for any m;m0 2 M , p 2 P , q 2 Q. We define E D FQ.M/=S . It is easy to see that
the action of Q on FQ.M/ induces one on E. Also, � induces a precrossed module

O� W E ! Q:

There is a map
 W M ! E

got by projecting the map on F defined as .m/ D .m; 1/. This map is a morphism of
groups thanks to the relations of type (5.3.1), while .; f / is a morphism of precrossed
modules thanks to the relations of type (5.3.2).

Theorem 5.3.1. The precrossed module O� W E ! Q is that induced from � by the
homomorphism f .

Proof. We have only to check the universal property.
For any morphism of precrossed modules

.h; f / W .� W M ! P / �! .� W N ! Q/

there is a unique morphism of precrossed Q-modules h0 W E ! N such that h D
h0 because the only way to define this homomorphism is by h0.m; q/ D .hm/q on
generators. It is a very easy exercise to check that this definition maps S to 1, and that
the induced homomorphism gives a morphism of crossed modules.

Remark 5.3.2. If M D .� W M ! P / is a crossed module, there are two equivalent
ways to obtain the induced crossed module f�M D .f�M ! Q/. One way is to get
the crossed module associated to the precrossed one in the theorem. The second way
is to quotient out FQ.M/, not only by the relations of the above two kinds, but also
adding the Peiffer relations

.m1; q1/
�1.m2; q2/.m1; q1/ D .m2; q2q�1

1 f�.m1/q1/ (5.3.3)

for any q1; q2 2 Q and m1; m2 2M .

Every morphism of groups decomposes as the composition of a monomorphism and
an epimorphism. We give later in Sections 5.5 and 5.6 direct descriptions of induced
crossed modules in these two cases.58

5.4 Induced crossed modules and the Seifert–van Kampen
Theorem in dimension 2

The relation between induced crossed modules and pushouts of crossed modules sug-
gests that the induced crossed module may appear in some cases when using the 2-
dimensional Seifert–van Kampen Theorem 2.3.1. After looking to the statement of the
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theorem for general subspaces A;U1; U2 � X it is easy to see that this case occurs
when A D U1; this situation ia also known as ‘excision’. We give some background
to this idea.

In the situation where the space X is the union U1 [ U2, the inclusion of pairs

E W .U1; U1 \ U2/! .X;U2/

is known as the ‘excision map’ because the smaller pair is obtained by cutting out or
‘excising’ X n U2 from the larger pair. It is a theorem of homology (the Excision
Theorem) that if U1, U2 are open in X then the excision map induces an isomorphism
of relative homology groups. This is one of the basic results which make homology
groups readily computable.

Here we get a result that can be interpreted as a limited form of Excision Theorem
for homotopy, but it shows that the excision map is in general not an isomorphism even
for second relative homotopy groups. Lack of excision is one of the reasons for the
difficulty of computing homotopy groups of spaces.

Theorem 5.4.1 (Homotopical excision in dimension 2). LetX be a space which is the
union of the interior of two subspaces U1 and U2 and define U12 D U1 \ U2. If all
spaces are connected and .U2; U12/ is 1-connected, then .X;U1/ is also 1-connected
and the morphism of crossed modules

…2.U2; U12/! …2.X;U1/

realises the crossed module …2.X;U1/ as induced from …2.U2; U12/ by the homo-
morphism �1.U12/! �1.U1/ induced by the inclusion.

Proof. Following the notation of Theorem 2.3.1 with A D U1 we have

A1 D A \ U1 D U1; A2 D A \ U2 D U12 and A12 D A \ U12 D U12:
It is clear that the hypothesis of Theorem 2.3.1 are satisfied since .U1; A1/ D

.U1; U1/, .U2; A2/ D .U2; U12/ and .U12; A12/ D .U12; U12/ are 1-connected. The
consequence is that the diagram of crossed modules

…2.U12; U12/ ��

��

…2.U2; U12/

��
…2.U1; U1/ �� …2.X;U1/

(5.4.1)

is a pushout.
Proposition 5.2.5 now implies the result.

As in the case of Theorem 2.3.1, using standard mapping cylinder arguments, we
can prove a more general statement.59



5.4 Induced crossed modules and the Seifert–van Kampen Theorem in dimension 2 115

Corollary 5.4.2. Let .X;A/ be a pair of spaces and f W A ! Y a continuous map.
If all spaces are connected, the inclusion i W A ! X is a closed cofibration and
the pair .X;A/ is 1-connected, then the pair .Y [f X; Y / is also 1-connected and
…2.Y [f X; Y / is the crossed module induced from…2.X;A/ byf� W �1.A/! �1.Y /.

Proof. This can either be deduced from the proceeding theorem by use of mapping
cylinder arguments, or can be seen as a particular case of Theorem 2.3.3 whenU1 D A
and Y1 D Y .

This last corollary has as a consequence a Homotopical Excision Theorem for closed
subsets under weak conditions.

Corollary 5.4.3. Let X be a space that is the union of two closed subspaces U1
and U2 and let U12 D U1 \ U2. If all spaces are connected, the inclusion U1 !
X is a cofibration, and the pair .U2; U12/ is connected, then the pair .U1; X/ is
also connected and the crossed module .�2.X;U1/ ! �1.U1// is the one induced
from .�2.U2; U12/! �1.U12// by the morphism �1.U12/! �1.U1/ induced by the
inclusion.

Before proceeding any further, we consider the case of a space X given as the
homotopy pushout of classifying spaces.

Theorem 5.4.4. Let M D .� W M ! P / be a crossed module, and let f W P ! Q

be a morphism of groups. Let ˇ W BP ! BM be the inclusion. Consider the pushout
diagram

BP
Bf ��

ˇ

��

BQ

ˇ 0

��
BM �� X ,

i.e.X D BQ[Bf BM. Then the fundamental crossed module…2.X;BQ/ is isomor-
phic to the induced crossed module f�M.

Further, there is a map of spaces X ! Bf�M inducing an isomorphism of the
corresponding �1, �2.

Proof. This first part is immediate from Corollary 5.4.2.
The last statement requires a generalisation of Proposition 2.4.8, in which the

1-skeleton is replaced by a subcomplex Z with the property that �2.Z/ D 0 and
the induced map �1.Z/! �1.X/ is surjective. (In our case Z D BQ.) This result is
proved in Proposition 12.3.4.

Remark 5.4.5. The most striking consequence of the last theorem is that we have
determined completely a nontrivial homotopy 2-type of a space. That is, we have
replaced geometric constructions by corresponding algebraic ones. As we shall see,
induced crossed modules are computable in many cases, and so we can obtain many
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explicit computations of homotopy 2-types. The further surprise is that all this theory
is needed for just this example. This shows the difficulty of homotopy theory, in that
new ranges of algebraic structures are required to explain what is going on.

In the next sections, we will be able to obtain some explicit calculations as a
consequence of the last results.

Remark 5.4.6. An interesting special case of the last theorem is when M is an inclusion
M E P of a normal subgroup, since then BM has the homotopy type of B.P=M/ by
Proposition 2.4.6. So we have determined the fundamental crossed module of .X;BR/
when X is the homotopy pushout

BP
Bp ��

Bf

��

BR

��
BQ

p0
�� X

in which p W P ! R is surjective. In this case M is the crossed module given by the
normal inclusion .Ker p/! P .

To end this section, we consider the useful case when the space we are attaching is
a cone.

Theorem 5.4.7. Let f W A! Y be a continuous map between connected spaces. Then
the pair .CA [f Y; Y / is 1-connected and …2.CA [f Y; Y / is the crossed module
induced from the identity crossed module 1�1.A/ by f� W �1.A/! �1.Y /.

Proof. Using part of the homotopy exact sequence of the pair .CA;A/,

�2.CA; x/ D 0! �2.CA;A; x/! �1.A; x/! �1.CA; x/ D 0
we get an isomorphism of�1.A; x/ groups transforming the fundamental crossed mod-
ule …2.CA;A/ to the identity crossed module 1�1.A;x/.

Now, we can use Corollary 5.4.2 and identify the induced crossed module with the
free module by Proposition 5.2.3.

As a consequence we get a proof 60 of Whitehead’s theorem on free crossed modules
[Whi49b].

Corollary 5.4.8 (Whitehead’s theorem on free crossed modules). Let Y be a space
constructed from the path-connected space X by attaching cells of dimension two.
Then the map �1.X/ ! �1.Y / is surjective and …2.Y;X/ is isomorphic to the free
crossed module on the characteristic maps of the 2-cells.

As before, we apply the results just obtained to the case of a space X which is a
pushout of classifying spaces.



5.5 Calculation of induced crossed modules: the epimorphism case 117

Theorem 5.4.9. Let f W P ! Q be a morphism of groups. Then the crossed module
…2.BQ [Bf CBP;BQ/ is isomorphic to the induced crossed module f�.1P /.

Proof. Taking R D 1 in Remark 5.4.6, its classifying space is contractible. Thus, we
can take CBP as equivalent to the classifying space BR.

5.5 Calculation of induced crossed modules: the epimorphism
case

Let us consider now the case where f W P ! Q is an epimorphism. Then Ker f
acts on M via the map f and the induced crossed module f�M may be seen as M
quotiented out by the normal subgroup appropriate for trivialising the action of Ker f
(sinceQ is isomorphic toP=Ker f ), i.e. by quotienting out the displacement subgroup
studied in Section 4.4.

Proposition 5.5.1. If f W P ! Q is an epimorphism and � W M ! P is a crossed
module, then

f�M Š M

ŒM;Ker f �

where ŒM;Ker f � is the displacement subgroup of Definition 4.4.1, i.e. the subgroup
of M generated by fm�1mk j m 2M;k 2 Ker f g.
Proof. Let us recall that by Proposition 4.4.7 the quotientM=ŒM;Ker f � is aQ-crossed
module with the Q-action on M=ŒM;Ker f � given by Œm�q D Œmp� for m 2 M;q 2
Q; q D f .p/; p 2 P , and the homomorphism

f� W M

ŒM;Ker f �
! Q;

is induced by the composition f� W M ! Q.
It remains only to prove that this f� satisfies the universal property. Let

.h; f / W .� W M ! P / �! .� W N ! Q/

be a morphism of crossed modules. We have to prove that there exists a unique homo-
morphism of groups

h0 W M

ŒM;Ker f �
�! N

such that

.h0; f / W
�
f� W M

ŒM;Ker f �
! P

�
�! .� W N ! Q/

is a morphism of crossed modules and h0 D h where  is the natural projection.
Equivalently, we have to prove that h induces a homomorphism of groups h0 and that
.h0; f / is a morphism of crossed modules.
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Since h.mp/ D .hm/f .p/ for any m 2 M and p 2 P , we have hŒM;Ker f � D 1.
Then h induces a homomorphism of groups h0 as above such that h0 D h.

We have only to check that h0 is a map of Q-crossed modules. But

�h0Œm� D �h.m/ D f�.m/ D f�Œm�;
so the square commutes, and

h0.Œm�q/ D h0Œmp� D h.mp/ D .hm/f .p/ D .h0Œm�/q

so h0 preserves the actions.

This description gives as a topological consequence a version of the Relative
Hurewicz Theorem in dimension 2. A version for all dimensions > 3 is given in
Theorem 8.3.19, and a version in dimension 1 is given in Theorem 14.7.7.61

Theorem 5.5.2 (Relative Hurewicz Theorem: dim 2). Consider a 1-connected pair
of spaces .Y; A/ such that the inclusion i W A ! Y is a closed cofibration. Then the
space Y [ CA is simply connected and its second homotopy group �2.Y [ CA/ and
the singular homology group H2.Y [ CA/ are each isomorphic to �2.Y; A/ factored
by the action of �1.A/.

Proof. It is clear from the classical Seifert–van Kampen Theorem that the spaceY [CA
is 1-connected.

Using the homotopy exact sequence of the pair .Y [ CA;CA/,
� � � ! 0 D �2.CA/! �2.Y [ CA/! �2.Y [ CA;CA/! 0 D �1.CA/! � � �

we have
�2.Y [ CA/ Š �2.Y [ CA;CA/:

Now we can apply Corollary 5.4.2 to show that the crossed module

�2.Y [ CA;CA/! �1.CA/ D 1
is induced from �2.Y; A/ ! �1.A/ by the map given by the morphism �1.A/ ! 1

induced by the inclusion A! CA.
Moreover, since the map i� W �1.A/! �1.Y / is onto, by Proposition 5.5.1 we have

�2.Y [ CA;CA/ Š �2.Y; A/

Œ�2.Y; A/; �1.A/�
:

This yields the result on the second homotopy group.
The Absolute Hurewicz Theorem for Y [CA (which we prove in Theorem 14.7.8)

yields the result on the second homology group.

Corollary 5.5.3. The first two homotopy groups of S2 are �1.S2/ D 0; �2.S2/ Š Z.
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Proof. This is the case of Theorem 5.5.2 when A D S1; Y D E2C, where E2C denotes
the top hemisphere of the 2-sphere S2. Then �2.Y; A/ Š Z with trivial action by
�1.A/ Š Z.

Actually we have a more general result.62

Corollary 5.5.4. If A is a path connected space, and SA D CA [A CA denotes the
suspension of A, then SA is simply connected and

�2.SA/ Š �1.A/ab:

Proof. This is simply the result that �1.A/ab D �1.A/=Œ�1.A/; �1.A/�.
Example 5.5.5. Let f W A! Y be as in Theorem 5.4.7, let Z D Y [f CA, and sup-
pose that f� W �1.A/! �1.Y / is surjective with kernelK. An application of Proposi-
tion 5.5.1 to the conclusion of Theorem 5.4.7 gives �2.Z/ D �1.A/=Œ�1.A/;K�, and
it follows from the homotopy exact sequence of the pair .Z; Y / that there is an exact
sequence

�2.Y /! �2.Z/! K

Œ�1.A/;K�
! 0: (5.5.1)

It follows from this exact sequence that if A D BP and Y D BQ, so that we have
an exact sequence 1 ! K ! P ! Q ! 1 of groups, then �2.Z/ Š K=ŒP;K�.
Now we assume some knowledge of homology of spaces. In particular, the homology
Hi .P / of a group P is defined to be the homology Hi .BP / of the space BP , i > 0.
Since Z is simply connected, we get the same value for H2.Z/, by the Absolute
Hurewicz Theorem, which we prove in all dimensions in Part III, Theorem 14.7.8.
Now the homology exact sequence of the cofibre sequence A ! Y ! Z gives an
exact sequence63

H2.P /! H2.Q/! K

ŒP;K�
! H1.P /! H1.Q/! 0:

In particular if P D F is a free group, or one with H2.F / D 0, then we obtain an
exact sequence

0! H2.Q/! K

ŒF;K�
! F ab ! Qab ! 0:

This gives the famous Hopf formula

H2.Q/ Š K \ ŒF; F �
ŒK; F �

which was one of the starting points of homological algebra. This is generalised to all
dimensions in Proposition 8.3.21.64
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5.6 The monomorphism case: inducing from crossed modules
over a subgroup

In Section 5.3 we have considered the construction of an induced crossed module for a
general homomorphism, and in Section 5.5 we have given a simpler expression for the
case when f is an epimorphism. Now we study the case of a monomorphism, which
is essentially the same as studying the case of an inclusion in a subgroup. So in all this
section we shall consider the inclusion � W P ! Q of a subgroup P of Q.

As we shall see this case is rather involved and we get an expression of the induced
crossed module that is quite complicated and in some cases very much related to the
coproduct. Let us introduce some concepts that shall be helpful.

Definition 5.6.1. LetM be a group and let T be a set, we define the copower M �T to
be the free product of the groups Mt DM � ftg for all t 2 T . Notice that all Mt are
naturally isomorphic to M under the map .m; t/ 7! m. So M �T can be seen as the
free product of copies of M indexed by T .

The copower construction satisfies the adjointness condition that for any group N
there is a bijection

Set.T;Groups.M;N // Š Groups.M �T ; N /

natural inM ,N ,T . Notice also that the precrossed module induced from M W .� W M !
P / by f W P ! Q is a quotient of M �UQ where UQ is the underlying set of Q.

In the case where we have the inclusion of a subgroup � W P ! Q, we choose T to
be a right transversal ofP inQ, by which is meant a subset ofQ including the identity
1 and such that any q 2 Q has a unique representation as q D pt where p 2 P , t 2 T .
For any crossed P -module M D .� W M ! P /, the precrossedQ-module induced by
� will have the form O� W M �T ! Q. Let us describe the Q-action.

Proposition 5.6.2. Let � W P ! Q, M, and T be as above. Then there is a Q-action
on M �T defined on generators using the coset decomposition by

.m; t/q D .mp; u/
for any q 2 Q, m 2 M , t 2 T , where p, u are the unique p 2 P , u 2 T , such that
tq D pu.

Proof. Let m 2 M , t; u; u0 2 T , p; p0 2 P and q; q0 2 Q be elements such that
tq D pu and uq0 D p0u0. We have t .qq0/ D puq0 D pp0u0. Therefore,

..m; t/q/q
0 D .mp; u/q0 D .mpp0

; u0/ D .m; t/qq0

and Q acts on M �T .

Remark 5.6.3. We can think of .m; t/ as mt , so the action is .mt /q D .mp/u where
tq D pu. Notice that if P is normal inQ then theQ-action induces an action of P on
Mt given by .m; t/p D .mtpt�1

; t /. We shall exploit this later, in Corollary 5.6.9.
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Now we define the boundary homomorphism by specifying the images of the gen-
erators

O� W M �T ! Q; .m; t/ 7! t�1�.m/t:
Proposition 5.6.4. Let � W P ! Q, M and T be as above. Then . O� W M �T ! Q/ with
the above action is a precrossed Q-module.

Proof. We verify axiom CM1). For any m 2M , t 2 T , and q 2 Q, we have

O�..m; t/q/ D O�.mp; u/ when tq D pu
D u�1�.mp/u by definition of O�
D u�1.p/�1�.m/pu because � is a crossed module

D q�1.t/�1�.m/tq because tq D pu
D q�1 O�.m; t/q by definition of O�: �

To complete the characterisation we now prove that this precrossed module is in-
duced.

Theorem 5.6.5. If � W P ! Q is a monomorphism, and M D .� W M ! P / is a
crossed P-module then O� W M �T ! Q is the precrossed module induced by � from �.

Proof. We check the universal property. There is a homomorphism of groups  W M !
M �T defined by .m/ D .m; 1/ that makes commutative the square

M
� ��

�

��

M �T

O�
��

P �
�� Q

and so that .; �/ is a morphism of precrossed modules.
For any morphism of precrossed modules

.h; �/ W .� W M ! P / �! .� W N ! Q/

the only possible definition of a homomorphism of groups h0 W M �T ! N such that
h0 D h is the one given by h0.m; t/ D .hm/t on generators. It is easy to see that it is
a morphism of Q-precrossed modules.

It is immediate that the induced crossed module is the one associated to the pre-
crossed module O�, i.e. is the quotient with respect to the Peiffer subgroup.

Corollary 5.6.6. If � W P ! Q is a monomorphism, and .� W M ! P / is a crossed
P -module, then the crossed module induced by � from � is the homomorphism induced
by O� on the quotient

O� W M �T

ŒŒM �T ;M �T ��
! Q

together with the induced action of Q.
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Corollary 5.6.7. If � W P ! Q is the inclusion of a subgroup, and .� W M ! P / is
a crossed P -module, then the boundary @ W ��M ! Q has image the normaliser of
��.M/ in Q.

In particular, taking � W P ! P to be the identity, we see that the induced crossed
module ��P ! Q expands the standard group theoretic normaliser of P in Q to a
construction with a universal property.

It is advantageous to have a smaller number of generators of the Peiffer subgroup
ŒŒM �T ;M �T ��.

Proposition 5.6.8. Let M D .� W M ! P / be a crossedP -module and let � W P ! Q

be an inclusion of a subgroup. Let T be a transversal of P in Q, and M �T the
copower of M as before. Let S be a set of generators of M as a group, and let us
define SP D fsp j s 2 S; p 2 P g. Then there is an isomorphism

��M Š .M �T /
R

of the induced crossed module ��M D .��M ! Q/ to a quotient of the copower, where
R is the normal closure in M �T of the elements

ŒŒ.r; t/; .s; u/�� D .r; t/�1.s; u/�1.r; t/.s; u/ O�.r;t/ (5.6.1)

for all r; s 2 SP and t; u 2 T .

Proof. By Corollary 5.6.6 we just have to prove that R is exactly the Peiffer subgroup
ŒŒM �T ;M �T �� of M �T .

Now, M �T is generated by the set

.SP ; T / D f.sp; t / j s 2 S; p 2 P; t 2 T g
and this set is Q-invariant since .sp; t /q D .spp

0

; u/ where u 2 T , p0 2 P satisfy
tq D p0u. Then by Proposition 3.3.5 fM �T ;M �T g is the normal closure of the set
f.SP ; T /; .SP ; T /g of basic Peiffer commutators and this is just R.

Corollary 5.6.9. If, further to the proposition, M is abelian and ��.M/ is normal in
Q, then ��M is abelian and is isomorphic as module to the cosum M˚T .

Proof. Note that if u; t 2 T and r 2 S then

u O�.r; t/ D ut�1�.r/t D ��.m/ut�1t D �.m/u
for some m 2 M , by the normality condition. The Peiffer commutator given in
Equation (5.6.1) can therefore be rewritten as

.r; t/�1.s; u/�1.r; t/.s; u/ O�.r;t/ D .r; t/�1.s; u/�1.r; t/.sm; u/:
Since M is abelian, sm D s. Thus the basic Peiffer commutators reduce to ordinary
commutators. Hence ��M is the cosum M˚T .
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Exercise 5.6.10. In the last corollary, setG D Cok @, and assumeM D P and� is the
identity crossed module. Show using the canonical bijection T ! G how to represent
��P as a direct sum

L
g2G P g and describe the operation of G on this direct sum in

detail.

Example 5.6.11. The last corollary and exercise are easiest to interpret and apply when
Q is abelian. Let @ W ��M ! Q be the boundary morphism, and let � W Q ! G D
Cok @ be the quotient morphism. Then � induces a bijection T ! G, t 7! gt . Under
this bijection, we can write ��M Š L

g2GM gt where the operation is .m; gt /hs D
.mp; gr/ where pr D ts in Q.

A simple case is for cyclic groups and the inclusion � W Ca ! Cab which maps
a generator x of Ca to yb in Cab where y generates Cab , the crossed Ca module is
the identity. Then the cokernel of @ W ��Ca ! Cab is Cb . We can identify ��Ca with
ZaŒCb�.

The following example of the dihedral crossed module exhibits a number of typical
features.

Example 5.6.12. Recall that the dihedral group D2n of order 2n has presentation

hx; y j xn; y2; xyxyi:
We consider another copy zD2n of D2n with presentation hu; v j un; v2; uvuvi and
the homomorphism

@ W zD2n ! D2n; u 7! x2; v 7! y:

With this boundary and action of D2n on zD2n given on generators by the equations

uy D vuv�1; vy D v; ux D u; vx D vu;
this becomes the dihedral crossed module. As an exercise, check this result and also that
@ W zD2n ! D2n is an isomorphism if n is odd, and has kernel and cokernel isomorphic
to C2 if n is even.

Example 5.6.13. We let Q D D2n be the dihedral group as in the last example and
let M D P D C2 be the cyclic subgroup of order 2 generated by y. Let us denote by
� W C2 ,! D2n the inclusion.

We have that 1 W C2 ! C2 is a crossed module and we are going to identify the
induced crossed module

O� D ��.1/ W ��.C2/ �! D2n:

A right transversal of C2 in D2n is given by the elements

T D fxi j i D 0; 1; 2; : : : ; n � 1g:
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By Proposition 5.6.8, ��C2 has a presentation with generators ai D .y; xi /, i D
0; 1; 2; : : : ; n�1 and relations a2i D 1, i D 0; 1; 2; : : : ; n�1, together with the Peiffer
relations associated to these generators.

Since the D2n-action on C �T
2 is given by

axi D aiC1 and a
y
i D an�i ;

and
O�.ai / D x�iyxi D yx2i ;

we have .ai / O�aj D a2j�i , so that the Peiffer relations become

a�1
j aiaj D a2j�i :

In this group C �T
2 we define u D a0a1, v D a0. As a consequence, we have u D

aiaiC1 and ui D a0ai and it is now easy to check that .C �T
2 /cr Š zD2n. Also the map

O� satisfies
O�u D O�.a0a1/ D yyx2 D x2; O�v D y:

Thus y acts on ��C2 by conjugation by v. However x acts by ux D u, vx D vu.
This crossed module is the dihedral crossed module of the previous Example 5.6.12.
It is worth pointing out that this induced crossed module is finite while the corr-

esponding precrossed moduleM �T is clearly infinite. We will develop these points in
the next section.

5.7 On the finiteness of induced crossed modules

With the results of the previous section, we have an alternative way of constructing
the induced crossed module associated to a homomorphism f . We can factor f in an
epimorphism and a monomorphism and then apply the constructions. As pointed out
before it is always a good thing to have as many equivalent ways as possible since then
we can choose the most appropriate to some particular situation.

As we have seen in the previous section, if we have a (pre)crossed module M D
.M ! P / in which M is generated by a finite P -set of a generators, and a group
homomorphism P ! Q with finite cokernel, then the induced (pre)crossed module is
also generated by a finite set. In this section we give an algebraic proof that a crossed
module induced from a finite crossed module by a morphism with finite cokernel is
also finite. The result is false for precrossed modules.

Theorem 5.7.1. Let � W M ! P be a crossed module and let f W P ! Q be a
morphism of groups. Suppose thatM and the index of f .P / inQ are finite. Then the
induced crossed module f�M is finite.
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Proof. Factor the morphism f W P ! Q as �
 where � is injective and 
 is surjective.
Then f�M is isomorphic to ��
�M: It is immediate from Proposition 5.5.1 that if M
is finite then so also is 
�M: So it is enough to assume that f is injective.

Let T be a right transversal of f .P / in Q. Then there are maps

.�; 	/ W T �Q! f .P / � T
defined by .�; 	/.t; q/ D .p; u/ where p 2 P , u 2 T are elements such that tq D
f .p/u. With this notation, the form of a basic Peiffer relation got in Corollary 5.6.6 is
then of the form

.m; t/.n; u/ D .n; u/.m�.t;u�1f�.n/u/; 	.t; u�1f�.n/u// (5.7.1)

where m; n 2M , t; u 2 T:
We now assume that the finite set T has l elements and has been given the total

order t1 < t2 < � � � < tl . An element of M �T may be represented as a word

.m1; u1/.m2; u2/ : : : .me; ue/: (5.7.2)

Such a word is said to be reduced when ui ¤ uiC1, 1 6 i < e, and to be ordered if
u1 < u2 < � � � < ue in the given order on T . This yields a partial ordering of M � T
where .mi ; ui / 6 .mj ; uj / whenever ui 6 uj .

A twist replaces a reduced word w D w1.m; t/.n; v/w2, with v < t , by w0 D
w1.n; v/.m

p; u/w2 using the Peiffer relation (5.7.1). If the resulting word is not
reduced, multiplication in Mv and Mu may be used to reduce it. In order to show that
any word may be ordered by a finite sequence of twists and reductions, we define an
integer weight function on the set Wn of nonempty words of length at most n by

�n W Wn ! ZC;

.m1; tj1
/.m2; tj2

/ : : : .me; tje
/ 7! le

eX
iD1

ln�iji :

It is easy to see that �n.w0/ < �n.w/ when w ! w0 is a reduction. Similarly, for a
twist

w D w1.mi ; tji
/.miC1; tjiC1

/w2 ! w0 D w1.miC1; tjiC1
/.n; tk/w2

the weight reduction is

�n.w/ ��n.w0/ D lnCe�i�1. l.ji � jiC1/C jiC1 � jk / > lnCe�i�1;

so the process terminates in a finite number of moves.
We now specify an algorithm for converting a reduced word to an ordered word.

Various algorithms are possible, some presumably more efficient than others, but we
are not interested in efficiency here. We call a reduced word k-ordered if the subword
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consisting of the first k elements is ordered and the remaining elements are greater than
these. Every reduced word is at least 0-ordered. Given a k-ordered, reduced word,
find the rightmost minimal element to the right of the k-th position. Move this element
one place to the left with a twist, and reduce if necessary. The resulting word may only
be j -ordered, with j < k, but its weight will be less than that of the original word.
Repeat until an ordered word is obtained.

LetZ DMt1�Mt2�� � ��Mtl be the product of the setsMti DM �ftig. Then the
algorithm yields a function  W Y ! Z such that the quotient morphism Y ! f�M
factors through : Since Z is finite, it follows that f�M is finite.

Remark 5.7.2. In this last proof, it is in general not possible to give a group structure
on the set Z such that the quotient morphism Y ! f�M factors through a morphism
toZ. For example, in the dihedral crossed module of Example 5.6.12, with n D 3, the
set Z will have 8 elements, and so has no group structure admitting a morphism onto
D6.

So the proof of the main theorem of this section does not extend to a proof that
the induced crossed module construction is closed also in the category of p-groups.
Nevertheless, the result is true and there is a topological proof in [BW95].

5.8 Inducing crossed modules by a normal inclusion

We continue the study of Section 5.6 of the crossed modules induced by the inclusion
P ! Q of a subgroup, by considering the case whenP is normal inQ. We shall show
in Theorem 5.8.4 that the coproduct of crossed P -modules described in Section 4.1
may be used to give a presentation of crossed Q-modules induced by the inclusion
� W P ! Q analogous to known presentations of induced modules over groups.65

Let us start by digressing a bit about crossed modules constructed from a given one
using an isomorphism.

Definition 5.8.1. Let� W M ! P be a crossedP -module and let˛ be an automorphism
of P . The crossed module �˛ W M˛ ! P associated to ˛ is defined as follows. The
groupM˛ is justM �f˛g, the morphism�˛ is given by .m; ˛/ 7! ˛�m and the action
of P is given by .m; ˛/p D .m˛�1p; ˛/.

Proposition 5.8.2. The map�˛ W M˛ ! P is a crossed module. Moreover this crossed
module is isomorphic to � since the map k˛ W M ! M˛ given by k˛m D .m; ˛/

produces an isomorphism over ˛.

Proof. Let us check both properties of a crossed module:

�˛.m
˛�1p; ˛/ D ˛.�m˛�1p/ D ˛.˛�1.p/�1�.m/˛�1.p//

D p�1˛�.m/p D p�1�˛.m/p



5.8 Inducing crossed modules by a normal inclusion 127

and

.m; ˛/�˛.m
0;˛/ D .m; ˛/˛�.m0/ D .m˛�1˛�.m0/; ˛/

D .m�.m0/; ˛/ D .m0; ˛/�1.m; ˛/.m0; ˛/:

It is immediate that the map k˛ W M !M˛ is an isomorphism. Also, the diagram

M
k˛ ��

�

��

M˛

�˛

��
P ˛

�� P

commutes and the map k˛ preserves the P -action over ˛.

Remark 5.8.3. Notice that if ˛ D 1, there is a natural identification M1 DM .

We continue to assume that P is a normal subgroup of Q. In this case, for any
t 2 Q, there is an inner automorphism ˛t W P ! P defined by ˛t .p/ D t�1pt . Let
us write .�t W Mt ! P / instead of .�˛t

W M˛t
! P /.

Recall that this crossed P -module is the same .�t W Mt ! P / that we have used
to construct ��M in Section 5.6, namely Mt D M � ftg, the P -action was given by
.m; t/p D .mtpt�1

; t / and the homomorphism�t was defined by�t .m; t/ D t�1�mt .
We have just seen that it is a crossed P -module isomorphic to M.

Now let T be a right transversal of P inQ. We can form the precrossedQ-module
M0 D .@0 W M �T ! Q/ as in Proposition 5.6.2. Recall that theQ-action is defined on
generators as follows. For any q 2 Q, m 2M , t 2 T we define

.m; t/q D .mp; u/;
wherep 2 P andu 2 T are the only ones satisfying tq D pu. Also the homomorphism
@0 is defined by @0.m; t/ D t�1pt

We had seen in Theorem 5.6.5 that the induced crossed Q-module ��M is the
quotient of M �T by the Peiffer subgroup associated to the Q-action. On the other
hand, we have seen in Corollary 4.1.2 that the coproduct as crossed P -modules

@ W M BT ! P

is the quotient ofM �T with respect to the Peiffer subgroup associated to the P -action.
We are going to check that they are the same.

Theorem 5.8.4. In the situation we have just described, the homomorphism

M BT @! P
�
,! Q

with the morphism of crossed modules

.i1; �/ W M! .�@ W M BT ! Q/

is the induced crossed Q-module.
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Proof. It is immediately checked in this case that the Peiffer subgroup is the same
whetherM �T is considered as a precrossedP -moduleM �T ! P or as a precrossedQ-
moduleM �T ! Q. It can also be directly checked. We leave that as an exercise.

We remark that the result of Theorem 5.8.4 is analogous to well-known descriptions
of induced modules, except that here we have replaced the direct sum which is used in
the module case by the coproduct of crossed modules. Corresponding descriptions in
the non-normal case look to be considerably harder.

As a consequence we obtain easily a result on p-finiteness.66

Proposition 5.8.5. If M is a finite p-group and P is a normal subgroup of finite index
in Q, then the induced crossed module ��M is a finite p-group.

Proof. This follows immediately from the discussion in Section 4.1.

Now the induced module .�@ W M BT ! Q/ in Theorem 5.8.4 may be described
using Corollary 4.4.16, if the hypotheses there are satisfied. So let P be a normal
subgroup of Q and T a transversal as before, and let .� W M ! P / be a crossed
P -module.

We can divide the construction of the group M BT into two steps. We define W D
M BT 0

the coproduct of all but M1 D M . Then there is an isomorphism of crossed
Q-modules

��M ŠM BW:
To apply Corollary 4.4.16 we have to assume that for all t 2 T we have �t .M/ �

�.M/, i.e. that for all t 2 T we have t�1�.M/t � �.M/ (notice that this is immedi-
ately satisfied if �M is normal in Q), and that there is a section 
 W �M ! M of �
defined on �M . Most of the time we shall require also that 
 is P -equivariant.

Then there is an isomorphism

��M ŠM �
M
t2T 0

.Mt /M

through which the morphisms giving the coproduct structure become

.i; �/ W .� W M ! P / �! .� D �� pr1 W M �
M
t2T 0

.Mt /M ! Q/

where i D i1 W .m; 1/ 7! .m; 0/ and

.it ; �/ W .� W Mt ! P / �! .� D �� pr1 W M �
M
t2T 0

.Mt /M ! Q/

where for t ¤ 1, it .m; t/ D .
..�m/t /; Œm; t �/:
Let us describe first how the Q-action is defined on this last crossed Q-module.

Later we shall check the universal property.
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The result we next give is quite complicated and technical. It is given principally be-
cause it illustrates the method, and also shows that these methods give an understanding
of actions of the fundamental group in a way which seems unobtainable by traditional
methods. Those methods go via universal covers and homology, whereas ours go via
direct descriptions of crossed modules, i.e. nonabelian structures in dimensions 2.

Theorem 5.8.6. The Q-action on the group M �L
t2T 0.Mt /M is given as follows.

(i) For any m 2M , q 2 Q

.m; 0/q D
´
.mq; 0/ if v D 1;
.
..�m/q/; Œmr ; v�/ if v ¤ 1;

where r 2 P and v 2 T satisfy q D rv and Œm; v� denotes the class of .m; v/ in
.Mv/M .

(ii) If m 2M , t 2 T 0, q 2 Q then

.1; Œm; t �/q D

8̂<̂
:
.1; Œmp; t �/ if v D 1;
.
.�mp/�1mp;�Œ
..�mp/v�1

/; v�/ if v ¤ 1, u D 1,
.1;�Œ
..�mp/uv�1

/; v�C Œmp; u�/ if v ¤ 1, u ¤ 1,
where p 2 P , u 2 T are the unique elements satisfying tq D pu.

Proof. We use the description of the morphisms associated to the coproduct structure
given above to calculate the action given by Theorem 5.8.4.

The formulae (i) and (ii) for the case v D 1 follow from the description of the action
of P on Mt given at the beginning of this section.

The remaining cases will be deduced from the formula for the action ofQ given in
Theorem 5.8.4, namely if m 2M , t 2 T , q 2 Q then

.it .m; t//
q D

´
i1.m

p; 1/ D .mp; 0/ if tq D p 2 P;
iu.m

p; u/ D .
..�mp/u/; Œmp; u�/ if tq D pu; p 2 P; u 2 T 0:

We first prove (i) for v ¤ 1. We have since q D rv, v 2 T 0,

.m; 0/q D .i1.m; 1//rv
D iv.mr ; v/
D .
..�mr/v/; Œmr ; v�/:

To prove (ii) with v ¤ 1, first note that

.1; Œm; t �/ D .
..�m/t /; 0/�1 .
..�m/t /; Œm; t �/
D .
..�m/t /; 0/�1 it .m; t/:
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But

.
..�m/t /; 0/q D .
..�
..�m/t //q/; Œ.
..�m/t //r ; v�/ by (i)

D .
..�m/tq/; Œ
..�m/tr/; v�/ since �
 D 1;
and, from the definition of the Q-action,

.it .m; t//
q D

´
.mp; 0/ if u D 1;
.
..�m/tq/; Œmp; u�/ if u ¤ 1:

It follows that

.1; Œm; t �/q D
´
.
.�mp/�1mp;� Œ
..�mp/v�1

/; v�/ if u D 1;
.1;� Œ
..�mp/uv�1

/; v�C Œmp; u�/ if u ¤ 1:

Now we check that the universal property is satisfied.

Theorem 5.8.7. For any crossed module N D .� W N ! Q/ and any morphism of
crossed modules .ˇ; �/ W M! N , the induced morphism  W M �L

t2T 0.Mt /M ! N

is given by

.m; 0/ D ˇm; .m; Œn; v�/ D .ˇm/ˇ.
..�n/v//�1 .ˇn/v:
Proof. The formula for  is obtained as follows:

.m; Œn; v�/ D .m; 0/ .
..�n/v/; 0/�1 .iv.n; v//
D .ˇm/ .ˇ.
..�n/v//�1/ .ˇn/v

where the definition of  is taken from Theorem 5.8.4

We now include an example for Theorem 5.8.6 showing the action in the case v ¤ 1,
u D 1.

Example 5.8.8. Let n be an odd integer and let Q D D8n be the dihedral group of
order 8n generated by elements ft; yg with relators ft4n; y2; .ty/2g. Let P D D4n
be generated by fx; yg, and let � W P ! Q be the monomorphism given by x 7! t2,
y 7! y. Then let M D C2n be generated by fmg. Define M D .� W M ! P /

where �m D x2, mx D m and my D m�1. This crossed module is isomorphic to a
sub-crossed module of .D4n ! Aut.D4n// and has kernel f1;mng.

The image �M is the cyclic group of order n generated by x2, and there is
an equivariant section 
 W �M ! M , x2 7! mnC1 because .x2/.nC1/ D x2 and
gcd.nC 1; 2n/ D 2. Then Q D P [ P t , T D f1; tg is a transversal, Mt is generated
by .m; t/ and �t .m; t/ D x2. The action of P on Mt is given by

.m; t/x D .m; t/; .m; t/y D .m�1; t /:
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Since M acts trivially on Mt ,

��M ŠM �Mt Š C2n � C2n:
Using the section 
 given above, Q acts on ��M by

.m; 0/t D .mnC1; Œm; t �/;
.m; 0/y D .m�1; 0/;

.1; Œm; t �/t D .mn; .n � 1/Œm; t �/;
.1; Œm; t �/y D .1;�Œm; t �/: �

It is worth recalling that our objective was not only to get an easier expression of
the induced crossed module, but also to have some information about the kernel of its
boundary map. We can obtain some information on the latter in the case where P is
of index 2 in Q, even without the assumption that �M is normal in Q as follows.

Suppose then that T D f1; tg is a right transversal of P in Q. Let the morphism
M ËMt ! P be given as usual by .m; .n; t// 7! .�m/.�t .n; t// D mt�1nt .

Write hM;Mt i for the subgroup of M �P Mt generated by the elements

hm; .n; t/i D .m�1mt�1.�n/t ; ..n; t/�1/m.n; t//;

for all m 2M , .n; t/ 2Mt .

Proposition 5.8.9. Let� W M ! P and � W P ! Q be inclusions of normal subgroups.
Suppose that P is of index 2 in Q, and t 2 Q n P . Then the kernel of the induced
crossed module .@ W ��M ! Q/ is isomorphic to

M \ t�1Mt

ŒM; t�1Mt�
:

In particular, if M is also normal in Q, then this kernel is isomorphic to M=ŒM;M�,
i.e. to M made abelian.

Proof. By previous results ��M is isomorphic to the coproduct crossed P -module
M BMt with a further action of Q. The result follows from Corollary 4.3.9.

We now give some homotopical applications of the last result.

Example 5.8.10. Let � W P D D4n ! Q D D8n be as in Example 5.8.8, and let
M D D2n be the subgroup of P generated by fx2; yg, so that �M C �P C Q and
t�1Mt is isomorphic to a second D2n generated by fx2; yxg. Then

M \ t�1Mt D ŒM; t�1Mt�

(since Œy; yx� D x2), and both are isomorphic to Cn generated by fx2g.
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It follows from Proposition 5.8.9 that if X is the homotopy pushout of the maps

BD4n

��

�� BC2

��
BD8n �� X

where the horizontal map is induced by D4n ! D4n=D2n Š C2, then �2.X/ D 0.

Example 5.8.11. Let M , N be normal subgroups of the group G, and let Q be the
wreath product

Q D G o C2 D .G �G/ Ì C2:
Take P D G � G, and consider the crossed module .@ W Z ! Q/ induced from
M �N ! P by the inclusion P ! Q. If t is the generator of C2 which interchanges
the two factors of G �G, then Q D P [ P t and t�1.M �N/t D N �M . So

.M �N/ \ t�1.M �N/t D .M \N/ � .N \M/

and
ŒM �N;N �M� D ŒM;N � � ŒN;M�:

It follows that if X is the homotopy pushout of

BG � BG

��

�� B.G=M/ � B.G=N/

��
B.G o C2/ �� X

then
�2.X/ Š ..M \N/=ŒM;N �/2:

If .Œm�; Œn�/ denotes the class of .m; n/ 2 .M \ N/2 in �2.X/, the action of Q is
determined by

.Œm�; Œn�/.g;h/ D .Œmg �; Œnh�/; .g; h/ 2 P; .Œm�; Œn�/t D .Œn�; Œm�/: �

We end this section by giving an explicit description of the induced crossed module
in the case that M is a normal subgroup of P and P is a normal subgroups of Q.

There are two construction used in the description. The first one is the abelianisation
M ab of a group M . If n 2M , then the class of n in M ab is written Œn�.

The second construction is the augmentation ideal IQ of a group Q, which we
develop for groupoids in Section 7.4.i. For groups it is defined as the kernel of the
augmentation map " W ZŒQ� ! Z which takes †iniqi ; ni 2 Z, qi 2 Q to †ini ; this
ideal has an additive basis of elements q � 1; q 2 Q; q ¤ 1, so that the augmentation
ideal I.Q=P / of a quotient group Q=P has basis fNt � 1 j t 2 T 0g where T is a
transversal of P in Q, T 0 D T n f1g and Nq denotes the image of q in Q=P .
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Theorem 5.8.12. Let M � P be normal subgroups of Q, so that Q acts on both
P and M by conjugation. Let � W M ! P , � W P ! Q be the inclusions and let
M D .� W M ! P /. Then the induced crossed Q-module ��M is isomorphic as a
crossed Q-module to

.� W M � .M ab ˝ I.Q=P //! Q/

where for m; n 2M , x 2 I.Q=P /:
(i) �.m; Œn�˝ x/ D m;

(ii) the action of Q is given by

.m; Œn�˝ x/q D .mq; Œmq�˝ . Nq � 1/C Œnq�˝ x Nq/:
The universal map i W M !M � .M ab ˝ I.Q=P // is given by m 7! .m; 0/.

Proof. We deduce this from Theorem 5.8.6.67 Specialising this theorem to the current
situation, in which 
� D 1 and it .m; t/ D .mt ; Œm; t �/, yields an isomorphism of
crossed Q-modules

��M! X D .� D �� pr1 W M �
M
t2T 0

.M ab/! Q/:

In X the action of Q is given as follows, where m 2M , r 2 P , q D rv and v 2 T :
(i)

.m; 0/q D
´
.mq; 0/ if v D 1;
.mq; Œmr ; v�/ if v ¤ 1I

(ii) if tq D pu, t 2 T 0, p 2 P and u 2 T , then

.1; Œm; t �/q D

8̂<̂
:
.1; Œmp; t �/ if v D 1;
.1;�Œmpv�1

; v�/ if v ¤ 1; u D 1;
.1;�Œmpuv�1

; v�C Œmp; u�/ if v ¤ 1; u ¤ 1:
Now we construct an isomorphism

! W M �
M
t2T 0

.M ab/!M � .M ab ˝ I.Q=P //

where for m; n 2M , t 2 T 0,

!.m; 0/ D .m; 0/; !.m; Œn; t �/ D .m; Œnt �˝ .Nt � 1//:
Clearly! is an isomorphism of groups, since it is an isomorphism on the part determined
by a fixed t 2 T 0, and I.Q=P / has a basis fNt � 1 W t 2 T 0g when considered as an
abelian group. Now we prove that ! preserves the action ofQ. Letm; n 2M , t 2 T 0,
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q 2 Q. Let q D rv, tq D pu, p; r 2 P , u; v 2 T . When v D 1 we have tqt�1 2 P
and so u D t . Then

!..m; 0/q/ D
´
!.mq; 0/ if v D 1;
!.mq; Œmr ; v�/ if v ¤ 1;

D
´
.mq; 0/ if v D 1;
.mq; Œmq�˝ . Nv � 1/ if v ¤ 1;

D .!.m; 0//q :
Further,

!..1; Œm; t �/q/ D

8̂<̂
:
!.1; Œmp; t �/ if v D 1;
!.1;�Œmpv�1

; v�/ if v ¤ 1; u D 1;
!.1;�Œmpuv�1

; v�C Œmp; u�/ if v ¤ 1; u ¤ 1;

D

8̂<̂
:
.1; Œmpt �˝ .Nt � 1// if v D 1;
.1;�Œmp�˝ . Nv � 1// if v ¤ 1; u D 1;
.1;�Œmpu�˝ . Nv � 1/C Œmpu�˝ . Nu � 1// if v ¤ 1; u ¤ 1;

D .1;�Œmpu�˝ . Nv � 1/C Œmpu�˝ . Nu � 1/ in every case;

D .1; Œmtq�˝ .Nt � 1/ Nq/;
D .!.1; Œm; t �//q

since, in I.Q=P /,

.Nt � 1/ Nq D pu � rv D Nu � Nv D . Nu � 1/ � . Nv � 1/:

Finally, we have to compute the universal extension  of ˇ. For this, it is sufficient
to determine

.1; Œn�˝ . Nq � 1// D !.1; Œnv�1

; v�/

D !..n�1; 0/ iv.nv
�1

; v//

D ˇ.n�1/ ˇ.nv�1

/v

D ˇ.n�1/ ˇ.nq�1

/q

since ˇ is a P -morphism and Nq D rv D Nv.

With this description, we can get new results on the fundamental crossed module
of a space which is the pushout of classifying spaces. The following corollary is
immediate.
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Corollary 5.8.13. Under the assumptions of the theorem, let us consider the space
X D BQ [BP B.P=M/. Its fundamental crossed module …2.X;BQ/ is isomorphic
to the above crossed Q-module

.� W M � .M ab ˝ I.Q=P //! Q/:

In particular, the second homotopy group �2.X/ is isomorphic to M ab ˝ I.Q=P / as
Q=M -module.

Proof. The proof is immediate.

Note again one of our major arguments: we compute an abelian second homo-
topy group by using a 2dSvKT to compute a crossed module, a nonabelian invariant,
representing the homotopy 2-type.

Corollary 5.8.14. In particular, if the index ŒQ W P � is finite, and P is the crossed
module .1 W P ! P /; then ��P is isomorphic to the projection crossed module

.pr1 W P � .P ab/ŒQWP��1 ! Q/

with action as above.

Remark 5.8.15. In this case, X D BQ[BP B.P=P /may be interpreted either as the
space obtained from BQ by collapsing BP to a point, or, better, as

X D BQ [BP CB.P /;
the space got by attaching a cone: this is a consequence of the gluing theorem for
homotopy equivalences, [Bro06], 7.5.7.

The crossed module of Corollary 5.8.14 is not equivalent to the trivial one. At first
sight, it seems that the projection

pr2 W P � .P ab ˝ I.Q=P //! .P ab ˝ I.Q=P //
should determine a morphism of crossed modules to the trivial one

0 W .P ab ˝ I.Q=P //! I.Q=P //;

but this is not so because the map pr2 is not a Q-morphism.
We are going to show later (Theorem 12.7.10) that this crossed module is in a clear

sense not equivalent to the projection crossed module.

In the next section, we explain how the computer algebra system GAP has been
used to give further computations of induced crossed modules, and of course these
have topological applications according to the results of this chapter.

We have now completed the applications of the 2-dimensional Seifert–van Kampen
Theorem which we will give in this book. In the next chapter we give the proof of the
theorem, using the algebraic concepts of double groupoids.
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5.9 Computation of induced crossed modules

This section is work of C. D. Wensley.
The following discusses significant aspects of the computation of induced crossed

modules. Let us consider the description of the induced module from a computational
point of view. It involves the copower, i.e. a free product of groups. This usually
gives infinite groups, but let us consider how to get a finite presentation in the case
M 6 P 6 Q.

If M D hX j Ri is a finite presentation of M , and T is a right transversal of P in
Q, there is a finite presentation of M �T with jX jjT j generators and jRjjT j relations.

Let XP be the closure of X under the action of P . Then ��.M/ D .M �T /=N
where N is the normal closure in M �T of the elements

h.m; t/; .n; u/i D .m; t/�1.n; u/�1.m; t/.n; u/ı.m;t/ (5.9.1)

for all m; n 2 XP , t; u 2 T . The homomorphism �� is induced by the projection
pr1m D .m; 1/ onto the first factor, and the boundary ı of ��M is induced from ı0 as
shown in the following diagram:

M
�� ��

�

��

.M �T /=N

ı

��
P �

�� Q.

When † is a set and 
 W † ! Q any map, take M D P D F.†/ to be the free
group on † and let F† D .idF.†/ W F.†/ ! F.†/ /. Then 
 extends uniquely to a
homomorphism 
 0 W F.†/ ! Q and 
 0�F† is the free crossed module F	 described
in Section 3.4. However, computation in free crossed modules is in general difficult
since the groups are usually infinite.

So, in order to compute the induced crossed module ��M for M D .� W M ! P /

a conjugation crossed module and � W P ! Q an inclusion, we construct finitely
presented groups FM , FP , FQ isomorphic to the permutation groups M , P , Q and
monomorphisms FM ! FP ! FQ mimicking the inclusions M ! P ! Q.

As well as returning an induced crossed module, the construction should return a
morphism of crossed modules .��; �/ W M! ��M.

A finitely presented form FC for the copower M �T is constructed with jX jjT j
generators. The relators of FC comprise jT j copies of the relators of FM , the i -th
copy containing words in the i -th set of generators.

The inclusion ı0 maps the generators of FM to the first jX j generators of FC . A
finitely presented form FI for ��M is then obtained by adding to the relators of FC
further relators corresponding to the list of elements in Equation (5.9.1).

Then we can apply some Tietze transformationsto the resulting presentation. During
the resulting simplification, some of the first jX j generators may be eliminated, so the
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projection pr1 may be lost. In order to preserve this projection, and so obtain the
morphism ��, it is necessary to record for each eliminated generator g a relator gw�1
where w is the word in the remaining generators by which g was eliminated.

Let us see how this process works in some examples, and note some of the limitations
of the process.

Polycyclic groups, which are implemented in GAP4 as PcGroups (see [GAP08],
Chapters 43, 44), have algorithms which can be more efficient than those for arbi-
trary finitely-presented groups, since they work with elements in normal form. Recall
that a polycyclic group is a group G with power-conjugate (or power-commutator)
presentation having generators fg1; : : : ; gng and relations

fgoi

i D wi i .giC1; : : : ; gn/; ggj

i D w0
ij .gjC1; : : : ; gn/ for all 1 6 j < i 6 ng: (5.9.2)

Since subgroups M 6 P 6 G have induced power-conjugate presentations, and T is
a transversal for the right cosets of P inG, then the relators ofM �T are all of the form
in (5.9.2).

Furthermore, all the Peiffer relations in Equation (5.9.1) are of the form g
gj

i D gpk ,
so one might hope that a power conjugate presentation would result. Consideration of
the cyclic-by-cyclic case in the following example shows that this does not happen in
general.

Example 5.9.1. Let Cn be the cyclic group of order n and let ˛ W x 7! xa be an
automorphism of Cn of order p. Take

G D hg; h j gp; hn; hgh�ai Š Cp Ë Cn:

It follows from these relators that hig D ghai , 0 < i < n and that h�1.ghi.1�a//h D
gh.iC1/.1�a/. So if we put gi D ghi.1�a/; 0 6 i < n then g

gj

i D gŒjCa.i�j /�. When
M D P D Cn C G Theorem 5.8.12 apply, and ��P Š Cmn . Now takeM D P D Cp ,
with power-conjugate form hg j gpi, and � W Cp ! G. We may choose as transversal
T D f�; h; h2; : : : ; hn�1g, where � is the empty word. Then M �T has generators
f.g; hi / j 0 6 i < ng, all of order p, and relators f.g; hi /p j 0 6 i < ng. The
additional Peiffer relators in Equation (5.9.1) have the form

.g; hi /.g; hj / D .g; hj /.gk; hl/ where hih�jghj D gkhl ;
sok D 1 and l D ŒjCa.i�j /�. Hence� W ��M ! Q, .g; hi / 7! gi is an isomorphism,
and ��M is isomorphic to the identity crossed module on Q. Furthermore, if we take
M to be a cyclic subgroup Cm of Cp then ��M is the conjugation crossed module
.@ W Cm Ë Cn ! Cp Ë Cn/.

A desirable outcome of a computation is to identify ��M up to isomorphism. Small
examples show that many of the induced groups ��M are direct products. However the
generating sets in the presentations that arise following the Tietze transformations do
not in general split into generating sets for direct summands. This is clearly illustrated
by the following simple example.
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Example 5.9.2. Let Q D S4 be the symmetric group of degree 4, and let M D P D
A4, the alternating subgroup ofQ of index 2. Since the abelianisation ofA4 is cyclic of
order 3, Theorem 5.8.12 shows that ��M Š A4 � C3. However a typical presentation
for ��M obtained from the program is

hx; y; z j x3; y3; z3; .xy/2; zy�1z�1x�1; yzyx�1z�1; y�1x2y2x�1i;
and one generator for the C3 summand is yzx2. Converting ��M to an isomorphic
permutation group gives a degree 18 representation with generating set

f .1; 2; 3/.4; 6; 9/.5; 7; 10/.8; 11; 15/.12; 16; 17/.13; 14; 18/;
.1; 4; 5/.2; 6; 7/.3; 9; 10/.8; 16; 14/.11; 17; 18/.12; 13; 15/;

.2; 8/.3; 11/.4; 12/.5; 13/.7; 14/.9; 17/ g:
Converting ��M to a PcGroup produces a group with generators fg1; g2; g3; g4g,

composition series A4 � C3 > A4 > C 22 > C2 > I , and g1g2 is a generator for the
normal C3. In all these representations, the cyclic summand remains hidden, and an
explicit search among the normal subgroups must be undertaken to find it.

To illustrate the results obtained from our computations, we list all the induced
crossed modules coming from subgroups of groups of order at most 24 (excluding
16) which are not covered by the special cases mentioned earlier. This enables us to
exclude abelian and dihedral groups, cases P C Q and Q Š Cm Ë Cn.

In the first table, we assume given an inclusion � W P ! Q of a subgroup P of
a group Q, and a normal subgroup M of P . We list the group ��M induced from

Table 1

jQj M P Q ��M �2.�/

12 C2 C2 A4 HC
8 C4

C3 C3 A4 SL.2; 3/ C2

18 C2 C2 C 23 Ì C2 .C 23 Ì C3/ Ì C2 C3

S3 S3 C 23 Ì C2 .C 23 Ì C3/ Ì C2 C3

20 C2 C2 H5 D10 C2

C2 C 22 D20 D10 I

C 22 C 22 D20 D20 I

21 C3 C3 HC
7 H7C I

.� W M ! P / by the inclusion �. The kernel of @ W ��M ! Q is written �2.�/. In
the topological application this kernel is related to the second homotopy group, and in
some cases such as Theorems 5.4.4 and 5.4.7 it is exactly the second homotopy group.
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In this table the labels I , Cn, D2n, An, Sn denote the identity, cyclic, dihedral,
alternating and symmetric groups of order 1, n, 2n, nŠ=2 and nŠ respectively. The group
Hn is the holomorph of Cn, and HC

n is its positive subgroup in degree n; SL.2; 3/ is
the special linear group of order 24.

The second table contains the results of calculations with Q D S4, where C2 D
h.1; 2/i, C 0

2 D h.1; 2/.3; 4/i, and C 22 D h.1; 2/; .3; 4/i. GL.2; 3/ and GL.3; 2/ are the
general linear groups of order 48 and 168 respectively. The final column contains the
automorphism group Aut.��M/, except for one case where the automorphism group
has order 33;030;144.

Table 2

M P ��M �2.�/ Aut.��M/

C2 C2 GL.2; 3/ C2 S4C2

C3 C3 C3 SL.2; 3/ C6 S4S3

C3 S3 SL.2; 3/ C2 S4

S3 S3 GL.2; 3/ C2 S4C2

C 0
2 C 0

2 C 32 H
C
8 C 32C4

C 0
2 C 22 ; C4 HC

8 C4 S4C2

C 0
2 D8 C 32 C2 SL.3; 2/

C 22 C 22 S4C2 C2 S4C2

C 22 ; C4 D8 S4 I S4

C4 C4 SL.2; 3/ Ì C4 C4 S4C
2
2

D8 D8 S4C2 C2 S4C2

These computations confirm our point that the second homotopy group as a module
over the fundamental group can be but a pale shadow of a crossed module representing
a homotopy 2-type. It is not clear how to obtain what might be the ‘simplest’ crossed
module of such a representation: see the discussion in Section 12.7. Also note again that
our method is to obtain a computation of a second homotopy group from a computation
of a crossed module obtained by a colimit process. Such calculations essentially of
nonabelian second relative homotopy groups have not been obtained by other methods
of algebraic topology.
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Notes

57 p. 107 The results of this chapter are taken mainly from [BH78a, BW95, BW96,
BW03].

58 p. 113 These results on presentations of induced crossed modules go back to
[BH78a].

59 p. 114 This type of argument is dealt with for the fundamental groupoid in [Bro06],
Section 9.1.

60 p. 116 A modern, kind of repackaged, account of Whitehead’s proof is given in
[Bro80]. The use of knot theory in this proof is developed in [Hue09]. There are a
number of papers which give different proofs of Whitehead’s Theorem 5.4.8, e.g.
[Rat80], [EP86], [GH86], but it is not generally acknowledged that the theorem is
a consequence of a 2-dimensional Seifert–van Kampen type Theorem, a result not
mentioned in, say, [HAMS93], although other deductions from that theorem are
given.

Whitehead’s theorem was seen by Brown and Higgins as a significant example of
a universal property in 2-dimensional homotopy theory. It was the desire to obtain
this theorem as a consequence of a 2-dimensional Seifert–van Kampen Theorem
which made Brown and Higgins realise in 1974 the advantages of using a relative
theory.

61 p. 118 Note that in Theorem 5.5.2 we obtain immediately a result on the second
absolute homotopy group of Y [ C.A/ without using any homology arguments.
This is significant because the setting up of singular homology, proving all its
basic properties, and proving the Absolute Hurewicz Theorem takes a consider-
able time. An exposition of the Hurewicz theorems occurs on pages 166–180 of
G. Whitehead’s text [Whi78], assuming the properties of singular homology. The
cubical account of singular homology in [Mas80] fits best with our story.

Again, one of the reason for emphasising these kinds of results is that they arise
from a uniform procedure, which involves first establishing a Higher Homotopy
Seifert–van Kampen Theorem. This theorem has analogues for algebraic models
of homotopy types which are more elaborate than just groups or crossed modules;
these analogues have led to new results, such as a higher order Hopf formula
[BE88], which is deduced from an .nC 1/-adic Hurewicz Theorem [BL87a]. The
only proof known of the last result is as a deduction from a Seifert–van Kampen
Theorem for n-cubes of spaces [BL87], which has also stimulated research into
related areas.

62 p. 119 One interest in these results is the method, which extends to other situations
where the notion of abelianisation is not so clear, [BL87a].
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63 p. 119 This sequence was originally due to Stallings .

64 p. 119 It was only in 1989 that a generalisation of Hopf’s formula to all dimen-
sions was published in [BE88]. This involved the notion of ‘double’ and ‘n-fold
presentation’, which eventually was reformulated into that of n-fold extension,
in work of Janelidze, Everaert, [EGVdL08], and others. This suggests that the
reason for the limitations of the crossed complex methods dealt with in Part II is
that crossed complexes form a ‘linear theory’, as is shown by the linear form of
a crossed complex. For further work, we would seem to need double and higher
crossed complexes. The natural conjecture is that the quadratic theory needs
double crossed complexes, and so on! This is a matter for considerable further
exploration.

65 p. 126 See for example [CR06].

66 p. 128 Using topological methods, this result is generalised to the non-normal case,
in [BW95], Corollary 4.3.

67 p. 133 A direct verification of the universal property is given in [BW96].



Chapter 6

Double groupoids and the 2-dimensional Seifert–van
Kampen Theorem

In Chapter 2 we defined the important topological example of the fundamental crossed
module of a based pair of spaces

…2.X;A/.x/ D .@ W �2.X;A; x/! �1.A; x//;

and the applications of this using a 2-dimensional Seifert–van Kampen Theorem were
developed in Chapters 3–5.

However the structure of crossed module is inadequate to yield for this2-dimensional
Seifert–van Kampen Theorem a proof modelling in higher dimensions the proof of the
Seifert–van Kampen Theorem, as given in Section 1.6. For this kind of proof, we need
a new structure which can express the ideas of multiple compositions of squares and
of commutative cubes, and also enables the kinds of deformations used in the proof.68

Such a structure is provided by the homotopy double groupoid �.X;A; x/ of a based
pair, which we construct in Section 6.3, and which is discussed briefly in the section
on p. xxii in our Introduction to the book.

The proofs that �2.X;A; C / has the required properties are not entirely trivial. The
generalisation to all dimensions which we give in Chapter 14 is quite tricky, and needs
new ideas; this the main reason for introducing the methods first of all in dimension 2.

The key reason for conceiving of the homotopy double groupoid was to find an
algebraic gadget appropriate for giving an

algebraic inverse to subdivision.

This is the slogan underlying the work on Higher Homotopy Seifert–van Kampen The-
orems, and explains the emphasis in this book on cubical, rather than the traditional
simplicial, methods. Subdividing a square into little squares has a convenient expres-
sion in terms of double groupoids, and much more inconvenient expressions, if they
exist at all, simplicially or in terms of crossed modules. The 2-dimensional Seifert–van
Kampen Theorem was conceived first in terms of double groupoids, and it was only
gradually that the link with crossed modules was realised. In the end, the aim of ob-
taining Whitehead’s theorem on free crossed modules (Corollary 5.4.8) as a corollary
was an important impetus to forming a definition of a homotopy double groupoid for a
pointed pair of spaces, since that theorem involved a crossed module defined for such
a pair of spaces.

Further, the structure of double groupoids that we use was expressly sought for
two reasons. One was to make them equivalent to crossed modules, see Section 6.6.
The other was in order to make valid Lemma 6.8.4 in the proof of our 2-dimensional
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Seifert–van Kampen Theorem in the final section of this chapter. This lemma, which
shows that a construction of an element of a double groupoid is independent of all the
choices made, uses crucially the notion of ‘commutative cube’. The proof of the higher
dimensional theorem in Chapter 14 has a similar structure.

This theory gives also in a sense an algebraic formulation of different ways which
have been classically used and found necessary in considering properties of second and
higher relative homotopy groups. We find that the multiple groupoid viewpoint is useful
both for understanding the theory and for proving theorems, while the crossed mod-
ule, and later crossed complex, viewpoint is useful both for specific calculations, and
because of its closer relation to the more traditional chain complexes, see Section 7.4.
One important consequence of the algebraic formulation of the equivalence given in
Section 6.6 between crossed modules and our particular kind of double groupoids is
the equivalence between colimits, and in particular pushouts, in the two categories.

Since this is a longish chapter, it seems a good idea to include a more detailed sketch
of the way that all this material is presented here.

The first part describes the step up one dimension from groupoids to double group-
oids. Since these are double categories where all structures are groupoids and have
either a connection pair or a thin structure the first few sections are devoted to defining
first double categories and then connections. In parallel another algebraic category is
described, that of crossed modules over groupoids, which is equivalent to that of double
groupoids. The equivalence is finally proved in Section 6.6

The first section gives the definition and properties of double categories. Some
notions to be used later are also presented here, e.g. the double category of commutative
squares or 2-shells in a category or groupoid.

With this model in mind, we can think of the elements of a double category D as
squares. Also, we can restrict our attention to the subspace �D of ‘squares’ having all
faces trivial but the top one.

The double categoriesG which have all three structures groupoids have a substruc-
ture �G which is algebraically a crossed module over a groupoid. These algebraic
structures, which are an easy step away from that of a crossed module over a group,
are studied in Section 6.2.

A direct topological example of such a structure is the fundamental crossed mod-
ule of a triple of topological spaces .X;A; C / formed by all the crossed modules
@ W �2.X;A; x/ ! �1.A; x/ for varying x 2 C . We denote this crossed module by
…2.X;A/ and we shall prove that it is a crossed module in an indirect way by showing
in Proposition 6.3.8 that…2.X;A/ is the crossed module associated to the fundamental
double groupoid of a triple �.X;A;C / defined in Section 6.3.

Both the fundamental crossed module of a triple and the double category of comm-
utative 2-shells on a groupoid have some extra structure that can be defined in two
equivalent ways: as a thin structure (as in Section 6.4) and as a connection pair (in
Section 6.5). In this way we define the objects in the category of double groupoids.

Using 2-shells that ‘commute up to some element’, in Section 6.6 we associate to
each crossed module M a double groupoid �M in such a way that it is clear that ��M
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is naturally isomorphic to M. It is a bit more challenging to prove that for any double
groupoid G, ��G is also naturally isomorphic to G. In order to do this we use the
folding operation ˆ W G2 ! G2 which has the effect of folding all faces of an element
of G2 into the top face.

With all the algebra in place, we turn to the topological part. As seen in Chap-
ter 1, the proof of the 1-dimensional Seifert–van Kampen Theorem uses the homotopy
commutativity of squares. Thanks to the algebraic machinery developed earlier, we
can talk about commutative 3-cubes and prove that any composition of commutative
cubes is commutative (Theorem 6.7.4). This commutativity of the boundary of a cube
in �.X;A;C / has a homotopy meaning which is analogous to the 1-dimensional case
and which stated in Section 6.7.

We finish this chapter by giving in Section 6.8 a proof of the 2-dimensional Seifert–
van Kampen Theorem for the fundamental double groupoid and so of the main conse-
quences elaborated in the previous chapters.

The whole chapter can be seen as an introduction to the generalisation to all dimen-
sions which is carried out in Part III. Chapter 13 generalises the algebraic part by giving
an equivalence between crossed complexes and cubical !-groupoids with connections,
while Chapter 14 covers the topological part, including the statement and proof of the
HHSvKT for the fundamental !-groupoid �X� of a filtered space X�. This result is
the basis for the applications to crossed complexes given in Part II.

6.1 Double categories

Let us start by pointing out that there are several candidates for the term ‘double group-
oid’. We are going to keep that name for the structures which are defined in Section 6.4
and are then used to prove the 2-dimensional Seifert–van Kampen Theorems. We start
by investigating what a double category should be.

It is useful, particulary for the generalisations to higher dimensions, to think of a
category as having a composition imposed on the underlying geometry of a directed
graph, C . This is to have two sets C0, C1 called the sets of objects and of morphisms
respectively, and three maps: the source @� W C1 ! C0, the target @C W C1 ! C0 and
the identity 1 D " W C0 ! C1, satisfying

@�" D @C" D id:

For a category we also have a partial composition

C1 �C0
C1 ! C1

which is associative and has 1x D ".x/; x 2 C0 as giving right and left identities. We
think of this composition as a partial binary operation69 whose domain of definition is
determined by geometric conditions.
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Thus we can think of the elements of C0 as 0-dimensional, called points, and the
elements of C1 as 1-dimensional and oriented, called arrows. An element a 2 C1 is
represented by

� a

@�a @Ca
�

and for any x 2 C0 its identity 1x D ".x/ is

� 1x
x x

�

The composition ab of two elements a; b 2 C1 is described by juxtaposition:

� a

@�a @Ca D @�b
� b

@Cb
� D � ab

@�.ab/ @C.ab/
�

This gives a well-known 1-dimensional pictorial description of a category.

Remark 6.1.1. In general the notation for categories in this book follows the usual
notation for functions in which the composition of f W X ! Y and g W Y ! Z is
written gf W X ! Z according to the usual formula gf .x/ D g.f .x//. However this
convention turns out inconvenient when categories are viewed as algebraic objects,
with a partial composition, and becomes even more troublesome in higher dimensions.
So, when we use categories and groupoids as algebraic structures we will write the
composition of a W x ! y and b W y ! z as one of ab, a B b, a C b, all from x ! z,
but will keep the usual notation for composition in categories of structures, such as the
category of groupoids.70

For a 2-dimensional generalisation, namely a double categoryD, apart from the sets
of ‘points’,D0 and of ‘arrows’,D1, we need a set of ‘squares’,D2. We shall also have
two categories associated to the ‘horizontal’ and ‘vertical’ structures on squares, with
their faces and compositions. Also, we should have all the appropriate compatibility
conditions dictated by the geometry. The double categories we use are special since the
objects of the horizontal and the vertical category structures on squares are the same;
in other words, the horizontal and vertical edges of the squares come from the same
category. They are sometimes called ‘edge-symmetric’ double categories. This is the
case we need in this book.

Thus we think of an element u 2 D2 as a square

c

a u d

b

1

2
��

��

where the directions are labeled as indicated, and we call a, b, c, d the edges, or faces
of u.
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Definition 6.1.2. A double category71 is given by three sets D0, D1 and D2 and
three structures of category. The first one on .D1;D0/ has maps @�; @C and " and
composition denoted as multiplication. The other two are defined on .D2;D1/, a
‘vertical’ one with maps @�

1 , @C
1 and "1 and composition denoted by uC1 w and the

‘horizontal’one with maps @�
2 , @C

2 and "2 and composition denoted byuC2v, satisfying
some conditions.

Before describing the compatibility conditions it is worth getting used to the dia-
grammatic expression of the elements in a double category. Thus an element u 2 D2
is represented using a matrix like convention

@�
1 u

@�
2 u u @C

2 u

@C
1 u

1

2
��

��

where the labels on the sides are given as indicated.
From this representation it seems indicated, and we assume, that the sources and

targets have to satisfy
@�@	1 D @	@�2 for 
; � D ˙; .DC 1/

since they represent the same vertex. We shall find it convenient to represent the
horizontal identity in several ways, i.e.

"2.a/ D a a D D :

In the first representation the unlabeled sides are identities:

@	1"2 D "@	 for 
 D ˙: .DC 2:1/

In the other two, the sides corresponding to those drawn in the middle are identities.
Similarly, the vertical identity is represented by

"1.a/ D

a

D D
a

with the same conventions as before. It has also the expected faces in the horizontal
direction:

@	2"1 D "@	 for 
 D ˙: .DC 2:2/
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There are also some relations between the identities. The two double degenerate maps
are the same and are denoted by 0:

"2" D "1" D 0: .DC 3/

So 0x D 0.x/ is both a horizontal and a vertical identity and is represented as:

D

All elements ".x/; "1.a/; "2.a/ are called degeneracies.
The vertical and horizontal compositions can be represented by ‘juxtaposition’ in

the corresponding direction, and are indicated by:

uC1 w D
u

w

uC2 v D u v

They satisfy all the usual rules of a category, and may be given a diagrammatic repre-
sentation. For example, the fact that "2 is the horizontal identity may be represented
as:

u D u D u

The composition in one direction satisfies compatibility conditions with respect to
the faces and degeneracies in the other direction, i.e. these functions are homomor-
phisms. This can be read from the representation. Thus the horizontal faces of a
vertical composition are

@	2 .uC1 w/ D .@	2u/.@	2w/ for 
 D ˙; .DC 4:1/

and the vertical faces of the horizontal composition are

@	1 .uC2 v/ D .@	1u/.@	1v/ for 
 D ˙: .DC 4:2/

The same applies to the vertical and horizontal identities, i.e.

"2.ab/ D "2.a/C1 "2.b/; .DC 5:1/

"1.ab/ D "1.a/C2 "1.b/: .DC 5:2/
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Our final compatibility condition is known as the ‘interchange law’ and says that,
when composing 4 elements in a square, it is irrelevant if we compose first in the
horizontal direction and then in the vertical one, or the other way around, i.e.

.uC2 v/C1 .w C2 x/ D .uC1 w/C2 .v C1 x/ .DC 6/

when both sides are defined. This can be represented as giving only one way of
evaluating the double composition:

u v

w x

:

To complete the description of the category of double categories, a double functor
between two double categories D and D0 is given by three maps Fi W Di ! D0

i for
i D 0; 1; 2 which commute with all structure maps (faces, degeneracies, composition,
etc.). In particular, the pair .F1; F0/ gives a functor from .D1;D0/ to .D0

1;D
0
0/.

With these objects and morphisms, we get the category DCat of double categories.

Remark 6.1.3. Thus a double category has a structure which is called a 2-truncated
cubical set with compositions. Properties (DC 1)–(DC 3) give the 2-truncated cube
structure and (DC 4)–(DC 6) the compatibility with compositions. The corresponding
definitions in all dimensions are given in Part III in Section 13.1.

Remark 6.1.4. On matrix notation. There is also a matrix notation for the compo-
sitions which will be useful in this chapter and is applied often in Part III. We write:

uC1 w D
�
u

w

�
; uC2 v D Œu; v�:

With this notation we can represent all the rules in the definition of double categories.
For instance, we have �

u
�
D �

u;
	 D u:

Choosing the matrix description, the ‘interchange law’ (DC 6) may be written""
u

w

# "
v

x

##
D

"�
u v

	�
w x

	# ;
and this his common value is also written�

u v

w x

�
:
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Here is a caution about using this interchange law. Let u, v be squares in a double
category such that

w D �
u v

	 D uC2 v
is defined. Suppose further that

u D
�
u1
u2

�
D u1 C1 v1; v D

�
v1
v2

�
D u2 C1 v2:

Then we can assert

w D
�
u1 v1
u2 v2

�
only when u1 C2 v1, and u2 C2 v2 are defined. Thus care is needed in 2-dimensional
rewriting, such as that given on p. 175.72

This matrix notation has a generalisation which we use later.

Definition 6.1.5. LetD be a double category. A composable array .uij / inD is given
by elements uij 2 D2 .1 6 i 6 m, 1 6 j 6 n/ satisfying´

@C
2 ui;j�1 D @�

2 ui;j .1 6 i 6 m; 2 6 j 6 n/;

@C
1 ui�1;j D @�

1 ui;j .2 6 i 6 m; 1 6 j 6 n/:

It follows from the interchange law that a composable array .uij / in D can be
composed both ways, getting the same result which is denoted by Œuij �.

If u 2 D2, and .uij / is a composable array in D satisfying Œuij � D u, we say that
the array .uij / is a subdivision of u. We also say that u is the composite of the array
.uij /.

Remark 6.1.6. Subdivisions and their use. The interchange law implies that if
in the composable array .uij / we partition the rows and columns into blocks which
produce another composable array and compute the composite vkl of each block, then
Œuij � D Œvkl �. We call the .uij / a refinement of .vkl/ in this case.

This observation is used in several ways to prove equalities. The method consists
usually in starting from the definition of one side of the equation, then changing the
array using this subdivision technique and finally composing the new array to get the
other side of the equation. For quite elaborate examples of this method, see the proofs
of Theorem 6.4.10 and Proposition 6.5.3.

Changes in a composable array that are clearly possible using this subdivision
technique are:

(i) Select a block of an array and change it for another block having the same
composition and the same boundary (see Proposition 6.6.8)

(ii) Substitute some adjacent columns by another set of adjacent columns having the
same boundary and such that each row has the same horizontal composition in
both cases. The same can done with rows (see Theorems 6.4.10 and 6.4.11).
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Example 6.1.7. Let us give a couple of examples of double categories associated to a
category C . The first one is the double category of ‘squares’ or, better still, ‘2-shells’
in a category C , denoted by 0 C .

The category structure of . 0 C/1, i.e. points and arrows and composition, is the

same as that ofC . The squares of . 0 C/2 are defined to be the quadruples



c

a d
b

�
of elements a, b, c, d 2 C1 such that

@Ca D @�b; @�d D @Cc @Cb D @Cd; @�a D @�c

and the horizontal and vertical face and degeneracy maps are the ones clear from this
representation. For example

@�
1



c

a d
b

�
D c; @C

2



c

a d
b

�
D d I

1

2

��

��

if a W x ! y in C1 then

"1.a/ D



a
1x 1y

a

�
; "2.a/ D



1x

a a
1y

�
:

The compositions are defined by

c

a d
b

�
C1



b

f h
g

�
D



c

af dh
g

�
and 


c
a d
b

�
C2



u

d w
v

�
D



cu

a w
bv

�
It is easy to see that 0 C is a double category and that 0 is a functorial construc-

tion. Moreover this functor is right adjoint to the truncation functor which sends each
double category D to the category .D1;D0/. We leave the proof of adjointness as an
exercise.

We now define C , the category of ‘commutative squares’ or ‘commutative 2-

shells’. Its squares are the quadruples



c

a d
b

�
such that ab D cd .

The horizontal and vertical face and degeneracy maps and the compositions are the
restriction of those in 0 C .

Example 6.1.8. There are quite a few categories that can be defined in a similar manner,
but requiring that the compositions ab and cd differ in some way by the action of an
element of some fixed subset ofC . It is a good exercise to investigate which conditions
C and the action have to satisfy to obtain a double category.73 We shall come back to
this in Example 6.1.10.
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As we have stated above, our main objects of interest are double groupoids.74

These are in the first instance double categories in which all the categories involved are
groupoids. We first study these and later impose further structure of ‘connections’ and
the equivalent thin structure which are crucial for this work.

Definition 6.1.9. The category DCatG is the full subcategory of DCat which has as
objects double categories in which all three structures are groupoids.

By definition of a groupoid as a small category G in which all arrows are isomor-
phisms, there is a map . /�1 W G1 ! G1 such that

aa�1 D 1@�a and a�1a D 1@Ca; a 2 G:
Thus in a double category G where all three category structures are groupoids, there
are three ‘inverse’ maps

. /�1 W G1 ! G1; �1 W G2 ! G2 and �2 W G2 ! G2;

where

."ia/Cj ."ia�1/ D 0@�a; ."ia
�1/Cj ."ia/ D 0@Ca; for i ¤ j:

From the compatibility conditions (DC 4.1), (DC 4.2), we see that the boundary maps
preserve inverses in the other direction since they are homomorphisms, i.e.

@	1 .�2˛/ D .@	1 .˛//�1; @	2 .�1˛/ D .@	2 .˛//�1: .DCG 4/

From the compatibility conditions (DC 5.1), (DC 5.2), we get that the degeneracy maps
also preserve inverses, i.e.

"1.a
�1/ D �2."1.a//; "2.a

�1/ D �1."2.a//: .DCG 5/

We also easily check from the interchange law that for u 2 G2,

�1 �2 u D �2 �1 uI .DCG 6/

we denote �1�2 by �12 and call it a ‘rotation’, an idea which will be developed in
Definition 6.4.5.

Example 6.1.10. In the case G is a groupoid, the double categories G of comm-
utative 2-shells and 0G of 2-shells in G defined in Example 6.1.7 are all double

groupoids, the inverses of ˛ D



c
a d
b

�
being as follows:

�1˛ D



b
a�1 d�1

c

�
; �2˛ D



c�1

d a
b�1

�
; �1 �2 ˛ D



b�1

d�1 a�1
c�1

�
:
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There are interesting differences between the category and groupoid cases with
regard to commutative 2-shells. If G is a groupoid, the commutativity condition of a
2-shell ˛ as above can also be stated as c D abd�1 or even as b�1a�1cd D 1.

Exercise 6.1.11. In homotopy theory we may have noncommutative shells, so it is
interesting to see if we can modify the above construction of a double groupoid: so

start with a group G and a subgroup S of G and consider 2-shells



c

a d
b

�
of

elements of G such that b�1a�1cd 2 S . Prove that the compositions of these can be
defined as above to make a double groupoid if and only if S is a normal subgroup of
G. (This exercise is a preparation for the construction of a double groupoid from a
crossed module in Section 6.6.)

This leads to a possible extension of the notion of normal subgroups to ‘normal
subgroupoids’.75 At a further stage, the concept of normal subgroupoid can be ‘ex-
ternalised’ as a crossed module of groupoids, analogously to what has been done for
groups, and this will be done in Section 6.2.76

6.2 The category of crossed modules over groupoids

Crossed modules of groupoids are an easy step away from crossed modules of groups
and mimic the structure of the family of fundamental crossed modules …2.X;A; x/

when x 2 A � X . Also we can construct crossed modules over groupoids associated
to any double category which has all three structures of groupoid.

It is natural to define a crossed module of groupoids to be a morphism of groupoids
.� W M ! P / with an action of P on M such that axioms equivalent to CM1) and
CM2) are satisfied. Thus, we start with a groupoid P with its set of vertices P0, and
its initial and final maps @�, @C. We write P1.p; q/ for the set of arrows from p

to q .p; q 2 P / and P1.p/ for the group P1.p; p/. Recall that the composition of
a W p ! q and b W q ! r is written ab W p ! r .

Definition 6.2.1. A crossed module over the groupoid P D .P1; P0/ is given by a
groupoid M D .M2; P0/ and a morphism of groupoids

M
� �� P

which is the identity on objects and satisfies:
• M is a totally disconnected groupoid with the same objects as P . Equivalently,

M is a family of groups fM2.p/gp2P0
.

We shall use additive notation for all groups M2.p/ and we shall use the same
symbol 0 for all their identity elements.

Also, � is given by a family of homomorphisms f�p W M2.p/! P1.p/gp2P0
.
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• The groupoid P operates on the right on M . The action is denoted .x; a/ 7! xa.
If x 2 M2.p/ and a 2 P1.p; q/ then xa 2 M2.q/. It satisfies the usual axioms of an
action:

i) x1 D x, .xab/ D .xa/b ,

ii) .x C y/a D xa C ya.

(Thus M2.p/ ŠM2.q/ if p and q lie in the same component of the groupoid P ).

• These data are to satisfy two laws:

CM1) � preserves the actions, i.e. �.xa/ D .�x/a.

CM2) For all c 2M2.p/,�c acts onM by conjugation by c, i.e. for anyx 2M2.p/,

x�c D �c C x C c:
Notice thatM2.p/ is a crossed module overP1.p/ for all p 2 P0. In the case when

P0 is a single point � is a crossed module over a group and we also call it a reduced
crossed module.

A morphism of crossed modules f W .� W M ! P / ! .� W N ! Q/ is a pair of
morphisms of groupoids f2 W M ! N , f1 W P ! Q inducing the same map of vertices
and compatible with the boundary maps and the actions of both crossed modules. We
denote by XMod the resulting category of crossed modules over groupoids. Notice that
the category XMod=Groups studied in the preceding chapters can be seen as the full
subcategory of XMod whose objects are reduced crossed modules of groupoids.

Example 6.2.2. As we have pointed out, there is an immediate topological example.
For any topological pair .X;A/ and C � A, we consider P D �1.A; C /, the funda-
mental groupoid of .A; C /. Recall that the objects of �1.A; C / are the points of C and
for any x; y 2 C , the elements of �1.A; C /.x; y/ are the homotopy classes rel f0; 1g
of maps

! W .I; 0; 1/! .A; x; y/:

The fundamental crossed module…2.X;A; C / of the triple .X;A; C / includes the
family of groups f�2.X;A; x/gx2C which we defined already in Section 2.1.

Recall that any Œ˛� 2 �2.X;A; x/ is a homotopy class rel J 1 of maps

˛ W .I 2; @I 2; J 1/! .X;A; x/;

and so can be represented as a square

A

x ˛ x

x

1

2

��

��

where we follow our ‘matrix’ convention for the directions 1 and 2, as shown by the
arrows.
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The action
�2.X;A; x/ � �1.A; C /.x; y/! �2.X;A; y/

was also described in Section 2.1.
The morphism of groupoids @ W �2.X;A; C /! �1.A; C / is given, for each x 2 C ,

by the restriction to the top face 0 � I , so giving

@.x/ W �2.X;A; x/! �1.A; x/:

As before, it could be verified directly that these maps satisfy the properties of a
crossed module over a groupoid, but we prefer the roundabout way of verifying this by
proving that this crossed module is the one associated to a double groupoid called the
fundamental double groupoid which will be defined in Section 6.3.77

Let us go back to the general theory and see how to associate to any object
G 2 DCatG a crossed module of groupoids which we denote by

�G D .@ W �G ! P /:

We start by defining P to be the groupoid .G1; G0/. Thus the objects of �G are
.�G/0 D G0 and as morphisms we choose all u 2 G2 that have all faces degenerate
except @�

1 u, i.e.

.�G/2 D fu 2 G2 j @C
2 u D @�

2 u D @C
1 u D "@�@�

1 u D "@C@�
1 ug:

The reason we chose to use the subindex 2 in the set of morphisms M2 of M is
now apparent: because in this very important example they have ‘dimension’ 2. The
elements in �G2, when represented with a matrix like convention for the directions,
are

@�
1 u

1 u 1

1

1

2
��

��

With the obvious source, target, and identity, and the composition uC v defined to
be uC2 v, we get a totally disconnected groupoid .�G/2.

To make it a crossed module we need in addition to the groupoid structures on �G
and P , a morphism of groupoids @ and an action satisfying CM1) and CM2).

The morphism of groupoids is defined by

@ D @�
1 W �G2 ! P1: (6.2.1)

The final ingredient is an action

�G2.x/ �G1.x; y/! �G2.y/
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for all x; y 2 G0. It is given by degeneration and conjugation: i.e. for any u 2 �G2.x/
and a 2 G1.x; y/,

ua D Œ�2"1a; u; "1a�; (6.2.2)

or, in the usual representation,

1

.@�
1 u/

a

ua 1 D
a�1 @�

1 u

u

a

1 a�1
1 a

Now we have to check that this gives an action which satisfies both properties in
the definition of crossed module.

Proposition 6.2.3. The equation (6.2.2) defines a right action of G1 on �G2.

Proof. From the diagram, it is clear that ua 2 �G2. It is also not difficult to prove all
properties of an action:

uab D .ua/b; .uC2 v/a D ua C2 va and u1 D u:
It remains to check the two axioms CM1) and CM2).

Proposition 6.2.4. �G D .@�
1 W �G2 ! G1/ is a crossed module with the action

defined by (6.2.2).

Proof. The law CM1) is clear from the diagram, since the top face is the conjugate:

@.ua/ D @�
1 .u

a/ D @�
1 .�2"1a/@�

1 u@
�
1 ."1a/ D a�1@�

1 ua D .@u/a:
With respect to CM2), for any a D @v; v 2 �G2, we may construct an array such

that when computing both ways gives the equality. In this case the array is

a�1

u

a

�2v v

Composing first in the horizontal direction and then in the vertical one, the first row
gives ua and the second one a degenerate square, so we get ua.

On the other hand, composing first vertically, we get

Œ�2v; u; v� D uv:
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Definition 6.2.5. The previous construction of the crossed module over groupoids
associated to a double category in DCatG gives a functor

� W DCatG! XMod:

Remark 6.2.6. We finish this section by pointing out that for a double category which
has all three structures groupoids we have not only one associated crossed module
over groupoids but in principle four, possibly with differing conventions, since we may
chose any of the sides to be the unique one not equal to the identity. Let us call �G	j the
crossed module structure on the set of all elements of G2 having all faces degenerate
but the �-face in the j -direction defined by the map @�

j . In general, �G�
1 and �G�

2

are not isomorphic but we shall see that they are isomorphic in the topological case of
interest here, namely Example 6.2.2. The reason for this is that they are isomorphic
for double groupoids with connections, using rotations (see Definition 6.4.5).

6.3 The fundamental double groupoid of a triple of spaces

We shall start by describing a space of maps and some structure over it before taking
homotopy classes.

We consider a triple .X;A; C /. We shall use the triple .I 2; @I 2; @2I 2/ given by the
square, its boundary and the four vertices, respectively. We consider three sets

R0.X;A; C / D C;
R1.X;A; C / D f
 W .I; f0; 1g/! .A; C /g;
R2.X;A; C / D f˛ W .I 2; @I 2; @2I 2/! .X;A; C /g:

and call the elements of R2.X;A; C / filtered maps

˛ W .I 2; @I 2; @2I 2/! .X;A; C /:

Remark 6.3.1. The elements of R2 can be represented by squares as follows.

A

A ˛

C

A

C

AC C

1

2
��

��

Note that, unlike the definition of the relative homotopy groups, no choice of direction
or initial edge is made. We shall see that the ‘good practice’ of not making choices too
early combines with the aesthetic requirement of symmetry to lead to a construction
with more power!
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There is an obvious definition of source and target maps onR2, in two directions and
given by restriction to the appropriate faces of I 2. More formally they are compositions
with the maps given for x 2 I by

@C
1 .x/ D .1; x/; @�

1 .x/ D .0; x/ and @C
2 .x/ D .x; 1/; @�

2 .x/ D .x; 0/
and they can be seen in the diagram

@�
2

@�
1

@C
2

@C
1

1

2
��

��

The identities are given by composing with the projection in the appropriate direc-
tion, i.e.

p1.x; y/ D x and p2.x; y/ D y
and we use the same notation for degenerate squares as in the previous section.

The set R1 has the standard composition of paths used in defining the fundamental
groupoid. The set R2 has two similar compositions given for ˛, ˇ, � in R2.X;A; C /
such that @C

1 ˛ D @�
1 ˇ, @C

2 ˛ D @�
2 � by

.˛ C1 ˇ/.x; y/ D
´
˛.2x; y/ if 0 6 x 6 1=2;

ˇ.2x � 1; y/ if 1=2 6 x 6 1;

and

.˛ C2 �/.x; y/ D
´
˛.x; 2y/ if 0 6 y 6 1=2;

�.x; 2y � 1/ if 1=2 6 y 6 1:

We leave the reader to check that the interchange law holds for these two compositions.
The reverse of an element ˛ 2 R2, with respect these two directions are written �1˛,
�2˛ and are defined respectively by .x; y/ 7! ˛.1 � x; y/, .x; y/ 7! ˛.x; 1 � y/.

All this structure means in particular that R.X;A;C / is a 2-truncated cubical set
with compositions. (The general situation in all dimensions is discussed in Sec-
tion 13.1). This structure does not give a double category, for the usual reasons of
lack of associativity, identities, etc. Nevertheless, it is useful to fix the meaning of
composition of arrays. We study this in the next remark.78

Remark 6.3.2. For positive integers m, n let 'm;n W I 2 ! Œ0;m� � Œ0; n� be the map
.x; y/ 7! .mx; ny/. An m � n subdivision of a square ˛ W I 2 ! X is a factorisation
˛ D ˛0 B 'm;n; its parts are the squares ˛ij W I 2 ! X defined by

˛ij .x; y/ D ˛0.x C i � 1; y C j � 1/:
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We then say that ˛ is the composite of the squares ˛ij , and we write ˛ D Œ˛ij �. Similar
definitions apply to paths and cubes.

Such a subdivision determines a cell-structure on I 2 as follows. The intervals Œ0;m�,
Œ0; n� have cell-structures with integral points as 0-cells and the intervals Œi; i C 1� as
closed 1-cells. Then Œ0;m� � Œ0; n� has the product cell-structure which is transferred
to I 2 by '�1

m;n. We call the 2-cell '�1
m;n.Œi � 1; i � � Œj � 1; j �/ the domain of ˛ij .

Definition 6.3.3. To define the fundamental double groupoid associated to a triple of
spaces .X;A; C / we shall use the three sets

�0.X;A; C / D C;
�1.X;A; C / D R1.X;A; C /= �;
�2.X;A; C / D R2.X;A; C /= �;

where � is the relation of homotopy rel vertices on R1 and of homotopy of pairs rel
vertices on R2. That is, for such a homotopy Ht W I 2 ! X , we have for all t 2 I
that Ht .c/ D H0.c/ if c 2 @2I 2, and also of course Ht .b/ 2 A for all b 2 @I 2. We
call this type of homotopy a thin homotopy to distinguish it from the usual homotopy,
written ', of maps I ! A or I 2 ! X . It is important that a thin homotopy is rel
vertices, that is, the vertices of I and of I 2 are fixed in the homotopies. This allows us
to obtain the groupoid structures on the thin homotopy classes without imposing any
condition on the spaces.

The thin homotopy class of an element ˛ is written hh˛ii.
Remark 6.3.4. We will see later that the condition of ‘rel vertices’ is a key to obtaining
the double groupoid structure.79

We expect all the structure maps in �.X;A;C / to be those induced by the corr-
esponding structure maps ofR.X;A;C /. So we have to prove that they are compatible
with the homotopies. In the case of the structure maps for .�1; �0/ this is clear, since
they form the relative fundamental groupoid of the pair .A; C /.

Let us try the maps for the horizontal and vertical structure on .�2; �1/. There is
no problem with the source and target since the homotopies are thin. Also a homotopy
between elements of R1.X;A; C / gives easily a homotopy between the associated
identities. The only problems appear to be with the compositions.

We develop only the horizontal case; the other follows by symmetry. So, let us
consider two elements hh˛ii; hhˇii 2 �2.X;A; C / such that hh@C

2 ˛ii D hh@�
2 ˇii, i.e. we

have continuous maps

˛; ˇ W .I 2; @I 2; @2I 2/! .X;A; C /

and a homotopy

h W .I; @.I // � I ! .A; C /
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from ˛jf1g�I to ˇjf0g�I rel vertices, i.e. h.0 � I / D y and h.1 � I / D x. We define
now the composition by

hh˛ii C2 hhˇii D hh˛ C2 hC2 ˇii D hhŒ˛; h; ˇ�ii:
This is given in a diagram in which the outer labels A, X denote the codomain for the
edges and the inner labels A, X denote the codomain for the squares:

A

X
A ˛

x

A
A h

A

X
A ˇ A

A y A

. (6.3.1)

Our first important step is that these compositions are well defined.

Proposition 6.3.5. The compositionsCi in �2.X;A; C / are well defined.

Proof. To prove this we chose two other representatives ˛0 2 hh˛ii and ˇ0 2 hhˇii and
a homotopy h0 from ˛0jf1g�I to ˇ0jf0g�I . Using them, we get

A

X
A ˛0

x

A
A h0

A

X
A ˇ0 A

A y A

.

which should give the same composition in �2 as (6.3.1).
Since hh˛ii D hh˛0ii, hhˇii D hhˇ0ii there are thin homotopies W ˛ � ˛0, W ˇ � ˇ0

which can be seen in the next figure, in which the thick lines denote edges on which
the maps are constant.

1

2

3

˛



˛0

h

h0

ˇ

ˇ0

 

Figure 6.1. Filling a hole in the middle

To complete this to a thin homotopy

˛ C2 hC2 ˇ � ˛0 C2 h0 C2 ˇ0



160 6 Double groupoids and the 2-dimensional Seifert–van Kampen Theorem

we need to ‘fill’ appropriately the hole in the middle (see Figure 6.3).
Let

k W I � @I 2 ! A

be given by .r; s; 0/ 7! h.r; s/; .r; s; 1/ 7! h0.r; s/, .r; 0; t/ 7! t .r; 1/; .r; 1; t/ 7!
 t .r; 0/. In terms of Figure 6.3, k is the map defined on the four side faces of the
central hole. But k is constant on the edges of the bottom face, since all the homotopies
are rel vertices. So k extends over f1g � I 2 ! A extending k to five faces of I 3.

Now we can retract I 3 onto any five faces by projecting from a point above the
centre of the remaining face. Composing with this retraction, we obtain a further
extension k0 W I 3 ! A. The composite cube  C2 k0C2  is a thin homotopy � � � 0
as required: the key point is that the extension k0 of k maps the top face of the middle
cube into A, since that is true for all the other faces of this middle cube.80

Once we have proved that compositions in �2 are well defined, we can easily prove
that they are groupoids, with hh�i˛ii being the inverse of hh˛ii for the compositionCi ,
i D 1; 2. We also need to prove the interchange law.

Proposition 6.3.6. The compositions C1, C2 in �2.X;A; C / satisfy the interchange
law.

Proof. We start with four elements hh˛ii; hhˇii; hh�ii; hhıii 2 �2.X;A; C / such that
hh@C
2 ˛ii D hh@�

2 ˇii, hh@C
2 �ii D hh@�

2 ıii, hh@C
1 ˛ii D hh@�

1 �ii and hh@C
1 ˇii D hh@�

1 ıii. To
prove that

.hh˛ii C2 hhˇii/C1 .hh�ii C2 hhıii/ D .hh˛ii C1 hh�ii/C2 .hhˇii C1 hhıii/
we construct an element of R2.X;A; C / that represents both compositions. The argu-
ment involves ‘filling a hole’.

Using thin homotopies h W @C
2 ˛ � @�

2 ˇ, h0 W @C
2 � � @�

2 ı, k W @C
1 ˛ � @�

1 � and
k0 W @C

1 ˇ � @�
1 ı given because the compositions are defined we have a map defined on

the whole square except on a hole in the middle:

A

A ˛

x1

h

A

ˇ A

x2 k

y

y ‹ y k0 x3

A �

y

h0 ı A

A x4 A
:

However the edges of this ‘hole’ determine constant paths at y. So we extend with
the constant map, and evaluate the resulting composition in two ways to prove the
interchange law.
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Thus we have proved that �.X;A;C / is a double category where all three structures
are groupoids. We call this the fundamental double groupoid of the triple .X;A; C /
and leave the study of its extra structure which justifies its name till Section 6.4.

A map f W .X;A; C /! .X 0; A0; C 0/ of triples clearly defines a morphism

�.f / W �.X;A;C /! �.X 0; A0; C 0/

of double categories.

Proposition 6.3.7. If f W .X;A; C /! .X 0; A0; C 0/ is a map of triples such that each
of f W X ! X 0, f1 W A ! A0 are homotopy equivalences, and f0 W C ! C 0 is a
bijection, then �.f / W �.X;A;C /! �.X 0; A0; C 0/ is an isomorphism.

Proof. This is a consequence of a cogluing theorem for homotopy equivalences. We
give some details for the analogous result for filtered spaces in Proposition 14.1.10.

Now let us check the not quite so straightforward fact that the crossed module
associated to the fundamental double groupoid �.X;A;C / is the fundamental crossed
module …2.X;A; C /, i.e. �.�.X;A;C //2 D …2.X;A; C /. Recall that the elements
of �.�.X;A;C //2.x/ are thin homotopy classes of filtered maps

˛ W .I 2; @I 2; @2I 2/! .X;A; x/

such that the restriction to all sides but the last vertical one are homotopically trivial.
On the other hand, �2.X;A; x/ consists of homotopy classes of maps

˛ W .I 2; @I 2; JC/! .X;A; x/:

Let us check that they are the same.

Proposition 6.3.8. If x 2 C , then the group �.�.X;A;C //2.x/may be identified with
the group �2.X;A; x/.

Proof. We have definedR2.X;A; C / as a set and we also consider it as a space with the
usual compact-open topology. We also define J2.X;A; C / as the space of maps I 2 !
X which take @�

1 into A and the other faces to a single element of C . Then we have a
natural homeomorphism into i W J2.X;A; C /! R2.X;A; C /. This homeomorphism
induces a map

 W �2.X;A; x/! �.�.X;A;C //2.x/;

.Œ˛�/ D hhi.˛/ii, which is well defined, is a group homomorphism and preserves the
actions. We only have to prove that  is bijective. We shall use filling arguments
which are developed for more general situations in Section 11.3.i. In the following we
abbreviate R2.X;A; C /, J2.X;A; C / to R2, J2.
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For surjectivity of  we use the following diagram showing a subspace L of I 3,
and in which we find it convenient to switch the axes:

˛

>>>>>>>>>

>>>>>>>>>

>>>>>>>>>

>>>>>>>>>

>>>>>>>>> 1

3

2

��

��

99;;;;;;

in which edges which are eventually mapped constantly are shown in thick lines. The

face @�
3 gives ˛ such that hh˛ii 2 ��.X;A;C /. This implies that there are three

homotopies of edges of ˛ to constant maps, and these homotopies are shown as the
three faces @2̇ , @C

1 of L. We now construct a retraction I 3 ! L in two steps. The
first retraction is on the face @�

1 from the point .0; 1
2
; 2/. The second is on the whole

cube from .1
2
; 1
2
; 2/. These retractions define an extension of the given maps on L to a

homotopy of ˛ to a map in J2. This proves surjectivity.
For injectivity, we construct a continuous map r W R2 ! J2. This will not be a

retraction, but if ˛ 2 J2, then r.˛/ is homotopic in J2 to ˛.
Consider the subspace K of I 3 pictured as follows:

˛

>>>>>>>>>

>>>>>>>>>

>>>>>>>>>

>>>>>>>>>

>>>>>>>>> 1

3

2

��

��

99;;;;;;

in which again thick lines depict edges eventually to be mapped constantly. We con-

struct in turn a sequence of retractions, the first four on the faces, to give a retraction
I 3 ! K, namely retract: the face @C

1 from .1;�1; 1
2
/; the face @�

2 from .�1; 0; 1
2
/; re-

tract @�
1 from .0; 1

2
; 2/; finally retract the cube onto the above filled faces from .1

2
; 1
2
; 2/.

(You should draw the successive stages).
An element ˛ 2 R2 defines a map ˛0 W K ! X in which the part shown by wavy

lines is mapped constantly. Using the above retractions, ˛ extends over I 3 to give a
map r 0.˛/ W I 3 ! X which is in J2. This defines a continuous map r W R2 ! J2,
˛ 7! @C

3 r
0.˛/.

Now suppose ht W I 2 ! X is a homotopy rel vertices of ˛ through elements of
R2 to a constant map. Then r.ht / W I 2 ! X is a homotopy rel vertices of r.˛/ to a
constant map and through elements of J2. But r.˛/ is easily seen to be homotopic in
J2 to ˛, so ˛ is homotopic to 0 in J2. This completes the proof.

The reader will have noticed the wide use of filling arguments in the above proofs.
These arguments are developed in higher dimensions in Section 11.3.i and in Chapter 14
and are the key to the proof of corresponding results, for example Theorem 14.4.1,
which generalises Proposition 6.3.8 to all dimensions.
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6.4 Thin structures on a double category: the category of double
groupoids

We have examples of double categories coming from two sources: first, the 2-shells
commutative up to an element of a crossed modules over groupoids hinted at the end
of Section 6.1 and which will be properly developed in Section 6.6, and second, the
fundamental double groupoid of a topological pair seen in Section 6.3. In both cases
not only are all three structures groupoids but they have also some extra structure. Let
us see one way of introducing this structure.

We have already introduced in Example 6.1.7 the double category 0C of 2-shells
in the category C and its sub double category C of commuting 2-shells.

For any double category D there is a morphism of double categories D ! 0D1
which is the identity in dimensions 0, 1 and in dimension 2 gives the bounding shell
of any element. On the other hand, there is no natural morphism the other way, from
either 0D1 or D1, which is the identity on D1.

In this section, we are going to study double categories endowed with such a mor-
phism, i.e. for any given commuting shell inD1, there is a chosen ‘filler’ inD2. Next, in
Section 6.5, we develop an alternative approach using some extra kind of degeneracies
called connections.

Definition 6.4.1. We therefore define a thin structure on a double category D to be a
morphism of double categories

‚ W D1 ! D

which is the identity on D1;D0. The 2-dimensional elements of the form ‚˛ for
˛ 2 . D1/2 will be called thin squares in .D;‚/ or simply in D if ‚ is given.

Equivalently, a thin structure may be given by giving the thin squares and checking
the following axioms:
T0) Any identity square in D is thin.
T1) Each commuting shell in D has a unique thin filler.
T2) Any composite of thin squares is thin.

By T0), particular thin squares represent the degenerate squares, namely those of the
form

1

1 1

1

a

a

a a (6.4.1)

which we write in short as

:
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Notice that identity edges are those drawn with a solid line. The notation is ambiguous,
since for example the second element is the same as the first if a D 1. Also we have not
named the vertices. Nevertheless, it is clear that they represent the degenerate squares
since ‚ is a morphism of double categories.

We also have two new kind of ‘degenerate’ squares, but called ‘thin’:

a

a a

a

(6.4.2)

which we write in short as

:

The fact that ‚ is a morphism of double categories leads immediately to some
equations for compositions of such elements, i.e.

h i
D

24 35 D : (6.4.3)

Remark 6.4.2. In writing such matrix compositions, of course we always assume that
the compositions are defined. In order to understand these and other equations between
composites of thin elements, and their combinations with elements of G2 given later,
you should expand our diagrams by filing in names for the edges of the squares to
ensure the composites are well defined, and see how these edges are ‘transferred’ by
the thin elements. Some such ‘filling in’has to be done in the proof of Proposition 6.5.5
since that has no element u 2 G2 to ‘fix’ some edges.

The reason why these equations hold is that the composites are certainly thin, by
T2), and since they are determined by their shell, by T1), they are by T0) of the form
given.

Here are some more consequences of these equations, known as ‘transport laws’:8124 35 D ;

24 35 D : (6.4.4)

If in addition the categoryD1 is a groupoid then we have two further thin elements
namely

a

a

a�1

a�1
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which we write again with ambiguity as

:

These elements give rise to new equations, for example24 35 D :

Note here that three of the sides of this last composition are identities, and hence so
also is the fourth, by commutativity.

Now we apply these ideas to the fundamental double groupoid �.X;A;C /.

Proposition 6.4.3. The fundamental double groupoid �.X;A;C / has a natural thin
structure in which a class hh˛ii is thin if and only it has a representative ˛ such that
˛.I 2/ � A.

Proof. Let a; b; c; d W I ! A be paths in A such that ab ' cd in A. It is a standard
property of the fundamental groupoid that the given paths can then be represented by
the sides of a square ˛ W I 2 ! A. We have to prove that such a square is unique in �2.

Let ˛0 W I 2 ! A be another square whose edges a0, b0, c0, d 0 are equivalent in
�1.A; C / to a, b, c, d respectively. Choose maps h; k; l W I 2 ! A giving homotopies
rel end pointsa ' a0, b ' b0, c ' c0; these homotopies and˛ and˛0 can be represented
as

c0

x l

˛0

x

a0 h

c

a ˛ d

x b

x k

b0

Folding the diagram gives a map H from five 2-faces of I 3 to A.
Now, using the retraction from I 3, we can extend this to a map I 3 ! A, which

gives a thin homotopy as required.
Note that this is where we use the fact that a thin homotopy is allowed to move the

edges of the square within A.
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˛

k

l

˛ 0

Figure 6.2. Box without a lateral face.

Since this important example has this structure, it is reasonable to call them double
groupoids. This leads to:

Definition 6.4.4. A double groupoid is a double category such that all three structures
are groupoids, together with a thin structure. We write DGpds for the category of
double groupoids taking as morphisms the double functors that preserve the given thin
structures.

We are interested in the restriction to this category of the functor � defined in
Section 6.2, and which we write now as

� W DGpds! XMod:

Notice that the thin elements ; in �.X;A;C / are determined by specific maps
on I 2, namely composition of a path I ! A with the maps max;min W I 2 ! I . We
will say more on this in the next section, and give further elaboration in all dimensions
in Section 13.1.

An important consequence of the existence of a thin structure in a double groupoid
is that the vertical and horizontal groupoid structures in dimension 2 are isomorphic.
The isomorphism is given by ‘rotation’ maps 
; � W G2 ! G2 which correspond to a
clockwise and an anticlockwise rotation through �=2.

Definition 6.4.5. LetG be a double groupoid. We define functions 
; � W G2 ! G2 as
follows: if u 2 G2 then


.u/ D

2664 u

3775 and �.u/ D

2664 u

3775 :
Notice that the boundary say



c

a d
b

�
of u is transformed by 
 , � to respectively:


a�1
b c
d�1

�
;



d

c�1 b�1
a

�
:
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The main properties of these operations are not essential for our main aims, but the
proofs illustrate the idea of ‘rewriting’ in higher dimensional algebra, and such argu-
ments occur frequently later in proving the main algebraic properties of the structures
we use.82

Since thin elements are determined by their boundaries, the next result follows
immediately – but these formulae need interpretation: when we write for example


. / D the boundary is transformed as



1

1 a
a

�
7!



1

a 1
a�1

�
. Thus distinct

occurrences of say do not necessarily represent the same element of G2. Nonethe-
less this abbreviated notation is very useful in writing down and understanding the
complicated compositions which we use in proving say Theorem 6.4.10.

Proposition 6.4.6. The images of thin elements under 
 and � are as follows


 W 7! ; 7! 7! ; 7! 7! 7! 7! ;

� W 7! ; 7! 7! ; 7! 7! 7! 7! :

The following result is also clear from the definitions, and facts such as�2 D .

Proposition 6.4.7. The following relations hold:

�1
 D ��1; �1� D 
�1; �2
 D ��2; �2� D 
 �2 :
We will prove in Theorem 6.4.10 that 
 is a homomorphism from the horizontal to

the vertical composition, while � is a homomorphism from the vertical to the horizontal
composition; and in Theorem 6.4.11 that � is an inverse to 
 . It follows that in the case
of a double groupoid the horizontal and the vertical groupoid structures in dimension
2 are isomorphic. Assuming these theorems for the moment, we have the following
result:

Proposition 6.4.8.

2 D �2 D �1�2; 
4 D �4 D 1:

Proof. We have

D 
.�2˛/ �2 
.�2˛/ D 
.�2˛/C2 �.˛/:
Applying 
 and using the facts stated above we get

D 
2.�2˛/C1 ˛;
from which follows


2.˛/ D �1 �2 ˛:
The other relations follow similarly and easily.
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Remark 6.4.9. It is from this easy to see that the operations �1;�2; 
; � generate a
group isomorphic to D8 since they operate faithfully on the boundary of a generic
element ˛.

Now we prove the facts stated before the last proposition. Here again we refer you
to Remark 6.4.2 on checking for yourself how the boundaries ofu and v are transformed
during the proofs.

Theorem 6.4.10. For any u; v; w 2 G2,


.Œu; v�/ D
�

u


v

�
and 



�
u

w

��
D Œ
w; 
u�;

�.Œu; v�/ D
�
�v

�u

�
and �


�
u

w

��
D Œ�u; �w�

whenever the compositions are defined.

Proof. We prove only the first rule and leave the others to the reader.

By definition, the element 
.Œu; v�/ is the composition of the array

2666664 uC2 v

3777775
:

We get a refinement of this array by substituting each element for a box which has the
initial element as its composition as follows:266666666666664

u v

377777777777775
:
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By Remark 6.1.6 this new array has the same composition as the initial one. We
now subdivide the second column horizontally in two, getting a new refinement

266666666666664
u v

377777777777775
which still has the same composition. Finally, we expand the three middle rows into
six in such a way that we do not change the vertical composition of each column
getting 26666666666666666666666664

u

v

37777777777777777777777775
:

The composition of this array still is 
.Œu; v�/ by Remark 6.1.6. To get the result, we
now see that the composition of the block given by the first four rows is 
u and the
composition of the other four is 
v.

It is a nice exercise to extend this result to any rectangular array using associativity.

Theorem 6.4.11. The rotations 
; � satisfy �
 D 
� D 1.
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Proof. It is easily seen that �
.u/ is the composition of the array266666666666664
u

377777777777775
:

Using Remark 6.1.6 four times, we can change the four blocks one by one and substitute
them for another four having the same boundary and composition, getting that �
.u/
is also the composition of the array266666666666664

u

377777777777775
whose composition reduces to u. We leave you to give a similar proof that 
� D 1 or
to deduce that from the rule �1� D 
1.

Remark 6.4.12. When these results are applied to �.X;A;C /, the fundamental double
groupoid of .X;A; C /, they imply the existence of specific thin homotopies. Indeed
one of the aims of higher order groupoid theory is to give an algebraic framework for
calculating with homotopies and higher homotopies.

6.5 Connections in a double category: equivalence with thin
structure

The extension of the notion of thin structure to higher dimensions is not straightforward
since it would require the notion of commutative n-cube and this notion is not easy
even for a 3-cube. We shall return to this at the end of this section.

We must look for an alternative which generalises more easily to higher dimen-
sions. We take as basic the two maps ��; �C W D1 ! D2, that correspond to the thin
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elements , , satisfying the properties we have seen in (6.4.3) and (6.4.4) after
Definition 6.4.1. We make this concept clear and develop the equivalence between the
two notions in this section.

Definition 6.5.1. A connection pair on a double category D is a pair of maps

��; �C W D1 ! D2

satisfying the four properties below.
• The first one is that the shells are what one expects, i.e., if a W x ! y in D1 then

��.a/; �C.a/ shells are

��.a/ D a

a

1y

1y

�C.a/ D1x

1x

a

a

which can be more formally stated as

@�
2 �

�.a/ D @�
1 �

�.a/ D a and @C
2 �

�.a/ D @C
1 �

�.a/ D "@Ca; (CON 1)

@C
2 �

C.a/ D @C
1 �

C.a/ D a and @�
2 �

C.a/ D @�
1 �

C.a/ D "@�a: (CON0 1)

• We also assume that the connections associate to a degenerate element a double
degenerate one:

��".x/ D 0x; .CON 2/

�C".x/ D 0x : .CON0 2/

• The relation with composition is given by the ‘transport laws’ (see (6.4.4)):

��.ab/ D
24 ��a

��b

35 D .CON 3/

�C.ab/ D
24 �Ca

�Cb

35 D .CON0 3/

Intuitively, a feature which 2-dimensional movements can have extra to 1-dimensional
movements is the possibility of turning left or right. The transport laws state intuitively
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that ‘turning left with one’s right arm outstretched is the same as turning left’, and
similarly for turning right.

• A final condition deduced from the same idea is that the connections can cancel
each other in a way corresponding to (6.4.3), i.e.

�C.a/C2 ��.a/ D "1.a/; .CON 4/

�C.a/C1 ��.a/ D "2.a/: .CON0 4/

It is interesting to notice that for double categories where all structures are groupoids
we need only a map �� satisfying the conditions (CON 1)–(CON 3) since �C can be
defined using (CON 4).

Proposition 6.5.2. For a double category in which all structures are groupoids, ��
and �C may be obtained from each other by the formula

�C.a/ D �2 �1 ��.a�1/:

Proof. Let us define
� 00.a/ D �2 �1 ��.a�1/:

Since ��.aa�1/ D ��.1/ D , we obtain from the transport law (CON 3) that
��.a�1/ D �1Œ��a; ."1a�1/�. Hence � 00.a/ D Œ."1a/; �2��a�:

This implies that � 00.a/C2 ��.a/ D "1.a/, and so by (CON 4) � 00.a/ D �C.a/.

If we use an analogue of our previous notations , , for ��, �C respectively
then of course we see that all these laws except the last are the ones we have given
before for thin elements. So it is not very difficult to see that any thin structure has
associated a unique connection, and that the given thin structure is determined by this
connection.

Proposition 6.5.3. If there is a thin structure‚ onD we have an associated connection
defined by

��a D ‚



a
a 1
1

�
and �Ca D ‚



1

1 a
a

�
:

Moreover, the morphism ‚ can be recovered from the connection, since

‚



c

a d
b

�
D ."2aC1�Cb/C2 .��cC1 "2d/ D ."1cC2�Cd/C1 .��aC2 "1b/:

.CON 5/

Proof. The results on the behaviour of �� and �C with respect to boundaries and
degeneracies are immediate.



6.5 Connections in a double category: equivalence with thin structure 173

Before proving the relation with the compositions, it is worth mentioning that the
values of ‚ on degenerate elements are determined by the fact that ‚ is a morphism
of double categories, so, ‚"1.b/ D "1.b/ and ‚"2.b/ D "2.b/.

Applying ‚ to the equation



ab

ab 1
1

�
D

0BBBB@



a
a 1
1

� 

b

1 1
b

�



1
b b
1

� 

b

b 1
1

�
1CCCCA

we get the transport law

��.ab/ D
�
��a "1b

"2b ��b

�
:

and the law for �C is obtained along the same lines.
Moreover, it is easy to see that in D, the element


c
a d
b

�
may by decomposed as the product of any of the two arrays0BBBB@



1

a a
1

� 

c

c 1
1

�



1
1 b
b

� 

1

d d
1

�
1CCCCA or

0BBBB@



c
1 1
c

� 

1

1 d
d

�



a
a 1
1

� 

b

1 1
b

�
1CCCCA

where in the first one we have to compose first columns then rows and in the second
one the other way about.

Applying ‚ to these expressions, we get the formula (CON 5).

Remark 6.5.4. As we have seen in the proof of the preceding property, the thin elements
are composites of degenerate elements and connections. Conversely, all degeneracies
and connections lie in the image of ‚, so any composition of such elements is a thin
element. Thus we have an easy characterisation of the thin elements. The higher
dimensional versions of these results are given in Section 13.4.83

There is more work in obtaining the other implication, i.e. getting the thin structure
from the connection maps.

Proposition 6.5.5. If there is a connection onD, we have an associated thin structure
‚ defined by the formula (CON 5) in Proposition 6.5.3. Moreover, the connection can
be recovered from ‚, since

��.a/ D ‚



a
a 1
1

�
and �C.a/ D ‚



1

1 a
a

�
:
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Proof. Let us first prove that either formulae gives the same function. This will make
it easier to prove the morphism property.

We write

‚1



c

a d
b

�
D ."1c C2 �Cd/C1 .��aC2 "1b/ D

c d

a b

where the last diagram is obtained adding the degenerate middle row, and

‚2



c

a d
b

�
D ."2aC1 �Cb/C2 .��c C1 "2b/ D

a

b

c

d

Then we want to prove ‚1 D ‚2. A usual way of proving that two compositions
of arrays produce the same result is to construct a common subdivision. One that is
appropriate for this case is the following:

a

c

a

b

c

d

d

b

From this diagram, we may compose the second and third row using the transport law
and then rearrange things, getting ‚1 as indicated:



6.5 Connections in a double category: equivalence with thin structure 175

a

c

ab cd

d

c d

a b

b

D

a

c

d

c d

a b

b

Similarly, operating in the bottom left and the top right corner, we get

a

c

a

b

c

d d

b

D
a

c

a

b

c

d d

b

and this last diagram clearly is ‚2. We write ‚ for the common value.

We would like to prove that ‚ is a morphism. From any of its representations,
it is clear that ‚ commutes with faces and degeneracies. The only point we have to
prove is that it commutes with both compositions. In this direction, it is good to have
two definitions of ‚. First, we use ‚ D ‚2 to prove that ‚ preserves the vertical
composition. The use of‚ D ‚1 to prove that it preserves the horizontal composition
is similar.

So we want to prove

‚2



c

a d
b

�
C1 ‚2



b

a0 d 0
e

�
D ‚2



c

aa0 dd 0
e

�
:
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As before we compute a common subdivision in two ways, and we choose as follows:

a

a0

c

a0

e

b

d 0

a

b

c

d d

d 0

b

e

If we compose the first two rows, they produce ‚2



c

a d
b

�
. Similarly, the two last

rows give ‚2



b

a0 d 0
e

�
.

On the other hand, making some easy adjusts on the two middle rows, we get

a

a0

c

a0

e

a

b

d 0

c

d d

d 0

e

D
aa0

c

aa0

e

c

dd 0 dd 0

e

which clearly is ‚2



c

aa0 dd 0
e

�
.

6.6 Equivalence between crossed modules and double
groupoids: folding

In this section, we prove the equivalence between the category DGpds of double group-
oids of Definition 6.4.4 and that of crossed modules of groupoids XMod of Defini-
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tion 6.2.1. Another aspect of this equivalence of categories is that it gives us a large
source of examples of double groupoids.84

On the one hand, the crossed module associated to a double groupoid is given by
the functor

� W DGpds! XMod;

restriction of the one defined in Section 6.2.
On the other hand, there is a double groupoid associated to each crossed module as

was already hinted at the end of Section 6.1. We shall develop this idea in this section.
We recall that to generalise the category of commutative 2-shells in a category, we use
2-shells which commute up to some element in the image of the crossed module.

Let M D .� W M ! P / be a crossed module over a groupoid. We claim there is
an associated double groupoid G D �M whose sets are G0 D P0, G1 D P1 and

G2 D f.mI



c
a d
b

�
/ j m 2M; a; b; c; d 2 P1; �m D b�1a�1cdg:

The elements of G2 may also be represented by

a m

c

d

b

so thatm measures the lack of commutativity of the boundary, giving the composition
of the sides of the boundary in clockwise direction starting from the bottom right corner,
considered as base point of the square.

Exercise 6.6.1. This choice out of 8 possibilities is conventional, and will influence
many later formulae. You are invited to consider the effect of other conventions on
such formulae.

The category structure in .G1; G0/ is the same as that of .P1; P0/, so it is a groupoid.
The horizontal and vertical structures on .G2; G1/ have source, target and identities
defined as in P . The definition of the compositions in dimension 2 is the key to the
work.

For the ‘horizontal’ composition we require the boundaries to be given as follows:

h n

g

a

k

C2 a m

c

d

b

D h A

gc

d

kb

(6.6.1)
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and for the ‘vertical composition’ we require

f u

g

e

c

C1 a m

c

d

b

D fa B

g

ed:

b

(6.6.2)

The problem is to find reasonable values in M for A;B . With our convention the
boundary of the square A is:

.kb/�1h�1gcd D b�1k�1h�1gabb�1a�1cd D b�1�.n/b�.m/:

So a good choice is
A D nb m:

This agrees with intuition since n has to be ‘moved to the right’ by the edge b to have
the same base point asm. Similarly, and the calculation is left to you, a good choice is

B D mud ;
since u has to be ‘moved down’ by the edge d . Notice that we use the rule CM1) for a
crossed module.

It is not difficult to check that with these compositions all three categories are
groupoids. We now verify the interchange law, using the following diagram:

v u

n a

c

m d

b

Evaluating the rows first gives the first component of the composition, in an abbre-
viated notation since the edges are omitted, as24vcu

nbm

35 D .nbm/.vcu/d
while evaluating the columns first gives the first component of the composition, in a
similar notation, as �

nva mud
	 D .nva/bmud :

So to prove the interchange law we have to verify that

mvcd D vabm:
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This follows from CM2) since �m D b�1a�1cd and then

m�1vabm D .vab/�m D vcd :
Remark 6.6.2. These ‘childish calculations’ were a key to the whole theory, and will
be part of the higher dimensional theory in Chapter 13.

To finish, we define a thin structure on G by the obvious morphism

‚ W P ! G2

given by ‚



c

a d
b

�
D .1I



c

a d
b

�
/.

Definition 6.6.3. The previous construction of the double groupoid associated to a
crossed module gives a functor

� W XMod! DGpds:

It is immediate that ��M is naturally isomorphic to M in dimensions 0, 1 and also
in dimension 2 as follows from

.��M/2 D f.m W



�m
1 1

1

�
/ j m 2M g ŠM:

It is rather more involved to get for any double groupoid G a natural isomorphism
from G to ��G. In order to do this, we shall see first that a double groupoid is
‘generated’ by the thin elements and those that have only one nondegenerate face,
which we assume to be the top face. To this end we ‘fold’ all faces to the chosen one.

Definition 6.6.4. Let G be a double groupoid. We define the folding map

ˆ W G2 ! .�G/2 � G2
by the formula ˆu D Œ�2"1@C

1 u; �2��@�
2 u; u; �

�@C
2 u�. Notice that this can be

defined only in the groupoid case because we are using �2.

In the usual description

ˆu D

b�1 a�1

a u

c

d

d

b�1 b

Now let us see that the boundary of ˆu is such that ˆu 2 �G2.
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Proposition 6.6.5. All faces of ˆu are identities except the first one in the vertical
direction, and

@�
1ˆu D @C

1 u
�1@�

2 u
�1@�

1 u@
C
2 u:

Thus ˆu 2 �G2 and Im ˆ � �G2.
Proof. All are easy calculations which are left as exercises.

Also from the definition, the following property is clear.

Proposition 6.6.6. All u 2 �G2 satisfy ˆu D u. Thus �G2 D Imˆ and ˆˆ D ˆ.

Proof. This is immediate since in this case all the elements making up ˆu except u
itself are identities.

Definition 6.6.7. We are now able to define a morphism of double groupoids

‰ W G ! .��/G

which is the identity in dimensions 0 and 1 and acts on dimension 2 by mapping any
element u 2 G2 to the element given by the folded element ˆu and the shell of u:

a u

c

d

b

7! .ˆ.u/ W



c
a d
b

�
/:

We shall see that ‰ is an isomorphism of double groupoids.
It is clear that ‰ preserves faces and degeneracies.
The most delicate part of the proof is the behaviour of the folding map ˆ with

respect to compositions. We obtain not a homomorphism but a kind of ‘derivation’,
involving conjugacies, or, equivalently, the action in the crossed module �G.

Proposition 6.6.8. Let u; v; w 2 G2 be such that uC1 v, uC2 w exist. Then

ˆ.uC1 v/ D Œˆv;�2"1g;ˆu; "1g� D ˆv C2 .ˆu/g ;
ˆ.uC2 w/ D Œ�2"1b;ˆu; "1b;ˆw� D .ˆu/b C2 ˆw;

where g D @C
2 v, b D @C

1 u.

Proof. The proof of the second rule is simple, involving composition and cancelation
in direction 2, so we prove in detail only the first rule. As before, this is done by
constructing a common subdivision and computing it in two ways. Namely if both u,
v are represented by

a u

c

d

b

and e v

b

g

f
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then

uC1 v D ae uC1 v
c

dg

f

So we have

ˆ.uC1 v/ D

f �1 .ae/�1

uC1 v
c dg

Applying both transport laws to the second and fourth square, we get a refinement

f �1
e�1 a�1

u

c d g

v

having the same composition by Remark 6.1.6. Next we get another array

f �1
e�1 b g g�1

b�1 a�1

u

c d g

v

having the same composite because each row has same composite in both cases (apply
Remark 6.1.6). Now we can compose vertically in this last diagram to get

f �1
e�1

v

b g g�1
b�1 a�1

u

c d g

and this is clearly ˆv C2 .ˆu/g as stated.

Since the equations proved in the preceding property are part of the definition of
the compositions in .��G/2, we have the following:
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Corollary 6.6.9. ‰ W G2 ! .��G/2 is a homomorphism with respect to both compo-
sitions.

To end our proof of the equivalence between the categories of crossed modules over
groupoids and double groupoids, it just remains to prove that the map ‰ is bijective,
and preserves the thin structures. Let us start by characterising the thin elements ofG2
using the folding map.

Proposition 6.6.10. An element u 2 G2 is thin if and only if ˆu D 1.
Proof. As we pointed out in the Remark 6.5.4 an element u 2 G2 is thin if and only
if it is a composition of identities and connections. By the preceding properties, it is
clear that both identities and connections map to 1 under the folding map, so the same
remains true for their compositions.

Conversely, if u 2 G2 satisfies ˆu D 1, and u has boundary



c

a d
b

�
so that

b�1a�1cd D 1, then

1 D

b�1 a�1 c

u

d�1

b�1 b

and so solving for u we have

u D a

a b

1

1 d�1

d

b 1

which gives the correct boundary for u since c D abd�1, and gives u as a composition
of identities and connections.

Corollary 6.6.11. The map ‰ preserves the thin structures.

Thus we can conclude that an element u 2 G2 is uniquely determined by its
boundary and its image under the folding map.

Proposition 6.6.12. Given an element



c

a d
b

�
2 G2 and m 2 �G2, there is

an element u 2 G2 with boundary



c

a d
b

�
and ˆu D m if and only if @�

1m D
b�1a�1cd . Moreover, in this case u is unique.
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Proof. We can solve the equation for u getting

u D
a

a

b

m

@�
1m d�1

d

1 b 1 1

thus giving the construction of such an element u. Uniqueness follows since this is an
equation in groupoids.

Corollary 6.6.13. The map ‰2 W G2 ! .��G/2 is bijective and determines a natural
equivalence of functors 1 ' �� .

Thus we have completed the proof that the functors � and � give an equivalence of
categories.85

Corollary 6.6.14. The functor � preserves pushouts and, more generally, colimits.

This allows us to prove a 2-dimensional Seifert–van Kampen Theorem first for
the fundamental double groupoid and then deduce a corresponding theorem for the
fundamental crossed module.

Remark 6.6.15. This equivalence also gives another way of checking some equalities
in double groupoids. To see that two elements are equal we just need to know that they
have the same boundary and that they fold to the same element. Alternatively, we can
just check the equations in a double groupoid of the form �.M ! P /. This is another
way of proving the properties of rotations.

6.7 Homotopy Commutativity Lemma

As we saw in Chapter 1, the desire for the generalisation to higher dimensions of the
concept of commutative square was one of the motivations behind the search for higher
dimensional group theory.

Recall that when proving the classical Seifert–van Kampen Theorem 1.6.1, the
main idea in the second part was to divide a homotopy into smaller squares and change
each one to give a commutative square in �1. Then we applied the morphisms and got
composable commutative 2-shells inK; the fact that in a groupoid any composition of
commutative 2-shells is commutative gave the result.

To generalise this to prove a 2-dimensional Seifert–van Kampen Theorem, we need
at least the following:
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– a concept of commutative 3-shell;

– to prove that the composition of 3-shells is commutative; and

– to relate commutative 3-shells with homotopy invariants.

Those are the objectives of this section.
Before getting down to business, let us point out that there is a further generalisation

to commutative n-shells for all nwhich will be explained in Part III (Chapter 13) using
the notion of thin n-cube. Nevertheless, in the 3-dimensional case the above needs can
be met by some careful handling of connections.

The method of course generalises the construction of the double categories of 2-
shells and commutative 2-shells seen in Example 6.1.8. In the 3-dimensional case we
get what could be labeled a ‘triple category’ but we are not formalising this concept at
this stage because that can be done in a more natural way in the more general setting
of Chapter 13 and is not necessary now.

First we consider the definition of 3-shells: this does not use the thin structure. Let
us start with the picture of a 3-cube where we have drawn the directions to make things
a bit easier to follow:


















 2

3

1

v� vC

u�

uCw�

wC

Figure 6.3. 3-shell.

Definition 6.7.1. LetD be a double category. A cube or (3-shell) s inD is a 6-tuple

s D .u�; uC; v�; vC; w�; wC/
of squares inD2 which fit together as do the faces of a 3-cube. To understand what this
means, we first define the faces of the above shell s to be @	1 s D u	 , @	2 s D v	 , and
@	3 s D w	 for 
 D ˙. Among these, the even faces are uC, v�, wC and the odd faces
are u�, vC, w�; thus the parity of a face @	i is the parity of i C l.
/ where l.�/ D 0,
l.C/ D 1. Next we note that since u�; uC are the faces of the shell in direction 1, then
their edges as embedded in a possible cube are given in the picture by the directions
2, 3; for v�, vC the edges are given by the directions 1, 3; for w�, wC the edges are
given by the directions 1, 2. Thus the conditions for the faces to ‘fit together’ are the
following:

@�
1 u� D @�

1 v�; @C
1 u� D @�

1 vCI @�
1 uC D @C

1 v�; @C
1 uC D @C

1 vCI
@�
2 u� D @�

1w�; @C
2 u� D @�

1wCI @�
2 uC D @C

1 w�; @C
2 uC D @C

1 wCI
@�
2 v� D @�

2w�; @C
2 v� D @�

2wCI @�
2 vC D @C

2 w�; @C
2 vC D @C

2 wC: �
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We now make the set of these 3-shells with the above face maps into a triple category
by defining three partial compositions of 3-shells as follows:

Definition 6.7.2. Let s D .u�; uC; v�; vC; w�; wC/ and t D .x�; xC; y�; yC; z�; zC/
be 3-shells in D. We define

s Ci t D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

.u�; xC; v� C1 y�; vC C1 yC; w� C1 z�; wC C1 zC/
if i D 1 and uC D x�;

.u� C1 x�; uC C1 xC; v�; y1; w� C2 z0; wC C2 zC/
if i D 2 and vC D y�;

.u� C2 x�; uC C2 xC; v� C2 y�; vC C2 yC; w�; zC/
if i D 3 and wC D z�:

You should draw pictures and check that these compositions are well defined and
yield a triple category, in the obvious sense. This construction will be extended to all
dimensions in Chapter 13, Definition 13.5.4, using a notation more suitable for the
general case.

Now we have to formulate the notion of commutative 3-shell. From the 2-dimen-
sional case it might seem that the proper generalisation would be that the composition
of the even faces of the shell equals the composition of the odd faces. We shall take
a different route which works in the groupoid case, explaining briefly the categorical
route in Remark 6.7.7.

Let us try to give some meaning to one face of a cube being the composition of the
remaining five. We can start by thinking of the picture we get by folding flat those five
faces of the cube:

w� vC

uC

u�

v�

3

3

33

2

2

2

1 1 1

Figure 6.4. Five faces of a cube folded flat.
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First, notice that already in this figure we need that the double category we are
using has all structures groupoids since we are using inverses of u� and v� in different
directions. Also, this Figure 6.4 does not give a composable array in any obvious sense.
However we can use the connections in a double groupoid with thin structure to fill the
corners of the diagram to give a composable array, and ask if:

wC D

�1u�

�2v� w� vC

uC

(6.7.1)

If the face wC D @C
3 s is the composition of the previous array involving the other five

faces, then we shall say that the above 3-shell s in a double groupoid commutes.

Remark 6.7.3. It is explained in Chapter 13 how to develop a corresponding theory in
higher dimensions by taking the connections rather than thin structure as basic, since
the properties of connections in all dimensions are easily expressed in terms of a finite
number of axioms, each of which expresses simple geometric features of mappings
of cubes. It is then a main feature of the algebra to develop the related notion of
thin structure. The chief advantage of thin structures is that potentially complicated
arguments involving multiple compositions of commuting shells of cubes are replaced
by simple arguments on the composition of thin elements: see Definition 13.4.17 and
the comments following it, as well as Section 13.7.

Now we prove two results on commuting cubes which are key to the proof of
our 2-dimensional Seifert–van Kampen Theorem 6.8.2. Our first result is about the
composition of commutative 3-shells.86

Theorem 6.7.4. In a double groupoid with connections, any composition of comm-
utative 3-shells is commutative.

Proof. It is enough to prove that any composition of two commutative 3-shells is
commutative.

So, let us consider two commutative 3-shells

s D .u�; uC; v�; vC; w�; wC/ and t D .x�; xC; y�; yC; z�; zC/
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in a double groupoid G. This implies that wC and zC are given respectively by

�1u� �1x�

wC D �2v� w� vC zC D �2y� z� yC

uC xC

We now check that composing in any of the three possible directions gives a comm-
utative 3-shell.

If vC D y�, the face @C
3 .s C2 t / D wC C2 zC of s C2 t is given by

�1u� �1x�

wC C2 zC D �2v� w� vC �2vC z� yC

uC xC

Adding first the central two columns of this array and then the central three columns
of the resulting array, we get

�1u� �1x� �1.u� C2 x�/

�2v� w� z� yC D �2v� w� C2 z� yC

uC xC uC C2 xC

Thus s C2 t is a commutative 3-shell.
Working vertically in the same way you can prove that sC1 t is commutative when

it is defined and both s and t are commutative.
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The case s C3 t is a bit different. In this case wC D z�, thus we have

�1u� �1x�

wC D �2v� w� vC zC D �2y� wC yC

uC xC

Substituting the first array for wC in the second array and subdividing the other blocks
to produce a composable array, we get that

�1x�

�1u�

zC D �2y� �2v� w� vC yC

uC

xC

Now, we can compose by blocks and, using the transport law, we get

�1.u� C1 x�/

zC D �2.v� C2 y�/ w� vC C2 yC

uC C1 xC

Thus s C3 t is also a commutative 3-shell.
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Our second result is how we show independence of choices in the proof of our
2-dimensional Seifert–van Kampen Theorem 6.8.2, in particular in Lemma 6.8.4: it
shows that two nondegenerate faces of a ‘degenerate’ commutative 3-shell are equal.

Theorem 6.7.5. Let s be a commutative 3-shell in a double groupoidG. Suppose that
all the faces of s not involving direction 3 are degenerate. Then @�

3 s D @C
3 s.

Proof. In this case the array containing the five faces is

@C
3 s (6.7.2)

whose composition is clearly @C
3 s. Thus the commutativity of the 3-shell implies that

@�
3 s D @C

3 s.

We now apply these ideas to the case of the fundamental double groupoid of a triple
.X;A; C /. In particular, we will see that the 3-cubes h W I 3 ! X which map the edges
of I 3 into A and its vertices to C produce a commutative 3-shell in �.X;A;C /. We
call this result a ‘Homotopy Commutativity Lemma’. Later, in Section 9.9, we will
prove, using the language of crossed complexes, a more traditional type of formula
giving the boundary of a cube or simplex in terms of a ‘sum’ of the faces, and we call
this formula a ‘Homotopy Addition Lemma’.

Proposition 6.7.6 (Homotopy Commutativity Lemma). Let h W I 3 ! X be a cube in
X with edges in A and vertices in C , where C � A � X . Then the boundary of h
determines a 3-shell in �.X;A;C /, and this 3-shell is commutative.

Proof. The fact that the boundary of h determines a 3-shell is clear. The idea of the
proof of commutativity is intuitively the reverse of the folding flat process we discussed
for diagram (6.7.1). To this end we define two maps '0; '1 W I 2 ! I 3 which agree
on the boundary of I 2 and such that in terms of the following diagrams 1 maps onto
the face @C

3 of I 3 according to the second subdivision and 0 maps onto the other five
faces of I 3, with parts labelled by connections mapped to edges. Since I 3 is convex,
and 0, 1 agree on the boundary of I 2, they are homotopic rel the boundary of I 2

and hence h0, h1 are homotopic rel boundary, which gives the result.
For the details we introduce some notation that represents the changes of coordinates

suggested by Figure 6.4 (page 185). So the faces of h are given by restriction to the
corresponding faces of the cube, i.e.

@˛i h D h B ı˛i ;
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w� vC�2v�

uC

�1u�

wC

Figure 6.5. Two arrays with the same boundary.

where ı˛i .r1; r2/ D .t1; t2; t3/, the tj being defined by tj D rj for j < i , tj D rj�1
for j > i , while ti D 0; 1 whenever ˛ D �;C respectively. For a discussion of these
ideas in all dimensions, see Section 11.1.

Also in some of the cases we are going to need some switching of coordinates, so
we set

Qı�
1 .r1; r2/ D .0; r2; r1/ and QıC

1 .r1; r2/ D .1; r2; r1/:
What the proposition says is that if we define the elements u˛; v˛; w˛ of �2 repre-

sented by the faces of h to be respectively the classes of hB Qı˛1 ; hBı˛2 ; hBı˛3 .˛ D 0; 1/,
then

wC D
24 �1u�
�2v� w� vC

uC

35
in �2 where the corner elements are thin elements as above.

Consider the maps defined by

'0 D
24�2 �1 � �1. Qı�

1 / �1�
�2ı�

2 ı�
3 ıC

2

�2� QıC
1 �

35 ; '1 D
24�2 �1 � 1 �1�

0 ıC
3 0

�2� 1 �

35
where � is the map induced by � W I 2 ! I given by �.r1; r2/ D max.r1; r2/. Notice
that '0, '1 agree on @I 2. Hence hhh'0ii D hhh'1ii in �2. So the 3-shell in �.X;A;C /
determined by h is commutative.

Remark 6.7.7. In the case whereD is a double category with thin structure, we cannot
get a formula of the above type, because of the lack of inverses. What we can expect
as commuting boundary is a formula saying that some composition of the even faces
is the same as a composition of the odd faces.
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Here is a diagram of a 3-cube with labelled and directed edges:

� g ��

��
e

�

h

��

�
l

88::::::: c ��

a

��

�
m

88:::::::

d

��

� ��f �

�
b

��
p

88::::::: �
n

88:::::::

1

2

3

��

��

99;;;;;;

The 6 faces divide into even and odd ones which separately fit together as shown in
Diagram .�/:

v�
l

a wC

g

e h

uC

p

b

f

f

n

even faces

u�
l

c g

w�

c

a vC

m

d h

b n

odd faces

(�)

Unfortunately, the possible ‘compositions of the even and of the odd faces’ as above
do not make sense, and the edges along the two ‘boundaries’ do not agree. So we add
to these diagrams thin squares to complete the diagram .�/ as shown:

1

a v�
l

a wCe

g

h

1

1 uC

z

b

f

f 1

b n 1

1

1 u�
l

c g

g

1

w�

c

a vC

m

d

1

h h

b n 1

(��)

We say that the original cube is commutative, or, more precisely, has commutative shell,
if the completed composite elements in diagram .��/ are equal.87

Since the subdivision of I 3 corresponding to folding flat a 4-cube analogously to
diagram (6.7.1) would have 27 sub 3-cubes, it is clear that new ideas are needed to
carry out similar methods to the above in higher dimensions.
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6.8 Proof of the 2-dimensional Seifert–van Kampen Theorem

In this last section of Part I we shall prove a 2-dimensional Seifert–van Kampen Theo-
rem 6.8.2 which includes as a particular case Theorem 2.3.1 some of whose algebraic
consequences have been studied in Chapters 4 and 5.88

We note again that all the results contained in Chapters 2–5 are about crossed
modules over groups, while in this chapter we generalise to crossed modules over
groupoids to prove the 2-dimensional Seifert–van Kampen Theorem. The fact that
pushouts, and coequalisers, give the same results in these two contexts follows from
the fact that these two types of colimit are defined by connected diagrams, and then
applying Theorem B.1.7 of Appendix B.

Theorem 6.8.2 is true for triples of spaces .X;A; C / satisfying some connectivity
conditions which can be expressed as algebraic conditions on the �0 and �1 functors.

Definition 6.8.1. We say that the triple .X;A; C / is connected if the following condi-
tions hold:

.0/ The maps �0.C /! �0.A/ and �0.C /! �0.X/ are surjective.

.1/ The morphism of groupoids �1.A; C /! �1.X; C / is piecewise surjective.

Notice that condition .0/ is equivalent to saying that C intersects all path com-
ponents of X and all those of A. Also condition .1/ just says that the function
�1.A/.x; y/ ! �1.X/.x; y/ induced by inclusion is surjective for all x; y 2 C . It
may be shown that given .0/, condition .1/ may be replaced by

.0
1/ For each x 2 C , the homotopy fibre over x of the inclusion A ! X is path

connected.

That both conditions can be stated in terms of connectivity, explains the origin of the
term ‘connected’.

Let us introduce some notation which will be helpful in both the statement and the
proof of the 2-dimensional Seifert–van Kampen Theorem 6.8.2.

Suppose we are given a cover U D fU �g�2ƒ of X such that the interiors of the
sets of U cover X . For each � D .�1; : : : ; �n/ 2 ƒn we write

U 
 D U �1 \ � � � \ U �n :

An important property of this situation is that a continuous function f on X is
entirely determined by a family of continuous functions f � W U � ! X which agree
on all pairwise intersections U �1 \U �2 . In formal terms, this states that the following
diagram F


2ƒ2 U 

a ��

b
��

F
�2ƒ U �

c �� X

is a coequaliser in the category of topological spaces. The functions a, b are determined
by the inclusions U 
 D U � \ U� ! U �, and U 
 ! U� for each � D .�; �/ 2 ƒ2,
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and c is determined by the inclusions U � ! X for each � 2 ƒ. (Note that in the
disjoint union U 
 is indexed by � so a; b are well determined. Also in the first disjoint
union we get some intersections repeated, but this does not matter.)

It is not difficult to extend this last coequaliser diagram to the case of a triple
.X;A; C /: thus we define A
 D A \ U 
 and C 
 D C \ U 
 and get an analogous
coequaliser diagram in the category of triples of spaces:F


2ƒ2.U 
 ; A
 ; C 
/
a ��

b
��

F
�2ƒ.U �; A�; C �/

c ��
.X;A; C /:

Now we move from this to the homotopical situation, by applying � to this coequaliser
diagram of triples. So the homotopy double groupoids in the following �-sequence of
the cover are well defined:F


2ƒ2 �.U

 ; A
 ; C 
/

a ��

b
��

F
�2ƒ �.U �; A�; C �/

c �� �.X;A;C /: (6.8.1)

Here
F

denotes disjoint union, which is the coproduct in the category of double
groupoids. It is an advantage of the approach using a set of base points that the
coproduct in this category is simple to describe. The morphisms a, b are determined
by the inclusions

U 
 ! U �; U 
 ! U�

where U 
 D U � \ U�, for each � D .�; �/ 2 ƒ2, and c is determined by the
inclusions U � ! X for each � 2 ƒ. We sometimes use the notation U 
 when � is a
finite subset of ƒ, when of course it means the intersection of the U � for � in �.

Theorem 6.8.2 (Seifert–van Kampen Theorem for the fundamental double groupoid).
Assume that for each n > 2 and � D .�1; : : : ; �n/ 2 ƒn the triple .U 
 ; A
 ; C 
/ is
connected. Then

(Con) the triple .X;A; C / is connected, and

(Iso) in the �-sequence (6.8.1), c is the coequaliser of a, b in the category of double
groupoids.

Proof. The proof follows the pattern of the 1-dimensional case (Theorem 1.6.1) and is
in three stages.

We shall be aiming for the coequaliser result (Iso) because the connectivity part
(Con) is obtained along the way. So we start with a double groupoidG and a morphism
of double groupoids

f 0 W
G
�2ƒ

�.U �; A�; C �/! G

such that f 0a D f 0b. We have to show that there is a unique morphism of double
groupoids

f W �.X;A;C /! G

such that fc D f 0.
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Recall that by the structure of coproduct in the category of double groupoids, the
map f 0 is just the disjoint union of maps f � W �.U �; A�; C �/! G and the condition
f 0a D f 0b translates to f � and f � being the same when restricted to �.U 
 ; A
 ; C 
/
for � D .�; �/.

To define f on �.X;A;C / we shall describe how to construct an F.˛/ 2 G2 for
all ˛ 2 R2.X;A; C /. Then we define f .hh˛ii/ D F.˛/ and prove independence of all
choices.

Stage 1. Define F.˛/ 2 G2 when ˛ has a decomposition ˛ D Œ˛ij � such that each
˛ij lies in some R2.U �; A�; C �/.

The easiest case is when the image of ˛ lies in some U � of U. Then ˛ determines
uniquely an element ˛� 2 R2.U �; A�; C �/. The only way to have fc D f 0 is by
defining

F.˛/ D f �.hh˛�ii/:
The definition does not depend on the choice of U �, because of the condition f 0a D
f 0b.

Next, suppose that the element ˛ 2 R2.X;A; C / may be expressed as the compo-
sition of an array

˛ D Œ˛ij �
such that each ˛ij belongs to R2.X;A; C /, and also the image of ˛ij lies in some U �

of U which we shall denote by U ij .

˛ D Œ˛ij �

where ˛ijAij

C ij Aij C ij

Aij

C ijAijC ij

Figure 6.6. Case ˛ D Œ˛ij � with ˛ij 2 R2.U
ij ; Aij ; C ij /.

We can define F.˛ij / for each ij as before. Since the composite Œ˛ij � is defined, it
is easy to check using f 0a D f 0b, that the elements F.˛ij / compose inG2. We define
F.˛/ to be the composite of these elements of G2, i.e.

F.˛/ D F.Œ˛ij �/ D ŒF .˛ij /�;
although a priori this definition could depend on the subdivision chosen.

Stage 2. Define F.˛/ 2 G2 by changing ˛ by a thin homotopy to a map of the type
used in Stage 1.
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This is done analogously to the 1-dimensional case (Theorem 1.6.1). So, first
we apply the Lebesgue covering lemma to get a subdivision ˛ D Œ˛ij � such that for
each i; j , ˛ij lies in some element U ij of the covering. In general, we will not have
˛ij 2 R2.U ij ; Aij ; C ij /, so we have to deform ˛ to another ˇ satisfying this condition.
The homotopy for this is given by the next lemma. In this we use the cell-structure on
I 2 determined by a subdivision of ˛ as in Remark 6.3.2, and also refer to the ‘domain’
of ˛ij as defined there.

Lemma 6.8.3. Let ˛ 2 R2.X;A; C / and let ˛ D Œ˛ij � be a subdivision of ˛ such
that each ˛ij lies in some U ij of U. Then there is a thin homotopy h W ˛ � ˛0, with
˛0 2 R2.X;A; C /, such that, in the subdivision h D Œhij � determined by that of ˛,
each homotopy hij W ˛ij ' ˛0

ij satisfies:

(i) hij lies in U ij ;

(ii) ˛0
ij belongs to R2.X;A; C /, and so it is an element of R2.U ij ; Aij ; C ij /;

(iii) if a vertex v of the domain of ˛ij is mapped into C , then h is constant on v;

(iv) if a cell e of the domain of ˛ij is mapped by ˛ into A (resp. C ), then e � I is
mapped by h into A (resp. C ), and hence ˛0.e/ is contained in A (resp. C ).

Proof. Let K be the cell-structure on I 2 determined by the subdivision ˛ D Œ˛ij �,
as in Remark 6.3.2. We define h inductively on Kn � I [ K � f0g � K � I using
the connectivity conditions of the statement, where Kn is the n-skeleton of K for
n D 0; 1; 2.

Step 1. Extend ˛jK0�f0g to h0 W K0 � I ! C .
Since the triples .U 
 ; A
 ; C 
/ are connected for all finite sets � � ƒ, the map

�0.C

/! �0.U


/ is surjective. For each vertex v 2 K we can choose a path lying in
the intersection of all the U � corresponding to all the 2-cells of K containing v (one
to four according to the situation of v) and going from ˛.v/ to a point of C .

In particular, when ˛.v/ 2 C we choose the constant path and if ˛.v/ 2 A, using
that �0.C 
/! �0.A


/ is also surjective, we choose the path lying in A. These paths
give a map h0 W K0 � I ! C .

Step 2. Extend ˛jK1�f0g [ h0 to h1 W K1 � I ! A.
For each 1-cell e 2 K with vertices v1 and v2, we have the following diagram

h0jv1�I h0jv2�I

˛je
where on the three sides of e� I the definition of h1 is given as indicated. We proceed
to extend to e � I with some care.

If ˛.e/ � A we consider two cases. When v1; v2 are mapped into C , we extend to
e � I using ˛ at each level e � ftg. If ˛.e/ � A, and v1; v2 are not both mapped into
C , since all edges go to A, then we can use a retraction to extend the homotopy.
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Otherwise, the product of these three paths defines an element of�1.U 
 ; C 
/where
U 
 is the intersection of the U � corresponding to all the 2-cells containing e (1 or 2
according to the situation of e). Using the condition on the surjectivity of the �1, we
have a homotopy rel f0; 1g to a path in .A
 ; C 
/. This homotopy gives h1je�f1g.

Step 3. Extend ˛jK�f0g [ h1 to h W K � I ! X .
This is done using for each 2-cell e the retraction of e � I to @e � I [ e � 0 given

Figure 6.7. Projecting from above in a 3-cube.

by projecting from a point above the centre of the top face.

The three steps in the construction of h in this lemma are indicated in Figure 6.8
where the third one looks from the back like a hive with square cells.

˛ h0 [ ˛ h1 [ ˛
Figure 6.8. Steps in constructing h in Lemma 6.8.3.

Notice that the connectivity result (Con) follows immediately from this lemma,
particularly (iv), applied to doubly degenerate or to degenerate squares representing
elements of an appropriate �0 or �1.

We can now define F for an arbitrary element ˛ 2 R2.X;A; C / as follows. First
we choose a subdivision Œ˛ij � of ˛ such that for each i; j , ˛ij lies in some U ij . Then
we apply Lemma 6.8.3 to get an element ˛0 D Œ˛0

ij � and a thin homotopy h W ˛ � ˛0

decomposing as h D Œhij �, the image of each hij lying in some U ij .
We define

F.˛/ D F.˛0/ D ŒF .˛0
ij /�;
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i.e. the composition of the array in G got by applying the appropriate f � to the de-
composition resulting on the back face of the last diagram in Figure 6.8. Since this in
principle depends on the subdivision and the homotopy hwe will sometimes write this
element as F.˛; .hij //.

Stage 3. Key lemmas.
The tools for our independence of choices are going to be proved at this stage: they

are two lemmas considering a homotopyH of elements ˛; ˇ 2 R2.X;A; C /, such that
H has a given subdivisionH D ŒHijk� represented in Figure 6.9. These lemmas should
be compared with corresponding steps in the proof of the 1-dimensional Seifert–van
Kampen Theorem.

�� ��

��

H
Hijk

Figure 6.9. Decomposition of a homotopy H D ŒHijk �.

The first lemma is a rather short application of previous results on commutative
cubes and states that F.˛/ D F.ˇ/ gives particular conditions on ˛, ˇ and on a thin
homotopy H W ˛ � ˇ.

Lemma 6.8.4. Let H W I 3 ! X be a thin homotopy of maps

˛; ˇ W .I 2; @I 2; @2I 2/! .X;A; C /:

Suppose given a subdivision H D ŒHijk� of H such that each Hijk maps its domain
Dijk of I 3 into a set U ijk of the cover and maps the vertices and edges ofDijk into C
and A respectively, i.e. all its faces lie in R2.U ijk; Aijk; C ijk/. Then for the induced
subdivisions ˛ D Œ˛ij �; ˇ D Œˇij � we have in G that

F.˛/ D F.ˇ/:
Proof. The assumptions imply that each Hijk satisfy the conditions of the Homotopy
Commutativity Lemma (6.7.6) and thus defines a commutative 3-shell in the double
groupoid �.U ijk; Aijk; C ijk//. This 3-shell is mapped by f ijk to give a commutative
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3-shell sijk in G. The condition f 0a D f 0b implies that these 3-shells sijk are
composable in G, and so, by Theorem 6.7.4, their composition is a commutative 3-
shell s D Œsijk� in G. The assumption that H is a thin homotopy allows us to apply
Theorem 6.7.5, and to deduce F.˛/ D F.ˇ/, as required.

Now we have to prove that we can always obtain from a general thin homotopy be-
tween two maps a thin homotopy between associated maps that satisfies the conditions
of the previous lemma. This is where our connectivity assumptions are used again.

Lemma 6.8.5. Let H W I 3 ! X be a thin homotopy of maps

˛; ˇ W .I 2; @I 2; @2I 2/! .X;A; C /:

Suppose given a subdivision H D ŒHijk� of H such that each Hijk maps its domain
Dijk of I 3 into a setU ijk of the cover. Then there is a homotopyˆ ofH to a homotopy
H 0 such that in the cell structure K determined by the subdivision of H ,

(i) H 0 maps the 0-cells of K into C and the 1-cells into A;

(ii) if a 0-cell v of K is mapped by H into C , then ˆ is constant on v, and if v is
mapped into A by H , then so also is v � I by ˆ;

(iii) if a 1-cell e of K is mapped by H into C , then ˆ is constant on e, and if e is
mapped into A by H , then so also is e � I by ˆ.

Proof. As in Remark 6.3.2, but now in dimension 3, there is a cell structure K on I 3

appropriate to the subdivision of H . We define a homotopy ˆ W K � I ! X of H by
induction on Kn � I [ k � f0g � K. The first two steps are as in Lemma 6.8.3. This
takes us up toK1 � I [K � f0g. Finally, we extend ˆ over the 2- and 3-skeleta ofK
by using retractions, i.e. by a careful use of the Homotopy Extension Property.

Remark 6.8.6. The map H 0 constructed in the lemma gives a thin homotopy from
˛0 D H 0

0 to ˇ0 D H 0
1. Also there is a decomposition of ˛0 D Œ˛0

ij � and ˇ0 D Œˇ0
ij �

which has each element lying in some R2.U �; A�; C �/. Moreover, the homotopy ˆ
induces homotopies h W ˛ � ˛0 and h0 W ˇ � ˇ0 of the type described in Lemma 6.8.3
and later used to define F.hh˛ii/.

In particular, if all the maps in the induced subdivisions ˛ D Œ˛ij � and ˇ D Œˇij �

lie in someR2.U �; A�; C �/, the mapH 0 constructed in the lemma is a thin homotopy
H 0 W ˛ � ˇ.

Stage 4. Independence of choices inside the same thin homotopy class.
Now we can prove that f is well defined, proving independence of two choices.

1. Independence of the subdivision and the homotopy h of Lemma 6.8.3.

Let us consider two subdivisions of the same map ˛ 2 R2.X;A; C /. As there is
a common refinement we can assume that one is a refinement of the other. We shall
write them ˛ D Œ˛ij � and ˛ D Œ˛ij

kl
� where for a fixed ij we have ˛ij D Œ˛ijkl �.
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Using Lemma 6.8.3, we get thin homotopies h W ˛ � ˛0, with ˛0 2 R2.X;A; C /,
such that, in the subdivision h D Œhij � determined by that of ˛, each homotopy
hij W ˛ij ' ˛0

ij and h0 W ˛ � ˛00, with ˛00 2 R2.X;A; C /, such that, in the subdi-
vision h0 D Œh0ij

kl
� determined by that of ˛, each homotopy h0ij

kl
W ˛ij

kl
' ˛00ij

kl
. We

want to prove that

ŒF .˛0
ij /� D ŒF .˛00ij

kl/�:

�
�
�

�
�
�

�
�
�

����

��
˛00ij
kl

Figure 6.10. Independence of subdivision.

The situation for a fixed ij is described in Figure 6.10 where the smaller cube at
the front represents h0ij

kl
and the larger cube at the back is hij .

If we denote by h0
ij the composition of the array h0

ij D Œh0ij
kl
� and by ˛0

ij the

composition of the array ˛0
ij D Œ˛0ij

kl
�, we have h0

ij W ˛ij ' ˛00
ij .

Now Nhh0 gives a thin homotopy satisfying the conditions of Lemma 6.8.5 if we
denote by Nh the homotopy given by Nh.x; y; t/ D h.x; y; 1 � t /. First, we change this
homotopy using Lemma 6.8.5 and we then apply Lemma 6.8.4, to get

ŒF .˛0
ij /�/ D ŒF .˛00

ij /�:

On the other hand since the second is a refinement of the first, we have

ŒF .˛00
ij /�/ D ŒF .˛00ij

kl/�:

As a consequence to define the element F.˛/ we can choose whatever subdivision
and homotopy we want insofar as the conditions of Lemma 6.8.3 are met.

2. Independence of the choice inside the same thin homotopy class.

Let H W ˛ � ˇ be a thin homotopy of elements of R2.X;A; C /. We choose a
subdivision H D ŒHijk� of H so that each Hijk maps into a set of U. On both
extremes there are induced subdivisions ˛ D Œ˛ij �; ˇ D Œˇij �. We apply Lemma 6.8.3
to H , getting H 0 W ˛0 � ˇ0.
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As indicated in the Remark 6.8.6, these ˛0, ˇ0 satisfy the conditions to be used when
defining F.˛/ and F.ˇ/. Also H 0 satisfies the conditions of Lemma 6.8.4. Thus

F.˛/ D ŒF .˛0
ij /� D ŒF .ˇ0

ij /� D F.ˇ/:
Stage 5. End of proof
Now we have proved that there is a well-defined map f W �.X;A;C /2 ! G2, given

by f .hh˛ii/ D F.˛; .hij //, which satisfies fc D f 0 at least on the 2-dimensional
elements of �.

The remainder of the proof of (Iso), that is the verification that f is a morphism,
and is the only such morphism, is straightforward. It is easy to check that f preserves
addition and composition of squares, and it follows from (iii) of Lemma 6.8.3 that f
preserves thin elements.

It is now easy to extend f to a morphism f W �.X;A;C /! G of double groupoids,
since the 1- and 0-dimensional parts of a double groupoid determine degenerate 2-
dimensional parts. Clearly this f satisfies fc D f 0 and is the only such morphism.89

This completes the proof of Theorem 6.8.2.

Remark 6.8.7. Of especial interest (but not essentially easier to prove) is the case of
the theorem in which the cover U has only two elements; in this case Theorem 6.8.2
gives a push-out of double groupoids.90 In the applications in previous chapters we
have considered only path-connected spaces and assumed that C D fxg is a singleton.
Taking x as base point, the double groupoids can then be interpreted as crossed modules
of groups to give the 2-dimensional analogue of the Seifert–van Kampen Theorem given
as Theorem 2.3.1 earlier. We do not know how to prove that theorem without using
higher order groupoids in some form. A higher dimensional form of this proof and
theorem is given in Part III, namely Theorem 14.3.1.

Proof of Theorem 2.3.1 In the case where .X;A/ is a based pair with base point x,
�.X;A; x/ is abbreviated to �.X;A/. That we obtain a pushout of crossed modules
under the hypothesis of Theorem 2.3.1 is simply the previous remark, together with
Proposition 6.3.8, which gives the equivalence between double groupoids and crossed
modules.

The corresponding result of Theorem 2.3.3 follows from Theorem 2.3.1 by stan-
dard techniques using mapping cylinders. For analogues of these techniques for the
fundamental groupoid, see Chapter 8 of [Bro06].

Remark 6.8.8. Theorem 6.8.2 contains 1-dimensional information which includes
most known results expressing the fundamental group of a space in terms of an open
cover, but it does not assume that the spaces of the cover or their intersections are path-
connected. That is, it contains the classical Seifert–van Kampen Theorem on �1.X;A/
given in Chapter 1.

Thus we have completed the aims of Part I, to give a reasonably full and we hope
comprehensible account of what we understand as 2-dimensional nonabelian alge-
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braic topology, which is essentially the theory and application to algebraic topology of
crossed modules, double groupoids and related structures.

Now in Parts II and III we move on to the higher dimensional theory. The situation
is more complicated because there are two generalisations of crossed modules and
double groupoids with applications to algebraic topology, basically in terms of crossed
complexes, or in terms of crossed n-cubes of groups, for an introduction to which
see [Bro92], [Por11]. The theory of crossed complexes is limited in its applications,
because it starts as being a purely ‘linear’ theory. However, even this theory has
advantages, namely:

• the range of applications;
• the relation to well-known theories, such as chain complexes with a group of

operators;
• the use of groupoids;
• its intuitive basis as a development of the methods of Part I.

So this is the account we give, in the space we have here. The theory of crossed n-cubes
of groups requires another account! A hint on crossed squares is given in Section B.4
of Appendix B.

Notes

68 p. 142 These intuitions led Brown to announce in the Introduction to [Bro67]
a higher dimensional version of the Seifert–van Kampen Theorem. All these
intuitions were encapsulated in the paper [BH78a].

69 p. 144 A general discussion of partial algebraic structures was given by Higgins in
[Hig63], and this idea was taken up by Birkoff–Lipson in [BL70]. The importance
of this idea is that we can think of ‘higher dimensional algebra’ as the study of
partial algebraic structures with algebraic operators whose domains of definition
are given by geometric conditions.

70 p. 145 Higgins in [Hig71] adopts the more consistent ‘algebraist’s’ convention and
notation of writing all functions on the right of their arguments.

71 p. 146 The term double category is also used more generally for a ‘category internal
to a category’, or a set with two distinct category structures each of which is a
morphism for the other, a condition which is equivalent to the interchange law
given below. This idea was given by Ehresmann in [Ehr65], and is pursued to
higher dimensions in [BH81b]. However we have need in this work only of the
more special notion. A web search on ‘double category’ shows a lot of work on
the more general concept.
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72 p. 149 The term ‘rewriting’ is used for the manipulation of formulae according to
certain rules. There are substantial expositions of this theory. Usually they deal
only with 1-dimensional formulae. The idea of higher dimensional rewriting oc-
curs in knot theory, with Reidemeister moves, and in higher dimensional category
theory. The article [GM09] gives some current ideas, references and results in this
area. The papers [AABS02], [Hig05] use some 3-dimensional rewriting!

73 p. 150 A construction of double categories of a more general kind is given in
[Bro09a].

74 p. 151 We emphasise again that these are not the most general kinds of double
groupoids or double categories, see for example [BS76a], [AN09], [BJ04], but
they are the only ones we consider in this book.

75 p. 152 This normality concept is studied in [Bro06], Sections 8.3 and 11.3.

76 p. 152 A key step in developing the current theory was the recognition in the
early 1970s of the relation between double groupoids and crossed modules, which
was published as [BS76a], [BS76b]. Further work on double groupoids is in for
example [BM92], [AN09], [Bro09a]. There is now considerable work on the
closely related, even sometimes equivalent, concept of ‘2-group’, see for example
[BL04], but these should not be confused with the notion of 2-group in group
theory. There is a weaker structure of ‘categorical group’ for which we give
[CGV06] as an entry to the literature.

77 p. 154 We also mention that there are significant algebraic examples of crossed
modules over groupoids. Thus the article [Lab99] gives many examples of the
notion of crossed group: this is precisely a crossed module � W M ! P in which
P is an action groupoid of the formGËX whereG is a group acting on the setX .

78 p. 157 It is possible to use ‘hyperrectangles’ of varying length at this stage, see for
example [Bro09b], and so obtain strict identities and strict associativity. We leave
you to investigate this further.

79 p. 158 Granted the success of the fundamental groupoid and the known definition
of double groupoid, it seemed natural to Brown in 1965 to attempt to define a
fundamental or homotopy double groupoid of a space by considering maps I 2 !
X of a square. He was surely not the only topologist to have considered this
idea. Experiments over 9 years proved abortive, though the ideas would not go
away, and the success of the algebraic theory relating double groupoids and crossed
modules and published finally in [BS76a] was suggestive, and gave the key notions
of commutative cube in a double groupoid with connections.

A clue considered seriously in June, 1974, was that Whitehead’s theorem on free
crossed modules was an example of the existence of a universal property in 2-
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dimensional homotopy theory. Further, if a 2-dimensional Seifert–van Kampen
Theorem was to be any good it should surely recover Whitehead’s theorem. But,
Whitehead’s theorem was about relative homotopy groups! So one ought to look
for a homotopy double groupoid in a relative situation. Then the ideas fell into
place! In a few days, Brown and Higgins realised that a successful theory could
be obtained by considering a triple .X;A; C /, i.e. a space X and two subspaces
C � A � X .

In the published papers up to 1981 the condition of homotopy rel vertices was
not used but instead an additional condition that each loop in .A; C / should be
contractible in A rel vertices. This condition turned out to be inconvenient for
application to function spaces.

80 p. 160 This idea may be generalised from a pair .X;A/ to a triad .X IA;B/, where
A;B are subspaces ofX with C contained inA\B , but under the extra condition
that the induced morphisms �2.A; c/! �2.X; c/; �2.B; c/! �2.X; c/ have the
same image for all c 2 C in [Bro09a]. We leave the proof as an exercise. See also
the comments related to p. 586 on p. 596.

81 p. 164 The name ‘transport laws’ was given because they were borrowed from
a transport law for path connections in differential geometry, as explained in
[BS76a].

82 p. 167 These proofs of the properties of rotations are due to Higgins and appeared in
[Bro82]. The results on rotations in the single base point case appeared in [BS76a],
using the equivalence of categories. In this book we use only 2-dimensional rewrit-
ing, but 3-dimensional arguments occur in [AABS02], to prove a braid relation,
and in [Hig05]. There would seem to be a problem in managing even higher di-
mensional rewriting! Perhaps this could be done with computers and appropriate
data tools, but it is clear that there is no algorithmic approach.

83 p. 173These results have been generalised to higher categorical versions by Higgins
in [Hig05]. See also [Ste06]. Proposition 6.5.5 was a part of the thesis of G. H.
Mosa, [Mos87], and published separately as [BM99]. It is also related to results
of [BS76a], and of [BH78a].

84 p. 177 Indeed one motivation for establishing the equivalence in the work of
[BS76b], [BS76a] was simply to find new examples of double groupoids, and so to
see how interesting these structures might be. The construction of double group-
oids from crossed modules thus gave a large, new source of double groupoids.
More general kinds of double groupoids are discussed in for example [BM92],
[AN09].

85 p. 183 The style of proof of this equivalence of categories follows that of [BM99].
The result on the equivalence of 2-categories and double categories with connection
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is due to Chris Spencer in [Spe77], and these ideas were developed in [SW83].
The generalisation of this categorical result to all dimensions is in [AABS02].

86 p. 186 For another exposition of this material, see [BKP05] for double groupoids,
and [Hig05] for the general and !-categorical case.

87 p. 191 This definition is taken from [BKP05], and the ideas are developed in
[Hig05]. The latter paper writes more generally as follows: “If x 2 Cn is an
n-cube in C one may ask which of its .n � 1/-faces have common .n � 2/-faces
and can be composed in Cn�1. The answer is that the following pairs of faces (and
in general only these pairs) can be composed:

.@�
i x; @

C
iC1x/; .@C

i x; @
�
iC1x/; i D 1; 2; : : : ; n � 1:

Thus the faces of x (by which we mean its .n� 1/-faces) divide naturally into two
sequences

.@�
1 x; @

C
2 x; @

�
3 x; : : : ; @ṅ x/ and .@C

1 x; @
�
2 x; @

C
3 x; : : : ; @

�
n x/

in which neighbouring pairs can be composed. We call these respectively the
negative and the positive faces of x.” We may also call them ‘odd’ and ‘even’
faces.

88 p. 192 This theorem was stated and proved in [BH78a], but is not referred to in
any text on topology except [Bro06].

89 p. 200 Actually, it is aesthetically desirable to write out a proof of a universal
property by first verifying uniqueness, and then using the resulting description to
prove existence. We leave it as an exercise to the reader to reorder the proof in this
way.

90 p. 200 An examination of the proof of Theorem 6.8.2 shows that conditions .0/
and .1/ are required only for 8-fold intersections of elements of U. However,
it has been shown by Razak Salleh [RS76] that in fact one need assume .0/
only for 4-fold intersections and .1/ only for 3-fold intersections. Further, these
conditions are best possible. The reader may like to try to recover these results
using the tool of Lebesgue covering dimension as in the paper [BRS84].
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Crossed complexes





Introduction to Part II

The utility of crossed modules for certain nonabelian homotopical calculations in di-
mension 2 has been shown in Part I, mainly as applications of a 2-dimensional Seifert–
van Kampen Theorem. In Part II, we obtain homotopical calculations using crossed
complexes, which are a kind of combination of crossed modules of groupoids with chain
complexes, but keeping the operations in all dimensions. Again, a Higher Homotopy
Seifert–van Kampen Theorem (HHSvKT) plays a key role, but we have to cover also
a range of new techniques.

Chapter 7 sets out the basic structures we need to consider, including their important
relation with chain complexes with a groupoid of operators. Also included is a brief
account of homotopies, an area which is developed fully in Chapter 9.

Chapter 8 is devoted to the statement and immediate applications of the Higher
Homotopy Seifert–van Kampen Theorem for crossed complexes.

Chapter 9 introduces a crucial monoidal closed structure on the category of crossed
complexes. This structure gives notions of homotopy and higher homotopy for crossed
complexes.

Chapter 10 develops the notion of free crossed resolution of a group or groupoid,
including an outline of a method of computation for finitely presented finite groups, by
the method of ‘constructing a home for a contracting homotopy’. This uses the notion
of covering morphism of crossed complexes. Also included is an account of acyclic
models for crossed complexes; this is a basic technique for chain complexes in algebraic
topology, and the version for crossed complexes has a few twists to make it work.

Chapter 11 deals with the cubical classifying space of a crossed complex. We
give this cubical version because it has convenient properties, and also because cubical
methods fit better with other techniques of this book, used extensively in Part III. Thus
basic results on collapsing in cubical sets are useful for establishing properties of the
category of cubical sets, and are also used essentially in Part III for the proof of the
Higher Homotopy Seifert–van Kampen Theorem.

In Chapter 12 we begin with the theory of fibrations of crossed complexes and
their long exact sequences. These are used with the methods of the classifying space
to discuss the homotopy classification of maps of spaces. A notable feature of our
methods is that we are able to make some explicit computations, for example of the
k-invariants of certain crossed modules. As another sample calculation, we compute
in Example 12.3.13 certain homotopy classes of maps from RP 2 � RP 2 to the space
RP 3 with homotopy groups in dimensions higher than 3 killed. We also relate the
crossed complex methods with those of Čech cohomology and with the cohomology
of groupoids.

In this way we fulfill the promise of the Introduction to the book, except for the
proofs of those results which require the techniques of Part III.





Chapter 7

The basics of crossed complexes

Introduction

This first chapter of Part II gives the background on crossed complexes which is required
for the statement and applications given in the next chapter of the Higher Homotopy
Seifert–van Kampen Theorem (HHSvKT) for the functor

… W .filtered spaces/! .crossed complexes/:

This is a substantial chapter, so you are encouraged to read the definition of crossed
complex and of the functor…, and then skip to the next chapters, returning to this one
for further information as required.

The first section of this chapter contains:

• a quick introduction of the category FTop of filtered topological spaces paying
special attention to the standard example, the skeletal filtration of a CW-complex,
and using the tensor product of filtered spaces as a source of examples;

• an introduction to the category Crs of crossed complexes;
• the definition using relative homotopy groups of the fundamental crossed com-

plex functor … W FTop! Crs.

We leave to the next chapter the statement and applications of the Higher Homotopy
Seifert–van Kampen Theorem (HHSvKT), which says in general terms that the functor
… preserves some colimits of filtered spaces, but phrased in terms of coequalisers.
This theorem allows calculation with the homotopically defined functor … and is cen-
tral to the main theme of this book. Analogously to Chapter 6 of Part I, the proof
of the HHSvKT requires cubical techniques of what are called !-groupoids; this is
complicated to set up and so is delayed to Part III.

We define these categories FTop;Crs and this functor … in the first section of this
chapter, and proceed to explain in following sections how to compute the colimits
which arise naturally in the applications. The HHSvKT and immediate applications
are given in the next chapter. It is therefore quite reasonable for the reader to make
sure of the basic definitions, and then skip to the next chapter, returning to this chapter
as necessary.

Also in the first section, some subsections detail algebraic facts necessary to apply
the HHSvKT. In Section 7.1.iii, in order later to analyse colimits of crossed complexes,
we define some categories related to Crs, for example Crsn the category of n-truncated
crossed complexes: the category XMod of crossed modules over groupoids has been
defined in Chapter 6, and the category Mod of modules over groupoids is introduced in
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Section 7.2.ii before the definition of crossed complex. The objects of Mod are pairs
.M;G/whereG is a groupoid acting on the familyM of abelian groups. This category
is not quite so standard even for the case of groups G, since we are varying G.91 The
generalisation to groupoids is necessary for many of the applications of the fundamental
crossed complex since it allows the use of several base points and takes into account
the full action of the fundamental groupoid.

The n-truncated crossed complexes have the structure of the first n dimensions of
a crossed complex. In particular, Crs2, the 2-truncated crossed complexes, are simply
the crossed modules over groupoids as seen in Chapter 6. This category thus includes
the crossed modules over groups studied in Chapters 2–5.

The second Section 7.2 is devoted to the study of colimits in the category Crs: the
results are necessary to do any computations with the HHSvKT.

It is an easy consequence of the appropriate functors having right adjoints (and
hence preserving colimits) that the colimits in Crs can be computed by taking colimits
in three categories. First a colimit in groupoids, then a colimit of crossed modules and,
last, colimits of modules in all dimensions n > 3.

Moreover, the computation of colimits in Mod and in XMod can be done in two
steps. First a change of base groupoid, via the induced module construction, and then,
a colimit in the category of modules over a fixed groupoid.

We proceed to explain a bit further how to compute induced modules and how to
define free modules as a special kind of induced module (indicating the same results
for crossed modules) and end the section with some examples of colimits.

Section 7.3 gives the notion of free crossed complex. This is a basic concept for many
homotopy classification results, since a morphism from a free crossed complex, and
also a homotopy, can be constructed in terms of values on a free basis. A consequence of
our results is that the skeletal filtration of a CW-complexX is a connected filtration, and
that its fundamental crossed complex is a free crossed complex on a basis determined
by the characteristic maps of the cells of X .

For these results it is essential to use groupoids rather than groups, and so we set
up enough of the general theory of fibred categories to handle the notions of pullback
and induced constructions which arise in a variety of situations.

In a final Section 7.4 we relate the notion of crossed complex to the more widely
familiar notion of chain complex with operators. The usual notion is that of a group of
operators, but in order to model the geometry, and to have better properties, it is again
essential to generalise this to a groupoid of operators.
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7.1 Our basic categories and functors

7.1.i The category of filtered topological spaces

By a space is meant a compactly generated topological space: these spaces are called k-
spaces in [Bro06].92 We write Top for the category of compactly generated topological
spaces and continuous maps.

Definition 7.1.1. A filtered spaceX� consists of a spaceX and an increasing sequence
of subspaces of X :

X�: D X0 � X1 � X2 � � � � � Xn � � � � � X
which we call a filtration of X . It is also common to assume that X is the union of the
Xn for all n, as happens in our main examples; however we rarely use this condition.

A filtration preserving map
f W X� ! Y�

is a continuous map f W X ! Y such that f .Xn/ � Yn for all n > 0.
These objects and morphisms form the category FTop of filtered spaces and filtered

maps.

Definition 7.1.2. A standard way of constructing a new filtered space from given ones
X�; Y� is the tensor product with total space X � Y and filtration given by

.X� ˝ Y�/n D
[

pCqDn
Xp � Yq : �

Remark 7.1.3. The category FTop is, like the category Top, both complete and com-
plete, that is it admits all limits and colimits. Colimits are calculated filtration wise:
that is, if T W C! FTop is a small diagram in FTop, then Tn W C! Top is well defined,
and L D colim T is the filtered space with Ln D colim Tn in Top, provided Ln is a
subspace of LnC1. This will happen in the cases we use.

Example 7.1.4. Here are some standard filtered spaces.

1) We denote the standard n-simplex by �n. We take this to be the subset of RnC1
of points .x0; x1; : : : ; xn/ for which xi > 0 and x0 C � � � C xn D 1. We set
�nr D �n for r > n, and for 0 6 r < nwe let it be the set of points .x0; : : : ; xn/
for which at least n � r of the xi are 0. This defines the filtered space �n�.

2) The filtered space I� has I0 D f0; 1g and I1 D I D Œ0; 1�, and we write I n for
the n-fold product of I with itself and I n� for the corresponding tensor product
filtered space, which we call the skeletal filtration of the standard n-cube.

3) To define the filtered n-ball, we fix some notation. The standard n-ball and
.n � 1/-sphere are the usual subsets of the Euclidean space of dimension n:

En D fx 2 Rn j kxk 6 1g; Sn�1 D fx 2 Rn j kxk D 1g
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where kxk is the standard Euclidean norm.
We write En� for the filtered space of the filtration of the n-ball given by the base
point up to dimension n � 2, Sn�1 in dimension n � 1 and En in dimensions
> n. Thus

E1� D I� D �1�;
and for n > 2, En� is the filtration

f1g
0

D � � � D f1g
n�2
� Sn�1

n�2
� En

n

: �

Example 7.1.5 (CW-filtrations). Further standard examples of filtered spaces which
include all the previous ones are the skeletal filtrations of CW-complexes. These are
spaces built up in inductivefashion by attaching cells. We recall their construction,
which also gives a preparation for Section 7.3.iii where we work analogously with
crossed complexes.

We begin by explaining the process of attaching cells to a space. For background
to this idea, we refer to Section 4.7 in [Bro06], and to the discussion for 2-cells on
p. 42. Let A be a space, ƒ a set of indexes, ff�g�2ƒ a family of continuous maps
f� W Sm��1 ! A. We form the adjunction space

X D A [ff�g fem�g�2ƒ;

given by the pushout diagram,

F
�2ƒ Sm��1 .f�/ ��

��

A

j

��F
�2ƒEm�

.h�/ �� X:

Then we say that the space X is obtained from A by attaching cells. By standard
properties of adjunction spaces (see [Bro06], Chapter 4), the map j is a closed injection,
and so we usually assume it is an inclusion. As examples, we have

E1 D e0˙ [ e1 and En D e0 [ en�1 [ en for n > 2:

The maps h� W Em� ! X are called the characteristic maps of the cells. It is a
standard fact that they are homeomorphisms on the interior of each Em� . The images
em� D h�.Em�/ in X are called the closed cells of X relative to A. We say that X is
obtained from A by attaching the cells fem�g�2ƒ. It is important to notice that a map
f W X ! Y is continuous if and only f jA is continuous and each composite f h� is
continuous.

We construct a relative CW-complex .X�; A/ by attaching cells in the following
inductive process. We start with a spaceA and form a sequence of spacesXn by setting
X0 to be the disjoint union of A and a discrete space ƒ0. Then, inductively, we form
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Xn by ‘attaching’ to Xn�1 a family of n-cells indexed by a set ƒn. That is for each
n > 0 we choose a family of maps f� W Sn�1 ! Xn�1, � 2 ƒn, and define

Xn D Xn�1 [ff�g fen�g�2ƒn
and X D colimXn:

The canonical map j W A! X is also called a relative CW-complex. Clearly, the Xn

(called the relative n-skeleton) form a filtration of X which we write X�. If A D ;,
we say that X is a CW-complex.

The cells, characteristic maps, etc., are regarded as part of the structure of a relative
CW-complex. The advantage of this structure is that it allows proofs by induction on n.
For example, a map f W X ! Y is continuous if and only each restriction fn W Xn ! Y

is continuous and this holds if and only if f jA is continuous and each composite f h�
is continuous, for all � 2 ƒn and all n > 0. Thus we may construct a map f W X ! Y

by induction on skeleta starting with X0, which is just the disjoint union of A and ƒ0.
We can conveniently write

X D A [ fen�g�2ƒn;n>0;

and may abbreviate this in some cases, for example to X D A [ en [ em.
All filtered spaces given in Example 7.1.4 are CW-complexes. More detail of the

above, including the characteristic maps, is given, for example, in [Bro06] for the finite
case, and in many books for the general case.93

Remark 7.1.6. We recall from the section on filtered spaces (see p. xxv) of the In-
troduction to this book that there are many examples of filtered spaces other than the
skeletal filtration of a CW-complex, and some of these will be used crucially later.
The emphasis on homotopical invariants of filtered spaces, and on colimits of filtered
spaces, is fundamental for the methods of this book.

7.1.ii Modules over groupoids

We have introduced the category XMod of crossed modules over groupoids in Sec-
tion 6.2. Here we give the simpler category Mod of modules over groupoids. They are
a useful generalisation of the well-known modules over groups,94 and also form part
of the basic structure of crossed complexes. Homotopy groups �n.X IX0/; n > 2, of
a space X with a set X0 of base points form a module over the fundamental groupoid
�1.X;X0/, as do the relative homotopy groups �n.Y;X;X0/; n > 3, of a pair .Y;X/.

Definition 7.1.7. A module over a groupoid is a pair .M;G/, where G is a groupoid
with set of objects G0,M is a totally disconnected abelian groupoid with the same set
of objects as G, and with a given action of G on M . Thus M comes with a target
function t W M ! G0, and each M.x/ D t�1.x/; x 2 G0, has the structure of abelian
group. The G-action is given by a family of maps

M.x/ �G.x; y/!M.y/
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for all x; y 2 G0. These maps are denoted by .m; p/ 7! mp and satisfy the usual
properties, i.e. m1 D m, .mp/p

0 D m.pp
0/ and .m C m0/p D mp C m0p , whenever

these are defined. In particular, any p 2 G.x; y/ induces an isomorphism m 7! mp

from M.x/ to M.y/. If .M;G/ is a module, then .M;G/0 is defined to be G0.
A morphism of modules is a pair .f; �/ W .M;G/ ! .N;H/, where � W G ! H

and f W M ! N are morphisms of groupoids and preserve the action. That is, f is
given by a family of group morphisms

f .x/ W M.x/! N.f .x//

for allx 2 G0 satisfyingf .y/.mp/ D .f .x/.m//�.p/, for allp 2 G.x; y/;m 2M.x/.
This defines the category Mod having modules over groupoids as objects and the

morphisms of modules as morphisms.
In the case when G0 is a single point we recover the category of modules over

groups.
We can also fix the groupoidG and restrict the morphisms between modules to those

inducing the identity on G, getting then the category ModG of modules over G.

In Appendix A, Section A.8, we discuss the notion of abelianisation M ab of a
groupoidM : in the caseM is just a family of groups, as in the case when � W M ! P

is a crossed module over the groupoidP , thenM ab is just the family of abelianisations
M.x/ab; x 2 P0 of the groups M.x/. This family inherits an action of Cok�.

Proposition 7.1.8. The natural inclusion functor i W Mod ! XMod which to a mod-
ule .M;G/ assigns the crossed module 0 W M ! G with trivial boundary has a
left adjoint which assigns to the crossed module M D .� W M ! P / the module
Mmod D .M ab;Cok�/, called modulisation of the crossed module.

The proof is left as an exercise.

7.1.iii The category of crossed complexes

The structure of crossed complex is suggested by the canonical example, the fundamen-
tal crossed complex …X� of the filtered space X�, which we explain in Section 7.1.v.
Here we give the purely algebraic definition.95

Definition 7.1.9. A crossed complex C over C1 is written as a sequence

: : : �� Cn
ın �� Cn�1

ın�1 �� : : : : : : ı3 �� C2
ı2 �� C1

and it is given by the following three sets of data:

1. For n > 2, Cn is a totally disconnected groupoid (abelian if n > 3) with the
same set of objects as C1, namely C0. This is equivalent to saying that Cn is a family
of groups fCn.x/gx2C0

and for n > 3, the groups Cn.x/ are abelian.
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We shall generally use additive notation for all groups Cn.x/; n > 3, and multi-
plicative notation for n D 1; 2, and we shall use the symbol 0 or 1 for their respective
identity elements. However, in dealing with the tensor product in the next chapter, it
is often convenient to use additive notation in all dimensions > 1.

2. For n > 2, an action of the groupoid C1 on the right on each Cn,

Cn � C1 ! Cn

denoted .c; c1/ 7! cc1 , such that if c 2 Cn.x/ and c1 2 C1.x; y/ then cc1 2 Cn.y/. For
n > 3, this property is equivalent to say that Cn is a C1-module (see Definition 7.1.7).

We shall always consider C1 as acting on its vertex groups C1.x/ by conjugation,
i.e. cc1 D c�1

1 cc1 2 C1.y/ for all c 2 C1.x/ and c1 2 C1.x; y/.
As an example of our use of notation, two of the conditions for an action are written

cc1c
0
1 D .cc1/c

0
1 and c1 D c in all dimensions, but the third condition is expressed as

.cc0/c1 D cc1c0c1 for n D 1; 2, and .c C c0/c1 D cc1 C c0c1 for n > 3.
A consequence of the existence of this action is that Cn.x/ Š Cn.y/ if there is a

morphism in C1.x; y/, i.e. when x and y lie in the same component of the groupoid
C1.

3. For n > 2, ın W Cn ! Cn�1 is a morphism of groupoids over C0 and preserves
the action of C1.

These three sets of data have to satisfy two conditions:

CX1) ın�1ın D 0 W Cn ! Cn�2 for n > 3 (thus C has analogies with chain
complexes);

CX2) Im ı2 acts by conjugation on C2, and trivially on Cn for n > 3.

Notice that CX2) actually has two parts. The first part, together with the condition
that ı2 preserves the action of C1, says that C2 is a crossed module over the groupoid
C1, since for c; c0 2 C2, cı2c

0 D c0�1cc0. The second part implies that for n > 3, C1
acts on Cn through

�1.C / D Cok ı2 D C1

Im ı2
;

which we call the fundamental groupoid of C .
These two axioms give a good reason for the name ‘crossed complex’: it has a ‘root’

which is a crossed module (over C1) and a ‘trunk’ that is a (kind of) chain complex
(over �1.C /). The interplay of these two actions is important in what follows.

We write s; t W C1 ! C0 for the source and target maps of the groupoid C1 and
t W Cn ! C0 denotes for n > 2 the target, or base point map, of the totally disconnected
groupoid Cn.

A morphism of crossed complexes f W C ! D is a family of morphisms of group-
oids fn W Cn ! Dn .n > 1/ all inducing the same map of vertices f0 W C0 ! D0, and
compatible with the boundary maps and the actions of C1 and D1. This means that
ınfn.c/ D fn�1ın.c/ and fn.cc1/ D fn.c/

f1.c1/ for all c 2 Cn and c1 2 C1. We
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represent a morphism of crossed complexes by the commutative diagram

: : : �� Cn
ın ��

fn

��

Cn�1
ın�1 ��

fn�1

��

: : : ı3 �� C2
ı2 ��

f2

��

C1

f1

��
: : : �� Dn

ın

�� Dn�1
ın�1

�� : : :
ı3

�� D2
ı2

�� D1.

We denote by Crs the resulting category of crossed complexes.
A morphism f W C ! D of crossed complexes induces a morphism f� W �1.C /!

�1.D/ of fundamental groupoids, giving a functor

�1 W Crs! Gpds: �
In the case when C0 is a single point we call C a reduced crossed complex, or a

crossed complex over a group. These crossed complexes give a full subcategory of
Crs, which we write Crsred.

We can also fix the groupoid C1 to be a groupoid G and restrict the morphisms to
those inducing the identity on G, getting then the category CrsG of crossed complexes
over G.

Remark 7.1.10. Although there are many similarities between crossed complexes and
chain complexes there are key differences. In dimension 0 a crossed complex C is
just a set C0, so even if this is a singleton, it is not seen as an abelian group. Thus a
chain complex of abelian groups is not a special case of a crossed complex. Relations
between crossed complexes and chain complexes with a groupoid of operators are
studied later in Sections 7.4, 8.4 and 9.5.

Definition 7.1.11. There are some simple examples of crossed complexes which will
recur often. IfG is a groupoid, then there is a crossed complex which we write K.G; 1/
which is G in dimensions 0 and 1, and is trivial in dimensions n > 2. We use this
notation to keep an analogy with Eilenberg–Mac Lane space in algebraic topology.
In fact the crossed complex K.G; 1/ is identical to the crossed complex sk1.G/ of
Section 7.1.vi. The crossed complex K.G; 1/ is often written simply as G. Next, for
n > 2 the functor

Kn W Mod! Crs

is defined on objects by

Kn.M;G/: D : : : �� 0 �� M ��

n

0 �� : : : �� 0 �� G
1

and gives an embedding of Mod as a full subcategory of Crs for any dimension n > 2.
This functor is also relevant to later results on the homotopy classification of maps,
and the notion of local coefficients, in Chapter 12. If n > 1, G D 1 is the trivial group
andM is an abelian group we write K.M; n/ for Kn.M; 1/ and we also write S.n/ for
K.Z; n/, while S.0/ denotes the crossed complex with object set f0; 1g and everything
else trivial.
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Definition 7.1.12. For each n > 3, we define the functor

Fn W Mod! Crs

to have value on a module .M;G/ the crossed complex

: : : �� 0 �� M
1M ��

n

M ��
n�1

0 �� : : : �� 0 �� G
1

;

where the twoM s are in dimensions n and n�1, the map between them is the identity,
and all other boundary maps are 0. The value of Fn on morphisms is defined similarly.
In particular, with G D 1, the trivial group, and M D Z, we write F .n/ for Fn.Z; 1/,
and extend this to the cases n D 2; 1 by setting

F .2/i D Z; i D 1; 2
with boundary the identity, and F .1/ is another name for the crossed complex �, these
crossed complexes being understood to be trivial except in the stated dimensions. Note
that F .n/ has one object for n > 2 and two objects for n D 1. We also set F .0/ to be
the trivial crossed complex on one object.

Definition 7.1.13. For n > 2, we define the restriction to dimension n functor

resn W Crs! Mod

to be given on objects by

resn.C / D
´
.Cn; �1C/ if n > 3;

.C ab
2 ; �1C/ if n D 2:

and with the obvious extension to morphisms.

Proposition 7.1.14. For n > 2, the functor resn is left adjoint to FnC1.

Proof. Suppose n > 3. We need to study Crs.C; FnC1.M;G//, i.e. morphisms of
crossed complexes

: : : �� CnC2
ınC2 ��

0

��

CnC1
ınC1 ��

fnC1

��

Cn
ın ��

fn

��

: : : ı3 �� C2
ı2 ��

0

��

C1

f1

��
: : : �� 0

0
�� M

1M

�� M
0

�� : : :
0

�� 0
0

�� G.

Since f1ı2 D 0 this diagram produces a morphism of modules

.fn; �/ W .Cn; �1.C //! .M;G/
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where � W �1.C /! G is induced by f1.
On the other hand, given a morphism of modules

.f 0; �/ W .Cn; �1.C //! .M;G/

we get a morphism of crossed modules on putting f1 D � ( being the projection
 W C1 ! �1C ), fn D f 0 and fnC1 D fnınC1.

These correspondences give the adjointness for this case. We leave the case n D 2
to the reader.

Corollary 7.1.15. For n > 2, the functor resn W Crs! Mod preserves colimits.

Exercise 7.1.16. Give the proof of the case n D 2 of the last proposition.

Exercise 7.1.17. There is another restriction functor for n > 3

res0
n W Crs! Mod

given by

res0
n C D



Cn

ınC1CnC1
; C1

�
:

Show that res0
n is right adjoint to Kn.

7.1.iv Homotopy and homology groups of crossed complexes

Let us recall some definitions and define some new functors giving direct algebraic and
set theoretic invariants of crossed complexes. The first one expresses the connectivity
of the basic groupoid C1.

Definition 7.1.18. The set of components of the crossed complex C , written �0.C /,
is just the set of components of the groupoid C1. This definition gives a functor

�0 W Crs! Set: �

Exercise 7.1.19. Prove that �0 W Crs! Set has left and right adjoints.

Example 7.1.20. It is easy to see that for the skeletal filtration of a CW-complex,
�0….X�/ is bijective with �0.X/.

We have earlier defined the fundamental groupoid �1.C /, the cokernel of the
crossed module part of the crossed complex.

Example 7.1.21. By the homotopy long exact sequence of a pair, it is clear that ifX� is
a filtered space such that the morphism induced by inclusion �1.X1; x/! �1.X2; x/

is surjective for all x 2 X0, then �1….X�/ Š �1.X2; X0/. The Seifert–van Kampen
Theorem 1.6.1 for the fundamental groupoid implies, in particular, that for the skeletal
filtration of a CW-complex, we have �1….X�/ Š �1.X;X0/.
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Now we consider the homology of the abelian part of a crossed complex, getting
�1.C /-modules associated to a crossed complex C .

Definition 7.1.22. For any crossed complex C and for n > 2 there is a totally discon-
nected groupoid Hn.C / given by the family of abelian groups

Hn.C; x/ D Ker ın.x/

Im ınC1.x/

for all x 2 C0. This is called the family of n-homology groups of the crossed com-
plex C .

A morphism f W C ! D of crossed complexes induces morphisms

f� W Hn.C /! Hn.D/

for all n > 2.

Exercise 7.1.23. Prove that for a crossed complex C and n > 2, the homology groups
are a family of abelian groups, and that there is an induced action of �1.C / on the
family Hn.C / of homology groups making Hn.C / a �1.C /-module. Thus each such
homology group gives a functor

Hn W Crs! Mod: �

Definition 7.1.24. A morphism f W C ! D is a weak equivalence if it induces a
bijection �0.C / ! �0.D/ and isomorphisms �1.C; x/ ! �1.D; f x/, Hn.C; x/ !
Hn.D; f x/ for all x 2 C0 and n > 2.

Example 7.1.25. We shall see in the next chapter in Section 8.4 that if X� is the
skeletal filtration of a CW-complex, then Hn.…X�; x/ is isomorphic to Hn. zXx/, the
n-th homology group of the universal cover of X based at x.

Remark 7.1.26. In Section 7.1.vii we shall introduce the notion of homotopy of mor-
phisms of crossed complexes. It is then an easy exercise to define homotopy equiva-
lences of crossed complexes and check that they are weak equivalences. The converse
is true for the free crossed complexes which we define in Section 7.3.iii, but this is a
nontrivial result.

7.1.v The fundamental crossed complex functor

For any filtered space X� and any x 2 X0, there is a sequence of groups and homo-
morphisms (abelian for n > 3):

� � � ınC1���! �n.Xn; Xn�1; x/
ın��! �n�1.Xn�1; Xn�2; x/

�! � � � ı3��! �2.X2; X1; x/
ı2��! �1.X1; x/:
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In this sequence, the �n.Xn; Xn�1; x/; n > 2, are the relative homotopy groups; the
composition in these groups and the action of the groupoid �1.X1; X0/ on these rel-
ative groups for varying x 2 X0 were studied in Section 2.1; ı2 W �2.X2; X1; x/ !
�1.X1; x/ is the standard boundary map considered in Equation (2.1.3), and for n > 3

the boundary maps ın are defined as on p. 36 as the composition

�n.Xn; Xn�1; x/
@n�! �n�1.Xn�1; x/

in�1���! �n�1.Xn�1; Xn�2; x/:

It is convenient to combine these structures over all base points x 2 X0 and so to
use crossed complexes over groupoids. So we get groupoids �n.Xn; Xn�1; X0/ for
n > 2, and the groupoid �1.X1; X0/, all having the same set X0 of objects.

Definition 7.1.27. The fundamental crossed complex …X� of the filtered space X�

� � � ınC1���! .…X�/n
ın�! .…X�/n�1 ! � � � ! .…X�/2 ! .…X�/1

is defined by

.…X�/n D �n.Xn; Xn�1; X0/; n > 2 and .…X�/1 D �1.X1; X0/:
This structure of groupoids, boundary morphisms, and actions define the fundamental
crossed complex of the filtered space X�.96

That …X� has the properties of a crossed complex can be proved directly, in a
manner similar to proofs in Section 2.1. Instead, we shall deduce these properties
from the full construction and properties of the homotopy !-groupoid �.X�/, since the
relation between these constructions, given in Part III, is a kind of engine which drives
this book. It turns out that…X� can be considered as a substructure ��X� of �X�, and
in this way we obtain in Chapter 14 a verification that …X� is a crossed complex. In
fact the definition of the required composition structure on �.X�/ is quite simple, but
the proof that this composition is well defined is not simple, as is seen in Section 6.3 in
dimension 2. The relations between these two functors � and … form a basis for this
whole book, even though this may be disguised in Part II, in which our main object is
the study and use of ….

The homotopical definition of this crossed complex implies immediately that it
gives a functor

… W FTop! Crs:

Note also that in each of the categories FTop, Crs, disjoint unions are the coproducts:
this is partly because the empty groupoid exists which is but one of the advantages of
a groupoid approach. The homotopical definition of the functor … implies easily that
it preserves disjoint unions.

An obvious property of… is that it is preserved by isomorphisms of filtered spaces.
This is analogous to the fact that singular homology is pretty obviously preserved by
homeomorphisms of spaces; separate methods have to be developed to calculate with
singular homology, and quite different methods are used to calculate with ….
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Proposition 7.1.28. An isomorphism f W X� ! Y� in the category FTop induces an
isomorphism of crossed complexes …f W …X� ! …Y�.

A more subtle property is the following:

Proposition 7.1.29. Let f W X� ! Y� be a map of filtered space such that f0 W X0 !
Y0 is a bijection, and for n > 1, fn W Xn ! Yn is a homotopy equivalence. Then
…f W …X� ! …Y� is an isomorphism.

Proof. This follows from basic properties of relative homotopy groups.97

Thus one advantage of the functor… is that its topological and indeed homotopical
invariance in the above sense is clear. The fact that we can calculate to some extent
with … comes from the Higher Homotopy Seifert–van Kampen Theorem in the next
chapter.

We will show in Chapter 9 how the functor … behaves with respect to homotopies
of filtered maps; such a homotopy is a map I� ˝ X� ! Y� in FTop. This discussion
requires the development of more algebraic machinery, and in particular the tensor
product of crossed complexes.

We emphasise that the use of crossed complexes over groupoids is central to this
theory, both for the development of the algebra and for the modelling of the topology.98

7.1.vi Substructures

We will use finite-dimensional versions of crossed complexes.

Definition 7.1.30. An n-truncated crossed complex over a groupoid C1 is a finite
sequence

Cn
ın �� Cn�1 �� : : : ı3 �� C2

ı2 �� C1

satisfying all the axioms for a crossed complex in so far as they make sense. In a similar
way, we define morphisms between n-truncated crossed complexes. They define the
category Crsn of n-truncated crossed complexes.

Notice that a 1-truncated crossed complex is just a groupoid, and a 2-truncated
crossed complex is a crossed module over a groupoid, as defined in Chapter 6. Thus
we can write Crs1 D Gpds and Crs2 D XMod.

Definition 7.1.31. We define the n-truncation functor

trn W Crs! Crsn

which applied to a crossed complex C gives its part in dimensions 6 n.

There is also a functor in the other direction:
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Definition 7.1.32. The n-skeleton functor

skn W Crsn ! Crs

maps an n-truncated crossed complex

C W D Cn
ın �� Cn�1

ın�1 �� : : : �� C2
ı2 �� C1

to

skn.C / W : : : �� 0 �� Cn
ın �� Cn�1

ın�1 �� : : : �� C2
ı2 �� C1,

which agrees with C up to dimension n and is trivial thereafter.
It is also convenient to write Skn D skn trn, so that an n-truncated crossed complex

is also thought of as a crossed complex C with Ck D 0 for k > n. This n-skeleton
functor allows us to consider Crsn as a full subcategory of Crs. Conversely, for a
crossed complex C , Skn C is also thought of as a ’truncation’ of C .

Proposition 7.1.33. The n-skeleton functor skn is left adjoint to the n-truncation func-
tor trn.

Proof. For any crossed complex D and n-truncated crossed complex C there is an
obvious bijection

Crs.skn.C /;D/! Crsn.C; trn.D//

because a morphism of crossed complexes

f W skn.C /! D

is given just by the first nmaps fi , since all the others are the 0maps as in the diagram

: : : �� 0 ��

0

��

Cn
ın ��

fn

��

Cn�1
ın�1 ��

fn�1

��

: : : : : : ı3 �� C2
ı2 ��

f2

��

C1

f1

��
: : : �� DnC1 �� Dn

ı0
n

�� Dn�1
ı0

n�1

�� : : : : : :
ı0

3

�� D2
ı0

2

�� D1.

The n-truncation functor has also a right adjoint which is a modification of the
n-skeleton functor.

Definition 7.1.34. We define the n-coskeleton functor

coskn W Crsn ! Crs;
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on an n-truncated crossed complex

C W Cn ın �� Cn�1
ın�1 �� : : : : : : �� C2

ı2 �� C1

by

coskn.C / W D : : : �� 0 �� Ker ın �� Cn
ın �� Cn�1

ın�1 �� : : : �� C1

for n > 2 and by

cosk1.C / W D : : : �� 0 �� Inn.C1/ �� C1,

where Inn.C1/ is the totally disconnected groupoid formed by the object groups of C1.

We also write Coskn D coskn trn as a functor Crs ! Crs. Notice that the only
difference of the coskeleton from the skeleton functor is in the existence of elements
of dimension nC 1. The importance of this is realised when proving adjointness.

Proposition 7.1.35. The functor coskn is right adjoint to the n-truncation functor trn.

Proof. Let n > 2. For any crossed complex C and n-truncated crossed complex D
there is an obvious bijection

Crs.C; coskn.D//! Crsn.trn.C /;D/

because a morphism f from C to coskn.D/ is just given by the first n maps since the
.nC 1/-st has to be the restriction of fnınC1 to its image and all others have to be the
0 maps as in the diagram

: : : �� CnC2 ��

0

��

CnC1
ınC1 ��

fnınC1

��

Cn
ın ��

fn

��

Cn�1
ın�1 ��

fn�1

��

: : : ı3 �� C2
ı2 ��

f2

��

C1

f1

��
: : : �� 0 �� Ker ı0

n
�� Dn

ı0
n

�� Dn�1
ı0

n�1

�� : : :
ı0

3

�� D2
ı0

2

�� D1.

Notice that in order to be able to definefnC1 as above we need the .nC1/-st dimensional
part of coskn.D/ to be Ker ı0

n, because ı0
nfnınC1 D fn�1ınınC1 D 0.

We leave the case n D 1 to the reader.

We will use later also a left adjoint to skn.99

Proposition 7.1.36. For n > 1, the cotruncation functor cotrn W Crs ! Crsn which
assigns to a crossed complex C the n-truncated crossed complex over C0,

cotrn C W D Cn

Im ınC1
! Cn�1 ! � � � ! C2 ! C1;

is left adjoint to skn.
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Proof. We leave details to the reader, including the proof that cotrn C inherits the
structure of crossed complex.

In summary, we have functors

trn; cotrn W Crs! Crsn; skn; coskn W Crsn ! Crs

such that trn has left adjoint skn, and right adjoint coskn, while skn has right adjoint
trn and left adjoint cotrn.

Corollary 7.1.37. The functors skn, trn preserve limits and colimits; coskn preserves
limits; cotrn preserves colimits. In particular, the fundamental groupoid functor
�1 W Crs! Gpds, which coincides with cotr1, preserves colimits.

7.1.vii Homotopies of morphisms of crossed complexes

The reasons for placing the notion of homotopy here are: (i) it is a basic notion for the
theory, (ii) the notion of homotopy will be familiar to many readers in other contexts
such as chain complexes, and so we wanted it early on; (iii) we wanted to show at this
stage the homotopy relationship of a connected crossed complex to the part of it over
a single point.

Because of the amount of information encoded in crossed complexes, particularly
on base points, the definition of homotopy is more complicated than that in the chain
complex case, but this complication is necessary to reflect the geometry of the cylinder
E1�Em.100 However the justification of the conventions in this definition of homotopy
will have to wait till Chapter 9 where the definition is put in the context of a tensor
product structure on Crs and a homotopy can then be seen as a morphism �˝C ! D

from a ‘cylinder object’ � ˝ C to D, where � is the groupoid defined on p. 26, but
regarded as a crossed complex trivial above dimension 1.

The only result of this section is Proposition 7.1.46 which shows usefully how the
homotopy type of a connected crossed complex is related to that of its reduced part
over a vertex.

Recall that we write s; t W C1 ! C0 for the source and target maps of the groupoid
C1, and t W Cn ! C0 denotes for n > 2 the target, or base point map, of the totally
disconnected groupoid Cn.

In chain complexes a homotopy C ! D can be defined simply as a family of
morphisms Cn ! DnC1, and this can relate a pair of morphisms f �; f C. For crossed
complexes, the homotopy has to be associated with a morphism f C. In the following
we use the term ‘homotopy to f C’, but in Chapter 9, we will need to call this a left
1-homotopy to f C, since we then discuss left and right m-homotopies for all m > 1.

Definition 7.1.38. Let f �; f C W C ! D be morphisms between two crossed comp-
lexes. A homotopy from f � to f C,

H W f � ' f C;



7.1 Our basic categories and functors 225

is given by a pair .H; f C/ where H is a sequence of maps

Hn W Cn ! DnC1; n > 0

which satisfy the following properties:
1. For c 2 Cn, n > 0 ,

Hn.c/ 2
´
D1.f

�.c/; f C.c// if n D 0;
DnC1.tf C.c// if n > 0:

(i)

2. If c; c0 2 Cn and cc0 or cCc0 is defined according as n D 1 or n > 2 respectively
then:

H1.cc
0/ D H1.c/fCc0

H1.c
0/ if n D 1; (iia)

Hn.c C c0/ D Hn.c/CHn.c0/ if n > 2: (iib)

Thus H1 is a derivation over f C (see Remark 7.1.42 for more details) and for n > 2

Hn is linear.
3. For n > 2, Hn preserves the action over f C

1 , i.e.

Hn.c
c1/ D .Hnc/f

C
1
c1 if c 2 Cn; n > 2; c1 2 C1; and cc1 is defined. (iii)

4. The pair .H; f C/ determines the initial morphism f �; if c 2 Cn; n > 0 then:

f �.c/ D

8̂<̂
:
sH0.c/ if n D 0;
.H0sc/.f

Cc/.ı2H1c/.H0tc/�1 if n D 1;
¹f Cc CHn�1ınc C ınC1Hncº.H0tc/

�1
if n > 2:

(iv)

It is useful to visualise (iv) for the case c W x ! y in C1 in terms of the diagram:101

f �x H0x ��

f �c

��

f Cx

fCc

��
f �y

H0y
�� f Cy

ı2H1c

PP

Exercise 7.1.39. Prove that if .H; f C/ is a homotopy and we define f � using (iv),
then f � is a morphism of crossed modules.

Remark 7.1.40. An important observation which we will use later is that if f �, f C
are given and c 2 Cn then ınC1Hn.c/ is determined by H0tc and Hn�1ın.c/. This is
a key to later inductive constructions of homotopies.



226 7 The basics of crossed complexes

Exercise 7.1.41. Prove directly from this definition that homotopy of morphisms is an
equivalence relation.

Remark 7.1.42. Let us expand a bit on the fact that H1 is an f C-derivation. Note
that C1 operates on D2 via f C and so we can form the semidirect product groupoid
C1 Ë D2 with projection pr1 to C1. This groupoid has objects C0 and arrows pairs
.c; d/ 2 C1 � D2, such that f C

0 ı1.c/ D t .d/, with composition .c; d/.c0; d 0/ D
.cc0; dfCc0

d 0/. This can be seen in the picture:

�d 0

�d �dfCc0

� ��c � ��c
0 �

D �dfCc0

d 0

� ��cc
0 �

It is then easily seen that an f C-derivation H1 is determined completely by a
morphism H 0

1 W C1 ! C1 ËD2 such that pr1H
0
1 D 1C1

. A corollary is that if C1 is a
free groupoid, then an f C-derivation is completely determined by its values on a set
of free generators of C1.

Remark 7.1.43. Notice that the definition of the derivation has been on the left. Some-
times ‘right derivations’ are useful governed by the rule

H1.cc
0/ D H1.c0/H1.c/f

C
1
.c0/:

Example 7.1.44 (Contracting homotopies). From the above we can deduce formulae
for a contraction. Suppose then in the above formulae we take C D D, f � D 1C ,
f D 0 where 0 denotes the constant morphism on C mapping everything to a base
point 0 and the corresponding identities. Then the homotopy H W 1 ' 0 must satisfy:

H0c 2 C1.c; 0/ if c 2 C0; (ri)

H1.cc
0/ D H1.c/H1.c0/ if c; c0 2 C1; and cc0 is defined, (rii)

Hn.c
c
1/ D Hn.c1/ if c1 2 Cn; c 2 C1; and cc1 is defined, (riii)

ı2H1c D .H0sc/�1c .H0tc/ if c 2 C1; (riva)

ınC1Hnc D �Hn�1ınc C cH0tc

D cH0tc �Hn�1ınc if c 2 Cn; n > 2: (rivb)

The reason for the last equality is that the groups Cn.x/ are abelian for n > 3 while
for n D 2 the image of ı3 is central in C2. All these conditions (ri)–(riv) are necessary
and sufficient for .H; 0/ to be a contracting homotopy.

Exercise 7.1.45. Define the notion of homotopy equivalence f W C ! D of crossed
complexes. Recall that a morphism f W C ! D of crossed complexes induces mor-
phisms of the fundamental groupoids and homology groups. Prove that a homotopy
equivalence of crossed complexes induces an equivalence of fundamental groupoids.
What can you say about the induced morphism of homology groups?
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In analogy with the relation between groups and connected groupoids discussed in
Section 1.7, we now give the relation between a connected crossed complex and its
reduced version. However, as for groupoids, this is not an argument for considering
only the reduced case, and the value of the general case will appear as we proceed
(HHSvKT, monoidal closed structure, covering crossed complexes, : : : ).

A connected groupoidG is known to be isomorphic toG.x0/�T where x0 2 ObG
and T is a wide tree subgroupoid of G, [Bro06], 8.1.5. See also Equation (1.7.1).
Further, T determines a strong deformation retraction G ! G.x0/. We now show the
same applies to crossed complexes. We extend the term ‘wide tree subgroupoid’ to
‘wide tree subcrossed complex’ of C , namely a wide subcrossed complex T of C such
that T1 is a wide tree sub groupoid of C1, and Tn.x/ is trivial for all x 2 T0 and n > 2.
The final part of the following proposition generalises [Bro06], 6.7.3, and is related to
Proposition 1.7.1.

Proposition 7.1.46. Let C be a connected crossed complex, let x0 2 C0 and let T be
a wide tree subcrossed complex of C . Let C.x0/ be the subcrossed complex of C at
the base point x0. Then the natural morphism

 W C.x0/ � T ! C

determined by the inclusions is an isomorphism, andT determines a strong deformation
retraction

r W C ! C.x0/:

Further, if f W C ! D is a morphism of crossed complexes which is the identity
on C0 ! D0 then we can find a retraction s W D ! D.x0/ giving rise to a pushout
square

C

f

��

r �� C.x0/

f 0

��
D s

�� D.x0/

(7.1.1)

in which f 0 is the restriction of f .

Proof. Let i W C.x0/ ! C , j W T ! C be the inclusions. We verify the universal
property of the free product. Let ˛ W C.x0/! E, ˇ W T ! E be morphisms of crossed
complexes agreeing on x0. Suppose g W C ! E satisfies gi D a, gj D b. Then g is
determined on C0. Let c 2 C1.x; y/. Then

c D .�x/..�x/�1c.�y//.�y/�1 (�)

and so

gc D g.�x/g..�x/�1c.�y//g.�y/�1
D ˇ.�x/˛..�x/�1c.�y//ˇ.�y/�1:
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If c 2 Cn.x/; n > 2, then

c D .c�x/.�x/�1

(��)

and so

g.c/ D ˛.c�x/ˇ.�x/�1

:

This proves uniqueness of g, and conversely one checks that this formula defines a
morphism g as required.

In effect, equations .�/ and .��/ give for the elements of C normal forms in terms
of elements of C.x0/ and of T .

This isomorphism and the constant map T ! fx0g determine the strong deforma-
tion retraction r W C ! C.x0/.

The retraction s is defined by the elements f �.x/; x 2 C0, and then the diagram
(7.1.1) is a pushout since it is a retract of the pushout square

C

f

��

1 �� C

f

��
D

1
�� D.

7.2 Colimits of crossed complexes

The HHSvKT Theorem 8.1.5 in the next chapter states that the functor… W FTop! Crs
preserves certain colimits. The proof, which we give in Part III, does not require
knowledge of the existence of colimits in the category Crs. It is true that these colimits
exist: this follows from general facts on algebraic theories which do not need to go into
here.102 However, in order to apply the HHSvKT we need to know, not that colimits
exist in general, but how to compute colimits of crossed complexes in more familiar
terms and in specific situations.

It is an important feature of the HHSvKT that it deals with algebraic structures with
structure in a range of dimension. This enables the theorem to give information on how
low dimensional identifications influence higher dimensional homotopy information.
For groupoids, using this information requires study of the functor Ob W Gpds! Set,
and this is done in Appendix B using notions of fibration and cofibration of categories.

In this section, we carry out a similar study on crossed complexes, using the idea that
crossed complexes have algebraic structure in a range of dimensions. The particular
functors of truncation, skeleton, coskeleton, cotruncation, have importance not only
for particular calculations of colimits of crossed complexes, but also for the theoretical
studies of Part III on the equivalence of crossed complexes and !-groupoids, whose
utility is at the heart of this book, even if at this stage in a way which may be mysterious.
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We can now easily show that the determination of colimits in Crs can be reduced
to the determination of colimits in:

(i) the category Gpds of groupoids;
(ii) the category XMod of crossed modules over groupoids, and

(iii) the category Mod of modules over groupoids.

That is explained in Section 7.2.i.
In order to describe colimits in groupoids, crossed modules, and modules, it is

convenient to use the language of ‘fibred and cofibred categories’, also called ‘fibrations
and cofibrations’. These notions are developed in Appendix B, and we assume that
language. The construction of colimits of connected diagrams in either of Mod and
XMod may be done in two steps. First, we change the base groupoids of the modules
of a diagram so that they become the same for all modules or crossed modules and
then we take the colimit in ModG or XModG . This is proved in Sections 7.2.ii and
7.2.iii. We leave to the reader to analyse the ‘universal groupoids’U	G obtained from
a groupoidG and a set function 
 W ObG ! Y in the light of the theory of cofibrations
of categories.

7.2.i Computation of colimits of crossed complexes dimensionwise

We recapitulate how colimits of crossed complexes may be computed piecewise, i.e.
in terms of the truncation functors defined in Section 7.1.vi.

Proposition 7.2.1. Let C D colimC � be a colimit in the category Crs of crossed
complexes. Then

(i) for n D 1, the groupoid tr1 C D C1 is the colimit in Gpds of the groupoids
tr1 C � D C �1 , i.e.

C1 D colimGpds C
�
1 I

(ii) also for n D 1, the groupoid �1C is the colimit in Gpds of the groupoids �1C �,
i.e.

�1C D colimGpds �1C
�I

(iii) for n D 2, the crossed complex tr2 C is the colimit in XMod of the crossed
modules tr2 C �, i.e.

.C2 ! C1/ D colimXMod .C
�
2 ! C �1 /I

(iv) for each n > 3, the groupoid Cn as a module over �1.C / is the colimit in the
category Mod of the groupoids C �n as modules over �1.C �n /, i.e.

.Cn; �1.C // D colimMod .C
�
n ; �1.C

�//:
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Proof. All these facts hold because the functors appropriate to each case have left
adjoints and, consequently, they preserve colimits:

(i) follows since the truncation functor tr1 W Crs! Gpds preserves colimits because
the coskeleton functor cosk1 W Gpds! Crs is its left adjoint (see Proposition 7.1.35).

(ii) follows from (i) because �1 preserves colimits since it has a left adjoint (see
Corollary 7.1.37).

(iii) follows since the truncation functor tr2 W Crs ! XMod preserves colimits
because the coskeleton functor cosk2 W XMod ! Crs is its left adjoint (see Proposi-
tion 7.1.35).

(iv) follows since the restriction functor resn W Crs ! Mod preserves colimits be-
cause the functor FnC1 W Mod! Crs is its left adjoint (see Proposition 7.1.14).

The previous description gives not only the groupoid, crossed module and modules,
but also the boundary maps ı W Cn ! Cn�1; these can be recovered as induced by the
maps ı� W C �n ! C �n�1, for all �.

7.2.ii Groupoid modules bifibred over groupoids

We have a forgetful functor ˆM W Mod! Gpds in which .M;G/ 7! G.

Proposition 7.2.2. The forgetful functor ˆM W Mod ! Gpds has a left adjoint and is
fibred and cofibred.

Proof. The left adjoint of ˆM assigns to a groupoid G the module written 0 ! G

which has only the trivial group over each x 2 G0.
Next, we give the pullback construction to prove that ˆM is fibred. This is entirely

analogous to the group case, but taking account of the geometry of the groupoid.
Let � W G ! H be a morphism of groupoids,
First let N be an H -module. We construct .M;G/ D .��N;H/ as follows. For

x 2 G0 we set M.x/ D fxg � N.�x/ with addition given by that in N.�x/. The
operation is given by .x; n/g D .y; n�g/ for g 2 G.x; y/.

Second, let M be a G-module. We construct .N;H/ D .��M;G/ as follows.
For z 2 H0 we let N.z/ be the abelian group generated by pairs .m; h/ with

m 2 M;h 2 H , and t .h/ D z; s.h/ D �.t.m//, so that N.z/ D 0 if no such
pairs exist. The operation of H on N is given by .m; h/h

0 D .m; hh0/, addition is
.m; h/C .m0; h/ D .mCm0; h/ and the relations imposed are .mg ; h/ D .m; �.g/h/
when these make sense. The cocartesian morphism over � is given by  W m 7!
.m; 1�t.m//.

Corollary 7.2.3. Let .M;G/ D colim .M�; G�/ be a colimit in the category Mod of
modules. Make the following two stage construction:

(i) First calculate G D colimG� with canonical morphisms i� W G� ! G;
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(ii) for each � form the induced module ..�1i�/�M�; G/, where �1.i�/ W �1G� !
�1G is the morphism induced by i�.

Then the colimit in ModG of .�1.i�/�M�; G/ is isomorphic to .M;G/.

Proof. This is just a restatement of Theorem B.3.4

Remark 7.2.4. The relation between a module over a groupoid and the restriction to
the vertex groups is discussed in Theorem 7.1.46 in the general context of crossed
complexes. However it is useful to give the general situation of many base points
to describe the relative homotopy group �n.X;A; a0/ when X is obtained from A

by adding n-cells at various base points. The natural invariant to consider is then
�n.X;A;A0/ where A0 is an appropriate set of base points.

7.2.iii Crossed modules bifibred over groupoids

The category XMod of crossed modules over groupoids has already been defined in
Section 6.2. We have a forgetful functorˆ1 W XMod! Gpds in which sends a crossed
module .� W M ! P / to the base groupoid P .

Proposition 7.2.5. The forgetful functor ˆ1 W XMod ! Gpds is fibred and has a left
adjoint.

Proof. The left adjoint of ˆ1 assigns to a groupoid P the crossed module 0 ! P

which has only the trivial group over each x 2 P0.
Next, we give the pullback construction to prove thatˆ1 is fibred. So let � W P ! Q

be a morphism of groupoids, and let � W N ! Q be a crossed module. We define
M D ��.N / as follows.

Forx 2 P0we setM.x/ to be the subgroup ofP.x/�N.�x/of elements .p; n/ such
that �p D �n. If p1 2 P.x; x0/; n 2 N.�x/ we set .p; n/p1 D .p�1

1 pp1; n
f .p1//,

and let � W .p; n/ 7! p. We leave the reader to verify that this gives a crossed module,
and that the morphism .p; n/ 7! n is cartesian.

The following result in the case of crossed modules of groups appeared in Chapter 5,
described in terms of the crossed module @ W ��.M/ ! Q induced from the crossed
module � W M ! P by a morphism � W P ! Q.

Proposition 7.2.6. The forgetful functor ˆ1 W XMod! Gpds is cofibred.

Proof. We prove this by a direct construction, generalising that given earlier.
Let � W M ! P be a crossed module, and let � W P ! Q be a morphism of

groupoids. The construction of N D ��.M/ and of @ W N ! Q requires just care to
the geometry of the partial action in addition to the construction for the group case.

Let y 2 Q0. If there is no q 2 Q from a point of �.P0/ to y, then we set N.y/ to
be the trivial group.
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Otherwise, we define F.y/ to be the free group on the set of pairs .m; q/ such
that m 2 M.x/ for some x 2 P0 and q 2 Q.�x; y/. If q0 2 Q.y; y0/ we set
.m; q/q

0 D .m; qq0/. We define @0 W F.y/ ! Q.y/ to be .m; q/ 7! q�1.�m/q. This
gives a precrossed module over @ W F ! Q, with function i W M ! F given by
m 7! .m; 1/ where if m 2M.x/ then 1 here is the identity in Q.�x/.

We now wish to change the function i W M ! F to make it an operator morphism.
For this, factor F out by the relations

.m; q/.m0; q/ D .mm0; q/;
.mp; q/ D .m; .fp/q/;

whenever these are defined, to give a projection F ! F 0 and i 0 W M ! F 0. As
in the group case, we have to check that @0 W F ! Q induces @00 W F 0 ! H mak-
ing this a precrossed module. To make this a crossed module involves factoring out
Peiffer commutators, whose theory is analogous to that for the group case given in
Section 3.4. This gives a crossed module morphism .; f / W .M;P /! .N;Q/ which
is cocartesian.

Corollary 7.2.7. Let .� W M ! G/ D colim .�� W M� ! G�/ be a colimit in the
category XMod of crossed modules. Make the following two stage construction:

(i) First calculate G D colimG�,

(ii) for each� construct the crossed module .i�/�M� ! G induced by i� W G ! G�.

Then the colimit in XModG of the .i�/�M� ! G/ is isomorphic to � W M ! G.

Proof. This is just a restatement of Theorem B.3.4.

7.3 Free constructions

In Part I we have used free groups, and studied free crossed modules over groups;
free modules over a group are common knowledge. Now we generalise all this to the
groupoid case, in order to arrive at the notion of free crossed complexes. These are
important in their own right in algebra, and also in topology because they gives a useful
algebraic model CW-complexes.

In particular, free constructions given here model the process of attaching cells to
a space.

Attaching 1-cells to a discrete space gives graphs, with the well-known free group-
oids as algebraic models. In higher dimensions, for a space A we may form X D
A[fi

e2i where the cells e2i are attached by maps fi W S1 ! A. We may take the base
point of S1 to be say 1, and set ai D fi .1/, A0 D faig. We then want to express
�2.X;A;A0/ as a free crossed module over the fundamental groupoid �1.A;A0/. We
also want to see, ifA has itself a base point say a0, how to calculate the crossed module
of groups �2.X;A; a0/! �1.A; a0/.
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So we must extend the notions of free groupoid to the higher dimensions of free
crossed modules and free crossed complexes. Because of the given geometric structure
of crossed complexes, this extension is quite simple.

We emphasise here the adjoint functor approach to free constructions since this
shows how we bring to these constructions the underlying geometry of these algebraic
structures.

We assume the notion of free groupoid as discussed in Appendix B, Section B.6.

7.3.i Free modules over groupoids

A module .M;G/ comes equipped with a function ! D s D t W M ! G0. We define
a category Set0=Gpds whose objects consist of functions ! W R ! G0 where G is a
groupoid andR is a set, and whose morphisms are pairs .f; �/ such that f W R! R0 is
a function and � W G ! G0 is a morphism of groupoids giving a commutative diagram

R

!

��

f �� R0

!0

��
G0

�0

�� G0
0.

Proposition 7.3.1. There is a forgetful functor U W Mod! Set0=Gpds which forgets
the structure of abelian groups on the familyM in a module .M;G/. This functor has
a left adjoint which gives the free module on a function ! W R ! G0 for a set R and
groupoid G.

Proof. The left adjoint F is constructed on objects as follows. Suppose given the
groupoid G and function ! W R ! G0. For x 2 G0 let F.!/.x/ be the free abelian
group on pairs .r; g/ for r 2 R and g W !.r/ ! x if such exist, and otherwise is the
zero abelian group. The operation of G is given by .r; g/h D .r; gh/ provided gh is
defined.

It is easily checked that F extends to a functor which is the left adjoint as required.

Remark 7.3.2. The counit of this adjunction gives for ! W R ! G0 in Set0=Gpds a
function i W R! F.!/which gives the free basis for F.!/ and has the usual universal
property of a free basis. Suppose we are given an isomorphism .f; 1/ W .F.!/;G/ Š
.M;G/ and i 0 D f i W R ! M . By abuse of language we say then that M is a free
G-module with free basis i 0. (Recall that the counit of the adjunction with its universal
property determines the adjunction.)

Remark 7.3.3. 1. As is standard for universal constructions, any two free G-modules
over the same map ! are isomorphic.
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2. If i W R!M is a free basis forM as G-module and � W G ! H is a morphism
of groupoids then ��M is a freeH -module with basis N�i W R! ��M , where N� W M !
��M .

Since for any map t W R! G0 we have essentially a unique freeP -module, we can
construct one using the induced module construction. First, we get a kind of ‘universal
free module’ over R.

Proposition 7.3.4. LetR be an indexing set, and consider the module ZR D .Z�R;R/
over the discrete groupoid R. The map R! Z�R mapping r to .1; r/ is a free basis
of ZR as R-module.

The proof is easy. Now we apply the induced module construction.

Corollary 7.3.5. Let R be a set, regarded also as a discrete groupoid. Let P be a
groupoid and ! W R! P0 a function, defining also a groupoid morphism � W R! P .
Consider the module ZR D .Z�R;R/ over the discrete groupoidR. Then the induced
P -module

.FM.!/; P / D .��ZR;P /

is free.

Proof. This is direct since the induced module construction preserves freeness.

Example 7.3.6. Suppose R is the singleton frg, i.r/ 2 M.x/ and M is the free P -
module on i . Then M.x/ will be isomorphic to the free abelian group on elements rq

for all q 2 P.x/, while if y 2 P0 thenM.y/will be the free abelian group on elements
rq for all q 2 P.x; y/. In words, the contribution from r gets spread around the other
objects of P by the action of P . You should now be easily able to see what happens if
R has more than one element.

We now move on to free crossed modules over groupoids. They generalise to
groupoids the construction of free crossed modules over groups of Section 3.4.

7.3.ii Free crossed modules over groupoids

The geometry of crossed modules over groupoids involves a category we write
Set=Gpds whose objects consist of a groupoid G and a function ! W R ! G such
that s! D t! W R! G0, and whose morphisms are pairs .f; �/ such that f W R! R0
is a function and � W G ! G0 is a morphism of groupoids giving a commutative diagram

R

!

��

f �� R0

!0

��
G

�
�� G0.
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Proposition 7.3.7. There is a forgetful functor U W XMod! Set=Gpds which forgets
the algebraic structures on the familyM in a crossed module� W M ! G. This functor
has a left adjoint FX which gives the free crossed module on a function ! W R ! G

such that s! D t! for a set R and groupoid G.

Proof. The left adjoint FX is constructed on objects as follows. Suppose given the
groupoid G and function ! W R! G such that s! D t!. For x 2 G0 let PFX.!/.x/
be the free group on pairs .r; g/ for r 2 R and g W !.r/ ! x in G if such exist, and
otherwise is the trivial group. An operation ofG onPFX.!/ is given on the generators
by .r; g/h D .r; gh/ provided gh is defined. An operator morphism � W PFX.!/! G

is defined as usual by
�.r; g/ D g�1!.r/g:

This gives a precrossed module and the free crossed G-module on ! is defined to be

FX.!/ D .PFX.!//cr;

the associated crossed module obtained by factoring by the Peiffer elements.
It is easily checked thatFX extends to a functor which is the left adjoint as required.

Remark 7.3.8. 1. As usual in the universal constructions, any two free G-crossed
modules over the same map ! are isomorphic.

2. If i W R ! M is a free basis for M D .� W M ! G/ as crossed G-module and
� W G ! H is a morphism of groupoids then ��M is a free H -crossed module with
basis the composition

R
i�!M

N��! ��M

where . N�; �/ W .M ! P /! .��M ! H/.

Exercise 7.3.9. 1) Prove that an induced crossed module of a free crossed module is
also free.

2) Generalise the construction in Chapter 4 to the case of crossed modules over
groupoids, and prove that a coproduct of free crossed P -modules, where P is a group-
oid, is also free.

There is for Proposition 5.2.3 a groupoid version which is also a crossed module
version of Proposition 7.3.4. First we point out:

Proposition 7.3.10. Let R be a set, considered as discrete groupoid, let R � F .2/ be
the disjoint union of copies of the crossed module F .2/, considered as a crossed module
of groupoids. This is a free crossed module with free basis the map R ! R � F .2/2,
r 7! .r; 1/.

Now, we apply the induced crossed module construction.
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Corollary 7.3.11. Let R be an indexing set, G a groupoid and ! W R! G a function
such that s! D t!. Let � W R � F .2/1 ! G be the groupoid morphism determined by
.r; 1/ 7! !.r/. Then the induced crossed module

��.R � F .2/2/

is isomorphic to the free crossed P -module on !.

Proof. This is clear since the induced module construction preserves freeness.

Example 7.3.12. If the image of the function ! W R ! G consists only of identities,
then the free crossed module on ! is just a free module.

7.3.iii Free crossed complexes

We will first define the term crossed complex of free type, but then later abbreviate this
with some abuse of language to free crossed complex.

Crossed complexes of free type model algebraically the topological notion of in-
ductively attaching cells, as in relative CW-complexes.

Definition 7.3.13. A crossed complex C is of free type if:

– the groupoid C1 is a free groupoid;

– the crossed module @2 W C2 ! C1 is a free crossed C1-module; and

– for all n > 3, Cn is a free module over the groupoid �1C .

Note that this includes the discrete crossed complex on a set S , which is just the
disjoint union over S of trivial crossed complexes, and is also written S , as being of
free type.

It is also convenient to see a crossed complexC of free type as built inductively from
the discrete crossed complex on C0 analogously to the construction of CW-complexes.
The building blocks forC are the crossed complexes F .n/ and S.n/of Definition 7.1.12,
which are analogous to the cells and spheres of topology. We recall the definitions:

The crossed complex versions of ‘n-cells’, written F .n/, are:

F .0/ the trivial crossed complex with base point 0;

F .1/ D �,

F .2/i D Z for i D 1; 2 with boundary the identity, and is otherwise trivial,

while for n > 3

F .n/ W D : : : �� 0 �� Z
1Z ��

n

Z ��
n�1

0 �� : : : �� 0 �� 1
1

:

The crossed complex versions of the ‘n-spheres’, written S.n/, are:
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S.0/ is the discrete crossed complex on f 0; 1 g;
S.1/ D K.Z; 1/,

while for n > 2

S.n/ W D : : : �� 0 �� Z ��

n

0 �� : : : �� 0 �� 1
1

:

The crossed complexes F .n/ are freely generated by one generator cn in dimension
n, and so satisfy the following property:

Proposition 7.3.14. For any crossed complex C and any element c 2 Cn there is a
unique morphism of crossed modules

Oc W F .n/! C

such that Oc.cn/ D c. That is, there is a natural bijection of sets Cn Š Crs.F .n/; C /.

Remark 7.3.15. It is a straightforward consequence of convexity of the interval E1

that ….E1�/ Š F .1/. That ….S1�/ Š S.1/ follows from the fact that the fundamental
group of S1 is isomorphic to Z, as has been proved in Section 1.7. It will be proved in
Corollary 8.3.11 in the next chapter that ….Sn� / Š S.n/ for n > 1 and it follows from
this that ….En� / Š F .n/.

The crossed complex F .n/ allows us to define the notion of ‘adding to a crossed
complex free generators in dimension n’.

Definition 7.3.16. Let A be a crossed complex. We say that a morphism of crossed
complexes j W A! C is of pure relative free type of dimension n > 0 if there is a set
of indexes ƒ and a family of morphisms f � W S.n � 1/! A for � 2 ƒ, such that the
following square is a pushout in Crs:

F
�2ƒ S.n � 1/ .f �/ ��

��

A

j

��F
�2ƒ F .n/ �� C .

We write
C D A [ fxn�g�2ƒ;

and may abbreviate this in some cases, for example to C D A [ xn.

Remark 7.3.17. Despite the transparent formal property of adding generators, in di-
mensions > 0 the detailed effect on the algebraic structures of adding generators can
be quite subtle, as is shown by the origins of the work on free crossed modules, and a
considerable literature on combinatorial group theory.103
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We consider now the situation when the free generators are added in increasing
order of dimension. In the limit we get a special kind of ‘subcomplexes’ j W A ! C

which we shall call a crossed complex morphism of relative free type.

Definition 7.3.18. Let A be any crossed complex. We define a sequence of complexes
C n and morphisms jn W C n�1 ! C n starting with C 0 D A, and choosing a family
of morphisms f �n W S.n � 1/! C n�1 for � 2 ƒn such that Cn is got by forming the
pushout F

�2ƒn
S.n � 1/ .f �

n / ��

��

C n�1

jn

��F
�2ƒn

F .n/ �� C n.

Let C D colimC n, and let j W A ! C be the canonical morphism. We call
j W A! C a crossed complex morphism of relative free type, and also say j is relatively
free . The images xn of the elements cn in C are called basis elements of C relative to
A. We can conveniently write

C D A [ fxng�2ƒn;n>0;

and may abbreviate this in some cases, for example to C D A[xn[xm, analogously
to standard notation for CW-complexes.

Example 7.3.19. It will be a corollary of the HHSvKT in the next chapter that for the
skeletal filtration X� of a CW-complex X , the crossed complex …X� is free; and that
if Y� is a subcomplex of X� then the induced morphism …Y� ! …X� is relatively
free.

Of course, the advantage of a having a free basis X� for a crossed complex C is
that a morphism f W C ! D is defined completely by the values of f onX� provided
the following conditions are satisfied:

(i) the values have the appropriate source and target, i.e. sf1x D f0sx and tf1x D
f0tx, for all x 2 X1, and tfn.x/ D f0.tx/ for all x 2 Xn, n > 2.

(ii) the values produce a morphism of crossed complexes, i.e. ınfn.x/ D fn�1ın.x/,
x 2 Xn, n > 2.

Notice that in (ii), fn�1 has to be constructed on all of Cn�1 from its values on the
basis for Cn�1, before this condition can be verified.

If furtherD is free, then to specify fn.x/ we simply have to give the expression of
fn.x/ in terms of the basis in dimension n for Dn.

Later we will see that homotopies can be specified similarly (see Corollary 9.6.6).

We end this section by stating some results on the preservation of relatively free
morphisms of crossed complexes under composition, pushouts, and sequential col-
imits. Their proofs go by checking for the case when all generators have the same
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dimension and then for the general case by a colimit argument. These results are used
in Section 9.6.

Proposition 7.3.20. If f W A! B and g W B ! C are morphisms of relative free type,
so also is their composite gf W A! C .

Proposition 7.3.21. If in a pushout square

C 0 ��

��

D0

��
C �� D

the morphism C 0 ! C is of relative free type, so is the morphism D0 ! D.

Proposition 7.3.22. If in a commutative diagram

C 0 ��

��

C 1 ��

��

: : : �� C n ��

��

: : :

D0 �� D1 �� : : : �� Dn �� : : :

each vertical morphism is of relative free type, so is the induced morphism

colimn C
n ! colimnD

n:

In particular:

Corollary 7.3.23. If in a sequence of morphisms of crossed complexes

C 0 ! C 1 ! � � � ! C n ! � � �

each morphism is of relative free type, then so are the composites C 0 ! C n and the
induced morphism C 0 ! colimn C

n.

7.4 Crossed complexes and chain complexes

As we have seen in Section 7.1.iii, a crossed complex has some features of a kind of
nonabelian chain complex with operators, the nonabelian features being confined to
dimensions 6 2. In this section, we begin to make the relation between the two kinds
of complexes more precise. The adjoint constructions will be used later in Section 9.5
to help understand tensor products of crossed complexes.104
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Definition 7.4.1. Let G be a groupoid. A chain complex A D .An; @n/n>0 over G is
a sequence

� � � @nC1���! An
@n�! An�1

@n�1���! : : :
@2�! A1

@1�! A0

of G-modules and G-morphisms satisfying @@ D 0. A morphism of chain complexes
.f; �/ W .A;G/ ! .B;H/ is a family of morphisms .fn; �/ W .An; G/ ! .Bn;H/

(over some � W G ! H ) satisfying @nfn D fn�1@n. These form a category Chn and,
for a fixed groupoid G, we have a subcategory ChnG of chain complexes over G. The
category Chn contains the full subcategory Chnred of chain complexes over groups.

Our aim now is to construct a functor

r W Crs! Chn

which gives a kind of ‘semiabelianisation’ of the crossed module part of a crossed
complexC , keeping information on the fundamental groupoid ofC . It will be important
later that this functor r has a right adjoint (called ‚). We will use this adjoint pair in
later chapters to investigate the tensor product of crossed complexes, and the homotopy
classification of maps from a free crossed complex.

The definition of r is easy in dimensions > 3, when we set .rC/n D Cn, with
boundary @ just ı: we shall leave everything as it is where allowed. We are left with
changing

C3
ı3�! C2

ı2�! C1

where ı2 is a crossed module with cokernel  W C1 ! G to get

C3
@3�! A2

@2�! A1
@1�! A0

where A2, A1 and A0 are G-modules. We can use  to associate to C2 the G-module
A2 D C ab

2 . It is more difficult to get the correct candidates for A1 and A0, but again
they crucially involve .

In the first subsection, we study the candidates for A0, the ‘adjoint module’ and the
‘augmentation module’ and prove that they give functors which have right adjoints. In
Section 7.4.ii we study the candidate for A1, the ‘derived module’. A big advantage
of working with the category Mod (which includes modules over all groupoids) is that
we can exploit the formal properties of the functorial constructions used.

In the penultimate subsection we give the right adjoint‚ ofr W Crs! Chn; and the
last subsection illustrates with a specific calculation the fact that r preserves colimits.

7.4.i Adjoint module and augmentation module

Basic constructions used to linearise the theory of groups in homological algebra are,
for a group G, the group ring ZG and the augmentation ideal IG. We extend these
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constructions to the case of groupoids: however for a groupoid G we obtain not a
‘groupoid ring’ but what we call the ‘adjoint module’ ÆZG, and from this we get the
‘augmentation module’ EIG. We use the distinctive notation for the groupoid case, even
though if G is a group then the constructions of ZG and ÆZG, IG and EIG, coincide:
one reason is that they denote different structures, and another is that there is a second
generalisation to a groupoid G of the usual group ring of a group, in which we obtain
a ‘ring with several objects’ ZG which is an additive category with objects the same
as those of G and in which ZG.p; q/ is the free abelian group on G.p; q/.

Definition 7.4.2. Let G be a groupoid. For q 2 G0, we define ÆZG.q/ to be the free
abelian group on the elements of G with target q. Thus an element has uniquely the
form of a finite sum †inigi with ni 2 Z and gi 2 G with t .gi / D q.

Clearly, ÆZG becomes a (right) G-module under the action

.a; g/ 7! ag

of G on basis elements. Thus

ÆZG D fÆZG.q/gq2G0

is a G-module, which we call the adjoint module of G , since it involves the adjoint
action of G on itself. This construction defines the functor

ÆZ.�/ W Gpds! Mod: �

Notice that ÆZG is ‘G-free on G0’, i.e. it is freely generated as G-module by G0
(embedded in ÆZG as the set of identities of G).

There is also a generalisation to groupoids of constructions well known in the case
of groups: the augmentation map and the augmentation ideal.

For a fixed groupoid G, is also useful to have a trivial G-module, corresponding to
the integers Z.

Definition 7.4.3. Let ÆZ be the (right) G-module consisting of the constant family
ÆZ.p/ D Z for p 2 G0, with trivial action of G (which, as usual, means that each
g 2 G.p; q/ acts as the identity Z.p/! Z.q/). We shall regard the Z.p/ as distinct,
so that ÆZ depends also on the object set G0.

The augmentation map
" W ÆZG ! ÆZ;

given by †nigi 7! †ni is a morphism of G-modules and its kernel EIG is called the
(right) augmentation module of G.

Any morphism of groupoids � W H ! G induces a module morphism ÆZH ! ÆZG
over � which maps EIH to EIG.

Since the augmentation map is natural, the augmentation module defines also a
functor

EI W Gpds! Mod: �
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Exercise 7.4.4. Prove that for q 2 ObG, the abelian group EIG.q/ has a Z-basis
consisting of all g � 1q , for g a non-identity element of G with target q.

We will prove that bothÆZ and EI preserve colimits by giving right adjoints for them.
That for EI has a direct construction: the semidirect product.

Definition 7.4.5. Given a module .M;G/, the semidirect product G ËM ofG andM
is the groupoid with the same set of objects as G, and

.G ËM/.p; q/ D G.p; q/ ËM.q/;

i.e. as a set is G.p; q/ �M.q/ and the composition is given by

.x;m/.y; n/ D .xy;my C n/;
for x 2 G.p; q/; y 2 G.q; r/, and m 2 M.q/; n 2 M.r/. This semidirect product
construction gives a functor

Ë W Mod! Gpds: �

For the study of this, it is convenient to have a generalised notion of derivation,
which will be used a lot later in connection with homotopies of morphisms of crossed
complexes.

Definition 7.4.6. Let � W H ! G be a morphism of groupoids, and let M be a G-
module. A function f W H !M is called a � -derivation if it mapsH.p; q/ toM.�q/
and satisfies

f .xy/ D .f x/�y C fy
whenever xy is defined in H . In particular, if H D G, then a 1G-derivation is called
simply a derivation.

Exercise 7.4.7. Let G be a groupoid. Prove that the mapping  W G ! EIG sending
g 7! g � 1tg is a derivation, and has the universal property: if f W G ! N is a
derivation to a G-module N , then there is a unique G-morphism f 0 W EIG ! N such
that f 0 D f .

Proposition 7.4.8. The functor Ë W Mod! Gpds is a right adjoint of EI W Gpds! Mod.
Hence EI preserves colimits.

Proof. Let us begin by studying Gpds.H;G Ë M/ for a groupoid H and module
.M;G/. A morphism

H ! G ËM

is of the form x 7! .�x; f x/ where

� W H ! G
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is a morphism of groupoids and

f W H !M

is a � -derivation. (In particular, all sections

G ! G ËM

are of the form x 7! .x; f x/ where f W G !M is a derivation.)
By Exercise 7.4.7, the map d W H ! EIH , given by d.x/ D x�1q for x 2 H.p; q/,

is a universal derivation.
On the other hand, if � W H ! G is a morphism of groupoids and M is a G-

module, then any � -derivation f W H ! M is uniquely of the form f D Of  where
Of W EIH !M is a morphism of modules over � . Thus we have a natural bijection

Mod.. EIH;H/; .M;G// Š Gpds.H;G ËM/: �

The right adjoint to ÆZ comes from the pullback of a groupoid along a map defined
in Example B.1.3 in conjunction with the adjoint module of a groupoid.

Definition 7.4.9. Given a module .M;G/, we considerM as a set UM with the target
map t W UM ! ObG. We may therefore form the pullback groupoidP.M;G/ D t�G.
This construction gives a functor

P W Mod! Gpds: �

The groupoid P.M;G/, with its canonical morphism to G, .m; g; n/ 7! g, is
universal for morphisms � W H ! G of groupoids such that Ob � factors through maps
ˇ W M ! ObG.

Proposition 7.4.10. The functor P W Mod ! Gpds is a right adjoint of ÆZ W Gpds !
Mod. Hence ÆZ preserves colimits.

Proof. By the definition of P.M;G/, the groupoid morphisms H ! P.M;G/ are
naturally bijective with pairs .˛; �/ where ˛ W ObH ! UM is a map, � W H ! G is
a morphism and Ob � is of the form ˇ B ˛.

However, since ÆZH is freely generated asH -module byH0 (embedded in ÆZH as
the set of identities of H ), such pairs .˛; �/ are naturally bijective with morphisms of
modules .�; �/ W .ÆZH;H/! .M;G/.

These constructions are related as follows:

Proposition 7.4.11. The inclusion, EIG ! ÆZG, regarded as a natural transformation,
is conjugate under the above adjunction to the natural transformation � D �.M;G/
where

�.M;G/ W P.M;G/! G ËM
is given by �.m; g; n/ D .g;mg � n/. For each module .M;G/, this �.M;G/ is a
covering morphism of groupoids.
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Proof. Any commutative triangle

. EIH;H/

.˛;�/ �����������
i �� .ÆZH;H/

.�;�/&&IIIIIIIII

.M;G/

in Mod corresponds to a commutative triangle

G ËM P.M;G/
���

H

�

QQ--------- �

++���������

in Gpds, where � is natural and, if h 2 H.p; q/, then

�h D .�h; ˛.h � 1q// and 	h D .�1p; �h; �1q/:
Given .m; g; n/ 2 P.M;G/, we may take G D H , � D id, and choose � so that
�1p D m, �1q D n. Then

�.m; g; n/ D �g
D .�g; ˛.g � 1q//
D .g; �.g � 1q//
D .g; �.1ph/ � �1q/
D .g;mg � n/:

Finally, let .g; x/ 2 G Ë M , with g 2 G.p; q/ and x 2 M.q/, and let m 2 M.p/
be an object of P.M;G/ lying over the source p of .g; x/. Then there is a unique
n 2M.q/ such that mg � n D x. Hence there is a unique arrow .m; g; n/ over .g; x/
with source n.

Note that if one restricts attention to groups, and modules over groups, the restricted
functor ÆZ.�/ does not have a right adjoint since, for example, it converts the initial
object 1 in the category of groups to the module .ÆZ; 1/ which is not initial in the
category of modules over groups. However, the functor EI , does, when restricted to
groups, have a right adjoint given by the split extension as above.

7.4.ii The derived module

Another basic construction used to linearise the theory of groups in homological algebra
is the derived module D� of a group morphism � W H ! G, usually appearing in the
form D� D IH ˝H ZG. We extend this construction to the case of groupoids.
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Definition 7.4.12. Let � W H ! G be a morphism of groupoids. Its derived module is a
G-moduleD� with a universal � -derivation h� W H ! D� : that is, for any � -derivation
f W H ! M to a G-module M , there is a unique G-morphism f 0 W D� ! M such
that f 0h� D f .

Exercise 7.4.13. Give a direct construction of the derived module as follows: for
q 2 ObG, let F.q/ be the free G-module on the family of sets of elements x of H
such that �.x/ has target q. Then F.q/ has an additive basis of pairs .x; g/ such that
�.x/g is defined in G, and the action of G is given by

.x; g/g
0 D .x; gg0/

when gg0 is defined in G. There is a natural map

i W H ! F;

given by i.x/ D .x; 1q/, where �.x/ has target q. Now we impose on F the relations

i.xy/ D i.x/�.y/ C i.y/
whenever xy is defined inH . This gives a quotientG-moduleD� , a quotient morphism
s W F ! D� and a � -derivation h� D si W H ! D� .

Proposition 7.4.14. Let � W H ! G be a morphism of groupoids. If H is a free
groupoid on X , then D� is a free G-module on h� .X/.

Proof. Let Y D h� .X/. Let f W Y ! M be graph morphism to a G-module M .
Let h0 W X ! M be determined by h� and f . Since H is free on X , this graph
morphism extends uniquely to a � -derivation f 0 W H ! M . (We see this since a � -
derivationH !M is equivalent to a groupoid section of the projectionH ËM ! H .)
This � -derivation determines uniquely a G-morphism f 00 W D� ! M extending f as
required.

The universal property of the derived module construction shows that it yields a
functor from the morphism category of Gpds

D W Gpds2 ! Mod

given on objects by D.H
��! G/ D .D� ; G/.

Remark 7.4.15. For those familiar with the notion of Kan extensions, we can regard
the category of G-modules as the functor category .Ab/G , and any functor M W H !
Ab has a left Kan extension ��M W G ! Ab along � W H ! G. Then the derived
moduleD� is canonically isomorphic to ��. EIH/, theG-module induced from EIH by
� W H ! G. In the case of a group morphism � , this induced module is just IH˝HZG,
where ZG is viewed as a left H -module via � and left multiplication.
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Now we obtain a right adjoint to D.

Proposition 7.4.16. The functor D has a right adjoint Mod! Gpds2 given by

.M;G/ 7! .G ËM
pr1��! G/:

Proof. This is an immediate consequence of the adjointness of EI and Ë seen in Propo-
sition 7.4.8 and the formula D� D ��. EIH/.
Exercise 7.4.17. Verify that:

(i) The augmentation module EIG is the derived module of the identity morphism
G ! G.

(ii) IfG is a totally disconnected groupoid on the setX , and � W G ! X is the unique
morphism over X to the discrete groupoid on X , then the derived module of �
is the abelianisation Gab of G, see Section A.8 of Appendix A.

(iii) Discuss the derived module of a composition of morphisms G ! H ! K.

7.4.iii The derived chain complex of a crossed complex

Now we can construct our functor105

r W Crs! Chn:

Theorem 7.4.18. Let C be a crossed complex, and let  W C1 ! G be a cokernel of
ı2 of C . Then there are G-morphisms

C ab
2

@2�! D�
@1�! ÆZG

such that the diagram

: : : �� Cn

1
��

ın �� Cn�1
1
��

�� : : : �� C3

1
��

ı3 �� C2

˛2

��

ı2 �� C1

˛1
��

� �� G

˛0��
: : : �� Cn

@n

�� Cn�1 �� : : : �� C3
@3

�� C ab
2 @2

�� D�
@1

�� ÆZG
(7.4.1)

commutes and the lower line is a chain complex over G. Here ˛1 is the universal
-derivation, ˛0 is the G-derivation x 7! x � 1q for x 2 G.p; q/, as a composition

G ! EIG ! ÆZG, and @n D ın for n > 4.

Proof. Let X D G0, and let X also denote the discrete groupoid on X . The functor
D W Gpds2 ! Mod, applied to the sequence of morphisms

: : : �� C3

�3

��

ı3 �� C2

�2

��

ı2 �� C1

�

��

� �� G

1

��
: : : �� X �� X �� G �� G
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gives a sequence of module morphisms

� � � ! .D�3
; X/! .D�2

; X/! .D� ; G/! . EIG;G/:
Since a derivation Cn ! M over a null map �n W Cn ! X is just a morphism to an
abelian groupoid, we may identify D�n

with C ab
n and its universal derivation with the

abelianisation map. The map @1 of the diagram in the theorem is to be the composition
D� ! EIG ! ÆZG. Thus we obtain the stated commutative diagram in which the
vertical maps are the corresponding universal derivations (followed by an inclusion, in
the case of ˛0).

This establishes all the stated properties except the G-invariance of @2 and the
relations @2@3 D 0, @1@2 D 0.

Clearly @2@3 D ˛1ı2ı3 D 0.
Also @1@2˛2 D ˛0ı2 D 0 and since ˛2 is surjective, this implies @1@2 D 0.
Finally, if x 2 C ab

2 , g 2 G and xg is defined, choose a 2 C2, b 2 C1 such that
˛2a D x, b D g. Then

@2.x
g/ D ˛1ı2.ab/
D ˛1.b�1cb/; where c D ı2a;
D Œ.˛1.b�1//�c C ˛1c��b C ˛1b; since ˛1 is a -derivation,

D .˛1.b�1//�b C Œ˛1c��b C ˛1b; since c D 1;
D �˛1b C .˛1c/�b C ˛1b since ˛1 is a -derivation;

D .˛1c/�b since D� is abelian;

D .@2x/g ; as required. �

Remark 7.4.19. Suppose ı2 W C2 ! C1 is a crossed module such that C2 is the free
crossed module on R and C1 is the free groupoid on X . Let  W C1 ! G be the
cokernel of ı2. Then the corresponding G-module morphism @2 W C ab

2 ! D� may by
the above results be interpreted as the Fox derivative .@r=@x/.106

Definition 7.4.20. For any crossed complex C , rC is the chain complex given in
the bottom row of the main diagram of Theorem 7.4.18. This gives the derived chain
complex functor

r W Crs! Chn: �

7.4.iv Exactness and lifting properties of the derived functor

The following is a basic exactness result.107

Proposition 7.4.21. LetC D fCrg be a crossed complex and suppose that the sequence
of groupoids

C3
ı�! C2

ı�! C1
��! G ! 1
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is exact. Then the sequence of G-modules in r 0C :

C3
@�! C ab

2

@�! D�
@0

�! EIG ! 0

is exact.

Proof. The exactness of C2 ! C1
��! G ! 1 implies that

.C2 ! 1/ ��

��

.C1 ! G/

��
.1! 1/ �� .G ! G/

is a pushout square in the morphism category Gpds2. Applying D W Gpds2 ! Mod,
as in the proof of Theorem 7.4.18, and noting that D preserves colimits by Proposi-
tion 7.4.16, we obtain a pushout square

.C ab
2 ; 1/

@ ��

��

.D� ; G/

��
.0; 1/ �� . EIG;G/

in Mod. Since @ W C ab
2 ! D� is in fact a G-morphism, it follows that

C ab
2 ! D� ! EIG ! 0

is an exact sequence of G-modules.
To prove exactness of C3 ! C ab

2 ! D� , write N D Ker  D ıC2 and note that
the exactness of

C3 ! C2 ! N ! 1

implies the exactness of
C3 ! C ab

2 ! N ab ! 1:

It remains, therefore, to show that the map � W N ab ! D� induced by @ W C ab
2 ! D�

is injective.
Now  W C1 ! G is a quotient morphism of groupoids with totally intransitive

kernel N . In these circumstances the additive groupoid structure of D� is given by
generators Œc� 2 D�.q/ for c 2 C1.p; q/, with defining relations

Œcy� D Œc�C Œy� for c 2 C1.p; q/; y 2 N.q/I
the groupoid C1 acts on this additive groupoid by

Œc�x D Œcx� � Œx�



7.4 Crossed complexes and chain complexes 249

andN acts trivially, makingD� aG-module; the canonical-derivation˛1 W C1 ! D�
is given by ˛1.c/ D Œc�.

Choose coset representatives t .c/ 2 cN of N in C1 with t .1q/ D 1q . Then for all
c 2 C1, c D t .c/s.c/ where s.c/ 2 N . The map s W C1 ! N satisfies s.y/ D y for
y 2 N and

s.cy/ D s.c/y for all c 2 C1.p; q/; y 2 N.q/:
Consequently, there is an additive map s� W D� ! N ab defined by s�Œc� D ˛s.c/,
where ˛ is the canonical map N ! N ab. Since, for any u D ˛y in N ab,

s��u D s��˛y D s�˛1y D ˛s.y/ D ˛y D u;
� is injective, as required.

Corollary 7.4.22. If ı W C2 ! C1 is a crossed module with kernelK, and  W C1 ! G

is the cokernel of ı, then the sequence K ! C ab
2 ! D� is exact.

Proof. Put C3 D K in Proposition 7.4.21.

Definition 7.4.23. The crossed complex C (or crossed module) is regular if

K \ ŒC2; C2� D 0;
where K is the kernel of ı W C2 ! C1.

Corollary 7.4.24. If C2 ! C1 is a regular crossed module with kernel K, then the
sequence 0! K ! C ab

2 ! D� is exact.

Proof. This follows from Corollary 7.4.22 and the definition of regular.

The following is a useful result for applications to free crossed resolutions and to
identities among relations. It generalises to the groupoid case Proposition 2.2.6.

Proposition 7.4.25. If in the crossed complex C , the groupoid C1 is free, then C is
regular. In particular, the fundamental crossed complex …X� of a CW-complex X� is
regular.

Proof. Since N D ıC2 is a subgroupoid of C1, it is a free groupoid (in fact a family
of free groups). Hence the map ı W C2 ! N has a homomorphic section s. But the
kernel K of ı is in the centre of C2, since C2 is a crossed module over C1. Hence
C2 D K �C0

s.N / is a groupoid, that is, for each p 2 C0, C2.p/ D K.p/ � sN.p/.
This implies that ŒC2; C2� D ŒsN; sN � and hence that K \ ŒC2; C2� D 0.

In the following exercise, we sketch in a special case another description of the
derived module which is useful later in Section 8.4. We need the notion of universal
abelianisation of a groupoid.



250 7 The basics of crossed complexes

Exercise 7.4.26. Let  W F ! G be an epimorphism of groups. Form the universal
covering groupoid p W zG ! G, see Appendix B, Section B.7, and let q W yF ! F be
the pullback of p by . Then q is also a covering morphism of groupoids. There is a
function � W F ! yF which sends a 2 F to the unique covering element of a which
ends at the object 1 2 F . Recall the universal abelianisation of a groupoid explained
in Section A.8 of Appendix A. Prove that yF totab

admits the structure of G-module and

that the composite F
��! yF ! yF totab

is a -derivation. Prove that the morphism of G-
modules D� ! yF totab

given by the universal property of F ! D� is an isomorphism
by using the 5-lemma on a map from the exact sequence of Proposition 7.4.21 to
one derived from an analysis of yF totab

using earlier parts of this exercise. See also
Remark B.7.6.

7.4.v The right adjoint of the derived functor

The main task of this section is to construct a functor ‚ W Chn ! Crs and prove it is
right adjoint to r.108 This shows that some information on a crossed complex C can
be recovered from the chain complexrC , and also has the important consequence that
r preserves colimits. We will use r in Chapter 9 to give a convenient description of
the tensor product of crossed complexes in dimensions > 2.

In order to construct ‚ we use an intermediate functor ‚0.

Definition 7.4.27. For a chain complexA over a groupoidH ,‚0A D ‚0.A;H/ is the
crossed complex

‚0A: D � � � ! An
@n�! An�1 ! � � � ! A3

@3�! A2
.0;@2/����! H Ë A1:

Here H Ë A1 acts on An (n > 2) via the projection H Ë A1 ! H , so that A1 acts
trivially.

Note that ‚0A does not involve A0. To correct this, we use another construction
which brings inA0 in an essential way. Let us begin by defining‚A and checking that
the definition works.

Definition 7.4.28. For any chain complex A, we consider the canonical covering mor-
phism

� W P.UA0;H/! H Ë A0

of Proposition 7.4.11. We define

‚.A/ D ��‚0A;

the pull-back along � of the crossed complex of Definition 7.4.27.



7.4 Crossed complexes and chain complexes 251

We obtain a commutative diagram

: : : �� ‚.A/3 ��

	3

��

‚.A/2 ��

	2

��

‚.A/1 ��

	1

��

P.A0;H/

�

��
: : : �� A3

@3

�� A2
.0;@2/

�� H Ë A1
.1;@1/

�� H Ë A0

in which each ‚.A/n is a groupoid over ‚.A/0 D A0, and each 
n is a covering
morphism of groupoids.

For n > 2, the composite map An ! H Ë A0 is 0 and, since Ker � is discrete, it
follows that‚.A/n is just a family of groups each isomorphic to a group of An. There
is also an action of‚.A/1 on‚.A/n (n > 2) induced by the action ofH ËA1 on An;
for if e1 2 ‚.A/1.x; y/, where x 2 A0.p/, y 2 A0.q/, and if en 2 ‚.A/n.x/, then

1e1 acts on 
nen to give an element of An.q/ which lifts uniquely to an element of
‚.A/n.y/.

It is now easy to see that ‚.A/ D f‚.A/ngn>0 is a crossed complex and that the

i form a morphism 
 W ‚.A/! ‚0A of crossed complexes.

This gives a functor
‚ W Chn! Crs: �

An explicit description of‚.A/ D ‚.A;H/ can be extracted from the constructions
given above. Recall that A0 is an H -module and so comes with a function A0 ! H0
makingA0 also the disjoint union of abelian groupsA0.p/. The set of objects of every
‚.A/n is just A0, regarded as a set and as a disjoint union.

An arrow of ‚.A/1 from x to y, where x 2 A0.p/, y 2 A0.q/, p; q 2 H0, is a
triple .h; a; y/, where h 2 H.p; q/, a 2 A1.q/, and xh D y C @a. Composition in
‚.A/1 is given by

.k; b; x/.h; a; y/ D .kh; bh C a; y/
whenever kh is defined in H and xh D y C @a.

For n > 2, ‚.A/n is a family of groups; the group at the object x 2 A0.p/ has
arrows .b; x/ where b 2 An.p/, with composition

.b; x/C .c; x/ D .b C c; x/:
The boundary map ı W ‚.A/2 ! ‚.A/1 is given by

ı.b; x/ D .1p; @b; x/ for b 2 A2.p/; x 2 A0.p/:
The boundary map ı W ‚.A/n ! ‚.A/n�1 (n > 3) is given by ı.b; x/ D .@b; x/ and
the action of ‚.A/1 on ‚.A/n (n > 2) is given by

.b; x/.h;a;y/ D .bh; y/;
where h 2 H.p; q/, a 2 An.q/, y 2 A0.q/ and xh D y C @a.



252 7 The basics of crossed complexes

Proposition 7.4.29. The functor‚ is a right adjoint of r. Hencer preserves colimits.

Proof. A morphism .ˇ;  / W .rC;G/! .A;H/ in Chn is equivalent to a commutative
diagram in Mod:

: : : �� C3 ��

ˇ3

��

C ab
2

��

ˇ2

��

D� ��

ˇ1

��

EIG i ��

ˇ 0
0

��

ÆZG
ˇ0RR;;;;;;;;

: : : �� A3
@3

�� A2
@2

�� A1
@1

�� A0

(over some morphism  W G ! H ) and hence, by Propositions 7.4.8, 7.4.16, to a
commutative diagram in Gpds:

: : : �� C3 ��

ˇ3

��

C2 ��

Š
2

��

C1
� ��

�1

��

G

�

�� �������������

: : : �� A3
@3

�� A2
.0;@2/

�� H Ë A1
.1;@1/

�� H Ë A0 P.A0;H/�
��

where .: : : ; ˇ3; ˇ2; �1/ is a morphism of crossed complexes, and � is the canonical
covering morphism. This in turn is equivalent to a commutative diagram

: : : �� C3 ��

ˇ3

��

C2
ı ��

Š
2

��

C1
! ��

�1

��

P.A0;H/

�

��
: : : �� A3

@3

�� A2 �� H Ë A1 �� H Ë A0

because, in any such diagram, �!ı D 0 and � is a covering morphism, so !ı D 0, that
is, ! factorises through  W C1 ! G.

This diagram is therefore equivalent to a morphism of crossed complexes C !
‚.A/. Hence .ˇ;  / is therefore equivalent to a morphism of crossed complexes
C ! ‚.A/. This shows that the functor ‚ W Chn! Crs is right adjoint to r.

7.4.vi A colimit in chain complexes with operators

The fact that r W Crs ! Chn preserves all colimits implies that the Higher Homo-
topy Seifert–van Kampen Theorem proved in Section 8.2 for the fundamental crossed
complex …X� of a filtered space X� can be converted into a similar theorem for the
chain complex CX� D r…X�. The interpretation of this result will be discussed in
Section 8.4.

The following simple example illustrates some of the interesting features that arise
in computing colimits in Crs and Chn. Note that if all the crossed complexes in
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a diagram fC �g are reduced then the colimit of fC �g is reduced provided that the
diagram is connected, in which case the colimit of frC �g can be computed in the
category of chain complexes over groups instead of groupoids.

Thus we consider a simple connected diagram of reduced crossed modules. Note
that in the reduced case, we can abbreviate EI , ÆZ to I , Z.

Example 7.4.30. Let � W M ! P , � W N ! P be crossed modules over a group P .
Recall from Proposition 4.3.1 that their coproduct � W M B N ! P in the category
XMod=P is given by the pushout of the two inclusions

.M
��! P /

11666666

.0! P /

SS......

..++++++ .M BN ��! P /

.N

�! P /

��						

Let Chn.2/ be the category of chain complexes of length 2 with a groupoid of
operators. In our example all operators are groups.

To find such chain complexes corresponding to the above pushout let G D Cok�,
H D Cok � and write ,  for the quotient maps P ! G, P ! H . Then the
corresponding derived modules are D� D IP ˝P ZG and D D IP ˝P ZH .

We wish to compute the pushout:

.M ab ! IP ˝P ZG ! ZG;G/

11�����������

.0! IP ! ZP;P /

OOJJJJJJJJJJJ



�����������
.X;K/

.N ab ! IP ˝P ZH ! ZH;H/

��											

The associated pushout of groups is

G
))''''''

P

� TTKKKKKK

 ))'''''' K

H

TTKKKKKK

whereK D P=.�M � �N/. This is the group acting on the pushout chain complex X .
Next we form the induced modules overK of each module in the diagram and then

form pushouts of K-modules in each dimension. This gives the chain complex

.: : : 0! .M ab ˝P ZK/˚ .N ab ˝P ZK/! IP ˝P ZK ! ZK;K/:
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SinceK D P=.�M�N/, and �M acts trivially onM ab, and similarly for N , we have

M ab ˝P ZK D M ab

ŒM ab; N �
; N ab ˝P ZK D N ab

ŒN ab;M �

where ŒM ab; N �; ŒN ab;M � denote displacement groups under actions, see Defini-
tion 4.4.1. Thus the pushout in dimension 2 is

M ab

ŒM ab; N �
˚ N ab

ŒN ab;M �
;

which is easily seen to be .M BN/ab, confirming that r preserves this pushout.

Remark 7.4.31. The fact that r has a right adjoint together with the HHSvKT of the
next chapter implies an HHSvKT for the composite functor

C D r… W FTop! Chn;

which seems to be a new property of this functor, and has been little applied. From
Chapters 9 and 10 we will also see that there is an Eilenberg–Zilber type theorem with
values in Chn.109

Notes

91 p. 210 The category of modules for varying groups occurs in the theory of Mackey
functors, at least for varying subgroups of a given group, see for example [TW95].
There is a curious analogy between considering the fundamental groupoid instead
of the fundamental group and considering the category Mod of modules over all
groupoids instead of modules over a fixed groupoid.

92 p. 211 The suggestion that the category of Hausdorff k-spaces might be ‘adequate
and convenient for all purposes of topology’ was made in the Introduction to
[Bro63] and the properties of ‘convenient’ were listed in [Bro64b], basically in
terms of cartesian closure. The idea came from [Bro62], which used a variety of
what we now call monoidal closed categories in studying the homotopy type of
function spaces. The methods used there are a background to those used in this
book. This notion of ‘convenient’ was taken up in [Ste67], using the now popular
term ‘compactly generated’ instead of k-space. An exposition of this convenient
category without the Hausdorff condition is in [Bro06], Section 5.9, using the more
traditional term k-space. For a general discussion and more references, see for
example [BT80].
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93 p. 213 There are generalisations of the notion of CW-complexes, for example, the
G-CW-complexes in equivariant theory, for which but one reference is [Lüc87],
and other ideas in [MOt06].

94 p. 213 As one reference to modules over groups we mention [Seh03].

95 p. 214 This note gives some background to the algebraic aspects of crossed comp-
lexes over groups. The topological aspects will be discussed in the next note.

The notion of crossed module was defined by Whitehead in [Whi46]. It also
appeared in work of Mac Lane in [ML49], in connection with ‘abstract kernels’.
The term ‘crossed complex’ is due to Huebschmann in his thesis, [Hue77], and in
[Hue80a] and the ideas were developed in [Hue81b], [Hue81a]. The first paper
contains in particular the notion of ‘standard free crossed resolution’ of a group.
The background to the interpretation of the HnC1.G;M/ in terms of crossed n-
fold extensions is discussed in the Historical Note [ML79]. There is also a larger
background here in work of Lue, [Lue71], on cohomology for algebras relative to
a variety, defined in terms of such n-fold extensions, which however he did not
relate to the well-known group case, where the ‘variety’ would be taken to be that
of abelian groups, see [Lue81]. Crossed modules are essential in [Lod82]. They
also occur as coefficients for cohomology of groups and of spaces in Dedecker’s
work on nonabelian cohomology, see for example [Ded58], [Ded60], [Ded63].
Crossed modules appear in relative cohomology in [Lod78], and in [GWL81].
The first definition of crossed complexes over groupoids was in the announcement
[BH77] and the full paper [BH81]. The paper [BH81b] gives an equivalence of
crossed complexes to what are there called1-groupoids, and are now generally
called strict globular !-groupoids.

96 p. 220 Blakers in [Bla48] defined what he calls a ‘group system’ associated to a
(reduced) filtered space, and which we now call a reduced crossed complex. Thus
he gives the definition of …X� in that case, and uses this to relate homology and
homotopy. Blakers attributes to S. Eilenberg the suggestion of considering the
whole structure of crossed complex.

The idea was also used by J. H. C. Whitehead in his paper [Whi49b], in the case of
the skeletal filtration of pointed CW-complexes, and there called the ‘homotopy
system’ of the CW-complex. This paper contains some profound theorems, and
was an inspiration for the work of Brown and Higgins. Whitehead explains that his
‘homotopy systems’ are a translation into relative homotopy groups of his notion
of a ‘natural system’ on p. 1216 of [Whi41b], a truly remarkable paper, which also
relies on work of Reidemeister, [Rei34], for the ‘chain complex with operators’
part of the concept.

Further work relating these ideas to the notion of k-invariant is given by Ando in
[And57] and Huebschmann in [Hue80b]. See also [Hue07].
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Crossed complexes over groups are called crossed chain complexes in [Bau89],
[Bau91].

The many base point version of the fundamental crossed complex was defined in
the announcement [BH78b] and the paper [BH81a]. We use the notation… for the
fundamental crossed complex; other notations are � in [BH81a], � in [Whi49b],
[Bau89], [Bau91], but we use � in Part III for the fundamental cubical !-groupoid
of a filtered space. Some writers use…X to denote the singular simplicial complex
of a space X , regarded as some form of ‘weak 1-groupoid’, see for example
[Lur09].

97 p. 221 For more on the standard theory of relative homotopy groups, see for
example [Hu59], Chapter IV, Corollary 8.1. This result is also related to the
methods of [Bro06], 7.2.8, and to Proposition 14.1.10.

98 p. 221 Whitehead explains in [Whi49a] that one reason for not restricting his cell
complexes to the 1-vertex case is in order to include the theory of covering spaces.

99 p. 223 We use the term cotruncation for this left adjoint to skn, but you should
be warned that this term is also used in the literature in another sense, namely for
taking the part of an hierarchical structure above a given level.

100 p. 224 This type of definition of homotopy where both the base point and the
crossed module structure are taken into account was introduced in [Whi49b]. An
application to discussing automorphisms of crossed modules over groupoids, gen-
eralising work on automorphisms of crossed modules of Whitehead and Norrie in
[Whi48], [Nor90] is given in [Bİ03a].

101 p. 225 This diagrammatic view of homotopies in dimension 1 is used a lot in
[Bİ03b].

102 p. 228 For more on algebraic theories, see for example [Law04], [Man76].

103 p. 237 As just one paper in this area of 2-complexes and combinatorial group
theory, we cite [FR05], which analyses in one case the relation between �2.K/
and �2.L/ when K is obtained from L by adding a 1-cell and a 2-cell.

104 p. 239 The results in this section on crossed complexes and chain complexes are
largely taken from [BH90].

105 p. 246 The results of this Section 7.4 come largely from [BH90], which was
intended to give a more general setting and more detailed analysis of Whitehead’s
results in [Whi49b]. That paper was the principal source for r, but Whitehead’s
construction requires C1 to be a free group. (If C1 is the free group on a set X
then D� is just the free G-module on X .) The general construction of .rC/1 as
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D� was suggested by [Cro71], although that deals only with the case of groups.

Proposition 7.4.25 for the reduced case is due to Whitehead [Whi49b]. It is inter-
esting that the construction of @2 in Theorem 7.4.18 was given by Whitehead (in
[Whi49b], in the group case) well before the publication of work of Fox on his
free differential calculus [Fox53], [CF63], and the relation between the two works
seems not to have been generally noticed. Much of the information contained in
the free differential calculus was also known to Reidemeister and his school, see
[Rei34], [Rei50].

106 p. 247 See the previous note on the free differential calculus.

107 p. 247 An exact module sequence arising from an exact sequence of groups is Satz
15 of [Sch37]. This sequence is standard background to work on extensions of
groups, as given for example in [ML63], p. 120. It is also developed thoroughly
by Crowell in [Cro61], [Cro71]. Our Proposition 7.4.21 gives an extension of this
exact sequence.

108 p. 250 These results on the relations between crossed complexes and chain comp-
lexes with a groupoid of operators come from [BH90]. The existence of an adjoint
to r was suggested by results in [McP69] that the Alexander module preserves
colimits. Special cases of the groupoid E1 D .‚A/1 appear in [Cro61], [GR80],
[Gro68].

109 p. 254 The category Chn has however problems in comparison with Crs in that
the latter has better realisation properties, as observed in [Whi49b] for the reduced
case. Thus every free crossed module over a free groupoid is isomorphic to …X�
for some 2-dimensional CW-complex X�. The corresponding question for chain
complexes of length 2 is known as the D2 problem, see [Joh04], [Joh09] and the
references there.



Chapter 8

The Higher Homotopy Seifert–van Kampen Theorem
(HHSvKT) and its applications

Introduction

Now we turn to the first of our series of homotopical applications of crossed complexes
and the functor

… W FTop! Crs;

namely the consequences of a Higher Homotopy Seifert–van Kampen Theorem
(HHSvKT).

The statement and many of the applications of the theorem are entirely analogous
to those of the theorem in dimension 2 given in Part I. The method of proof is also anal-
ogous to that in Part I, but is much more complicated algebraically and topologically.
So the proof is deferred to Part III.

There are some interesting contrasts between the results of this part and those in
Part I. The applications in Part I involved crossed modules, which in dimension 2
is a generally nonabelian structure. Hence those results are largely unobtainable by
traditional methods of algebraic topology.

The applications of the HHSvKT in dimensions > 2 involve modules, rather than
crossed modules, over the fundamental group or groupoid, and so are much nearer
to traditional results of algebraic topology. Thus, even though the Coproduct Theo-
rem 8.3.5, and the Homotopical Excision Theorem 8.3.7, do not appear in traditional
texts, or papers, they are possibly reachable by methods of singular homology and
covering spaces, using the latter to bring in the operations of the fundamental group.
Handling many base points is less traditional.

Our aim is to show how such results follow in a uniform way by a study of the
homotopically defined functor …. Thus the Relative Hurewicz Theorem, a key result
in this borderline between homology and homotopy theory, is seen in a broader context
which includes nonabelian results in dimensions 1 and 2110.

This method gives for example some computations of the homotopy group�n.X; a/
for n > 2 as a module over the fundamental group �1.X; a/. However we would also
like to take advantage of the extensions from groups to groupoids explained in Chapter 1.
Thus we need to consider many base points and the extra variety of morphisms that the
category of groupoids has over the category of groups, which led in Corollary 1.7.2 to
the determination of the fundamental group of the circle in a way which well models
the geometry.
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Consider the following maps of spaces involving the n-sphere Sn, the first an
inclusion and the second an identification:

Sn
i�! Sn _ Œ0; 2� p�! Sn _ S1 _ S1: (�)

Heren > 2, the base point 0 ofSn is in the second space identified with 0, and the mapp
identifies 0; 1; 2 in the interval Œ0; 2� to give the wedge, or one point union, of two circles
S1_S1. The groupoid SvKT (Theorem 1.6.1) implies that �1.Sn_S1_S1; 0/ Š F2,
the free group on 2 elements, regarded as formed from the indiscrete groupoid on
f0; 1; 2g by identifying f0; 1; 2g to a point. We will see in Section 8.3.iii that the
HHSvKT implies that �n.Sn _ S1 _ S1; 0/ is the free F2-module on one generator.

The results of this chapter on the functor… are crucial for later applications, such as
the notion of classifying space BC of a crossed complex C and the application of this
to the homotopy classification of maps of topological spaces, where the fundamental
group or groupoid is involved.

In evaluating these results, and comparing with traditional expositions, it should
be borne in mind that we use subdivision methods, but only cubically, as these may be
modeled algebraically in higher homotopy groupoids. So simplicial approximation is
not used, except where we need results from the theory of simplicial sets. Also we do
not use homology theory, except to relate our results to traditional ones.

It is hoped that this re-vision of basic algebraic topology will suggest wider app-
lications, since notions of homotopy and deformations are crucial in many areas.

Crossed complexes give in a sense a linear algebraic model of homotopy theory.
This limits their rôle for many problems. On the other hand, as in many areas of
mathematics, a linear approximation can be useful! More general applications also
follow once the tensor product of crossed complexes has been set up and applied in
later chapters.

8.1 HHSvKT for crossed complexes

The HHSvKT gives a mode of calculation of the fundamental crossed complex functor

… W FTop! Crs

from filtered topological spaces to crossed complexes. This functor is defined homo-
topically, i.e. in terms of certain homotopy classes of certain maps, and not in terms
of any other combinatorial model of the filtered space. So it is remarkable that we
can calculate in this way, starting with simple information on the trivial values of the
functor on simple filtrations of contractible spaces.

An easy consequence of the definition of … is that it preserves coproducts, which
are in the two categories FTop, Crs just disjoint union; this is one of the advantages of
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the groupoid approach. Much more subtle is the application to ‘gluing’ spaces, and we
approach this concept, as in Chapter 6, through the notion of coequaliser.

As we have seen in Chapter 1, the version of the classical Seifert–van Kampen
Theorem for the fundamental groupoid rather than group gives useful results for non-
connected spaces, but still requires a ‘representativity’ condition in dimension 0. The
corresponding theorem for crossed modules, which computes certain second relative
homotopy groups, as discussed in Chapter 6, also needs a ‘1-connected’ condition. It
is thus not surprising that our general theorem requires a connectivity condition in all
dimensions.

Proposition 8.1.1. For a filtered spaceX� the following conditions ./, .0/ and .00/
are equivalent:

./ .0/: The function �0X0 ! �0Xr induced by inclusion is surjective for all
r > 0; and, for all i > 1,
.i /: �i .Xr ; Xi ; v/ D 0 for all r > i and v 2 X0.

.0/ .0
0/: The function �0Xs ! �0Xr induced by inclusion is surjective for all

0 D s < r and bijective for all 1 6 s 6 r; and, for all i > 1,
.0
i /: �j .Xr ; Xi ; v/ D 0 for all v 2 X0 and all j , r such that 1 6 j 6 i < r .

.00/ .0
0/ and, for all i > 1,

.00
i /: �j .XiC1; Xi ; v/ D 0 for all j 6 i , and v 2 X0.

The proof is a straightforward argument on the exact homotopy sequences of various
pairs and triples and is omitted.

Definition 8.1.2. A filtered space is called connected if it satisfies any of the equivalent
conditions ./, .0/ and .00/ of the previous proposition.

Remark 8.1.3. This condition is satisfied in many important cases. The HHSvKT will
allow us to construct some new connected filtered spaces as colimits of old ones. In
particular, we will prove that the skeletal filtration of a CW-complex X is a connected
filtration.

Note also that the condition �1.Xr ; X1; x/ D 0 means that any path in Xr joining
x to a point in X1 is homotopic in Xr rel end points to a path in X1. This condition is
equivalent to �1.X1; x/! �1.Xr ; x/ is surjective.

Example 8.1.4. Clearly, a disjoint union of connected filtered spaces is connected.

Now we have set the background to state the HHSvKT in the most general form we
are going to use. Its algebraic content is that under some connectedness conditions, the
fundamental crossed complex functor… preserves certain colimits. Since… preserves
the coproducts in FTop;Crs, and colimits can be constructed from coproducts and
coequalisers, the meat of the theorem is in the statement on preservation of certain
coequalisers.
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In order to give background to the statement of the HHSvKT, we recall that if the
space X is the union of two open sets U; V then we have a pushout diagram of spaces:

U \ V ��

��

U

��
V �� X .

If X is the union of three open sets U , V , W then we have a diagram

V \W

��

UULLLLLLLLL

U \ V ��

��

V

��

U \W

&&IIIIIIIIIII
�� W

UULLLLLLLLL

U �� X

and a map f W X ! Y is entirely determined by maps fU , fV , fW defined on U , V ,
W , with values in Y , and which agree on the two fold intersections V \W , W \ U ,
U \ V .

The most general situation of this type is expressed by the notion of coequaliser,
which we have used already in Chapter 6. Suppose given a cover U D fU �g�2ƒ
of X such that the interiors of the sets of U cover X . For � D .�; �/ 2 ƒ2 let
U � D U � \ U�. Then we can form the diagram

F
�2ƒ2 U �

a ��

b
��

F
�2ƒ U �

c �� X

where c is determined by the inclusions U � ! X and a; b are determined by the
inclusions U � ! U �; U � ! U� for � D .�; �/ 2 ƒ2.111 Note that ca D cb,
and that a map f W F

�2ƒ U � ! Y determines uniquely a map f 0 W X ! Y with
f 0c D f , if and only if fa D f b. Thus we say that c is a coequaliser of a; b in the
category Top.

Now suppose further that X� is a filtered space. For each � D .�1; : : : ; �n/ 2 ƒn
we set

U � D U �1 \ � � � \ U �n

and consider the induced filtration

U �� W D U �0 � U �1 � � � � � U �
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where U �i D U � \Xi for each i 2 N. Then we have a coequaliser diagram of filtered
spaces F

�2ƒ2 U
��

a ��

b
��

F
�2ƒ U ��

c �� X�.

Theorem 8.1.5 (Higher Homotopy Seifert–van Kampen Theorem). LetX� be a filtered
space, and U D fU �g�2ƒ a family of subsets of X whose interiors cover X . Suppose
that for every finite intersection U � of elements of U, the induced filtration U �� is
connected. Then

(Con) X� is connected, and

(Iso) in the following …-diagram of the cover,

F
�2ƒ2 …U

��
a ��

b
��

F
�2ƒ…U ��

c �� …X�,

c is the coequaliser of a, b in the category Crs of crossed complexes.

Remark 8.1.6. The connectivity conclusion of the theorem is important and nontrivial,
and can be proved by the deformation arguments given in Proposition 14.7.1 (see
p. 502), without introducing the algebraic category of !-groupoids. The isomorphism
part, which determines …X� in terms of the pieces …U �� , should be seen as an all
dimensional, local-to-global result in homotopy theory, nonabelian in dimensions 1
and 2. It would have been unlikely for this theorem to be conjectured in this form: it
was conjectured and finally proved in cubical terms, see Chapter 14, and then found to
have this consequence.

8.2 Some immediate consequences of the HHSvKT

In the following subsections we give some results which are special cases of or conse-
quences of the HHSvKT. Those which involve the operations of the fundamental group
or groupoid are more difficult to obtain by traditional methods of algebraic topology:
a common method of finding information on such operations is by means of covering
spaces.

8.2.i Coproducts with amalgamation

We now consider a covering where any two elements intersect along a fixed subspace,
as follows.

Theorem 8.2.1. Let X� be a filtered space and suppose:
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(i) U D fU �g�2ƒ is a family of subsets of X whose interiors cover X ;

(ii) U 0 is a subset ofX such that U �\U� D U 0 for all �;� 2 ƒ such that � ¤ �;

(iii) U 0� and U �� ; � 2 ƒ are connected filtrations. Then

(Con) the filtration X� is connected, and

(Iso) the following is a coequaliser diagram of crossed complexes:

…U 0�
.a�/���!

G
�2ƒ

…U ��
c�! …X�;

where a�, c are induced by inclusions.

Proof. Note that the conditions we give immediately imply the connectivity conditions
on intersections required for the theorem.

Another consequence gives the fundamental crossed complex of a wedge of filtered
spaces.

Definition 8.2.2. A filtered space X� is reduced if X0 consists of a single point, i.e.
X0 D f�g; then � is taken as base point of each Xn; n > 0, and the relative homotopy
groups ofX� are abbreviated to �n.Xn; Xn�1/. The base point inX0 is nondegenerate
if each inclusion X0 ! Xn, is a closed cofibration for all n > 1.

Corollary 8.2.3. Suppose, in addition to the assumptions of the Theorem, that X� is a
reduced filtered space, and …U 0� is the trivial crossed complex. Then the morphisms
…U �� ! …X� induced by inclusions define an isomorphism

��…U �� ! …X�

from the coproduct crossed complex in Crs� to …X�.

8.2.ii Pushouts

In the case of a covering by two open sets we obtain the Higher Homotopy Seifert–
van Kampen Theorem in the pushout form either directly from Theorem 8.1.5 or as a
particular case of Theorem 8.2.1.

Theorem 8.2.4. Let X� be a filtered space and suppose:

(i) X is the union of the interiors of U 1 and U 2;

(ii) U 0 D U 1 \ U 2;

(iii) U 0� ; U 1� ; U 2� are connected filtrations.

Then

(Con) X� is connected, and
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(Pushout) the following diagram of morphisms of crossed complexes

…U 0�

��

�� …U 1�

��
…U 2� �� …X�,

induced by inclusions, is a pushout diagram in Crs.

This pushout form of HHSvKT can be generalised to allow the case when X is the
adjunction space formed from V by a map f W A! U .

Theorem 8.2.5 (The pushout HHSvKT for cofibrations). Suppose that the commutative
diagram of filtered spaces

A�
f ��

i

��

U�
N{
��

V� Nf
�� X�

is such that for n > 0, the maps in W An ! Vn are closed cofibrations, An D A \ Vn,
and Xn is the adjunction space Un [fn

Vn. Suppose also that the filtrations U�, V�,
A� are connected. Then

(Con) X� is connected, and

(Iso) the induced diagram

…A� ��

��

…U�

��
…V� �� …X�

is a pushout of crossed complexes.

Proof. This is a deduction of standard kind from Theorem 8.3.5 using mapping cylin-
ders.

We give several illustrations of the use of Theorem 8.2.5, with first a direct appli-
cation to quotient filtrations.

Theorem 8.2.6. Let V� be a filtered space, A � V , and X D V=A. We define the
filtrations A�, and X� by An D Vn \A, and Xn D Vn=An, n > 0. Suppose that each
An ! Vn is a closed cofibration, and both A�, V� are connected. Then

(Con) X� is connected, and
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(Iso) we have a pushout of crossed complexes

…A� ��

i�

��

0

��
…V� �� …X�.

Proof. All we have to do is to apply … to the diagram

A�
f ��

i

��

f�g
N{
��

V� Nf
�� X�

that satisfies the conditions of Theorem 8.2.5.

Applying to this result the fact that the res.�/n functors of Definition 7.1.13 preserve
colimits, we get some results on relative homotopy groups.

Corollary 8.2.7. Let V�; A� and X� be filtered spaces as in Theorem 8.2.6. If V� is
reduced, then we have

�n.Xn; Xn�1/ Š �n.Vn; Vn�1/=N

where N is the �1V1-submodule of �n.Vn; Vn�1/ generated by i��n.An; An�1/ and
all elements fu � ua j u 2 �n.Vn; Vn�1/; a 2 i��1A1g.

8.3 Results on pairs of spaces: induced modules and relative
homotopy groups

All this section relates to the case when the filtration is essentially in two stages.
The HHSvKT in this setting becomes Theorem 8.3.5 and gives quite easily some
computations of relative homotopy groups of pairs of spaces and, as consequences,
some classical results (e.g. the Suspension Theorem, the Brouwer Degree Theorem,
and the Relative Hurewicz Theorem). These are basic theorems in homotopy theory,
and it should be noted that we obtain them without the machinery of homology theory.

It will be clear from Part I that a major aspect of this work is to tie in the fundamental
group and higher homotopy groups. This contrasts with previous approaches, where the
action of the fundamental group is often obtained by passing to the universal covering
space. It was an aesthetic objection to this detour to obtain the fundamental group of
the circle which led to the groupoid work in [Bro06] and so to the present work. It is
also unclear at present how to obtain the nonabelian results of Part I by covering space
methods.
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8.3.i Specialisation to pairs

Although there are important results on pointed pairs of spaces .X;A/ we still have to
use the case where Amay not be path connected or at any rate has a set of base points,
which we will always write A0. Thus .X;A/ with the subset A0 of A will be called a
based pair and will sometimes be written for extra clarity as .X;AIA0/ (and a based
pair .U; C / will have set of base points C0).

To relate the homotopy groups of a pair of spaces to the fundamental crossed
complex of a filtered space we associate to a based pair of spaces .X;A/ a special
filtration as follows:

Definition 8.3.1. For any based pair of spaces .X;A/ and dimension n > 2, the
filtration En.X;A/ of X associated to the based pair .X;A/ is given by

A0
0

� A
1

� � � � � A
n�1
� X

n

� � � � � X
r

� � � � ;

i.e. it is A0 in dimension 0, A in dimensions 0 < r < n, and X in dimensions r > n.

The fundamental crossed complex of the filtered space En.X;A/ has structure in
3 dimensions: the set A0 in dimension 0, which is part of the groupoid �1.A;A0/ in
dimension 1, and the �1.A;A0/-module (crossed module if n D 2) �n.X;AIA0/ in
dimension n. We have the following obvious fact:

Proposition 8.3.2. For a based pair .X;A/, and n > 2, the fundamental crossed
complex ….En.X;A// of the associated filtration En.X;A/ is the crossed complex

Kn.�n.X;AIA0/; �1.A;A0//
of Definition 7.1.11 associated to the �1.A/-module �n.X;A/.

All we need to do to use this filtration in the HHSvKT is to translate the connectivity
of En.X;A/ into conditions on the based pair .X;A/ and see what form the HHSvKT
takes in this case. The following is clear.

Proposition 8.3.3. The filtrationEn.X;A/ associated to a based pair of spaces .X;A/
is connected if and only if the induced maps

�0A0 ! �0A; �0A0 ! �0X

are surjective, and �i .X;A; x/ D 0 for all x 2 A0 and 1 6 i < n.

Note that the condition �1.X;A; x/ D 0means that any path inX from x to a point
in A is homotopic rel end points to a path in A.

Definition 8.3.4. If the conditions in the previous proposition hold, we say the based
pair .X;A/ is .n � 1/-connected.
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8.3.ii Coproducts with amalgamation

Let us translate Theorem 8.2.1 to the case of pairs.

Theorem 8.3.5. Let .X;A/ be a based pair, and suppose:

(i) U D fU �g�2ƒ is a family of subsets of X whose interiors cover X ;

(ii) U 0 is a subset ofX such that U �\U� D U 0 for all �;� 2 ƒ such that � ¤ �;

(iii) for � D 0 or � 2 ƒ, the based pairs .U 0; A0/, .U �; A�/, formed by intersection
with U �, are .n � 1/-connected.

Then

(Con) the based pair .X;A/ is .n � 1/-connected, and

(Iso) the following is a coequaliser diagram in XMod if n D 2 and in Mod if n > 2:

.�n.U
0; A0IA00/; �1.A0; A00//

.a�/���!
G
�2ƒ

.�n.U
�; A�; A�0/; �1.A

�; A�0//

c�! .�n.X;A;A0/; �1.A;A0//;

where a�, c are induced by inclusions.

Remark 8.3.6. In particular, when ƒ D f1; 2g, the theorem produces a pushout dia-
gram:

.�n.U
0; A0IA00/; �1.A0; A00// ��

��

.�n.U
1; A1IA10/; �1.A1; A10//

��
.�n.U

2; A2IA20/; �1.A2; A20// �� .�n.X;AIA0/; �1.A;A0//.

We apply this result in the next subsections to deduce some classical results, in-
cluding the free crossed complex description of the fundamental crossed complex of
the skeletal filtration of a CW-complex.

8.3.iii Induced modules and homotopical excision

We now specialise the pushout part of Theorem 8.3.5 of the previous subsection into
an excision result which has many applications:

First we recall some terminology. If .; f / W .M;G/! .N;H/ is a morphism of
modules or crossed modules over groupoids determining N as the module or crossed
module f�.M/ induced by f ; then we say the morphism .; f / is cocartesian over
f , or even more succinctly that  W M ! N is cocartesian over f W G ! H ; for more
information, see Section B.2.
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Theorem 8.3.7 (Homotopical Excision Theorem). Let the topological space X be the
union of the interiors of setsU , V , and letW D U \V . Let n > 2. LetW0 � U0 � U
be such that the based pair .V;W IW0/ is .n � 1/-connected and W0 meets each path
component of U . Then

(Con) .X;U IU0/ is .n � 1/-connected, and

(Iso) the morphism of modules (crossed if n D 2)

�n.V;W IW0/! �n.X;U IU0/
induced by inclusions is cocartesian over the morphism of fundamental group-
oids

�1.W;W0/! �1.U; U0/

induced by inclusion.

Proof. This is just Theorem 8.3.5 applied to En�1.X;A/.

Remark 8.3.8. This should be compared with the excision axiom for relative homology,
which in one form simply says that if X is the union of open sets U; V then the map in
homology Hi .U; U \ V /! Hi .U [ V; V / induced by inclusion, is an isomorphism
for all i > 0. It is this result which makes homology calculable. By contrast, this
homotopical excision result has connectivity conditions, it determines only one group,
but it also links two groups in separated dimensions, where the lower one is usually
nonabelian.112

This last theorem applies to give a comparable result, but for closed cofibrations:

Theorem 8.3.9 (Homotopical Excision for an adjunction). Suppose that in the comm-
utative square of spaces

A
f ��

i

��

U

N{
��

V Nf
�� X D U [f V

the map i is a closed cofibration and X is the adjunction space U [f V . Let A0 be
a subset of A meeting each path component of A and V , and let U0 be a subset of U
meeting each path component of U and such that f .A0/ � U0. Let n > 2. Suppose
that the based pair .V; A/ is .n � 1/-connected. Then

(Con) the based pair .X;U / is .n � 1/-connected, and

(Iso) the induced morphism of modules (crossed if n D 2)

Nf� W �n.V; AIA0/! �n.X;U IU0/
is cocartesian over the induced morphism of fundamental groupoids

f� W �1.A;A0/! �1.U; U0/:
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Proof. This follows from Theorem 8.3.7 using mapping cylinders in a similar manner
to the proof of a corresponding result for the fundamental groupoid [Bro06], 9.1.2. That
is, we form the mapping cylinder Y DM.f /[W . The closed cofibration assumption
ensures that the projection from Y to X D U [f V is a homotopy equivalence.

Of course forn D 2 this result is a generalisation to crossed modules over groupoids
of results of Part I, where a number of consequences of a nonabelian type were deduced.

Now we give several applications of Theorem 8.3.9, starting with the pair .CA;A/
where CA denotes the cone on the space A. Since CA is contractible it has trivial
homotopy groups. Hence the boundary map @ W �r.CA;A; x/ ! �r�1.A; x/ is an
isomorphism for all x 2 A and r > 1 by the homotopy exact sequence of the pair.
Thus the pair .CA;A/ is n-connected if and only if A is .n� 1/-connected, i.e. if A is
connected and �r.A; x/ D 0 for 1 6 r < n.

First we derive the firstn homotopy groups of then-sphereSn, using suspension and
induction. Since the suspension is just a quotient of the cone, we can use Theorem 8.3.7
to relate the homotopy groups of the suspension SA to those of the base A.

Theorem 8.3.10 (Suspension Theorem). For a space A, consider SA the (unreduced)
suspension of A. If A is .n � 2/-connected, for n > 3, then

(Con) SA is .n � 1/-connected, and

(Iso) �nSA Š �n�1A.

Proof. We define V D CA the cone on A, U D f�g a point and f the constant map.
Then X D U [f V is the (unreduced) suspension of A, and we can consider the
diagram

A
f ��

i

��

f�g
N{
��

CA Nf
�� X D SA.

Since A is .n � 2/-connected if and only if .CA;A/ is .n � 1/-connected, we can
apply Theorem 8.3.9, getting that .X;�/ is .n � 1/-connected and

�nSA Š �n.CA;A/:
Using again the homotopy exact sequence of this pair, we have �n.CA;A/ Š �n�1A.

Corollary 8.3.11 (Brouwer Degree Theorem). For n > 1, Sn is .n � 1/-connected
and

�n.S
n; 1/ Š Z:
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Proof. Recall that in Part I in Corollary 5.5.4 we have seen that if n D 2 and A is a
path-connected space then SA is 1-connected and

�2.SA; x/ Š �1.A; x/ab:

Given the value of �1.S1; 1/ as Z (a result proved in Section 1.7), we deduce that
�2.S

2; 1/ Š Z.
The induction step follows easily from the Suspension Theorem 8.3.10.

This is actually a non-elementary result: that the sphere Sn is .n � 1/-connected
means that any map S r ! Sn for r < n is nullhomotopic, while the determination of
….Sn; 1/ includes the Brouwer Degree Theorem 8.3.11, that the maps Sn ! Sn are
classified up to homotopy by an integer, called the degree of the map. This was one of
the early triumphs in homotopy classification results. Proofs of these results have to
use some kind of subdivision argument, but we avoid completely the use of simplicial
approximation.

Corollary 8.3.12. Let En� be the skeletal filtration of the n-cell with cell structure
E0 D e0; E1 D e0˙ [ e1, and for n > 2, En D e0 [ en�1 [ en. Then …En� Š F .n/,
the free crossed complex on one generator of dimension n, for all n > 0.

Proof. This follows from the Brouwer Degree Theorem and the homotopy exact se-
quence of the pair .En; Sn�1/.

Corollary 8.3.13. LetX� be a connected filtration, and let Y� D X�[fen�g be formed
by attaching n-cells by filtered maps f� W Sn�1� ! X�, � 2 ƒ. Then Y� is connected,
and has fundamental crossed complex formed from…X� by attaching free generators
xn
�

in dimension n.

Proof. This follows from the previous corollary and the pushout version of the HHSvKT.
Note that in this application, we are using many base points in the disjoint union of
copies of n-cells.

Corollary 8.3.14. IfX is a CW-complex with skeletal filtrationX�, thenX� is a conn-
ected filtration, and…X� is the free crossed complex on the classes of the characteristic
maps of X .

Proof. This follows from the previous corollary by induction on the skeleta ofX .

Remark 8.3.15. We note that the use of many base points and so of groupoids rather
than groups is not a luxury in these applications. Nonreduced CW-complexes such as
the geometric n-simplex occur naturally, and a nontrivial covering space of a reduced
CW-complex is no longer reduced.
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Remark 8.3.16. We can now deal with the example given in diagram (�), p. 259, of
the introduction to this chapter. By previous results we know �n.S

n; 0/ Š Z. The
inclusion Sn ! Y D Sn _ Œ0; 2� is a homotopy equivalence. Let A0 D f0; 1; 2g �
Œ0; 2�, J D �1.Œ0; 2�; A0/. Then �n.Y IA0/ is the free J -module on one generator.
Theorem 8.3.9 now gives that �n.Sn _ S1 _ S1; 0/ is the free F2-module on one
generator.

As another example, if Y is connected and satisfies �r.Y; a/ D 0 for 1 < r < n

andG is a group then we can identify �n.Y _K.G; 1/; a/ as the module induced from
the �1.Y; a/-module �n.Y; a/ by the morphism of groups �1.Y; a/ ! �1.Y; a/ � G.
You should try to give interesting groupoid examples of this method, using the variety
of types of groupoid morphisms. 113

8.3.iv Attaching a cone and the Relative Hurewicz Theorem

We explain what Theorem 8.3.9 implies in the case when we are attaching a cone CA
via a map of the space A.

Proposition 8.3.17. Let X D U [f CA for some map f W A! U . For any n > 3, if
U is path connected and A is .n � 2/-connected, then

(Con) .X;U / is .n � 1/-connected, and

(Iso) the�1.U /-module�n.X;U / is isomorphic to the induced module��.�n�1.A//,
i.e.

�n.X;U / Š �n�1A˝Z.�1U /:

From this proposition we can determine the effect of attaching n-cells on some of
the homotopy groups of a space.

Exercise 8.3.18. LetA,B , U be path-connected, based spaces. LetX D U [f .CA�
B/whereCA is the (unreduced) cone onA and f is a mapA�B ! U . The homotopy
exact sequence of .CA � B;A � B/ gives

�i .CA � B;A � B/ Š �i�1A; i > 2; and �1.CA � B;A � B/ D 0:

Suppose now that n > 2 and A is .n � 2/-connected. Then �1A D 0. We conclude
from Theorem 8.3.7 that .X;U / is .n�1/-connected and�n.X;U / is the�1U -module
induced from �n�1A, considered as trivial �1B-module, by � D f� W �1B ! �1U .
Hence �n.X;U / is the �1U -module

�n�1A˝Z.�1B/ Z.�1U /: �

Now we deduce a version of the classical Relative Hurewicz Theorem. The proof
is analogous to the proof of the theorem in dimension 2 given in Theorem 5.5.2.
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Theorem 8.3.19 (Relative Hurewicz Theorem). Let .V; A/be a pair of spaces. Suppose
n > 3, A and V are path connected and .V; A/ is .n � 1/-connected. Then

(Con) V [ CA is .n � 1/-connected, and

(Iso) the natural map

�n.V; A; x/! �n.V [ CA;CA; x/ ��!Š �n.V [ CA; x/
presents �n.V [ CA; x/ as �n.V; A; x/ factored by the action of �1.A; x/.

Proof. Let X D V [ CA. We would like to apply Theorem 8.3.5 to the diagram of
inclusions

A ��

��

CA

N{
��

V Nf
�� X D V [ CA

but the subspaces do not satisfy the interior condition. We change the subspaces to
A0 D A � Œ0; 1

2
Œ� CA and V 0 D V [ A0. Those subspaces have the same homotopy

type as A and V (moreover the pair .V 0; A0/ has the homotopy type of .V; A/) and we
can apply Theorem 8.3.5 to the diagram of inclusions

A0 ��

��

CA

N{
��

V 0
Nf

�� X D V [ CA.

This yields that X is .n � 1/-connected, and that

�n.X; CA/ D ���n.V; A/;

the module induced from the �1A-module �n.V; A/ by � D f� W �1A! �1CA D 0.
It follows, since �1CA D 0, that ���n.V; A/ is obtained from �n.V; A/ by killing

the �1A-action. (If n D 2 that would give the abelianisation.)
To finish, note that using that CA is contractible, we get that �r.X; CA; x/ is

isomorphic to �r.X; x/, by the homotopy exact sequence of the pair.

The usual forms of the Hurewicz Theorem involve homology groups, which lie
outside the main scope of this book, although many readers may be well familiar with
them. Here we make a few remarks to give a brief account of the relation between the
two approaches, and there is more information in Section 14.7.

The homology functors Hn, n > 0, assign to any topological space A or pair
of spaces .V; A/ abelian groups Hn.A/; Hn.V; A/ such that: there is a natural exact
sequence

� � � ! HnC1.V; A/
@�! Hn.A/! Hn.V /! Hn.V; A/! Hn�1.A/! � � � I
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if A is a point thenH0.A/ Š Z; and the excision and homotopy axioms, which we do
not state here, hold. These axioms imply that the boundary

@ W HnC1.EnC1;Sn/! Hn.S
n/

is an isomorphism; it follows by induction that Hn.Sn/ Š Z for n > 0. Choose a
generator �n of this group, giving a generator, also written �nC1, of HnC1.EnC1;Sn/.
The Hurewicz morphisms

!n W �n.A; x/! Hn.A/; !nC1 W �nC1.V; A; x/! Hn.V; A/

are then defined by sending the class of a map f in such a homotopy group to f�.�n/,
f�.�nC1/ respectively where f� denotes the induced maps in homology. This leads
to a morphism from the exact homotopy sequence of a pair to the exact homology
sequence, which we use in the next theorem.

We have the following:

Theorem 8.3.20 (Absolute Hurewicz Theorem). If X is an .n � 1/-connected space,
then the Hurewicz morphism!i W �i .X; x/! Hi .X/ is an isomorphism for 0 6 i 6 n

and an epimorphism for i D nC 1.
We will outline a proof of this result in Theorem 14.7.8. The use of filtered spaces

is quite appropriate for this proof, and follows the lines of some classical papers.
The usual version of the Relative Hurewicz Theorem involves not �n.V [ CA; x/

but the homology Hn.V; A/. It is possible to get this more usual version from the one
we have just proved in a three stage process.

First, the conclusion of our theorem implies that V [CA is .n� 1/-connected, and
so �n.V [CA; x/ is isomorphic toHn.V [CA/ by the Absolute Hurewicz Theorem.

Then it is easy to prove that Hn.V [ CA/ is isomorphic to Hn.V [ CA;CA/ by
the homology exact sequence, using that CA is acyclic because it is contractible.

Last, we notice that by excision the morphism Hn.V; A/ ! Hn.V [ CA;CA/
induced by inclusion is an isomorphism.

Here is another corollary of the Relative Hurewicz Theorem, which assumes a bit
more on the Hurewicz morphism from homotopy to homology. We call it Hopf’s
theorem, although he gave only the case n D 2.

Proposition 8.3.21 (Hopf’s theorem). Let .V; A/ be a pair of pointed spaces such that:

(i) �i .A/ D 0 for 1 < i < n;

(ii) �i .V / D 0 for 1 < i 6 n;

(iii) the inclusion A! V induces an isomorphism on fundamental groups.

Then the pair .V; A/ is n-connected, and the inclusionA! V induces an epimorphism
HnA ! HnV whose kernel consists of spherical elements, i.e. of the image of �nA
under the Hurewicz morphism !n W �n.A/! Hn.A/.
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Proof. That .V; A/ is n-connected follows immediately from the homotopy exact se-
quence of the pair .V; A/ up to �n.V /. We now consider the next part of the exact
homotopy sequence and its relation to the homology exact sequence as shown in the
commutative diagram:

�nC1.V; A/
!nC1

��

@ �� �n.A/

!n

��

�� �n.V /

��

�� �n.V; A/

��
HnC1.V; A/

@0
�� Hn.A/

i�

�� Hn.V / �� Hn.V; A/.

The Relative Hurewicz Theorem implies that Hn.V; A/ D 0, and that !nC1 is surjec-
tive. Also @ in the top row is surjective, since �n.V / D 0. It follows easily that the
sequence �n.A/! Hn.A/! Hn.V /! 0 is exact.

8.4 The chain complex of a filtered space and of a CW-complex

In this section we show that for certain filtered spaces X� the chain complex r…X�
may be identified in terms of chains of universal covers. The chain complex of cellular
chains of the universal cover of a pointed CW-complexX , regarded as a chain complex
of modules over �1.X;�/, is a well-known tool in algebraic topology114.

All spaces which arise will now be assumed to be Hausdorff and to have universal
covers. Recall, [Bro06], 10.5.8, that if X is a topological space and v 2 X then
the universal covering map p W zX.v/ ! X , can be constructed by topologising the
fundamental groupoid �1.X/ and considering the final point map t W �1X ! X ,
writing

zX.v/ D t�1.v/
and identifying p with the initial point map s. This space has a canonical base point,
1v 2 �1X . These spaces form a bundle overX on which�1X operates by composition,
but not preserving the base point.

Let X� be a filtered space. For v 2 X0, i > 0, let yX�.v/ denote the filtered space
consisting of zX.v/ and the family of subspaces

yXi .v/ D p�1.Xi /:

Definition 8.4.1. We define for a filtered space X� the chain complex with operators
CX� to have for all v 2 X0; i > 1,

C0X� D H0. yX0.v//; CiX�.v/ D Hi . yXi .v/; yXi�1.v//;
and to have groupoid of operators �1.X;X0/ with operation induced by the bundle
operations given above. This defines the functor fundamental chain complex of a
filtered space

C W FTop! Chn: �
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Proposition 8.4.2. If X� is a connected filtered space, for example a CW-filtration,
then there is a natural isomorphism

CX� Š r…X�:

Proof. Notice that, in this case, yXi .v/ is the universal cover ofXi based at v for i > 2.
We will use the Relative Hurewicz Theorem 8.3.19.
Let v 2 X0 and let i > 3. The pair . yXi .v/; yXi�1.v// is .i � 1/-connected, and

yXi�1.v// is simply connected, and so

�i .Xi .v/; Xi�1; v/ Š �i . yXi .v/; yXi�1.v/; 1v/ since p is a covering

Š Hi . yXi .v/; yXi�1.v// by the Relative Hurewicz Theorem,

since yXi .v/ and yXi�1.v/ are in fact the universal covers atv ofXi andXi�1 respectively.
If i D 2, a similar argument applies but in this case�1. yX1; v/D ı�2. yX2.v/; yX1.v/; 1v/.
So the Relative Hurewicz Theorem in dimension 2 (Theorem 5.5.2) now gives

H2. yX2.v/; yX1.v// Š �2. yX2.v/; yX1; 1v/ab

Š �2.X2; X1; v/ab

D .r…X�/2:

For the case i D 1 we can use the result of Theorem 14.7.5 on the abelianisation of
�1.X;X0/, and the result of our Exercise 7.4.26 giving a description of the derived
module in terms of an abelianisation of a groupoid.115

The following corollary of these results does not seem generally known, nor to have
been proved by other methods.116

Corollary 8.4.3. LetX� be a filtered space and suppose thatX is the union of a family
U D fU �g�2ƒ of open sets such that U is closed under finite intersection. Let U �� be
the filtered space obtained from X� by intersection with U �. Suppose that each U �� is
a connected filtered space. Then X� is connected and the natural morphism in Chn

colim�CU �� ! CX�

is an isomorphism.

Proof. The HHSvKT 8.1.5 gives a similar result for … rather than C . Then we apply
r which has a right adjoint and so preserves colimits.
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Notes

110 p. 258 This insight that the Relative Hurewicz Theorem followed from a Seifert-
van Kampen Theorem was a stimulus to the work on an extension of the Relative
Hurewicz Theorem to a triadic Hurewicz Theorem in [BL87], [BL87a], [Bro89]
for which some background is given in Section B.4: it was felt that the more
general theorem could be easier to prove, and so it turned out.

111 p. 261 Notice that there are duplications of the indexing in ƒ2, and unnecessary
pairs .�; �/ but this does not matter.

112 p. 268 More powerful connectivity results due initially to Blakers and Massey
[BM49] may be found under the label ‘Excision Theorem’ in [Hat02], Theo-
rem 4.23, p. 360, and in [tD08], Theorem 6.4.1, p. 133. The results of Blakers–
Massey led to a search for the calculation of the critical triad homotopy group,
see for example [Ada72], though the results given there have problems with cases
where this group may be nonabelian, which were resolved in [BL87] with the
notion of nonabelian tensor product of groups with actions. These early results
on triads were generalised to n-ads, and a relevant paper is [BW56], though this
seems to lack a proof of the connectivity result. The most general results of this
kind is in [ES87], Theorems 3.7, 3.8; it uses the main result of [BL87] to prove the
n-ad connectivity theorem and compute the first critical group, even when it may
be nonabelian, and so unreachable by homological techniques. Another proof of
the n-ad connectivity result uses general position arguments, [Goo92]; such argu-
ments have not been modelled algebraically and so usually do not directly yield
algebraic results. You should find it worthwhile to compare the methodologies of
all these results and proofs.

113 p. 271 There is much work on 2-complexes which uses combinatorial group theory
or module theory, but which does not use results on crossed modules, for example
[FR05], [Joh03], [Joh09], so it would be interesting to know if the two kinds of
methods could be combined. The paper [Pap63] does apply Whitehead’s theorem
on free crossed modules, but our more general results on �2.X [CA;X; x/ have
not so far been applied generally in low dimensional topology.

114 p. 274 These cellular chains with operators are used in simple homotopy theory,
see for example [Coh73].

115 p. 275 The case i D 1 is essentially the result of Crowell [Cro71], Section 5.
Full details of our argument for this are given in [Bro11], and are also related
to [Whi49b], Section 11. Whitehead used the chains of the universal cover in a
number of papers, and in this was strongly influenced by Reidemeister’s work in
[Rei49]. That work developed also into work of Eilenberg–Mac Lane on homology
of spaces with operators, [Eil47], [EML49].
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116 p. 275 We note that colimit results such as this have been used by various workers
([Lom81], [PS85]) in the case X� is the skeletal filtration of a CW-complex and
the family U is a family of subcomplexes, although usually in simple cases. The
general form of this ‘Seifert–van Kampen Theorem’ for CX� does not seem to
have been noticed. This may be due to the unfamiliar form of colimits in the
category Chn of chain complexes over varying groupoids, which even in the group
case are not quite what might be expected, see Example 7.4.30. Of course one of
the aims of this book is to make such algebraic colimit arguments and results more
familiar in algebraic topology, so that they can be used there and hopefully more
widely.



Chapter 9

Tensor products and homotopies of crossed complexes

This chapter is built around the notion of monoidal closed category, whose definition
may be found in Section C.7 of Appendix C, and on the use of such a structure on the
category Crs of crossed complexes.117

This will raise conceptual difficulties for those not used to the ideas so we shall
give some background and introduction in Section 9.1.

The monoidal closed structure for the category Crs gives a natural ‘exponential
law’, i.e. a natural isomorphism

e W Crs.C ˝D;E/ Š Crs.C;CRS.D;E//;

for crossed complexes C;D;E. Here ‘monoidal’ refers to the ‘tensor product’C ˝D
and ‘closed’ refers to the ‘internal hom’ CRS.D;E/.

The elements of CRS.D;E/ may be written out explicitly – they are morphisms
D ! E in dimension 0, homotopies of morphisms in dimension 1, and ‘higher homo-
topies’ for n > 1. One advantage of this procedure is that we can use crossed complex
techniques not only on filtered spaces but also on maps and homotopies of filtered
spaces.

The case of the ‘tensor product’ raises technical difficulties. For C ˝ D we can
give in the first instance only generators c ˝ d , c 2 Cm; d 2 Dn, m; n > 0 and the
structure and axioms on these.

Sometimes we use a formal description of this monoidal closed structure on the
category of crossed complexes, but the fact that we can if necessary get our hands dirty,
that is write down some complex formulae and rules and calculate with them, is one
of the aspects of the theory that gives power to the category of crossed complexes.

The complication of the rules for the tensor product is due to their modeling the
geometry of the product of cells. It is important to get familiar with these formulae for
the tensor product as they will be used frequently in the applications of this and the
remaining chapters of this Part II.

The natural way to be sure we have the right formulation of this structure is not to
define it directly, but through the equivalence with the category of !-groupoids and the
natural definition of tensor product and internal hom in that category. This we do in
Chapter 15 and so ensure that the definitions for the category Crs will work. Here, we
state directly the definition that results from this detour, risking that this could make
the rules for the tensor product in Crs seem too awkward.

As an introduction to the crossed complex case, and because we need this example,
we describe in Section 9.2 the structure of monoidal closed category for the category
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Mod of modules over groupoids. This gives a natural equivalence in Mod

Mod..M ˝N;G �H/; .P;K// Š Mod..M;G/;MOD..N;H/; .P;K//:

Later in Section 9.3 we define CRS.D;E/ for crossed complexes D, E by: the
elements of CRS0.D;E/ are to be just the morphisms C ! D; the elements of
CRS1.D;E/ are to be the homotopies defined in Section 7.1.vii; and for m > 2

we give explicitly the elements of CRSm.D;E/. The rules for addition, action and
boundaries are related to the geometry associated to the free crossed complexes on
products Em �En of cells.

Analogously to the development of the tensor product for R-modules indicated
above, the set of morphisms of crossed complexes

C ! CRS.D;E/

is bijective to the set of ‘bimorphisms’

.C;D/! E;

where these bimorphisms play for crossed complexes the same role that bilinear maps
play for modules.

Then, as in the case ofR-modules, we can form the tensor productC˝D of crossed
complexes by taking free objects and quotienting out by the appropriate relations.118

We give a direct description of C ˝ D first of all in dimensions 1 and 2, in Sec-
tions 9.4.i, 9.4.ii. Then we use the monoidal closed structure on the category Chn of
chain complexes with a groupoid of operators, in order to get a clearer description of
.C ˝D/n for n > 2 as .rC ˝rD/n.

We end the algebraic part of this chapter by proving in Section 9.6 the important
result that the tensor product preserves freeness. This uses crucially the adjoint relation
of the tensor product to the internal hom.

The second part of the chapter deals with the topological applications, relating the
monoidal closed category of Crs and that of FTop via the fundamental crossed complex
functor

… W FTop! Crs:

We start by giving in Section 9.7 a structure of monoidal closed category to the category
FTop of filtered topological spaces and filtered maps; this structure is a straightforward
generalisation of the structure of cartesian closed category for Top already mentioned
in this introduction.

The relationship between the structures of monoidal closed category on FTop and
on Crs is explained in Section 9.8. Again, we leave the proofs of these results to
Chapter 15 of Part III. The main result is Theorem 9.8.1 stating how the functor …
behaves with respect to tensor products. In particular, if X�; Y� are filtered spaces,
then there is a natural transformation

� W ….X�/˝….Y�/! ….X� ˝ Y�/
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which is an isomorphism if X�; Y� are CW-complexes.
The tensor product in the categories FTop and Crs allows homotopies to be inter-

preted in these categories as maps from a ‘cylinder functor’ which in FTop is of the
form I�˝�. Thus an immediate consequence of Theorem 9.8.1 is that the fundamen-
tal crossed complex functor … is a homotopy functor. This, and the analysis of the
cone of a crossed complex, leads in Section 9.9 to computations on the fundamental
crossed complex of an n-simplex providing a version of the simplicial Homotopy Ad-
dition Lemma (Theorem 9.9.4). A similar result is true for n-cubes giving a cubical
Homotopy Addition Lemma (Proposition 9.9.6).

9.1 Some exponential laws in topology and algebra

The start of the idea of a monoidal closed category is that a function of two variables
f W R � R ! R can also be regarded as a variable function of one variable. This is
the basis of partial differentiation. In general, this transforms into the idea that if ZY

denotes the set of functions from the set Y to the setZ, then we have a bijection of sets

e W ZX�Y ! .ZY /X

given by
e.f /.x/.y/ D f .x; y/; x 2 X; y 2 Y:

This corresponds to the exponential law for numbersmnp D .mn/p , and so the previous
law is called the exponential law for sets.

Because there is a bijectionX�Y ! Y �X this also means we can set up bijections
between the three sets of functions

X ! ZY ; Y ! ZX ; X � Y ! Z:

This becomes particularly interesting in its interpretation when Y D I D Œ0; 1�, the
unit interval, since the functions I ! Z can be thought of as paths in Z, and so the
set of these functions is a kind of space of paths; in practice we will want to have
topologies on these sets and speak only of continuous functions, but let us elide over
that for the moment.

The functionsX ! Zwe can intuitively call ‘configurations ofX inZ’. A function
X � I ! Z we can think of as a deformation of configurations. This can be seen
alternatively as a path in the configuration space ZX , or as a configuration X ! ZI

in the path space ofZ. These alternative points of view have proved strongly useful in
mathematics.

It is useful to rephrase the exponential law slightly more categorically, so as make
analogies for other categories, so we write it also as a bijection

e W Set.X � Y;Z/ Š Set.X;SET.Y;Z//:
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Here the distinction between Set and SET, i.e. between external and internal to the
category, is less clear than it will be in the other examples in this section. For further
examples see Appendix C, in particular the categories Cat in Section C.2 and Gpds in
Section C.3.

Now suppose that X; Y;Z are topological spaces, and Top.Y;Z/ denotes the set
of continuous maps Y ! Z. We would like to make this set into a topological space
TOP.Y;Z/ so that the exponential correspondence gives a natural bijection

Top.X � Y;Z/ Š Top.X;TOP.Y;Z//:

However this turned out not to be possible for all topological spaces, and in the end a
reasonable solution was found by restricting to what are called ‘compactly generated
spaces’, and working entirely in the category of these spaces. In this book Top will
mean the category of compactly generated spaces. An account of this category is
given in [Bro06], Section 5.9, and we assume this to be known. The existence of the
exponential law as above is summarised by saying that the category Top is a cartesian
closed category.119 Here ‘cartesian’refers to the fact that we use the categorical product
in the category, and ‘closed’ means that there is a space TOP.Y;Z/ for all spaces Y ,
Z in the category Top. The space TOP.Y;Z/ is also called the internal hom in Top.

It is a deduction from the exponential law and associativity of the cartesian product
that there is also a natural homeomorphism

TOP.X � Y;Z/ Š TOP.X;TOP.Y;Z//:

We leave the proof of this to the reader.
There are a couple of special characteristics to this example. First, the underlying

set of the space TOP.Y;Z/ is the set Top.Y;Z/, but for other exponential laws there is
no reason why this should be so. We shall come later to this point (see Section 9.7).

Second, the product we are using above is the categorically defined cartesian product
in the category. There are analogous laws in other categories involving other types of
product than the cartesian product.

For example, if ModR denotes the category of left modules over a commutative
ring R with morphisms the R-linear maps, then we can for R-modules N , P form
an R-module structure on the set ModR.N; P / to give an R-module which we write
MODR.N; P /. This we call the internal hom in the category ModR.

Recall that a bilinear map .M;N /! P ofR-modules is a function f W M �N !
P which satisfies

f .rmCm0; n/ D rf .m; n/C f .m0; n/;
f .m; rnC n0/ D rf .m; n/C f .m; n0/

for all m;m0 2 M , n; n0 2 N and r 2 R. The set of all of these functions is written
BiLinR..M;N /IP /.
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A standard construction is the ‘universal bilinear map’ .M;N /!M ˝R N so as
to obtain a natural bijection

BiLinR..M;N /IP / Š ModR.M ˝R N;P /:
If M;N are left R-modules, then M ˝R N can be constructed as the free R-module
on elements m˝ n for m 2M;n 2 N factored by the relations

.rmCm0/˝ n D r.m˝ n/C .m0 ˝ n/;
m˝ .rnC n0/ D r.m˝ n/C .m˝ n0/

for all m;m0 2M , n; n0 2 N , r 2 R.
Notice that the two first families of relations have consequences such as

m˝ 0 D 0˝ n D 0;
.�m/˝ n D m˝ .�n/ D �.m˝ n/

while the third family of relations can be used to define a structure ofR-module by the
action

r.m˝ n/ D rm˝ n D m˝ rn:
This gives as a consequence the linearity on both variables of the tensor product

.rmC r 0m0/˝ n D r.m˝ n/C r 0.m0 ˝ n/;
m˝ .snC s0n0/ D s.m˝ n/C s0.m˝ n0/:

By the given construction, an element of M ˝R N is an R-linear combination of
decomposable elements of the formm˝n. In general, it is not quite so obvious what are
the actual elements ofM ˝RN for specificR,M ,N . Nonetheless, the tensor product
of R-modules plays an important role in module theory. One reason is that whereas
a bilinear map does not have a defined notion of kernel, a morphism M ˝R N ! P

to an R-module P does have a kernel. This process of using a universal property to
replace a function with complicated properties by a morphism is a powerful procedure
in mathematics.

The tensor product construction, i.e. the bifunctor,

�˝R �W ModR �ModR ! ModR;

does not give a categorical product in the category ModR. To describe this situation,
category theorists have developed the notion of monoidal category, and to give a general
setting for the exponential law

ModR.M ˝R N;P / Š ModR.M;MODR.N; P //

have developed the notion of monoidal closed category. This law can also stated as:
for all R-modules N the functor � ˝R N is left adjoint to MODR.N; � /. This has
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some immediate and valuable consequences on the preservation of colimits and limits
by these functors.

Both as a reminder of and as an introduction to the more involved crossed complex
case, this process is described in the next section for the category Mod of modules over
groupoids. There are some key difference between the above discussion and that for
Mod, namely that the operator domain varies. This would be analogous to considering
modules over arbitrary rings, when the tensor product of modules .M;R/, .N; S/ over
possibly noncommutative rings R, S would be a module .M ˝N;R˝ S/.120

9.2 Monoidal closed structure on the category of modules over
groupoids

As a special case of the previous discussion, there are well-known definitions of tensor
product and internal hom functor for abelian groups without operators. If one allows
operators from arbitrary groups the tensor product is easily generalised, with the tensor
product of a G-module and an H -module being a .G � H/-module. However, the
adjoint construction of internal hom functor does not exist, basically because the group
morphisms from G to H do not form a group. To rectify this situation we allow
operators from arbitrary groupoids, rather than groups, and we give a discussion of the
monoidal closed category structure of Mod the category of modules over groupoids
introduced in Definition 7.1.7.

As is customary, we writeM for theG-module .M;G/when the operating groupoid
G is clear from the context. Also, to simplify notation, we will assume throughout this
chapter that the abelian groups M.x/ for x 2 G0 are all disjoint; any G-module is
isomorphic to one of this type.

In many of our categories, it will be easier to describe internal homs explicitly, than
the corresponding tensor product. We illustrate this by describing the internal hom
structure in the category Mod.121

An internal hom groupoid GPDS.G;H/ in the category Gpds is described in Sec-
tion C.3 of Appendix C: its objects are morphisms � W G ! H of groupoids and its
morphisms are natural transformations ˛ W � ! � 0. Recall that such a natural trans-
formations ˛ is given by a family f˛.x/gx2G0

where ˛.x/ 2 H.�.x/; � 0.x// and the
diagram

�.x/
˛.x/ ��

�.g/

��

� 0.x/

� 0.g/

��
�.y/

˛.y/
�� � 0.y/

commutes for all g 2 G.x; y/. Because of our convention for composition in a
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groupoid, this commutativity is read as

˛.x/� 0.g/ D �.g/˛.x/:
Definition 9.2.1. Let .M;G/, .N;H/ be modules. To construct

MOD..M;G/; .N;H//;

the internal hom in MOD, we have to give the set

Mod..M;G/; .N;H//

of morphisms of modules .f; �/ W .M;G/ ! .N;H/ the structure of module over
a groupoid. Notice that f is given by a family ff .x/gx2G0

where f .x/ W M.x/ !
N.�.x// are group morphisms satisfying

f .y/.mg/ D f .x/.m/�.g/ for m 2M.x/; g 2 G.x; y/:
For a fixed morphism � W G ! H of groupoids, we define the set

Mod..M;G/; .N;H//.�/

of module morphisms over � to be the set of morphisms of the form

.f; �/ 2 Mod..M;G/; .N;H//:

It is easy to see that each Mod..M;G/; .N;H//.�/ forms an abelian group under
element-wise addition, so that Mod..M;G/; .N;H// for all morphisms � W G !
H forms a family of abelian groups indexed by the set of objects of the groupoid
GPDS.G;H/. Thus

MOD..M;G/; .N;H// D fMod..M;G/; .N;H//.�/ j � 2 Gpds.G;H/g:
It remains to describe the action of GPDS.G;H/ on MOD..M;G/; .N;H//, i.e. for
each �; � 0 2 Gpds.G;H/ we need a map

Mod..M;G/; .N;H//.�/ � GPDS.G;H/.�; � 0/! Mod..M;G/; .N;H//.� 0/:

So let f be such that .f; �/ is a morphism of modules and let ˛ W � ! � 0 be a natural
transformation. We define

.f; �/˛ D .f ˛; � 0/
where f ˛ is a family of morphisms

f ˛.x/ W M.x/! N.� 0.x//; x 2 G0
where f ˛.x/ is defined as the composition

M.x/
f .x/���! N.�.x//

.� /˛.x/

�����! N.� 0.x//;
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i.e. f ˛.x/.m/ D .f .x/.m//˛.x/. This defines a morphism of modules because if
g 2 G.x; y/, m 2M.x/ then

f ˛.y/.mg/ D .f .y/.mg//˛.y/
D .f .x/.m//�.g/˛.y/
D .f .x/.m//˛.x/� 0.g/

D .f ˛.x/.m//� 0.g/:

It is not difficult to prove that this definition satisfies the properties of an action giving
a structure of module

MOD.M;N / D .Mod..M;G/; .N;H//;GPDS.G;H//

which we take as the internal hom functor in Mod.

It is quite straightforward to see that, as in the group case, we can characterise the
elements of this internal hom functor in terms of ‘bilinear’ maps.

Definition 9.2.2. A bilinear map of modules over groupoids

.M;G/ � .N;H/! .P;K/

is given by a pair of maps .f; �/ where � W G � H ! K is a map of groupoids and
f W M �N ! P is given by a family of bilinear maps

f .x; z/ W M.x/ �N.z/! P.�.x; z//; x 2 G0; z 2 H0
which preserve actions, i.e. if g W x ! y, h W z ! w then

f .y;w/.mg ; nh/ D .f .x; z/.m; n//�.g;h/:
The set of all those bilinear maps is written

BiLin..M;G/; .N;H/I .P;K//:
By abuse of language we shall often suppress the base groupoid.

Proposition 9.2.3. There is a natural bijection

BiLin.M;N IP /! Mod.M;MOD.N; P //

between the set of bilinear maps M � N ! P and the set of morphisms of modules
from M to MOD.N; P /.

Proof. Given .f; �/ 2 BiLin.M;N IP / we define . Of ; O�/ 2 Mod.M;MOD.N; P // by

O�.x/.y/ D �.x; y/ and Of .m/.n/ D f .m; n/:
It is easy to see that . Of ; O�/ is a module morphism and that this assignation .f; �/ 7!
. Of ; O�/ is a natural bijection.
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Now the tensor product is constructed as to transform these bilinear maps into
morphisms of modules.

Definition 9.2.4. The tensor product in Mod ofmodules is given by

.M;G/˝ .N;H/ D .M ˝N;G �H/

where, for x 2 G0, z 2 H0,

.M ˝N/.x; z/ DM.x/˝Z N.z/

and the action is given by

.m˝ n/.g;h/ D mg ˝ nh: �

Remark 9.2.5. The moduleM ˝N is the .G �H/-module generated by all elements

fm˝ n j m 2M;n 2 N g
subject to the relations

.mCm0/˝ n D .m˝ n/C .m0 ˝ n/;
m˝ .nC n0/ D .m˝ n/C .m˝ n0/;
.m˝ n/.g;h/ D mg ˝ nh:

The consequence of this is that is not so easy to give an explicit description of the
elements of M ˝ N , but, as we see in the next proposition, to define a morphism
M ˝N ! P all we need is a bilinear map M �N ! P .

Proposition 9.2.6. There is a natural bijection

BiLin.M;N IP /! Mod.M ˝N;P /
between the set of bilinear maps M � N ! P and the set of morphisms of modules
M ˝N ! P .

Proof. Given a bilinear map .f; �/ W M �N ! P we define

O�.g; h/ D �.g/.h/ and Of .m˝ n/ D f .m; n/:
It is easy to see that . Of ; O�/ is a morphism of modules and that this assignment .f; �/ 7!
. Of ; O�/ gives a natural bijection as required.

The tensor product and the internal morphisms just defined give Mod the structure
of symmetric monoidal closed category with unit object the module .Z; 1/. We leave to
the reader to check the symmetric monoidal part (that the tensor product is associative,
commutative, that .Z; 1/ is the unit) and to explain the exponential law.
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Proposition 9.2.7. There is a natural bijection

MOD.M ˝N;P / Š MOD.M;MOD.N; P //:

Proof. It is straightforward to verify the natural bijection

Mod.M ˝N;P / Š Mod.M;MOD.N; P //;

where P is a G-module.
These families of groups are modules over

GPDS.G �H;K/ Š GPDS.G;GPDS.H;K//

and the actions agree, giving a natural isomorphism of modules

MOD.M ˝N;P / Š MOD.M;MOD.N; P //: �

9.3 Monoidal closed structure on the category of crossed
complexes

Analogously to the way the internal morphisms gave a correspondence from morphisms
in the internal hom construction to bilinear maps and then to morphisms of the tensor
product, as in

ModR.C ˝D;E/ Š ModR.C;MODR.D;E//;

so we obtain an internal hom CRS.D;E/ for crossed complexes D, E as part of an
exponential law

Crs.C ˝D;E/ Š Crs.C;CRS.D;E//; (9.3.1)

for crossed complexes C , D, E where the ‘internal hom’ CRS.D;E/ is of course
again a crossed complex. Crossed complexes have structure in a range of dimensions,
whereas R-modules have structure in just one dimension, so the description of the
internal hom in Crs has to be much more complicated than that in ModR, and indeed
this complication is part of its value in modeling complicated geometry.

We define the internal hom for crossed complexes as giving a ‘home’ for the notion
of ‘higher dimensional homotopy’ as follows. We have already observed that in any
crossed complex C , the set of m-dimensional elements Cm is bijective with the set
of morphisms of crossed complexes Crs.F .m/; C /, where F .m/ is the free crossed
complex on one generator of dimension m (see Proposition 7.3.14).

When, in the exponential law, we take C D F .m/, we have

Crs.F .m/˝D;E/ Š Crs.F .m/;CRS.D;E// Š CRSm.D;E/: (9.3.2)

So, the elements of CRSm.D;E/ can be seen as ‘m-fold left homotopies’D ! E and
that description is useful to understand the definition and properties of Section 9.3.i.
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To proceed to the tensor product necessitates defining the notion of bimorphism

� W .C;D/! E

for crossed complexes C , D, E, so that such bimorphisms correspond exactly to
morphisms C ! CRS.D;E/.

The algebraic properties of bimorphisms are quite complicated, but also reflect some
important geometric properties, namely the cellular subdivision of products Em �En
of cells Em. We have seen (Example 7.1.5):

E0 D f1g; E1 D e0˙ [ e1; Em D e0 [ em�1 [ em; m > 2;

where e0� D �1; e0C D 1. Thus in general the product of these cells has a cell structure
with 9 cells.

The structure for the cylinder E1 � E2 may be seen in the next two figures. The
first one shows the cells in E1 � S1, and the second one shows the three cells we have
to add to get E1 �E2.

e0� � e0 e0C � e0e1 � e0

e0� � S1 e0C � S1

Figure 9.1. Hollow cylinder picture, horizontally for E1 direction.

e0� � e2 e0C � e2
!

!

 

 

Figure 9.2. Solid cylinder picture, horizontally for E1 direction.

We cannot draw the picture for E2 �E2, but that structure contains two solid tori,
one of which is pictured as the cylinder with both ends glued in Figure 9.3.

Note that the boundary of E2 � E2 is homeomorphic to a 3-sphere, which can be
represented as the set of points .x; y; z; w/ 2 R4 such that x2 C y2 C z2 C w2 D 1;
one of the solid tori is represented by the subset of S3 of points such that

x2 C y2 6 1=2; whence z2 C w2 > 1=2:
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e0 � e2

e1 � e0

e0 � e0
e0 � e1

e1 � e1
Figure 9.3. Solid torus picture.

In terms of crossed complexes, a corresponding algebraic expression for the bound-
ary of the solid cylinder e1 � e2 should involve the cells e1 � e1, e0� � e2, e0C � e2.
Our conventions set the base point of the cylinder at .1; 1/, i.e. at the ‘top’ end of the
cylinder. In the end we take the boundary to be

ı.e1 � e2/ D �.e1 � e1/ � .1 � e2/C .�1 � e2/e1�1;

where the conventions as to sign and order of the terms come from some other consid-
erations which we explain later. When we come to take the boundary in the solid torus
in E2 �E2 we get a similar formula, except that now �1� e2, 1� e2 are identified to
1 � e2 and so the formula becomes

ı.e1 � e2/ D �.e1 � e1/ � .1 � e2/C .1 � e2/e1�1;

which relates to our picture of the solid torus.
Another complication is when we glue two cylinders together as in Figure 9.4. The

base point of the whole cylinder is at the right-hand end of the picture, but the base
point of the first cylinder is half way along. Thus the algebraic formulae have to reflect
this.

Finally, we have to distinguish the formulae for the boundary of Em � En for m,
n odd, even, and equal to 0, 1, or > 2.

All these complications are reflected in the notion of a bimorphism given in Sec-
tion 9.3.ii.

We then internalise the bimorphism concept by introducing the tensor product for
crossed complexes in Section 9.3.iii. The mentioned complications for bimorphisms
give quite different formulae for the operations on c ˝ d for the dimensions of c or
d being 0; 1 or > 2. We stress that the specific rules we use are dictated by the clear
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e0 � e0 e0 � e0

Figure 9.4. Two cylinders glued.

and intuitive rules for the monoidal closed structure on cubical !-groupoids given
in Chapter 15 and the specific conventions chosen in Chapter 13 for the equivalence
between these !-groupoids and crossed complexes.

9.3.i The internal hom structure

Recall from the introduction to this chapter that the elements of CRSm.C;D/ can be
seen as m-fold homotopies

F .m/˝ C ! D

reflecting the geometry of F .m/. In particular, F .1/ D � is the unit interval, which
will give a cylinder construction.

An advantage of this viewpoint is that the elements of the internal hom crossed
complex CRS.C;D/ in dimension m have a precise and clear interpretation. What is
not so clear is that these elements taken altogether can be given the structure of crossed
complex.

This difficulty is overcome in Chapter 15 by working with a different but equivalent
structure, that of !-groupoids, which is based on cubes.

So in this section, our aim is not to give the full justification of the results, but to
give full definitions and to explain their intuitive content. We begin the definition of
CRS.C;D/ from the bottom dimension upwards.

In dimension 0, CRS.C;D/0 is the set of crossed complex morphisms C ! D,
that is,

CRS0.C;D/ D Crs.C;D/:

For dimension 1, we use the concept of homotopy which has been given in Sec-
tion 7.1.vii. Hence the groupoid CRS1.C;D/ is defined as having Crs0.C;D/ D
Crs.C;D/ as objects, the morphisms from f � W C ! D to f C W C ! D are the
homotopies f � ' f C, i.e.

CRS1.C;D/.f
�; f C/ D f.H; f C/ W f � ' f C j homotopies from f � to f Cg:
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The composition of such homotopies is given as follows:

Definition 9.3.1. Let H W f � ' f C and K W f C ' f 0 be left homotopies, then we
define H CK W f � ' f 0 by

.H CK/n.c/ D
´
Kn.c/CHn.c/K0.tc/ if c 2 Cn; n > 1;

H0.c/CK0.c/ if c 2 C0:

Exercise 9.3.2. Prove that CRS1.C;D/ is, with this addition, a groupoid. Deduce that
homotopy between morphisms of crossed complexes is an equivalence relation. The
quotient set is written ŒC;D�.

Now we turn to the general structure, defining CRSm.C;D/.f / for dimension
m > 2 and f 2 Crs.C;D/; providing it with an action of CRS1.C;D/ and defining
the ‘boundary’ maps.

Definition 9.3.3. Let C , D be crossed complexes and let m > 2. Then an m-fold
homotopy from C to D over a morphism f W C ! D, also called the base morphism
of the homotopy, is a pair .H; f /whereH is a map of degreem from C toD given by
functionsHn W Cn ! DnCm for eachn > 0 and which satisfy the following conditions.

• Relations with actions for n > 2:
– for n > 2, the Hn preserve the action from dimension 1, i.e. if c 2 Cn and

c1 2 C1, then
Hn.c

c1/ D Hn.c/f1.c1/:

• Relations with compositions for n > 1:
– H1 is a derivation over f , i.e. if c; c0 2 C1 and c C c0 is defined, then

H1.c C c0/ D H1.c/f1.c
0/ CH1.c0/I

– for n > 2 the Hn are morphisms, i.e. if c; c0 2 Cn and c C c0 is defined, then

Hn.c C c0/ D Hn.c/CHn.c0/:

Thus, in each dimension,H with f preserves structure in the only reasonable way.
However, there is no requirement thatH should be compatible with the boundary maps
ın W Cn ! Cn�1 and ın W Dn ! Dn�1. We define CRS.C;D/m.f / to be the set of
m-fold homotopies .H; f / W C ! D.

Remark 9.3.4. Form > 2 we have justm-homotopies .H; f / rather than left or right
m-homotopies because then Hn has images in abelian groupoids for n > 1.

Let us see how this family of homotopies .H; f / may be given the structure of a
crossed complex.
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Definition 9.3.5. The additions, action and boundary maps on CRSm.C;D/ are given
by:

1. Addition on CRSm.C;D/. Ifm > 2 and .H; f /; .K; f / arem-fold homotopies
C ! D over the same base morphism f we define

.H CK/.c/ D H.c/CK.c/
for all c 2 C .

2. Actions on CRSm.C;D/.- If .H; f �/ is anm-fold homotopyC ! D form > 2

and if K W f � 
 f C is a left homotopy, then we define

HK.c/ D H.c/K.tc/

for all c 2 C . Then .HK ; f C/ is an m-fold homotopy.

3. Boundaries on CRSm.C;D/. If m > 2 and .H; f / is an m-fold homotopy we
define the boundary

ım.H; f / D .ımH;f /
where ımH is the .m � 1/-fold homotopy given by

.ımH/.c/

D

8̂<̂
:
ımCn.H.c//C .�1/mC1H.ınc/ if c 2 Cn.n > 2/;

.�1/mC1H.sc/f .c/ C .�1/mH.tc/C ımC1.H.c// if c 2 C1;
ım.H.c// if c 2 C0:

The source and target of 1-homotopies have been given in Definition 7.1.38 as the
initial and final morphisms of the homotopy.

Theorem 9.3.6. The above operations give CRS.C;D/ the structure of crossed com-
plex.

Proof. This would be somewhat tedious to verify directly, and instead we rely on the
fact that this internal hom structure for Crs is derived from the more easily verified
internal hom structure on the category of !-groupoids, given in Chapter 15, and the
equivalence between the two categories given in Chapter 13.

The specific conventions used for constructing the equivalence between crossed
complexes and !-groupoids impose the conventions we use for the internal hom struc-
ture on Crs, and hence for the tensor product. The fact that CRS.C;D/ is a crossed
complex contains a lot of information.

The formulae for m-fold homotopies are exactly what is needed to express the
geometry of the productEm� ˝En� because anm-homotopy can be seen as a morphism
…Em� ˝ C ! D.
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Remark 9.3.7. We will discuss the notion of ‘model category’ for the homotopy of
crossed complexes in Sections 12.1 and B.8. However our theory and its applications to
spaces of functions needs the full monoidal closed structure on crossed complexes, i.e.
the structure and algebra of higher homotopies; for these the notion of model category
for homotopy is not entirely adequate.

We now give as an exercise an illustrative example of the above construction.

Example 9.3.8 (Free loop space model122). Let � W M ! P be a crossed module
with P a group and regard this crossed module as a reduced crossed complex M trivial
above dimension 2. Our aim is to describe explicitly the crossed complex

LM D CRS.K.Z; 1/;M/:

We have the following formulae, with additive notation for (noncommutative)
groups:

(i) .LM/0 D P ;
(ii) .LM/1 DM � P � P with source and target given by

s.m; p; a/ D p C aC �m � p; t.m; p; a/ D a
for a; p 2 P , m 2M ;

(iii) the composition of such triples is given by

.n; q; b/C .m; p; a/ D .mC np; q C p; a/
which of course is defined under the condition that

b D p C aC �m � p
or, equivalently, bp D aC �m;

(iv) if a 2 P then .LM/2.a/ consists of pairs .m; a/ for all m 2 M , with addition
and boundary

.m; a/C .n; a/ D .mC n; a/; �.m; a/ D .�m;�ma Cm; a/I
(v) the action of .LM/1 on .LM/2 is given by: .n; b/.m;p;a/ is defined if and only

if bp D aC �m and then its value is .np; a/.

The crunch is that the crossed complex K.Z; 1/ has a base point z0 say and one
free generator say z in dimension 1. Thus a morphism f W K.Z; 1/ ! M is en-
tirely determined by its value on z, and so gives an element of P . A homotopy
.h; f C/ W f � ' f C is given by f C and the values of h on z0 and on z: one sets
f C.z/ D a; h.z0/ D b; h.z/ D m and this with the formulae in Section 7.1.vii gives
the description of .LM/1. A 2-homotopy .H; f C/ is given by f C.z/ D c, say, and
H.z0/ D u, say, but ı2.H; f C/ is a homotopy .�H; f C/ and �H has to be evalu-
ated on z0 and on z. We leave further details to the reader, including determining the
fundamental groups and second homology groups of LM at various base points.
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Exercise 9.3.9. Write down explicitly, in a format similar to that of the previous
example, the crossed complex CRS.K.Z; 1/;Kn.M;G// where .M;G/ is a module
and n > 3.

9.3.ii The bimorphisms as an intermediate step

With the structure of crossed complex on CRS.C;D/ just described, we may study
the crossed complex morphisms Crs.C;CRS.D;E//, see how they are defined and
reorganise the data. Such a morphism is given by a family of maps �m W Cm !
CRSm.D;E/ commuting with the boundary maps. For each c 2 Cm, �m.c/ is a
homotopy, i.e. a family of maps �m.c/n W Dn ! EmCn satisfying some conditions.

We can reorganise these maps, getting a family

�m;n W Cm �Dn ! EmCn

and see what the different conditions mean for these maps. That gives the notion of
bimorphism.

For the rest of this section we use additive notation in all dimensions (including 1
and 2) to reduce the number of cases in formulae but of course when values lie in
dimension 1 then care has to be taken on the order in which terms are written.

Definition 9.3.10. A bimorphism � W .C;D/! E of crossed complexes C , D, E is a
family of maps

ximn W Cm �Dn ! EmCn
such that, for every c 2 Cm, the map �m.c/ D f�mn.c; �/gn2N is an m-homotopy.
This means that the �mn have to satisfy the following conditions, where c; c0 2 Cm,
d; d 0 2 Dn, c1 2 C1, d1 2 D1.

• Source and target. Preservation of target and, whenever appropriate, source:

t.�.c; d// D �.tc; td/ for all m; n;

s.�.c; d// D �.c; sd/ if m D 0; n D 1;
s.�.c; d// D �.sc; d/ if m D 1; n D 0:

• Actions. Preservation of the action in dimensions > 2:

�.c; dd1/ D �.c; d/�.tc;d1/ if m > 0; n > 2;

�.cc1 ; d / D �.c; d/�.c1;td/ if m > 2; n > 0:

• Compositions. Preservation of compositions in C and D where possible:
– If m D 1 or n D 1 and both are > 1 there are derivation conditions:

�.c; d C d 0/ D �.c; d/�.tc;d 0/ C �.c; d 0/ if m > 1; n D 1;
�.c C c0; d / D �.c0; d /C �.c; d/�.c0;td/ if m D 1; n > 1:
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– For other cases, the �mn are bimorphisms:

�.c; d C d 0/ D �.c; d/C �.c; d 0/ if m > 1; n > 2 or m D 0; n > 1;

�.c C c0; d / D �.c; d/C �.c0; d / if m > 2; n > 1 or m > 1; n D 0:
• Boundaries.
– In high dimensions, the boundary is analogous to that in chain complexes:

ımCn.�.c; d// D �.ımc; d/C .�1/m�.c; ınd/ if m > 2; n > 2:

– When one of the elements has dimension 1, we have to take account of the action
to put elements at the correct base point:

ımCn.�.c; d//

D

8̂<̂
:
��.c; ınd/ � �.tc; d/C �.sc; d/�.c;td/ if m D 1; n > 2;

.�1/mC1�.c; td/C .�1/m�.c; sd/�.tc;d/ C �.ımc; d/ if m > 2; n D 1;
��.tc; d/ � �.c; sd/C �.sc; d/C �.c; td/ if m D n D 1:

– And, whenever one of the elements has dimension 0, we operate only on the other
part:

ımCn.�.c; d// D
´
�.c; ınd/ if m D 0; n > 2;

�.ımc; d/ if m > 2; n D 0:
You should look at these carefully and note (but not necessarily learn!) the way

these formulae reflect the geometry and algebra of crossed complexes, which allow for
differences between the various dimensions, and also for change of base point.

The bimorphisms are used as an intermediate step in the construction of the tensor
product due to the following property:

Theorem 9.3.11. For crossed complexes C , D, E, there is a natural bijection from

Crs.C;CRS.D;E//

to the set of bimorphisms .C;D/! E.

9.3.iii The tensor product of two crossed complexes

Following the pattern in the tensor product of R-modules, we now ‘internalise’ the
concept of bimorphism. That is, we construct a crossed complex, the tensor product
C ˝D of two crossed complexes, and a universal bimorphism

‡ W .C;D/! C ˝D;
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so that the bimorphisms .C;D/! E correspond exactly to the morphisms C ˝D !
E. In effect, this implies that C ˝D is generated by elements c ˝ d , with c 2 Cm
and d 2 Dn,m; n > 0, subject to the relations given by the rules of bimorphisms with
�.c; d/ replaced by c ˝ d .

We shall also describe .C ˝D/p in terms of pieces .C ˝D/m;n withmC n D p,
which, from the rules for �mn, can be given more explicitly in terms of the structures
on Cm, Dn.

Let us start by making clear the implication for the groupoid part of C ˝D.
For p D 0, we define

.C ˝D/0 D C0 �D0
as sets.

For p D 1, the groupoid .C ˝ D/1 over .C ˝ D/0 is determined by two parts,
namely .C ˝D/1;0 D C1 �D0 and .C ˝D/0;1 D C0 �D1. Then .C ˝D/1 is their
coproduct as groupoids over .C ˝D/0, we write

.C ˝D/1 D C1 #D1:

This groupoid may be seen also as generated by the symbols

fc ˝ y j c 2 C1g [ fx ˝ d j d 2 D1g
for all x 2 C0 and y 2 D0 subject to the relations given by the products in C1 and on
D1. We shall return to this in Section 9.4.i.

Also, we shall prove in Section 9.4.ii that the image of ı2.C ˝D/2 in .C ˝D/1
is generated by all the elements of the three sets

� fıc ˝ y j c 2 C2; y 2 D0g,
� fx ˝ ıd j d 2 D2; x 2 C0g,
� f.c˝y/.x˝d/.c˝y/�1.x˝d/�1 j c 2 C1.x/; d 2 D1.y/; x 2 C0; y 2 D0g.

(Notice that the last set consists of the commutators of the inverses of the generators
of .C ˝D/1;0 D C1 �D0 and .C ˝D/0;1 D C0 �D1).

Now this has been recorded, we can proceed with the definition of .C ˝D/p for
p > 2.

Definition 9.3.12. Let C;D be crossed complexes. For any c 2 Cm, d 2 Dn we
consider the symbol c ˝ d . Whenever mC n > 2, we define its source and target

s.c ˝ d/ D t .c ˝ d/ D tc ˝ td:
(Notice that for elements of dimension 0 we define t .x/ D x and t .y/ D y.)

Forp > 2, we considerFp the free .C˝D/1-module (or crossed module ifp D 2)
on

fc ˝ d j c 2 Cm; d 2 Dn; m; n 2 N; mC n D pg:
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To get .C ˝ D/p we have to quotient out by some relations with respect to the
additions and actions. Notice that all relations are ‘dimension preserving’. There are
several cases.

• When both m; n ¤ 1, we do not have to worry about source and target (both are
the same), and the relations are easier:

– Additions: The relations to make ˝ compatible with additions are

c ˝ .d C d 0/ D c ˝ d C c ˝ d 0 if n > 2;

.c C c0/˝ d D c ˝ d C c0 ˝ d if m > 2:

– Action: The relations to make˝ compatible with the actions are

.c ˝ d/.tc˝d1/ D c ˝ dd1 if m > 0; n > 2;

.c ˝ d/.c1˝td/ D cc1 ˝ d if m > 2; n > 0:

– Cokernel. WhenmCn > 3, we have to kill the action of ı2.C˝D/2 � .C˝D/1.

• When one element has dimension 1:
– Then the operation has to be related with the action because the groupoid part

acts on itself by conjugation.

c ˝ dd 0 D .c ˝ d/.tc˝d 0/ C c ˝ d 0 if m > 1; n D 1;
cc0 ˝ d D c0 ˝ d C .c ˝ d/.c0˝td/ if m D 1; n > 1:

– Cokernel. WhenmCn > 3, we have to kill the action of ı2.C˝D/2 � .C˝D/1.
With this, we get .C ˝D/p as the quotient of Fp by all these relations.
To finish the structure of C ˝D as a crossed complex, the boundaries are defined

on generators with formulae varying according to dimensions.

• When both have dimension > 2:

ımCn.c ˝ d/ D ımc ˝ d C .�1/m.c ˝ ınd/:
• When one has dimension 1 and the other one has dimension > 1:

ımCn.c ˝ d/

D

8̂<̂
:
�.c ˝ ınd/ � .tc ˝ d/C .sc ˝ d/.c˝td/ if m D 1; n > 2;

.�1/mC1.c ˝ td /C .�1/m.c ˝ sd/.tc˝d/ C .ımc ˝ d/ if m > 2; n D 1;
�.tc ˝ d/ � .c ˝ sd/C .sc ˝ d/C .c ˝ td / if m D n D 1:

• When one has dimension 0:

ımCn.c ˝ d/ D
´
.c ˝ ınd/ if m D 0; n > 2;

.ımc ˝ d/ if m > 2; n D 0;
and these definitions are compatible with the relations.
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Remark 9.3.13. Notice that if we denote byFm;n the free .C˝D/1-module on fc˝d j
c 2 Cm; d 2 Dng for some fixed m; n 2 N, Fp is the coproduct of fFm;ngmCnDp .

Since the relations with respect to the additions and actions we are using to get
.C ˝ D/p preserve the decomposition of Fp as the coproduct of Fm;n, .C ˝ D/p
also decomposes as coproduct of the quotient of Fm;n respect to the corresponding
relations. We shall call .C ˝D/m;n this quotient.

Remark 9.3.14. There is an alternative way of defining Fm;n that works whenm; n ¤
0, mC n > 3.

We could defineF 0
m;n as the free abelian groupoid on fc˝d j c 2 Cm; d 2 Dng and

quotient out by the relations on operations included in the previous definition getting an
abelian groupoidC 0

m;n. This quotient is isomorphic to .C˝D/m;n as abelian groupoid.
Next we define the .C ˝ D/1-action on C 0

m;n by the formulae in the previous
definition (notice that the definition is different when m D 1 or n D 1). It is not
difficult to prove that this is an action and that C 0

m;n is isomorphic to .C ˝D/m;n as
.C ˝D/1-modules

Exercise 9.3.15. Check the rule ıı.c˝ d/ D 0 for some low dimensional cases, such
as dim.c ˝ d/ D 3; 4, seeing how the crossed module rules come into play.

Those familiar with the tensor product of chain complexes may note that in that
theory the single and simple formula we need is

@.c ˝ d/ D .@c/˝ d C .�1/mc ˝ .@d/
where dim c D m. So it is not surprising that the tensor product of crossed complexes
has much more power than that of chain complexes, and can handle more complex
geometry.

The specific conventions in writing down the formulae for this tensor product of
crossed complexes come from another direction, which is explained fully in Chapter 15,
namely the relation with cubical!-groupoids with connection. The tensor product there
comes out simply, because it is based on the formula Im�I n Š ImCn. The distinction
between that formula and that for the product of cells as above lies at the heart of many
difficulties in basic homotopy theory. The relation between !-groupoids and crossed
complexes gives an algebraic expression of these geometric relationships.

Using this definition, it can be proved that the tensor product gives a symmetric
monoidal structure to Crs the category of crossed modules by defining the maps on
generators and checking that they preserve the relations.

Theorem 9.3.16. With the bifunctor�˝�, the category Crs of crossed complexes has
a structure of a symmetric monoidal category, i.e.

i) For crossed complexes C , D, E, there are natural isomorphisms of crossed
complexes

.C ˝D/˝E Š C ˝ .D ˝E/;
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ii) for all crossed complexes C;D there is a natural isomorphism of crossed comp-
lexes

T W C ˝D ! D ˝ C
satisfying the appropriate axioms.

Proof. The existence of both isomorphisms could be established directly, giving the
values on generators in the obvious way by:

i) is given by .c ˝ d/˝ e 7! c ˝ .d ˝ e/, and

ii) is given by T .c ˝ d/ D .�1/mnd ˝ c if c 2 Cm and d 2 Dn,

and then checking that the relations on generators c ˝ d in Definition 9.3.12 are pre-
served by both maps. The necessary coherence and naturality conditions are obviously
satisfied.

But to check all the cases even for such simple maps seems tedious. An alternative
approach is to go via !-groupoids where the tensor product fits more closely to the
cubical context. This will be done in Chapter 15.

This proof of commutativity is somehow unsatisfactory because, although it is clear
that c ˝ d 7! d ˝ c does not preserve the relations in Definition 9.3.12, the fact that
c ˝ d 7! .�1/mnd ˝ c does preserve them seems like a happy accident. A better
explanation is provided by the transposing functor T (see Section 15.4).

Note that while the tensor product can be defined directly in terms of generators and
relations and this can sometimes prove useful, such a definition may make it difficult to
verify essential properties of the tensor product, such as that the tensor product of free
crossed complexes is free. We shall prove that later (Section 9.6), using the adjointness
of ˝ and the internal hom functor as a necessary step to prove that � ˝ C preserves
colimits.

Nevertheless, this definition is interesting for its relation to the tensor product of
filtered spaces which we shall study in Section 9.8.

Theorem 9.3.17. For crossed complexes C ,D, E, there is a natural exponential law
giving a natural isomorphism

Crs.C ˝D;E/ Š Crs.C;CRS.D;E//:

This gives the category Crs of crossed complexes a structure of monoidal closed cate-
gory. Moreover, this implies natural isomorphisms of crossed complexes

CRS..C ˝D/;E/ Š CRS.C;CRS.D;E//:

It is also important that we have to use crossed complexes of groupoids to make
sense of the exponential law in Crs. This is analogous to the fact that the category of
groups has no internal hom, while that of groupoids does.
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Remark 9.3.18. The ‘unit interval’ groupoid �, see page 26, with two objects 0,1
and exactly one morphism � W 0 ! 1 so that t .�/ D 1, will also be considered as
a crossed complex and as such is ….E1/. A ‘1-fold left homotopy’ of morphisms
f �; f C W C ! D is seen to be a morphism � ˝ C ! D which takes the values of
f � on 0˝C and f C on 1˝C . The existence of this ‘cylinder object’ �˝C allows
abstract homotopy theory to be applied to crossed complexes: see ‘model categories’
in Section B.8 of Appendix B.123

9.4 Analysis of the tensor product of crossed complexes

The definition of the tensor product of two crossed complexesC ˝D is quite complex.
We devote this section to giving other descriptions of the tensor product in dimensions
1 and 2. In Section 9.5 we prove that in dimensions n > 3 the tensor product of
crossed complexes can be completely described in terms of the tensor product of chain
complexes with operators, which is a more familiar type of construction.

9.4.i The groupoid part of the tensor product

In order to become more familiar with the definition of the tensor product of crossed
complexes, in this section we are going to do the computations with some detail in low
dimensions.

Notice first that it is clear from the definition that to construct .C ˝D/p we only
need to know fCmgm6p and fDngn6p since there are no relations among the generators
in .C ˝ D/p coming from higher dimensions. Let us see what this means for low
dimensions.

The case p D 0 is immediate. Let us start with the case p D 1.

Proposition 9.4.1. For any pair of crossed complexes C;D 2 Crs the groupoid .C ˝
D/1 of their tensor product is the following pushout in the category of groupoids:

0C1
� 0D1

��

��

C1 � 0D1

��
0C1
�D1 �� .C ˝D/1

where, for any groupoidG, 0G denotes the trivial sub-groupoid consisting of all identity
elements of G. It is easy to see that this pushout is the coproduct of C1 � 0D1

and
0C1
�D1 in the category of groupoids over C0 �D0

We give a description of this groupoid. By the previous proposition, it is actually
a construction in the category of groupoids. Given a pair of groupoids G and H we
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form their coproduct in the category of groupoids over G0 �H0
G #H D .G � 0H / � .0G �H/:

This groupoid G #H is generated by all elements .1x; h/, .g; 1y/ where g 2 G,
h 2 H , x 2 G0, y 2 H0. We will sometimes write g for .g; 1y/ and h for .1x; h/.
This may seem to be willful ambiguity, but when composites are specified in G #H ,
the ambiguity is resolved; for example, if gh is defined in G #H , then g must refer to
.g; 1y/, where y D sh, and h must refer to .1x; h/, where x D tg. This convention
simplifies the notation and there is an easily stated solution to the word problem for
G #H . Every element ofG #H is uniquely expressible in one of the following forms:

(i) an identity element .1x; 1y/;
(ii) a generating element .g; 1y/ or .1x; h/, where x 2 G0, y 2 H0, g 2 G, h 2 H

and g, h are not identities;
(iii) a composite k1k2 : : : kn .n > 2/ of non-identity elements of G or H in which

the ki lie alternately inG andH , and the odd and even products k1k3k5 : : : and
k2k4k6 : : : are defined in G or H .

For example, if g1 W x ! y, g2 W y ! z in G, and h1 W u ! v, h2 W v ! w in
H , then the word g1h1g2h2g�1

2 represents an element ofG #H from .x; u/ to .y; w/.
Note that the two occurrences of g2 refer to different elements of G #H , namely
.g2; 1v/ and .g2; 1w/. This can be represented as a path in a 2-dimensional grid as
follows:

.x; u/

g1

��

.x; v/ .x; w/

.y; u/
h1 �� .y; v/

g2

��

.y; w/

.z; u/ .z; v/
h2 �� .z; w/

g�1
2

--

The similarity with the free product of groups is obvious and the normal form can be
verified in the same way; for example, one can use ‘van der Waerden’s trick’. Examples
of this method may be found in [Hig71], [Coh89]).

9.4.ii The crossed module part of the tensor product

To identify the crossed module in the title for crossed complexes C , D, we need to
use two constructions from the theory of crossed modules: the coproduct of crossed
modules over the same base and the induced crossed module.

In the case whenG is a group, the construction of the coproductM BGN of crossed
G-modulesM andN has been studied in Section 4.2. This construction works equally
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well whenG is a groupoid. The family of groupsM acts onN viaG, so one can form
the semidirect productM ËN . It consists of a semidirect product of groupsMp ËNp
at each vertex p of G and it is a pre-crossed module over G. One then obtains the
crossed G-module M BG N from M ËN by factoring out its Peiffer groupoid.

Now, recall that .C ˝D/2 as .C1 #D1/-crossed module is the coproduct

.C ˝D/2 D .C ˝D/2;0 B .C ˝D/1;1 B .C ˝D/0;2
where these last crossed modules have been defined in Remark 9.3.13.

Since C2 is a crossed module over the groupoid C1, C2 �D0 is a crossed module
over C1 �D0. Using the embedding

�1 W C1 �D0 ! C1 #D1

we get an induced crossed module

�C2 D �1�.C2 �D0/:
It is not difficult to see that

.C ˝D/2;0 Š �C2
as .C1 #D1/-crossed modules. In the same way, we identify

.C ˝D/0;2 Š �D2
where �D2 D �2�.C0 �D2/.

It remains to identify .C ˝D/1;1.
We restrict ourselves to crossed complexes associated to groupoids since the higher

dimensional part does not intervene. So we assume Cn D Dn D f0g for all n > 2.
Then we know .C ˝D/p D f0g for all p > 3 and we have computed that .C ˝D/0 D
C0 �D0 and .C ˝D/1 D C1 #D1. Also, to make notation easier, we write G andH
for the groupoids C1 and D1.

Notice that there is a canonical morphism


 W G #H ! G �H
induced by the inclusions 1G �H ! G �H and G � 1H ! G �H . This morphism
is defined on a word k1k2k3 : : : , by separating the odd and even parts, i.e.


.k1k2k3 : : : / D .k1k3 : : : ; k2k4 : : : /:
That is, the map 
 introduces a sort of commutativity between G and H .

The kernel of 
 will be called the Cartesian subgroupoid of G #H and will be
denoted by G�H , i.e.

G�H D Ker 
:
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It consists of all identities and all words k1k2 : : : kn for which both odd and even
products are trivial. Clearly, it is generated by all ‘commutators’ Œg; h� D g�1h�1gh,
where g 2 G; h 2 H and g; h are not identities. (Note that Œg; h� is uniquely defined
in G #H for any such pair of elements g; h, but the two occurrences of g (or of h) do
not refer to the same element of G #H .)

Proposition 9.4.2. The Cartesian subgroupoid G�H of G #H is freely generated,
as a groupoid, by all elements Œg; h� where g, h are non-identity elements of G, H ,
respectively. Thus, G�H is the disjoint union of free groups, one at each vertex, and
the group at vertex .x; y/ has a basis consisting of all Œg; h� with tg D x and th D y
(g and h not identity elements).

Proof. In the notation introduced above the ‘commutators’ Œh; g� satisfy the same for-
mal identities as in the group case:

Œh; g� D Œg; h��1;
Œhh1; g� D Œh; g�h1 Œh1; g�;

Œh; gg1� D Œh; g1�Œh; g�g1

whenever gg1 and hh1 are defined in G, H . These identities are to be interpreted
as equations in G #H , with the obvious meaning for conjugates: Œh; g�h1 means
h�1
1 h

�1g�1hgh1, which represents a unique element of G #H .
Now G�H is an intransitive free groupoid with basis consisting of all Œg; h�

(g 2 G, h 2 H , g; h ¤ 1) (see Gruenberg [Gru57], Levi [Lev40]).

Theorem 9.4.3. The tensor product of the groupoids G andH , considered as crossed
complexes of rank 1, is the crossed complex

G ˝H D .� � � ! 0! � � � ! 0! G�H ! G #H/

with g ˝ h D Œh; g�, x ˝ h D .1x; h/, g ˝ y D .g; 1y/ for g 2 G, h 2 H , x 2 G0,
y 2 H0.
Proof. G�H is a normal subgroupoid of G #H , so

ı W G�H ! G #H

is a crossed module which we view as a crossed complex C , trivial in dimension > 3.
One verifies easily that the equations �.g; h/ D Œh; g�; �.g; �/ D g; �.�; h/ D h define
a bimorphism of crossed complexes � W .G;H/ ! C ; the equations on operations in
Definition 9.3.10 reduce to the standard commutator identities

Œhh1; g� D Œh; g�h1 Œh1; g�;

Œh; gg1� D Œh; g1�Œh; g�g1 ;
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and the rest are trivial.
It follows that a bimorphism of crossed complexes

 W .G;H/! D

determines a unique morphism of groupoids 2 W G�H ! D2 such that 2.Œh; g�/ D
.g; h/ for all g 2 G; h 2 H . (Note that the definition of bimorphism implies
that .g; h/ D 1 if either g D 1 or h D 1.) There is also a unique morphism
1 W G #H ! D1 such that 1.g/ D .g; �/ and 1.h/ D .�; h/ for all g 2 G,
h 2 H . These morphisms combine to give a morphism

 W C ! D

of crossed complexes as we show below, and this proves the universal property making
C the tensor product of G and H , with g ˝ h D Œh; g�.

We need to verify that  W C ! D is a morphism of crossed modules. This amounts
to

(i)  is compatible with ı W G�H ,! G #H . Now

ı2.Œh; g�/ D ı.g; h/
D �.�; h/ � .g; �/C .�; h/C .g; �/ by (9.3.10)

D Œ.�; h/; .g; �/� D Œ1.h/; 1.g/� D 1Œh; g�
and

(ii)  preserves the actions of G #H and D1. Now

2.Œh; g�
g1/ D 2.Œh; g1��1Œh; gg1�/
D �.g1; h/C .gg1; h/
D .g; h/�.g1;�/ by (9.3.10)

D 2.Œh; g�/�1.g1/:

There is a similar calculation for the action of h1 2 H , and the result follows.

Corollary 9.4.4. The crossed complex � ˝ � is a free crossed complex.

The description in Theorem 9.4.3 is much easier for the case of groups. Any
group G can be viewed as a crossed complex K1.G/ with K1.G/0 D f�g, K1.G/1 D
G;K1.G/n D 0 for n > 2. The tensor product of two such crossed complexes will have
one vertex and will be trivial in dimension > 3, that is, it will be a crossed module.124

We use multiplicative notation for G for reasons which will appear later.

Proposition 9.4.5. The tensor product of groupsG;H , viewed as crossed complexes of
rank 1, is the crossed module G�H ! G �H , where G�H denotes the Cartesian
subgroup of the free product G �H , that is, the kernel of the map G �H ! G �H .
If g 2 G; h 2 H , then g ˝ h is the commutator Œh; g� D h�1g�1hg D Œg; h��1 in
G �H .
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We can also give a useful description of the crossed module part of the tensor
product of two crossed complexes C and D.

Theorem 9.4.6. There is an isomorphism of .C1 #D1/-crossed modules

.C ˝D/2 Š �1�.C2 ˝D0/ BG�H B �2�.C0 ˝D2/:
This isomorphism maps c˝y and x˝d to the corresponding generators in�1�.C2˝
D0/and�2�.C0˝D2/and c˝d to the commutator .c˝y/.x0˝d/.c˝y0/�1.x˝d/�1.
So the subgroupoid ı2.C ˝D/2 is generated as a groupoid by the elements

fıc ˝ y j c 2 C2g [ fx ˝ ıd j d 2 D1g
[ f.c ˝ y/.x ˝ d/.c ˝ y0/�1.x0 ˝ d/�1 j c 2 C1.x; x0/; d 2 D1.y; y0/g

where x; x0 2 C0; y; y0 2 D0.
Corollary 9.4.7. If C2 ! C1 and D2 ! D1 are free crossed modules, regarded as
crossed complexes C;D, then the crossed module .C ˝D/2 ! .C ˝D/1 is also a
free crossed module.

Proof. This follows from Theorem 9.4.6 and Proposition 9.4.2, and the facts that in-
duced crossed modules, and coproducts, of free crossed modules are also free.

Corollary 9.4.8. The crossed module .� ˝ F .2//2 ! .� ˝ F .2//1 is a free crossed
module over a free groupoid.

9.5 Tensor products and chain complexes

In this section we relate the tensor product C ˝ D of crossed complexes to a tensor
product of chain complexes with a groupoid of operators. This continues the work of
the last section by describing the structure of .C ˝D/n in dimensions n > 3 in terms
the tensor product rC ˝rD where r W Crs! Chn is defined in Section 7.4.

9.5.i Monoidal closed structure on chain complexes

The closed structure on the category Crs of crossed complexes, constructed in Sec-
tion 9.3 from homotopies and higher homotopies, relied crucially on the consideration
of crossed complexes over groupoids as well as over groups. The same is true for the
chain complexes with operators which we introduced in Section 7.4.

There are well-known definitions of tensor product and internal hom functor for
chain complexes of abelian groups (without operators). If one allows operators from
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arbitrary groups the tensor product is easily generalised (the tensor product of a G-
module and an H -module being a .G � H/-module) but the adjoint construction of
internal hom functor does not exist, basically because the group morphisms from G

to H do not form a group. To rectify this situation we allow operators from arbitrary
groupoids and we start with a discussion of the monoidal closed category structure of
Mod the category of modules over groupoids given in Definition 7.1.7.

The ideas for the monoidal closed category Mod can be extended with little extra
trouble to chain complexes over groupoids.

Definition 9.5.1. The tensor product of chain complexes A, B over groupoids G, H
respectively is the chain complex A˝ B over G �H where

.A˝ B/n D
M
iCjDn

.Ai ˝ Bj /:

Here, the direct sum of modules over a groupoid G is defined by taking the direct sum
of the abelian groups at each object of G. The boundary map

@ W .A˝ B/n ! .A˝ B/n�1

is defined on the generators a˝ b of .A˝ B/n by

@.a˝ b/ D @a˝ b C .�1/ia˝ @b;
where a 2 Ai , b 2 Bj , i C j D n.

This tensor product gives a symmetric monoidal structure to the category Chn, with
symmetry map C ˝D ! D ˝ C given by

a˝ b 7! .�1/ij b ˝ a
for a 2 Ai , b 2 Bj . There is also a unit object for the tensor product given by the
complex over the trivial group:

C.Z; 0/ D � � � ! 0! � � � ! 0! Z:

Definition 9.5.2. The internal hom functor CHN.�;�/ for the category Chn is defined
as follows. Let A, B be chain complexes over the groupoids G, H respectively. As
in the case of morphisms of modules, it is easy to see that the morphisms of chain
complexes Chn.A;B/ form an GPDS.G;H/-module. We write

S0 D Chn.A;B/

for this module and take it as the 0-dimensional part of the chain complex S D
CHN.A;B/.

The higher-dimensional elements of S are chain homotopies of various degrees.
An i-fold chain homotopy (i > 1) from A to B is a pair .s; f / where s W A ! B is a
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map of degree i (that is, a family of maps s W An ! BnCi for all n > 0) which in each
dimension is a morphism of modules over f W G ! H .

Again the set Si .A;B/ of i -fold homotopies A ! B has the structure of a
GPDS.G;H/-module and we define the boundary map

@ W Si .A;B/! Si�1.A;B/ .i > 1/

by @.s; �/ D .@s; �/ where

.@s/.a/ D @.s.a//C .�1/iC1s.@a/:
We observe that @s is of degree i � 1. Also @s commutes or anticommutes with @,

namely
@..@s/.a// D .�1/iC1.@s/.@a/:

It follows that @@ W Si ! Si�2 is 0 for i > 2. We define CHN.A;B/ to be the chain
complex

CHN.A;B/ D � � � �! Si
@�! Si�1 �! � � � �! S0

over F D GPDS.G;H/.

Proposition 9.5.3. The functors ˝ and CHN give Chn the structure of symmetric
monoidal closed category.

Proof. Again, ifA, B , C are chain complex overG,H ,K, there is an exponential law
giving a natural bijection

Chn.A˝ B;C / Š Chn.A;CHN.B; C //

which extends to a natural isomorphism of chain complexes

CHN.A˝ B;C / Š CHN.A;CHN.B; C //

over GPDS.G �H;K/ Š GPDS.G;GPDS.H;K//.

9.5.ii Crossed complexes and chain complexes: relations between the
internal homs

In Section 9.3.i an internal hom functor CRS.�;�/was defined for crossed complexes;
now we use the adjoint pair

r W Crs � Chn W ‚
defined in Sections 7.4.iii and 7.4.v to relate the internal homs for crossed complexes
and chain complexes.
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Theorem 9.5.4. For crossed complexes C , D and chain complex A there are natural
isomorphisms

(i) CRS.D;‚A/ Š ‚CHN.rD;A/,
(ii) r.C ˝D/ Š rC ˝rD.

Proof. The two natural isomorphisms are equivalent because

CHN.r.C ˝D/;A/ Š Crs.C ˝D;‚A/
Š Crs.C;CRS.D;‚A//;

while

Chn.rC ˝rD;A/ Š Chn.rC;CHN.rD;A//
Š Crs.C;‚CHN.rD;A//:

The isomorphism (i) is easier to verify than (ii) because we have explicit descriptions
of the elements of both sides, whereas in (ii) we have only presentations.

In dimension 0 we have on the left of (i) the set Crs.D;‚A/ of morphisms Of W D !
‚A; on the right we have the set Chn.rD;A/ of morphisms . Qf ; �/ W rD ! A, where
� is a morphism of groupoids from G D �1D to H , the operator groupoid for A.
These sets are in one-one correspondence, by adjointness, and their elements are also
equivalent to pairs .f; �/ where � W G ! H and f is a family

: : : ı �� D2
ı ��

f2

��

D1
s ��
t

��

f1

��

D0

f0

��
: : :

@
�� A2

@
�� A1

@
�� A0

(9.5.1)

such that:

(i) f0.d/ 2 A0.�.d// for d 2 D0,
(ii) f1 is a �-derivation, where  is the quotient map D1 ! G,

(iii) fn is a � -morphism for n > 2,
(iv) @fnC1 D fnı for n > 1,
(v) @f1.d/ D .f0ı0d/��c � .f0ı1d / for d 2 D1.

Such a family will be called a � -derivation f W D ! A.
We recall from Definition 9.3.3 that an element in CRSi .D;E/ is an i -fold ho-

motopy . Oh; Of / W D ! E, where Of is a morphism D ! E and Oh is a family of
maps

: : : �� D2 ��

Oh2
��

D1
����

Oh1
��

D0

Oh0
��

: : : EiC2 EiC1 Ei

(9.5.2)
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satisfying

(i) Oh0.d/ 2 Ei . Of0.d//, for d 2 D0;

(ii) Oh1 is a Of1-derivation;

(iii) Ohn is a Of1-morphism for n > 2.

In the case E D ‚A, where A is a chain complex over H , it is easy to see that, if
i > 2, such a homotopy is equivalent to the following data: a morphism of groupoids
� W G ! H ; a � -derivation f W D ! A as in diagram (9.5.1); and a family h of maps

: : : �� D2 ��

h2
��

D1
����

h1
��

D0

h0
��

: : : AiC2 AiC1 Ai

satisfying

(i) h0.d/ 2 Ai .�d/ for d 2 D0;
(ii) h1 is a �-derivation;

(iii) hj is a � -morphism for j > 2.

The maps Ohj of diagram (9.5.2) are then given by

Ohj .d/ D .hj .d/; f0.q// if d 2 Dj .q/; j > 2;

Oh1.d/ D .h1.d/; f0.q// if d 2 D1.p; q/;
Oh0.q/ D .h0.d/; f0.q// if q 2 D0:

In the case i D 1, because of the special form of E1, we also need a map � W D0 ! H

satisfying

(iv) �.q/ 2 H.� 0.q/; �.q// for some � 0.q/ 2 ObH ,

and in this case Oh0.q/ D .�.q/; h0.q/; f0.q//.
It is now an easy matter to see that these data are equivalent to an element of

dimension i in ‚CHN.rD;A/. In the case i D 1, the map � defines a natural
transformation Q� W � 0 ! � , where � 0.g/ D �.p/�.g/�.q/�1 for g 2 G.p; q/. This Q�
is an element of the groupoid GPDS.G;H/ (the operator groupoid for CHN.rD;A/)
and provides the first component of the triple . Q�; Qh; Qf / which is the required element
of ‚1 CHN.rD;A/; the other components are Qf W rD ! A, the morphism of chain
complexes induced by f , and Qh, the 1-fold homotopy rD ! A induced by h. Here
Qh0.1p/ D h0.p/ and Qhn˛n D hn for n > 1, where the ˛i are as in diagram (7.4.1) in
Theorem 7.4.18. The rest of the proof is straightforward.
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9.6 The tensor product of free crossed complexes is free

The exponential law in Crs of Theorem 9.3.17 has as a consequence that the tensor
product of free crossed complexes is a free crossed complex.

We will prove the following theorem.

Theorem 9.6.1. If C 0 ! C and D0 ! D are morphisms of relative free type then so
also is C 0 ˝D [ C ˝D0 ! C ˝D, where C 0 ˝D [ C ˝D0 denotes the pushout
of the pair of morphisms

C 0 ˝D  C 0 ˝D0 ! C ˝D0:
Proof. Since the tensor product�˝D0 has a right adjoint, it preserves colimits. Also,
since �˝� is symmetric, the functor C ˝� preserves colimits.

We use Propositions 7.3.20 and 7.3.21 from Section 7.3.iii, as well as the following
lemma:

Lemma 9.6.2. If the following squares are pushouts

A0 ��

��

C 0

��
A �� C ,

B 0 ��

��

D0

��
B �� D

then so also is the induced square

A0 ˝ B [ A˝ B 0 ��

��

C 0 ˝D [ C ˝D0

��
A˝ B �� C ˝D.

The proof of the general theorem builds inductively on the previous lemma and the
following special case.

Lemma 9.6.3. The theorem is true when C 0 ! C and D0 ! D are of the type
S.m � 1/! F .m/ and S.n � 1/! F .n/ respectively.

Since Y ˝� and�˝Z preserve coproducts, we deduce the result in the case when
C 0 ! C , D0 ! D are of the type

`
� S.n � 1/ ! `

� F .n/ and
`
� S.m � 1/ !`

� F .m/.
Putting morphisms of this type in Lemma 9.6.2, and using Proposition 7.3.21, it

easily follows that the theorem is true for morphisms of simple relative free type, that
is for morphisms C 0 ! C , D0 ! D obtained as pushouts`

� S.n � 1/ ��

��

C 0

��`
� F .n/ �� C ,

`
� S.m � 1/ ��

��

D0

��`
� F .m/ �� D.
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Next, using Propositions 7.3.20, 7.3.21, and Lemma 9.6.2 we can prove the result
for composites of morphisms of relative free type. A general morphism of relative free
type is a colimit of simple ones, as in Corollary 7.3.23, and the full result now follows
from Proposition 7.3.20 and Lemma 9.6.2.

Remark 9.6.4. Another way of seeing that the tensor product T D C ˝ D of free
crossed complexes is free is to use the analysis of the tensor product in previous sections:
the groupoid T1 is a free groupoid in view of its description in Proposition 9.4.1; in
dimension 2 the freeness is Corollary 9.4.7; in dimensions> 2 Theorem 9.5.4 gives Tn
as the dimension n part of a tensor product of chain complexes with operator groupoids,
and here the freeness follows by traditional methods.

Corollary 9.6.5. If C 0 ! C is a morphism of relative free type and W is a crossed
complex of free type, then C 0 ˝W ! C ˝W is of relative free type.

Corollary 9.6.6. If C is a free crossed complex and f C W C ! D is a morphism of
crossed complexes, then a homotopy H W f � ' f C of morphisms is entirely deter-
mined by the values of f C and H on the free basis of C .

9.7 The monoidal closed category of filtered spaces

We proceed a step further and consider the category FTop of filtered spaces and look
for a natural structure of closed category.

The categorical product in FTop is given by

.X� � Y�/n D Xn � Yn; n > 0:

This product is convenient for maps into it, as for any categorical product. However our
main example of filtered spaces, that of CW-complexes, suggests a different product as
worth consideration, and this will turn out to be convenient for maps from it, to other
filtered spaces.

If X�, Y� are CW-filtrations, then the product X � Y of the spaces (in the category
of compactly generated spaces) has a natural and convenient CW-structure in which
the n-dimensional cells are all products ep � eq of cells of X�, Y� respectively where
p C q D n. This suggests the following definition.

Definition 9.7.1. If X�, Y� are filtered spaces, their tensor product X� ˝ Y� is the
filtered space given on X � Y by the family of subspaces

.X ˝ Y /n D
[

pCqDn
Xp � Yq

where the union is simply the union of subspaces of X � Y .
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Exercise 9.7.2. 1. We have said that the filtration X� ˝ Y� is not the product in the
category FTop. Verify that the filtration .X� � Y�/n D Xn � Yn for all n > 0 is the
product X� � Y� in the category FTop.

2. Is there a structure of cartesian closed category on FTop? i.e. is there an internal
hom that is adjoint to the cartesian product?

Notice that, for example, I n� is the n-fold tensor product of I� with itself because
I n� is the CW-filtered space of the standard n-cube.

With the product ˝, FTop is a monoidal category. It is also symmetric, i.e. the
tensor product is also commutative.

We now show how to define an internal hom FTOP.Y�; Z�/ in the category FTop
so as to make that category a monoidal closed category with an exponential law giving
a natural bijection

e W FTop.X� ˝ Y�; Z�/ Š FTop.X�;FTOP.Y�; Z�//:

To see how this comes about, note that a filtered map f W X� ˝ Y� ! Z� will map
Xp �Yq toZpCq , by definition of the filtration on the tensor product of filtered spaces.
Under the exponential law for topological spaces we have

Top.Xp � Yq; ZpCq/ Š Top.Xp;TOP.Yq; ZpCq//:

This suggests the definition:

FTOP.Y�; Z�/p D fg 2 Top.Y;Z/ j g.Yq/ � ZpCq for all q > 0g:
This gives a filtration on the topological space TOP.Y;Z/ and so defines the fil-

tered space FTOP.Y�; Z�/p . The exponential law in the category Top now gives the
exponential law

e W FTop.X� ˝ Y�; Z�/ Š FTop.X�;FTOP.Y�; Z�//;

from which one can deduce the exponential law

e W FTOP.X� ˝ Y�; Z�/ Š FTOP.X�;FTOP.Y�; Z�//;

either using the general result in Appendix C, Section C.7 (see Equation (C.7.3)) or
directly as an exercise.

An advantage of having this internal hom for filtered spaces is that we can apply
our fundamental crossed complex functor… to it. To say more on this, we first discuss
the notion of homotopy in FTop.

The convenient definition of homotopy H W f � ' f C W Y� ! Z� of maps f �,
f C of filtered spaces is that H is a map I � Y ! Z which is a homotopy f � ' f C
such that H.I � Yq/ � ZqC1 for all q > 0. This last condition is equivalent to H
being a filtered map I� ˝ Y� ! Z�. Equivalently, we can regard H also as a map

I� ! FTOP.Y�; Z�/; or Y� ! FTOP.I�; Z�/;
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although the latter interpretation involves the twisting map I� ˝ Y� ! Y� ˝ I�.
It is also possible to consider ‘higher filtered homotopies’ as filtered maps

En� ˝ Y� ! Z�

or equivalently as maps
En� ! FTOP.Y�; Z�/:

This fits with the exponential law for crossed complexes, see Equation (9.3.2).

9.8 Tensor products and the fundamental crossed
complex

In order to obtain the Homotopy Classification Theorem 11.4.19, we need to use tensor
products and homotopies of crossed complexes and their relation to homotopies of
filtered maps.

We have defined the notion of homotopies for maps of filtered spaces. They give rise
to 1-homotopies between the induced morphisms of fundamental crossed complexes.
It is possible to prove this directly, but it follows elegantly from more general results.
In particular we need:

Theorem 9.8.1. If X� and Y� are filtered spaces, then there is a natural morphism

� W …X� ˝…Y� ! ….X� ˝ Y�/

such that:

i) � is associative;

ii) if � denotes a singleton space or crossed complex, then the following diagrams
are commutative:

…X�

Š ��&&&&&&&&&& .…X�/˝ �Š��

�

��
….X� ˝ �/,

� ˝…X�
�

��

Š �� …X�

Š&&##########

….� ˝X�/;

iii) � is commutative in the sense that if Tc W C ˝ D ! D ˝ C is the natural
isomorphism of crossed complexes described in Theorem 9.3.16, and Tt W X� ˝
Y� ! Y�˝X� is the twisting map, then the following diagram is commutative:

…X� ˝…Y�
� ��

Tc

��

….X� ˝ Y�/

….Tt /

��
…Y� ˝…X�

� �� ….Y� ˝X�/;
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iv) if X�, Y� are the skeletal filtrations of CW-complexes, then � is an isomorphism.

The proof is deferred to Chapter 15 where we can use the techniques of!-groupoids.
Note that the construction of the natural transformation � could in principle be proved
directly, but this would be technically difficult because of the complications of the
relations for the tensor product of crossed complexes.

In fact � is an isomorphism under more general conditions.125

We now prove that the functor … W FTop! Crs is a homotopy functor.

Corollary 9.8.2. A homotopy H W f � ' f C W X� ! Y� in FTop induces a (left)
homotopy …H W …f � ' …f C W …X� ! …Y� in Crs.

Proof. Let H W I� ˝ X� ! Y�. Note that we identify …I� with the groupoid �. The
composition

� ˝…X� ��!Š …I� ˝…X�
��! ….I� ˝X�/

….H/����! ….Y�/

is a homotopy ….f �/ ' ….f C/.

Similar statements hold for right homotopies of crossed complexes. A right ho-
motopy C ! D is a morphism C ˝ � ! D, or, equivalently, a morphism C !
CRS.�;D/. We may also define a right homotopy in FTop to be a map Y�˝I� ! Z�.
By Theorem 9.8.1, such a map gives rise to a right homotopy …Y� ˝ � ! …Z�.

More generally we prove that… takes higher homotopies in FTop to higher homo-
topies in Crs:

Proposition 9.8.3. There is a natural morphism of crossed complexes

 W ….FTOP.X�; Y�//! CRS.…X�;…Y�/

which is … in dimension 0.

Proof. It is sufficient to construct the morphism O as the composition in the following
commutative diagram

….FTOP.X�; Y�//˝…X�
O ��

� 116666666666666666 …Y�

….FTOP.X�; Y�/˝X�/
…e

TTMMMMMMMMMMM

where e W FTOP.X�; Y�/ ˝ X� ! Y� is the evaluation morphism, i.e. the adjoint to
the identity on FTOP.X�; Y�/.
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9.9 The Homotopy Addition Lemma for a simplex

In this section we describe explicitly and algebraically a free basis and the boundary
for the crossed complex…�n where�n is the topological n-simplex with its standard
filtration by dimension. This formula is called the Homotopy Addition Lemma for a
simplex.126 We call…�n the ‘n-simplex crossed complex’, and its description is used
in several places later (see in particular Section 12.5.i and Section 10.4.ii).

It is a feature of our exposition using crossed complexes that the HomotopyAddition
Lemma can be seen as an algebraic fact which models accurately the geometry. That
happens because crossed complexes model well the geometry, and a key aspect of that
is the use of groupoids to handle all the vertices of the simplex.

Definition 9.9.1. First it is useful to write out the rules for the cylinder Cyl .C / D
� ˝ C , as a reference. Let C be a crossed complex. We apply the relations in the
definition of tensor product of crossed complexes (Definition 9.3.12) to this case.

For all n > 0 and c 2 Cn, �˝C is generated by elements 0˝c, 1˝c of dimension
n and � ˝ c, ��1 ˝ c of dimension .n C 1/ with the following defining relations for
a D 0; 1; �:

• Source and target.

t .a˝ c/ D ta˝ tc for all a 2 �; c 2 C;
s.a˝ c/ D a˝ sc if a D 0; 1; n D 1;
s.a˝ c/ D sa˝ c if a D �; ��1; n D 0:

• Relations with operations.

a˝ cc0 D .a˝ c/ta˝c0

if n > 2; c0 2 C1:
• Relations with additions.

a˝ .c C c0/ D
´
a˝ c C a˝ c0 if a D 0; 1; n > 1 or if a D �; ��1; n > 2;

.a˝ c/ta˝c0 C a˝ c0 if a D �; ��1; n D 1;

.��1/˝ c D
´
�.�˝ c/ if n D 0;
�.�˝ c/.��1/˝tc if n > 1:

• Boundaries.

ı.a˝ c/ D

8̂<̂
:
�.a˝ ıc/ � .ta˝ c/C .sa˝ c/a˝tc if a D �; ��1; n > 2;

�ta˝ c � a˝ sc C sa˝ c C a˝ tc if a D �; ��1; n D 1;
a˝ ıc if a D 0; 1; n > 2:

These rules simplify if instead of the cylinder, we analyse the cone.
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Definition 9.9.2. Let C be a crossed complex. The cone Cone.C / is defined by

Cone .C / D .� ˝ C/=.f1g ˝ C/;
which can alternatively be seen as a pushout

f1g ˝ C

��

�� fvg

��
� ˝ C �� Cone .C /:

We call v the vertex of the cone.

Proposition 9.9.3. For a crossed complex C the cone Cone .C / is generated by ele-
ments 0˝ c, �˝ c of dimensions n, nC 1 respectively, and v of dimension 0 with the
rules
Source and target.

t .a˝ c/ D
´
0˝ tc if a D 0;
v otherwise.

Relations with operations.

a˝ cc0 D a˝ c if n > 2; c0 2 C1:
Relations with additions.

a˝ .c C c0/ D a˝ c C a˝ c0

and

.��1/˝ c D
´
�.�˝ c/ if n D 0;
�.�˝ c/.��1/˝tc if n > 1:

Boundaries.

ı.�˝ c/ D
´
�.�˝ ıc/C .0˝ c/�˝tc if n > 2;

��˝ sc C 0˝ c C �˝ tc if n D 1;
ı.0˝ c/ D 0˝ ıc if n > 2:

The simplicity of the rules for operations and additions is one of the advantages of the
form of our definition of the cone, in which the end at 1 is shrunk to a point.

We use the above to work out the fundamental crossed complex of the simplex�n

in an algebraic fashion. We regard �n topologically as the topological cone

Cone .�n�1/ D .I ��n�1/=.f1g ��n�1/:
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The vertices of �1 D I are ordered as 0 < 1. Inductively, we get vertices v0; : : : ; vn
of�n with vn D v being the last introduced in the cone construction, the other vertices
vi being .0; vi /. The fact that our algebraic formula corresponds to the topological one
follows from facts stated earlier on the tensor product and on the HHSvKT stated in
the next section.

We now define inductively top dimensional generators of the crossed complex…�n

by, in the cone complex:


0 D v; 
1 D �; 
n D .�˝ 
n�1/; n > 2

with 
0 being the vertex of …�0.
We give conventions for the faces of 
n, as illustrated in the following diagram:


2 D �˝ 
1
�˝ 0 D @1
2

2 D v2

88���������

���������

0 D 0˝ 0 1 D 0˝ 1@2

2 D 0˝ 
1

��

�˝ 1 D @0
2%%���������

���������


10 D @1
1 1 D @0
1��

We define inductively

@i

n D

´
�˝ @i
n�1 if i < n;

0˝ 
n�1 if i D n:

Theorem 9.9.4 (Simplicial Homotopy Addition Lemma). In the simplex �n the foll-
owing formulae hold, where un D �˝ vn�1:

ı2

2 D �@1
2 C @2
2 C @0
2; (9.9.1)

ı3

3 D .@3
3/u3 � @0
3 � @2
3 C @1
3; (9.9.2)

while for n > 4

ın

n D .@n
n/un C

n�1X
iD0
.�1/n�i@i
n: (9.9.3)
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Proof. For the case n D 2 we have

ı2

2 D ı2..�˝ �//
D ��˝ 0C 0˝ �C �˝ 1
D �@1
2 C @2
2 C @0
2:

For n D 3 we have

ı3

3 D ı3.�˝ 
2/
D .0˝ 
2/�˝v2 � �˝ ı2
2
D .0˝ 
2/u3 � �˝ .�@1
2 C @2
2 C @0
2/
D .@3
3/u3 � @0
3 � @2
3 C @1
3:

We leave the general case to the reader. The key points that make it easy are the rules
on operations and additions of Proposition 9.9.3.

Remark 9.9.5. (i) Notice that the formula of ı2 has values in groupoids, and that for
ı3 has values in the top part of a crossed module which is in this case nonabelian.

(ii) There are many possible conventions for the Homotopy Addition Lemma, and
that given here is unusual. However, our formula follows naturally from the geometry of
the cone and our algebra for the tensor product. A more traditional formula is obtained
by replacing @i in the above formula in dimension n by @n�i , that is by applying the
formula to the ‘transpose’ of the simplex.127

(iii) It is a good exercise to prove that ı2ı3 D 0. It is not so easy to prove directly
from the formula that ı3ı4 D 0.128 Of course we know these composites are 0 since
we are working in the category of crossed complexes.

The representation Cone .�n�1/ D �n gives a cellular contracting homotopy of
�n�1, and so …�n is a contractible crossed complex. We shall use this fact later.

We can now state the formula in terms of free generators and boundaries for the
whole crossed complex …�n. It has a free generator 
n in dimension n and also
free generators ˛
m in dimension m for all 0 6 m < n and all increasing functions
˛ W Œm� ! Œn�. The boundary of such a ˛
m is given by the simplicial Homotopy
Addition Lemma in dimension m.

This Homotopy Addition Lemma for the simplex will be related to the theory of
simplicial sets and the notion of simplicial nerve of a crossed complex in Section 9.10.

We can also obtain a cubical Homotopy Addition Lemma using the cube crossed
complex…I n D �˝n. In this crossed complex, let cn D �˝� � �˝� be the n-fold tensor
product of � with itself, and for ˛ D 0; 1 let c˛i D @˛i c

n be the element of dimension
.n � 1/ obtained by replacing in cn the � in the i -th place by ˛. The formulae for the
boundary in the tensor product then yield by induction, using �˝n D � ˝ �˝.n�1/:
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Proposition 9.9.6 (Cubical Homotopy Addition Lemma).

ınc
n D

8̂<̂
:
�c11 � c02 C c01 C c12 if n D 2;
�c13 � .c02/u2c � c11 C .c03/u3c C c12 C .c01/u1c if n D 3;Pn
iD1.�1/i¹c1i � .c0i /uicº if n > 4

(where c D cn and ui D @11@12 : : : O{ : : : @1nC1).

Remark 9.9.7. It should be said that this suggested ‘proof’ is not quite fair, since
we are using for crossed complexes a lot of results the proofs of some of which rely
on the cubical Homotopy Addition Lemma established independently. However, this
calculation shows how the results tie together, and that once we have these results
established they give powerful means of calculation, some of which are inherently
nonabelian, and which usually involve module operations not so easily handled by
traditional methods.

9.10 Simplicial sets and crossed complexes

In earlier sections of this chapter we have given an account of the cubical nerve and
classifying space of a crossed complex. In this section, we give a brief account of some
of the corresponding simplicial theory, as this is used in discussing the standard free
crossed resolution of a groupoid.

In Theorem 9.9.4 we gave an explicit description of…�n�, the fundamental crossed
complex of the standard geometric n-simplex �n. We now relate this to the theory of
simplicial sets described briefly in Section A.10 of Appendix A.

Definition 9.10.1 (The fundamental crossed complex of a simplicial set). Let K be
a simplicial set. The fundamental crossed complex …K is to have free generators in
dimension n given by the elements of Kn and the boundary ık for k 2 Kn is given by
the Homotopy Addition Lemma in dimension n.

Definition 9.10.2. Let C be a crossed complex. Its simplicial nerve is the simplicial
set N�C which in dimension n is given by

N�.C /n D Crs.…�n; C /: �

Example 9.10.3 (The simplicial nerve of a groupoid). Let P be a groupoid. Then
P can be regarded as a crossed complex and then its simplicial nerve N�P as given
by Definition 9.10.2 can be interpreted as follows: it is the simplicial set which in
dimension 0 consists of the objects of P and in dimension n > 0 consists of the
composable sequences of arrows of P , i.e. sequences Œa1; : : : ; an� such that the target
of ai is the source of aiC1 for 1 6 i < n. The face operators @i are defined on these



320 9 Tensor products and homotopies of crossed complexes

elements so that each face of dimension 2 is commutative. This leads to the following
pictures in dimensions 2 and 3:

2

0

ab

VVN
N

N
N

N
N

a
�� 1

b

--

3

2

c

--

0 a
��

ab

VVN
N

N
N

N
N

abc

WW

O

P
Q

R
)

S
T

1

bc

HH

U

V
W

X
Y

�
Z

b

XX[[[[[[[[[[[

with face operators in which @i gives the face opposite to the vertex i :

@0Œa; b; c� D Œb; c�; @1Œa; b; c� D Œab; c�;
@2Œa; b; c� D Œa; bc�; @3Œa; b; c� D Œa; b�:

This tetrahedral picture shows the relation of this construction to associativity of the
groupoid operation.

The general formulae are @0Œa� D ta, @1Œa� D sa and for n > 2:

@i Œa1; : : : ; an� D

8̂<̂
:
Œa2; : : : ; an� if i D 0;
Œa1; : : : ; aiaiC1; : : : ; an� if 1 < i < n;

Œa1; : : : ; an�1� if i D n:

We can also define degeneracy operators for i D 0; : : : ; n by

"i Œa1; : : : ; an� D Œa1; : : : ; ai�1; 1i ; ai ; : : : ; an�

where 1i denotes uniquely the identity at the object i for which 1i gives a composable
sequence of length nC 1. In terms of the notation of the Homotopy Addition Lemma
in which un D @n�1

0 we also have unŒa1; : : : ; an� D an. So we have a formula for
ınŒa1; : : : ; an� which we shall use in the Definition 10.2.7 of the standard free crossed
resolution of a groupoid.

Example 9.10.4 (The simplicial nerve of a crossed module). It is useful to indicate
how the classifying space BM for a crossed module M D .� W M ! P / over a
groupoid is constructed as the geometric realisation of a simplicial set K D N�.M/.
For n > 2, an n-simplex of K is an .n C 1/-tuple of .n � 1/-simplices of K which
match up appropriately on their faces of dimension .n � 2/. This gives the following
pictures for n D 2; 3. The first of the pictures shows an element ofK2 and the second,
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which does not show m2, shows an element of K3:

m

2

0

c

VVNNNNNNNNNNN

a
�� 1

b

--

�m D �c C aC b

3

2

f

--

m0m1

0 a ��

cNNNNN

VVNNNNN

d

��

m3

1

e

FF

b[[[[[

XX[[[[[

provided we have the rules

�m0 D �e C b C f; �m1 D �d C c C f;
�m2 D �d C aC e; �m3 D �c C aC b;

together with the rule
.m3/

f �m0 �m2 Cm1 D 0:
You might like to verify that these rules are consistent.

The geometric realisation of N�.M/ gives the simplicial classifying space of the
crossed module.129

Remark 9.10.5. From the simplicial nerve N�.P / of a groupoid P it is natural to
form the crossed complex …N�.P /; this has a free generator for each simplex of
N�.P / and boundary given by the simplicial Homotopy Addition Lemma. Then there
is a natural isomorphism �1…N

�.P / Š P , and also …N�.P / is aspherical, i.e. all
homology in dimensions> 1 vanishes. When we discuss resolutions in Chapter 10 we
will see …N�.P / as the standard free crossed resolution of P . However the proof of
asphericity is best done using the notion of universal covering crossed complex, which
we introduce in Section 10.1.

This result can be related to the case of local coefficients (see Section 12.4).

Remark 9.10.6. Note also that ifA is a chain complex with a trivial group of operators,
then

.N�‚A/r D Crs.…�r ; ‚A/

D Chn.r…�r ; A/:
In this last formula, r…�r consists by Proposition 8.4.2 of the chain complex C� z�r
of cellular chains of the universal covers of �r based at the vertices of �r , with the
action of the groupoid �1�r . Since A has trivial group acting, it follows that

Chn.r…�r ; A/ D Chn.C��r ; A/;

where C��r is the usual chain complex of cellular chains of �r .
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This shows that N�‚A coincides with the simplicial abelian group of the Dold–
Kan Theorem which gives an equivalence between chain complexes and simplicial
abelian groups. It also explains why the work of Ashley in [Ash88], which gives an
equivalence between crossed complexes and simplicial T -complexes, is subtitled ‘A
nonabelian version of the Dold–Kan Theorem’. See also Section 14.8 for the analogous
cubical version and further references.

Notes

117 p. 278 The notion of monoidal and monoidal closed category can be seen as central
to many parts of mathematics, and for the general theory we refer the reader to
[ML71]. A full exposition on monoidal categories requires the notion of coherence;
we avoid dealing with this here because all of the conditions such as associativity
on the tensor products with which we deal in the end reduce to associativity of
a cartesian product, through the notion of bimorphisms, and so the coherence
properties needed follow from the universal properties of categorical products.

118 p. 279 The category of crossed complexes is shown in [BH81b] to be equivalent to
the category of1-groupoids, which are also called globular !-groupoids. Thus
the monoidal closed structure on crossed complexes yields a monoidal closed
structure on the latter category, which generalises studies of such structures on
2-groupoids, for example [KP02]. However in our scheme the tensor product of
2-groupoids is naturally a 4-groupoid, from which a 2-groupoid would be obtained
by cotruncation. This leads also to the notion of enrichment of the category FTop
over the category Crs which requires further study. Other relevant work for such
monoidal closed structures on higher categories rather than groupoids is in [Cra99],
[Cra99] and [AABS02].

119 p. 281 A further reference on compactly generated spaces is [HO09].

120 p. 283 In this case to obtain a monoidal closed structure, i.e. an internal hom, one
has to move to the world of rings with several objects, also known as additive
categories, see [Mit72]. This is analogous to the move from groups to groupoids
in order to obtain a cartesian closed category.

121 p. 283 This description of the internal hom structure in the category Mod appeared
in [BH90].

122 p. 293 The example was suggested by a question of N. Ramachandran on the
fundamental groupoid of a free loop space. For further details see [Bro10a].
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123 p. 300 This can be useful in constructing homotopy equivalences of crossed comp-
lexes, using for example the gluing lemma [KP97], Lemma 7.3. There is probably
more to be applied here than has been done so far.

124 p. 304 This tensor product of (nonabelian) groups is related to, but not the same as,
the tensor product defined by Brown and Loday and used in their construction of
universal crossed squares of groups in [BL87a], see also Section B.4. The Brown–
Loday product is defined for two groups acting ‘compatibly’ on each other; it also
satisfies the standard commutator identities displayed above. The relation between
the two tensor products is clarified by Gilbert and Higgins in [GH89]. Baues and
Conduché in [BC92] apply the tensor product to define the ‘tensor algebra of a
group’, and this is generalised in [BB93].

125 p. 314 It is proved in [BB93] that � is an isomorphism if the filtered spacesX�; Y�
are connected and cofibred: the latter condition on X� is that each inclusion
Xn ! XnC1 is closed cofibration. These are useful conditions since they are
satisfied not only by CW-filtrations but also by the filtrationBC � of the classifying
space of a crossed complex by the levels BC n where C n is the n-skeleton of C ,
compare Section 13.5.

126 p. 315 The Homotopy Addition Lemma for a simplex is used in Blakers’ 1948
work [Bla48] and was known to be an essential part of proofs of the absolute and
relative Hurewicz theorems. However a proof appeared only in [Hu53] in 1955.
The proof in G. W. Whitehead’s text [Whi78] is by induction proving at the same
time both Hurewicz theorems. It is clear that the algebra of crossed complexes is
an essential part of the expression of this lemma. The algebraic derivation given
here comes from [BS07].

127 p. 318 The traditional formula for the simplex HAL may be found in [Bla48],
[Hue80a], [Whi78], [Ton03], [Bro99] and elsewhere. The story is that this formula
was used in relative homotopy theory, and then it was realised in the early 1950s
that no proof had been given. Who to ask to prove it? The answer is given in
[Hu53]. The proof given in [Whi78] is by a combined circular induction with the
absolute and relative Hurewicz theorems, following notes of J. F. Adams. The
proof given here follows [BS07] in using the tensor product of crossed complexes.

128 p. 318 A direct proof that ı3ı4 D 0 is given for example by G. W. Whitehead in
his book [Whi78]. It applies the second law for a crossed module.

129 p. 321 There are other methods of constructing the classifying space of a crossed
module in the literature, often restricted to crossed modules over groups. The
construction of the classifying space in [Lod82], [BS09] is in terms of bisimplicial
groups, but this is more difficult to use for homotopy classification results. For a
good survey of the links of crossed complexes with simplicial theory, see [Por11].



Chapter 10

Resolutions

The notion of ‘resolution’ of an algebraic object is one way of trying to describe an
infinite object and its properties in finitary terms, or in some way other than attempting to
list its elements, which can be a foolhardy endeavour. We also need ways of describing
very large objects in manageable ways.

In Chapter 3 we showed how the notions of ‘syzygy’ and of ‘resolution by free
modules’ arose from invariant theory, in trying to deal with algebras of polynomials.
There we also showed how the analogous notion of ‘identity among relations’ for a
presentation of a group led to the notion of free crossed module, which was first used
to describe a topological situation, the structure of second relative homotopy groups.

In this chapter, we extend the notion of syzygy to all dimensions using crossed
complexes, with the definition of free crossed resolution of a group, or groupoid.
Surprisingly, the extension to groupoids rather than just groups turns out also to be
useful for the purposes of calculation, as we shall see in Section 10.3. Our method
there is to construct what we call

a home for a contracting homotopy

and to this end we need to pass to the universal covering groupoid of a group. The
notion of ‘free crossed resolution of a groupoid’ also includes such resolutions for
group actions, equivalence relations, and bundles of groups.130

In Section 10.4 we give an account of how the classical theory of acyclic models
may be adapted to its use with crossed complexes instead of chain complexes.

10.1 Covering morphisms of crossed complexes

The results of this section are used twice in this chapter, but are of a different character
to the rest, so you may wish to skip this section until it is needed.

The main results say that the theory of covering morphisms of crossed complexes
is analogous to that of covering maps of spaces, in that the category of covering mor-
phisms of a crossed complex C is equivalent to the category of covering morphisms
of the groupoid �1C . So in this section we assume as known the notions of covering
morphisms of groupoids dealt with in [Bro06], [Hig71]; some details and the notation
and conventions as used here are given in Section B.7 of Appendix B.

Definition 10.1.1. A morphism p W zC ! C of crossed complexes is a covering mor-
phism if
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(i) the morphism p1 W zC1 ! C1 is a covering morphism of groupoids;
(ii) for each n > 2 and Qx 2 zC0, the morphism of groups pn W zCn. Qx/! Cn.p0 Qx/ is

an isomorphism.

In such case we call zC a covering crossed complex of C .

This definition may also be expressed in terms of the unique covering homotopy
property similar to the one given for fibrations in Section 12.1. Actually, coverings
are fibrations with discrete fibre. So we can use the long exact sequence of a fibration
given in the next chapter as Theorem 12.1.15.

Proposition 10.1.2. Let p W zC ! C be a covering morphism of crossed complexes
and let Qa 2 Ob. zC/: Let a D p Qa; and let K D p�1

0 .a/ � Ob. zC/. Then p induces
isomorphisms �n. zC ; Qa/! �n.C; a/ for n > 2 and a sequence

1! �1. zC ; Qa/! �1.C; a/! K ! �0. zC/! �0.C /

which is exact in the sense of the exact sequence of a fibration of groupoids.

The comment about exactness has to do with operations on the pointed sets, see
Theorem 12.1.15.

The following result gives a basic homotopical example of a covering morphism of
crossed complexes.

Theorem 10.1.3. Let X� and Y� be filtered spaces and let

f W X ! Y

be a covering map of spaces such that for each n > 0, fn W Xn ! Yn is also a covering
map with Xn D f �1.Yn/. Then

…f W …X� ! …Y�

is a covering morphism of crossed complexes.

Proof. By [Bro06], 10.2.1,

�1f1 W �1.X1; X0/! �1.Y1; Y0/

is a covering morphism of groupoids.
Now for each n > 2 and for each x0 2 X0, it is a standard result in homotopy

theory that
f� W �n.Xn; Xn�1; x0/! �n.Yn; Yn�1; p.x0//

is an isomorphism (see for example, [Hu59]).
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Proposition 10.1.4. Suppose given a pullback diagram of crossed complexes

zC
Nf ��

Nq
��

zE
q

��
C

f
�� E

in which q is a covering morphism. Then Nq is a covering morphism.

Proof. The groupoid case is [Bro06], 9.7.6. We leave the rest of the proof to the reader.

Now we discuss the relation with �1.

Proposition 10.1.5. Let p W zC ! C be a covering morphism of crossed complexes.
Then the induced morphism�1.p/ W �1 zC ! �1C is a covering morphism of groupoids.
Moreover the following diagram is a pullback of groupoids:

zC
p

��

N� �� sk1 �1 zC
�1p

��
C

�
�� sk1 �1C .

Proof. Let Qx 2 zC0, p Qx D x. We will show that p0
Qx W Cost�1

zC Qx ! Cost�1C x is
bijective.

Surjectivity follows easily from the surjectivity of Cost C1
Qx ! CostC1

x.

For injectivity, suppose that Œp Qa� D Œp Qb�, where Œ Qa�; Œ Qb� 2 Cost�1
zC . Let p Qa D

a; p Qb D b. Then Œa� D Œb� 2 �1C . Hence sa D sb and b�1a D ı2c for some
c 2 C2.x/. Since p is a covering morphism, there is a Qc 2 zC2 such that p Qc D c. Since
p has discrete kernel, s Qa D s Qb and Qb�1 Qa D ı2 Qc. Hence Œ Qa� D Œ Qb� as required.

Finally, the fact that the diagram is a pullback of groupoids is clear from the con-
ditions for a covering morphism, since an element of zC is completely determined by
its projection to C and its final point.

Our next result is the analogue for covering morphisms of crossed complexes of a
classical result for covering maps of spaces (see, for example, [Bro06]), 9.6.1. It gives
a complete classification of covering morphisms of crossed complexes.

Let C be a crossed complex. We write CrsCov=C for the full subcategory of the
slice category Crs=C whose objects are the covering morphisms of C .

Theorem 10.1.6. IfC is a crossed complex, then the functor �1 W Crs! Gpds induces
an equivalence of categories

� 0
1 W CrsCov=C ! GpdsCov=.�1C/:



10.1 Covering morphisms of crossed complexes 327

Proof. The inverse functor is constructed using the pullback diagram of Proposi-
tion 10.1.5.

In Section 15.7 we will need the following results, which are analogues for crossed
complexes of known results for groupoids ([Bro06], 10.3.3) and spaces.

Proposition 10.1.7. Let p W zC ! C be a covering morphism of crossed complexes,
and let y 2 zC0. Let F be a connected crossed complex, let x 2 F0, and let f W F ! C

be a morphism of crossed complexes such that f .x/ D p.y/. Then the following are
equivalent:

(i) f lifts to a morphism Qf W F ! zC such that Qf .x/ D y and p Qf D f ;

(ii) f .F1.x// � p. zC1.y//;
(iii) f�.�1.F; x// � p�.�1. zC ; y//.

Further, if the lifted morphism as above exists, then it is unique.

Proof. That (i)) (ii)) (iii) is clear.
So we assume (iii) and prove (i).
We first assume F0 consists only of x. Then the value of Qf on x is by assumption

defined to be y.
Next let a 2 F1.x/. By the assumption (iii) there is c 2 C2.py/ and b 2 zC.y/

such that f .a/ D p.b/ C ı2.c/. Since p is a covering morphism there is a unique
d 2 zC2.y/ such that p.d/ D c. Thus f .a/ D p.b C ı2.d//. So we define Qf .a/ D
b C ı2.d/ 2 zC2.y/. It is easy to prove from the definition of covering morphism of
groupoids that this makes Qf a morphism F1.x/! zC1.y/ such that p Qf D f .

For n > 2 we define Qf W Fn.x/! zCn.y/ to be the composition of f in dimension
n and the inverse of the bijection p W zCn.y/! Cn.py/.

It is now straightforward to check that this defines a morphism Qf W F ! zC as
required.

If F0 has more than one point, then we choose a tree groupoid in F1 in the usual
way as in the argument in [Bro06], 10.3.3, in order to extend over all of F .

We will use the above result in the following form.

Corollary 10.1.8. Let p W zC ! C be a covering morphism of crossed complexes,
and let F be a connected and simply connected crossed complex. Then the following
diagram is a pullback in the category of crossed complexes:

Crs.F; zC/ � F " ��

p��1
��

zC
p

��
Crs.F; C / � F

"
�� C ,

where the set of morphisms of crossed complexes has the discrete crossed complex
structure, and the " are evaluation maps.
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Proof. This is simply a restatement of the existence and uniqueness of liftings of
morphisms.

Remark 10.1.9. It is possible that the covering morphisms are part of a factorization
system as are the discrete fibrations in the contexts of [Bou87] and [SV10].

10.1.i Coverings of free crossed complexes

Recall that the utility of a free crossed complex is that if C is a free crossed complex
on X�, then a morphism f W C ! D can be constructed inductively provided one is
given the values fnx 2 Dn, x 2 Xn, n > 0 and provided the following geometric
conditions are satisfied: (i) ı˛f1x D f0ı˛x, x 2 X1, ˛ D 0; 1; (ii) tfn.x/ D f0.tx/,
x 2 Xn, n > 2; (iii) ınfn.x/ D fn�1ın.x/, x 2 Xn, n > 2.

Notice that in (iii), fn�1 has to be defined on all of Cn�1 before this condition can
be verified.

We now show that freeness can be lifted to covering crossed complexes, using the
following result of Howie ([How79], Theorem 5.1).

Theorem 10.1.10. Let p W A! B be a morphism of crossed complexes. Then p is a
fibration if and only if the pullback functor p� W Crs=B ! Crs=A has a right adjoint.

As a consequence we get the following:131

Corollary 10.1.11. If p W A! B is a covering morphism of crossed complexes, then
p� W Crs=B ! Crs=A preserves all colimits.

We shall use this last result to prove that coverings of free crossed complexes are
free. For the proof, we need the simple crossed complexes F .n/, S.n � 1/ from
Definitions 7.1.11, 7.1.12.

Theorem 10.1.12. Suppose given a pullback square of crossed complexes

zA
Qj ��

p0

��

zC
p

��
A

j
�� C

in which p is a covering morphism and j W A! C is relatively free. Then Qj W zA! zC
is relatively free.

Proof. We suppose given the sequence of pushout diagrams`
�2ƒn

S.n � 1/

��

�� C n�1

��`
�2ƒn

F .n/ �� C n
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definingC as relatively free. Let yC n D p�1.C n/:By Corollary 10.1.11, the following
diagram is also a pushout:

p� �`
�2ƒn

S.n � 1/�
��

�� yC n�1

��
p� �`

�2ƒn
F .n/

�
�� yC n.

Since p is a covering morphism, we can write p� �`
�2ƒn

F .n/
�

as
`
�2 zƒn

F .n/ for a

suitable zƒn. This completes the proof.

Corollary 10.1.13. Let p W zC ! C be a covering morphism of crossed complexes. If
C is free on X�, then zC is free on p�1.X�/.

A similar result to Corollary 10.1.13 applies in the m-truncated case.
The significance of these results is as follows. We start with an m-truncated free

crossed resolution C of a group G, so that we are given  W C1 ! G, and C is free
on X�, where Xn is defined only for n 6 m. Our extension process of Section 10.3.ii
will start by constructing the universal cover p W zC ! C of C ; this is the covering
crossed complex corresponding to the universal covering groupoid p0 W zG ! G. By
the results above, zC is the free crossed complex on p�1.X�/. It also follows from
Proposition 10.1.2 that the induced morphism z W zC ! zG makes zC a free crossed
resolution of the contractible groupoid zG. Hence zC is acyclic and hence, since it is
free, also a contractible crossed complex.

We will use covering morphisms of crossed complexes with the corresponding ver-
sion for !-groupoids to prove in Section 15.8 that the tensor product of free aspherical
crossed complexes is aspherical.

10.2 Free crossed resolutions

In this section we introduce the concept of free crossed resolution of a groupoid G,
prove that any two resolutions of the same groupoid are homotopy equivalent and give
some explicit examples.132 We then study some more complex examples requiring
extra theoretical background.

10.2.i Existence, examples

Definition 10.2.1. A crossed complex C is called aspherical if for all n > 2 and
x 2 C0, we have Hn.C; x/ D 0. It is acyclic if it is aspherical, connected and in
addition �1.C; x/ D 0 for all x 2 C0.
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An augmented crossed complex .C; / is a crossed complex C together with
a morphism  W C1 ! G to a groupoid G such that G0 D C0 and  induces an
isomorphism �1C ! G. We also say C is augmented by G or by  W C1 ! G. Such
a complex with augmentation may be written as:

: : : �� Cn
ın �� Cn�1

ın�1 �� : : : : : : ı3 �� C2
ı2 �� C1

� 
O G:

A crossed resolution of a groupoidG is an aspherical crossed complexC augmented
over G; and this is called a free crossed resolution if C is also a free crossed complex.
See Definition 7.3.13.

Theorem 10.2.2. Any group(oid) G admits a free crossed resolution.

Proof. We first choose a presentation P D hX j Ri, ofG and so we get a free crossed
module over a free groupoid

C.R/
ı2�! F.X/

together with  W F.X/ ! G inducing an isomorphism Cok.ı2/ ! G. Now A D
Ker ı2 is a G-module and we proceed as in classical homological algebra as outlined
in Chapter 3.

This follows a traditional method of constructing complexes, either CW-complexes
or forms of resolutions, by ‘killing kernels’; at stage 1 this requires a free crossed
module to map onto the normal subgroupoid of a free groupoid normally generated by
the relations; at stage n > 2 the kernel of ın is a G-module and we choose a graph Xn
of generators for this and map the free G-module on Xn onto this kernel.

Of course what this outline construction does not show is how to get hold of a
convenient graph of generators Xn for the kernel; some such graph exists, for instance
we could take Xn D Ker ın�1, but this is not at all constructive or convenient. This
problem of construction is addressed in Section 10.3, in the caseG is a group, using the
idea of constructing inductively a free crossed resolution with a contracting homotopy
not of G, but of the universal covering groupoid zG of G.

If G is itself free, we need go no further.

Example 10.2.3. If G is a free groupoid F.X1/, then G has a free crossed resolution
which is F.X1/ in dimension 1 and is trivial in higher dimensions.

We can also state a small free crossed resolution of finite cyclic groups, which is
a modification in dimensions 6 2 of a classical chain complex resolution for these
groups.

Example 10.2.4 (Finite cyclic groups). A cyclic group Cq of order q with generator c
has a free crossed resolution F D F.Cq/ as follows:

F.Cq/: D : : : �� ZŒCq�
ı4 �� ZŒCq�

ı3 �� ZŒCq�
ı2 �� C1

� 
O Cq
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where C1 is the infinite cyclic group with free generator x1, and .x1/ D c; in
dimension n > 2 the term ZŒCq� is the free Cq-module on one generator xn; and the
boundary maps are defined by ı2.x2/ D xq1 and for n > 2

ın.xn/ D
´
xn�1 .1 � c/ if n is odd;

xn�1 .1C c C c2 C � � � C cq�1/ if n is even:

Exercise 10.2.5. Prove directly that the preceding example gives a free crossed reso-
lution of Cq .133

Example 10.2.6. A presentation hX j Ri of a group G is a one relator presentation
if R consists of a single element. Suppose this element r is not a proper power, i.e.
r D zq for some z implies q D ˙1. It is then a theorem that the kernel of the free
crossed moduleC.r/! F.X/ is trivial, so that this crossed module itself is in essence
a free crossed resolution of G. However, the proof of this triviality is by no means
easy.134

10.2.ii The standard free crossed resolution of a groupoid

Definition 10.2.7. LetG be a groupoid. By Example 9.10.3 we can form its simplicial
nerve N�G, and then the crossed complex …N�G: this we call the standard free
crossed resolution of G.

The standard free crossed resolution of a groupoid G is of the form

: : : �� F st� .G/3
ı3 �� F st� .G/2

ı2 �� F st� .G/1
� 
O G

in which by Example 9.10.3 F st
n .G/ is free on the set

.N�G/n D f Œa1; a2; : : : ; an� j ai 2 Gg
of composable sequences of elements of G, where the base point t Œa1; a2; : : : ; an� is
the final point tan of an. For n > 2 the boundary

ın W F st
n .G/! F st

n�1.G/
is given by

ı2Œa; b� D Œab��1Œa�Œb�;
ı3Œa; b; c� D Œa; b�c Œb; c��1Œa; bc��1Œab; c�;

and for n > 4

ınŒa1; a2; : : : ; an� D Œa1; : : : ; an�1�an C .�1/nŒa2; : : : ; an�

C
n�1X
iD1
.�1/n�i Œa1; a2; : : : ; ai�1; aiaiC1; aiC2; : : : ; an�:

See also the pictures in Example 9.10.3.
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Proposition 10.2.8. The standard free crossed resolution of a group is aspherical.

Proof. Let G be a group, and let p W zG ! G be the universal covering morphism.
Then the induced morphism of standard resolutions

p� W F st� zG ! F st� G

is also a covering morphism, this time of crossed complexes.
Now a contracting homotopy of F st� zG is given on free generators by

.Œa1; a2; : : : ; an�; a/ 7! .Œa1; a2; : : : ; an; a�; 1x0
/:

We leave it as an exercise for you to use the simplicial Homotopy Addition Lema
and the formulae given for a contracting homotopy in Example 7.1.44 to verify that
this gives a contracting homotopy.

Remark 10.2.9. In Remark 12.5.4 we will extend this last proposition to the case
of a groupoid: the proof we give there needs information on homotopies which is
conveniently given later.

Remark 10.2.10. An exact sequence of groups 1! M ! E ! G ! 1 is called in
the literature an extension ofM byG.135 One also finds in the literature on extensions
of a group M by a group G the notion of factor set of G in M . This consists of a pair
of functions

k1 W G ! Aut.M/; k2 W G �G !M

satisfying a number of conditions. We will see in Example 12.5.2 that these conditions
can be interpreted as saying that a factor set is equivalent to a morphism of crossed
complexes from F st� .G/ to the trivial crossed complex extension of the crossed module
� W M ! Aut.M/, i.e. to sk2.� W M ! Aut.M//. An equivalence of factor sets is then
just homotopy of morphisms from F st� .G/ to the latter crossed complex. Thus all the
complications necessary to describe a factor set and their equivalences are embedded
in the standard free crossed resolution of G.

10.2.iii Uniqueness of free crossed resolutions up to homotopy

The following two theorems imply that free crossed resolutions of a groupoid are deter-
mined up to homotopy; this motivates the desire to find those free crossed resolutions
useful for various aims. The result and the method of proof should be compared with
those in Proposition 12.1.10.

Theorem 10.2.11. Let C;D be crossed complexes such that C is free and D is as-
pherical. Let ˛ W �1C ! �1D be a morphism of groupoids. Then there is a morphism
f W C ! D of crossed complexes such that �1.f / D ˛.
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Such a morphism f is said to be a lift of ˛.

Proof. We consider the diagram

: : :
ınC1 �� Cn

ın �� Cn�1 �� : : : �� C2
ı2 �� C1

� 
O

f1

��H
H
H �1C

˛

��
: : :

ınC1

�� Dn
ın

�� Dn�1 �� : : : �� D2
ı2

�� D1
 


O �1D

in which ,  are the quotient morphisms.
Let the free basis of C be denoted by X�, where X0 D C0, and we assume Xn is a

subgraph of Cn.
For x 2 X1 we choose f1.x/ 2 D1 such that  f1.x/ D ˛.x/. This is possible

because  is surjective. Since X1 is a free basis of C1, this choice extends uniquely to
a morphism

f1 W C1 ! D1:

Since  f1 D ˛ on the generating set X1, it follows that

 f1 D ˛
on C1. Note also that

 f1ı2 D ˛ı2 D 0:
Since Ker D Im ı2, it follows that Im f1ı2 � Im ı2. For all x 2 X2, we choose
f2.x/ 2 D2 so that

ı2f2.x/ D f1ı2.x/:
Now we proceed inductively. Suppose that

fn�1 W Cn�1 ! Dn�1

has been defined so that
ın�1fn�1 D fn�2ın�1:

Then
ın�1fn�1ın D fn�2ın�1ın D 0:

By asphericity of D, Im.fn�1ın/ � Im ın. So for all x in the free basis Xn, there is
an fn.x/ 2 Dn such that ınfn.x/ D fn�1ın.x/. This defines a morphism

fn W Cn ! Dn

such that ınfn D fn�1ın.
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Exercise 10.2.12. Let Cq and Cqr be cyclic groups of order q and qr with generators
c and c1 respectively. Consider their free crossed complex resolutions F.Cq/ and
F.Cqr/ studied in Example 10.2.4. Given the morphism ˛ W Cq ! Cqr which sends c
to cr1 , find a morphism F.Cq/! F.Cqr/ which lifts ˛.

Theorem 10.2.13. Let C;D be crossed complexes such that C is free and D is as-
pherical. Let ˛ W �1C ! �1D be a morphism of groupoids and f �; f C W C ! D

morphisms of crossed complexes such that �1.f �/ D �1.f
C/ D ˛. Then there is a

homotopy h W f � ' f C.

Proof. We proceed as before to define the homotopy (see Definition 9.3.3) starting with

h0 W C0 ! D1:

Since �1.f �/ D �1.f C/ D ˛, we have  f �
1 D ˛ D  f C

1 . We set h0.c/ D 1˛c 2
D1, for c 2 C0.

We have to define a map
h1 W C1 ! D2

such that for every c 2 C1,

f �
1 .c/ D .h0s.c//.f C

1 c/.ı2h1c/.h0t .c//
�1

which because of our definition of h0 reduces to

f �
1 .c/ D f C

1 .c/.ı2h1c/

or
ı2h1c D f C

1 .c/
�1f �

1 .c/:

But
 .f C

1 .c/
�1f �

1 .c// D 1:
Hence for each x 2 X1 we can choose an h1.x/ such that ı2h1x D f C

1 .x/
�1f �

1 .x/.
This extends to an f C

1 - derivation h1 W C1 ! D2, as explained in Remark 7.1.42.
At the next level, for c 2 C2, we note that f C

1 ı2 D ı2f C
2 , f �

1 ı2 D ı2f �
2 and we

require h2 such that
f �
2 .c/ D f C

2 .c/h1ı2.c/ı3h2.c/: .�/
But

ı2.h1ı2.c/
�1f C

2 .c/
�1f �

2 .c// D .f C
1 .ı2c/

�1f �
1 .ı2c/

�1ı2f C
2 .c/

�1ı2f �
2 .c/ D 1:

So again, we can choose h2.x/ for x 2 X2 so that .�/ holds for c D x. This extends
to an f C

1 -morphism h2 W C2 ! D3 as required.
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We now look at the situation around dimension n.

�� CnC1
ınC1 ��

f �
nC1

��

f
C

nC1

��

Cn
ın ��

f �
n

��

f
C

n

��

hn

UU\
\

\
\

\
\

\
Cn�1

ın�1 ��

f �
n�1

��

f
C

n�1

��

hn�1

UU\\\\\\\\\\\\\
Cn�2 ��

f �
n�2

��

f
C

n�2

��

hn�2

����������������

�� DnC1
ınC1

�� Dn
ın

�� Dn�1
ın�1

�� Dn�2 ��

We suppose given the morphisms f �, f C and also the hn�2, hn�1 such that

f �
n�1 D f C

n�1 C hn�2ın�1 C ınhn�1:
But for c 2 Cn

ın.f
�
n c � f C

n c � hn�1ınc/
D f �

n�1ınc � f C
n�1ınc � ınhn�1ınc

D f �
n�1ınc � f C

n�1ınc � .f �
n�1ınc � f C

n�1ınc � hn�2ın�1ınc/
D 0 since ın�1ın D 0:

By asphericity of D, for each x in the basis Xn we can find an hnx in DnC1 such that

hnx D f �
n x � f C

n x � hn�1ınx:
This extends to an operator morphism hn W Cn ! DnC1 with the required properties
for the next stage of the induction.

This proof is typical of one method of constructing homotopies which will be useful
again in later sections.

Corollary 10.2.14. Any two free crossed resolutions of a groupG are homotopy equiv-
alent.

Remark 10.2.15. A refinement of Theorem 10.2.13 is to assume that we have two
morphisms ˛�; ˛C W G ! H , that the morphisms f �, f C lift ˛�, ˛C respectively and
that 	 is a homotopy (or natural transformation) ˛� ' ˛C. Then we assert that under
the same conditions of freeness and asphericity, 	 lifts to a homotopyh W f � ' f C. Let
us assume ; are the identity on objects. Here 	0 assigns to each p in C0 an element
	.p/ 2 H.˛�p; ˛Cp/ such that the usual naturality condition holds: if g 2 G.p; q/
then ˛�.g/	.q/ D 	.p/˛C.g/. For each p 2 C0 choose an h0.p/ 2 D1.p; q/ such
that .h0.p// D 	.p/. Now we repeat the arguments of the proof of Theorem 10.2.13
but using the more complicated formulae for homotopies which involve h0. We leave
the details as an exercise for the reader.

However we still want a method of constructing a free crossed resolution in a more
or less algorithmic way, or at least in terms of data specifying a group or groupoid.
Such a method is given in Section 10.3 for a finite group defined by a presentation by
generators and relations. The next section describes some other ways of constructing
resolutions related to particular constructions of groups.136
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10.2.iv Some more complex examples: Free products with amalgamation
and HNN-extensions

We will prove the following theorem in Corollary 15.8.5, using cubical methods, cov-
ering crossed complexes, and the notion of dense subcategory. This result, combined
with the fact that the tensor product of free crossed complexes is free, gives one method
of making new free crossed resolutions from old ones.137

Theorem 10.2.16. If C , D are aspherical free crossed complexes, then their tensor
product C ˝D is also aspherical.

Example 10.2.17. Let PG D hXG j RGi and PH D hXH j RH i be presentations of
groups G, H , respectively, and let F .PG/ and F .PH / be the corresponding free
crossed modules, regarded as 2-truncated crossed complexes. The tensor product
T D F .PG/ ˝ F .PH / is 4-truncated and is given as follows (where we now use
additive notation in dimensions 3, 4 and multiplicative notation in dimensions 1, 2):

• T1 is the free group on the generating set XG tXH ;
• T2 is the free crossed T1-module onRG t .XG˝XH /tRH with the boundaries

on RG , RH as given before and

ı2.g ˝ h/ D h�1g�1hg for all g 2 XG ; h 2 XH I

• T3 is the free .G �H/-module on generators r ˝ h, g ˝ s, r 2 RG , s 2 RH
with boundaries

ı3.r ˝ h/ D r�1rh.ı2r ˝ h/; ı3.g ˝ s/ D .g ˝ ı2s/�1s�1sg I

• T4 is the free .G �H/-module on generators r ˝ s, with boundaries

ı4.r ˝ s/ D .ı2r ˝ s/C .r ˝ ı2s/:

The important point is that we can if necessary calculate with these formulae,
because elements such as ı2r ˝ h may be expanded using the rules for the tensor
product. Alternatively, the forms ı2r ˝ h, g ˝ ı2s may be left as they are since they
naturally represent subdivided cylinders.

We next illustrate the use of crossed complexes of groupoids, rather than just of
groups, by the construction of a free crossed resolution of a free product with amalga-
mation, and a similar result for HNN-extensions, given free crossed resolutions of the
individual groups.138

Suppose the group G is given as a free product with amalgamation

G D A �C B;
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which we can alternatively describe as a pushout of groups

C
j ��

i

��

B

i 0

��
A

j 0
�� G:

We are assuming the morphisms i , j are injective so that, by standard results, i 0, j 0 are
injective.139 Suppose we are given free crossed resolutions

A D F .A/; B D F .B/; C D F .C /:

The morphisms i , j may then be lifted (not uniquely) to morphisms

i 00 W C! A; j 00 W C! B:

However we cannot expect that the pushout of these morphisms in the category Crs
gives a free crossed resolution of G.

To see this, suppose that for Q 2 fA;B;C g the CW-filtrations K.Q/ realise the
crossed resolutions of Q, i.e. …K.Q/� Š F .Q/, and that i 00, j 00 are realised by
cellular maps K.i/ W K.C/ ! K.A/, K.j / W K.C/ ! K.B/. However, the pushout
in topological spaces of cellular maps does not in general yield a CW-complex – for this
it is required that one of the maps is an inclusion of a subcomplex, and there is no reason
why this should be true in this case. The standard way of dealing with this problem is
to form the double mapping cylinder M.i; j / given by the homotopy pushout

K.C/

K.i/

��

K.j / ��

'

K.B/

��
K.A/ �� M.i; j /

where M.i; j / is obtained from K.A/ t .I �K.C// tK.B/ by identifying

.0; x/ 
 K.i/.x/; .1; x/ 
 K.j /.x/

for x 2 K.C/. This ensures that M.i; j / is a CW-complex containing K.A/, K.B/
and f1

2
g�K.C/ as subcomplexes and that the composite mapsK.C/!M.i; j / given

by the two ways round the square are homotopic cellular maps.
It is therefore reasonable to assume that for crossed complexes the appropriate al-

gebraic construction is also a homotopy pushout, this time in Crs, obtained by applying
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… to this homotopy pushout: this yields a diagram

C

i 00

��

j 00

��

'

B

��
A �� F .i; j /:

SinceM.i; j / is aspherical we know that F .i; j / is aspherical and so is a free crossed
resolution. Of course F .i; j / has two vertices 0, 1. Thus it is not a free crossed
resolution ofG but is a free crossed resolution of the homotopy pushout in the category
Gpds:

C

i

��

j ��

'

B

��
A �� G.i; j /:

The groupoidG.i; j / is obtained from the disjoint union of the groupoidsA, B , ��C
by adding the relations .0; c/ 
 i.c/, .1; c/ 
 j.c/ for c 2 C ; thus G.i; j / has two
objects 0, 1 and each of its object groups is isomorphic to the amalgamated product
group G, but we need to keep its two object groups distinct.140

The two crossed complexes of groups F .i; j /.0/, F .i; j /.1/, which are the parts
of F .i; j / lying over 0, 1 respectively, are free crossed resolutions of the groups
G.i; j /.0/,G.i; j /.1/. From the formulae for the tensor product of crossed complexes
we can identify free generators for F .i; j /: in dimension n we get

• free generators an at 0 where an runs through the free generators of An;
• free generators bn at 1 where bn runs through the free generators of Bn;
• free generators �˝cn�1 at 1where cn�1 runs through the free generators ofCn�1.

Example 10.2.18. Let A, B , C be infinite cyclic groups, written multiplicatively.
The trefoil group T can be presented as a free product with amalgamation A �C B
where the morphisms C ! A, C ! B have cokernels of orders 3 and 2 respectively.
The resulting homotopy pushout we call the trefoil groupoid. We immediately get
a free crossed resolution of length 2 for the trefoil groupoid, whence we can by a
retraction argument deduce the free crossed resolution F.T / of the trefoil group T
with presentation PT D ha; b j a3b�2i. By the construction in Section 10.3, there is
a free crossed resolution of T of the form

F.T / W : : : �� 0 �� C.r/
ı2 �� F fa; bg � 
O T

where ı2 r D a3b�2. Hence a 2-cocycle on T with values in K can also be specified
totally by elements s.c; d/ 2 K, c; d 2 Aut.K/ such that @s.c; d/ D c3d�2; this is a
finite description. It is also easy to specify equivalence of cocycles.141
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Now we consider HNN-extensions. Let A, B be subgroups of a group G and let
k W A! B be an isomorphism. Then we can form a pushout of groupoids

f0; 1g � A

i

��

.k0;k1/ �� G

j

��
� � A

f
�� �k G

where

k0.0; a/ D ka; k1.1; a/ D a; and i is the inclusion.

In this case of course �k G is a group, known as the HNN-extension. It can also be
described as the factor group

.C1 �G/ = fc�1a�1c .ka/ j a 2 Ag

of the free product, where C1 is the infinite cyclic group generated by c.
Now suppose we have chosen free crossed resolutions A, B, G of A, B ,G respec-

tively. Then we may lift k to a crossed complex morphism k00 W A ! B and k0, k1
to

k00
0 ; k

00
1 W f0; 1g �A! G :

Next we form the pushout in the category of crossed complexes:

f0; 1g ˝A

i 00

��

.k00
0
; k00

1
/

�� G

j 00

��
� ˝A

f 00
�� ˝k00 G .

Theorem 10.2.19. The crossed complex˝k00 G is a free crossed resolution of the group
�k G.

The proof is given in [BMPW02] as a special case of a theorem on the free crossed
resolutions of the fundamental groupoid of a graph of groups. Here we show that
Theorem 10.2.19 gives a means of calculation. Part of the reason for this success is
that we do not need to know in detail the definition of free crossed resolution and of
tensor products, we just need free generators, boundary maps, values of morphisms on
free generators, and how to calculate in the tensor product with � using the rules given
previously.
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Example 10.2.20. The Klein Bottle group K has presentation h c; z j z�1c�1z c�1 i.
Thus K D �k C1 where C1 is infinite cyclic generated by c and kc D c�1. This
yields a free crossed resolution

F.K/ W : : : �� 1 �� C.r/
ı2 �� F fc; zg � 
O K

where 2 r D z�1c�1z c�1. Of course this was already known since K is a surface
group, and so is aspherical, and also because it is a one relator group whose relator is
not a proper power.

Example 10.2.21. Developing the previous example, let h c; z j cq; z�1c�1z c�1 i be
a presentation of the group L. Then L D �k Cq where Cq is the cyclic group of order
q generated by c and k W Cq ! Cq is the isomorphism c 7! c�1. A small free crossed
resolution of Cq is given in Example 10.2.4 as

F.Cq/ W : : : �� ZŒCq�
ın �� ZŒCq� �� : : : �� ZŒCq�

ı2 �� C1
� 
O Cq

with a free generator x1 as a group of C1 in dimension 1; free generators xn as
Cq-modules in dimension n > 2; with  x1 D c; ı2.x2/ D xq1 and

ın xn D
´
xn�1 .1 � c/ if n is odd;

xn�1 .1C c C c2 C � � � C cq�1/ otherwise:

The isomorphism k lifts to a morphism k00 W F.Cq/! F.Cq/ which is also inversion
in each dimension. Hence L has a free crossed resolution ˝k00 Cq given by

: : :
�nC1 �� Ln

�n �� : : : : : : �3 �� L2
�2 �� L1

�0


O G

having free generators x1, z in dimension 1; generators x2, z˝x1 in dimension 2; and
generators xn, z ˝ xn�1 in dimension n > 3. The extra boundary rules are

�2.z ˝ x1/ D z�1x�1
1 z x�1

1 ;

�3.z ˝ x2/ D .z ˝ xq1 /�1x�1
2 .x�1

2 /z;

�nC1.z ˝ xn/ D �.z ˝ ınxn/ � xn � xnz for n > 3:

In particular, the identities among relations for this presentation of L are generated by

x2 and �3.z ˝ x2/ D .z ˝ ı2x2/�1x2�1.x2�1/z :

Similarly, relations for the module of identities are generated by

x3 and �4.z ˝ x3/ D �.z ˝ x2.1 � c// � x3 � x3z :
Of course we can expand expressions such as .z˝ınxn/ using the rules for the cylinder
given in Example 9.3.18.142
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10.3 From presentations to free crossed resolutions

In this section we address the problem of constructing a resolution for a groupG defined
by a presentation hX j Ri. A theoretical solution is suggested by Theorem 10.2.2. First
we construct the free crossed module augmented to G

C.R/
ı2 �� F.X/

� 
O G:

Now we take a free resolution of the G-module A D Ker ı2 in the ‘usual way’ of
constructing ‘chains of syzygies’.

That means that at each step we have to choose a set of generatorsXn of the kernel
An of ın W Fn ! Fn�1 in order to define ınC1 W FnC1 ! Fn where FnC1 is the free
G-module on Xn. This can be called the process of ‘killing kernels’.

The problem is how to choose Xn. Theoretically the answer is easy: if in doubt,
takeXn D An. Obviously this is not in any way an algorithmic answer, and indeedAn
could be infinite, so we would like to have a way of constructing smaller resolutions
which has the possibility of realisation as an algorithm for a reasonable class of cases,
for example if G is finite.

10.3.i Home for a contracting homotopy: chain complexes

The answer turns out to be what we call ‘constructing a home for a contracting homo-
topy’. To motivate the idea, we consider first the case of chain complexes ofR-modules.
For these we show there is an easily described way of constructing inductively at the
same time the resolution and the contracting homotopy (in chain complexes resolu-
tions are contractible). The method uses homotopy information in dimensions 6 n to
construct CnC1, hn and then @nC1, from free generators of Cn and lower dimensional
homotopy information. For precision, we recall the standard definition.

Let C be a positive, augmented, chain complex of R-modules, where R is a ring
with identity. ThusCn is defined for n > 0 and the augmentation is a module morphism
" W C0 ! A where A is an R-module, regarded as a chain complex concentrated at
dimension 0, such that "@1 D 0 W C1 ! A. A contracting homotopy for this situation
is chain mapping f W A ! C such that "f D 1A together with a chain homotopy
h W 1 ' f " , i.e. a family of module morphisms hr W Cr ! CrC1; r > 0 such that

@1h0 C f " D 1C ; @rC1hr C hr�1@r D 1C ; r > 0:

Assume that we have constructed such data for r < n and Cn is free on say Xn.
We want a free G-module CnC1 and a morphism hn W Cn ! CnC1 satisfying

@nC1hn C hn�1@n�1 D 1:
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We constructCnC1 as ‘a home for hn’as follows. We consider a setX 0
nC1 in one-to-one

correspondence with Xn by x0 7! x and define CnC1 to be the free R-module on the
set X 0

nC1. Let

hn W Cn ! CnC1; @nC1 W CnC1 ! Cn

be given by: hn is the unique morphism extending the bijectionXn ! X 0
nC1 and @nC1

is the unique morphism extending

@nC1.x0/ D x � hn�1@n.x/; x0 2 X 0
nC1:

By definition, @nC1hn C hn�1@n D 1C on elements of Xn, and one checks that again
for x0 2 X 0

nC1

@n@nC1x0 D @n.x � hn�1@nx/
D @nx � .1 � hn�2@n�1/@nx by the inductive assumption

D 0 since @n�1@n D 0.

In practice for some x 2 Xn we may have @nC1hnx D 0; we can define hnx D 0 on
such x, and eliminate the corresponding x0 from XnC1. One can usually find a subset
XnC1 ofX 0

nC1 such that @nC1XnC1 also generates @nC1CnC1. This enables one to find
a smaller candidate for the next step. We shall see this in practice in Section 10.3.ii.143

By iterating we get a free chain complex and a contracting homotopy, so the resulting
chain complex is a free resolution. This method we call ‘constructing a home for a
contracting homotopy’, in contrast to the traditional method of ‘killing kernels’.

The immediate problem with repeating this process for crossed resolutions of a
group G is that such resolutions are not contractible, since their fundamental group
is isomorphic to G! We resolve this by passing to the ‘universal covering groupoid’
p W zG ! G which we set up in the next sections, and construct a free crossed resolu-
tion of zG, by essentially the above process, taking care of the extra complications of
homotopies for crossed complexes as against chain complexes. It is then easy to pass
from the free crossed resolution of zG to one for G.

We will see that there are many choices involved in this process. The process deals
with Cayley graphs, a standard tool in combinatorial group theory, and we can start by
choosing a maximal tree in the Cayley graph. The theory well reflects the geometry of
covering spaces and extends the notion of Cayley graph to include higher dimensional
information, i.e. Cayley graphs with relations, and so on.

One of the reasons for our developing the machinery of covering morphisms of
crossed complexes in Section 10.1 is to be able to describe this computational process
of constructing free crossed resolutions.
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10.3.ii Computing a free crossed resolution

The initial motivation for the work of this section was to determine in an algorithmic
mode generators and relations for the G-module �.P / of identities among relations
for a presentation P D hX j !i of a group G.144 Here ! W R ! F.X/ is a function
and we regard R as a set disjoint from F.X/. The advantages of using the function
! are (i) to allow for the possibility of repeated relations; (ii) to distinguish between
an element r 2 R and the corresponding element !.r/ 2 F.X/; (iii) to model the
procedure of attaching 2-cells to a space.

Associated to this presentation of G, we will construct by induction on dimension
a free crossed resolution zF for the universal covering groupoid zG of G such that zF
projects to a free crossed resolution of G; further, the construction of a contracting
homotopy of zF is part of this process. If G is finite, and the presentation is finite,
then this free crossed resolution will have a finite number of free generators in each
dimension.

Let us start in low dimensions.

2a. Resolution of G up to dimension 2. In Chapter 3 we proved that a presentation
P D h! W R ! F.X/ j Xi of a group G gives the beginning of a free crossed
resolution

C.R/
ı2 �� F.X/

� 
O G (10.3.1)

where ı2 is the free crossed module associated to!. Then�.P / is defined to be Ker ı2.
The elements of C.R/ are ‘formal consequences’

c D
nY
iD1
.r
"i

i /
ui

where n > 0, ri 2 R, "i D ˙1, ui 2 F.X/, ı2.r"/u D u�1.!r/"u, subject to the
crossed module rule ab D baı2b , a; b 2 C.R/.
Remark 10.3.1. It follows from the Higher Homotopy Seifert–van Kampen Theorem
for crossed modules (as in the proof of Theorem 5.4.8) that�.P / is given geometrically
as the second homotopy group �2.K.P // of the cell complex of the presentation. This
result is not necessary for the work of this chapter, but it does emphasise the topological
relevance of our methods.145

Actually Diagram (10.3.1) is equivalent to the more general situation

F2 ! F1 ! G

where F1 is a free groupoid, F2 is a free crossed module over F1, G is a groupoid and
 induces an isomorphism Cok ı2 Š G; this is because the free generators of F1 have
to map to a set of generators X of G so F1 D F.X/ and F2 has to be free on some
map ! W R! F1 D F.X/.
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Thus, we want to extend (10.3.1) to a crossed resolution ofG. To do this we require
algebraic analogues of methods of covering spaces, as developed in the preceding
sections. We are following the method outlined in the introduction to Section 10.3
(p. 341) for the case of chain complexes. The crucial point is that the algorithmic
nature of the argument derives from the construction of homotopies: the fact that these
homotopies give strong deformation retractions also simplifies the conditions on the
homotopies, as shown in Example 7.1.44.146

2b. Resolution of the covering zG up to dimension 2. First we construct a covering
of part of diagram (10.3.1) by a pullback diagram

yF
p1

��

y� 
O zG
p0

��
C.R/

ı2

�� F.X/
�


O G

(10.3.2)

with the following properties.

(i) The morphism p0 W zG ! G is the universal covering groupoid of the group G.
The objects of zG are the elements of G, and an arrow of zG is a pair

.h; g/ W hg! g for .h; g/ 2 G �G:

The composition in zG is .k; hg/.h; g/ D .kh; g/ for k; h; g 2 G. The projection
morphism p0 is given by .h; g/ 7! h. For more details on this and the following,
see Example B.7.3.

(ii) Since the diagram is a pullback, andG is a group, we can assume Ob yF D G and
yF consists of triples .u; h; g/ such that u 2 F.X/, h; g 2 G, .u; h; g/ W hg !
g and, by the pullback condition, .u/ D h. Hence we can abbreviate the
notation and write an element of yF as .u; g/ W .u/g ! g. Then p1.u; g/ D u,
y.u; g/ D .u; g/, and the composition in yF is

.v; .u/g/.u; g/ D .vu; g/:

(iii) By [Bro06], 10.8.1 (Corollary 1), yF is the free groupoid on the graph yX D
p�1
1 .X/.147 But we can write elements of yX as pairs .x; g/ W .x/g ! g for
x 2 X , g 2 G. Thus yX is the well-known Cayley graph of the pair .G;X/. We
write now F. yX/ for yF .

As is explained in Section B.7, zG ! G is the covering morphism corresponding to
the trivial subgroup ofG, andF. yX/! F.X/ is the covering morphism corresponding
to the normal subgroup N D Ker  of F.X/.
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The next step is to take diagram (10.3.2) one dimension higher, getting

C. yR/
p2

��

Oı2 �� F. yX/
p1

��

O� 
O yG
p0

��
C.R/

ı2

�� F.X/
�


O G

(10.3.3)

where the left-hand square of the diagram is again a pullback of groupoids, yR D R�G
and Oı2 W C. yR/! F. yX/ is the free crossedF. yX/-module on O! W yR! F. yX/, .r; g/ 7!
.!.r/; g/. This is the free crossed module of the covering presentation h yX j yRi of the
universal covering groupoid zG of the group G.

Thus C. yR/ is the disjoint union of groups C. yR/.g/, g 2 G, all mapped by p2
isomorphically to C.R/. Elements of C. yR/.g/ are pairs .c; g/ 2 C.R/ � fgg, with
multiplication .c; g/.c0; g/ D .cc0; g/. The action of F. yX/ is given by

.c; .u/g/.u;g/ D .cu; g/:
The boundary Oı2 is given by .c; g/ 7! .ı2c; g/. The morphism p2 W C. yR/! C.R/ is
given by .c; g/ 7! c.

The elements of C. yR/.g/ are also all ‘formal consequences’

.c; g/ D
nY
iD1
..ri ; .ui /gi /

"i /.ui ;gi / D � nY
iD1
.r
"i

i /
ui ; g

�
where n > 0, ri 2 R, "i D ˙1, ui 2 F.X/, gi 2 G, .ui /gi D g, subject to the

crossed module rule ab D ba Oı2b , a; b 2 C. yR/.
It is useful to think of these formulae topologically in terms of CW-complexes. The

generating set X should be thought of as a set of loops giving the 1-cells of a reduced
CW-complex Y , so that we identify F.X/ with �1.Y 1;�/. The elements r 2 R can
be thought of as defining the 2-cells of Y , each attached according to the formula for
!r , so that G D �1.Y;�/. The element .r; g/ for r 2 R, g 2 G then corresponds to
the covering cell of the cell r at the point g, considered as a vertex of zY , and .r; g/
is also a relator for the ‘covering presentation’ of zG. Let yY n be the n-skeleton of zY ;
then �1. yY 1; yY 0/ may be identified with the groupoid F. yX/. If .u; g/ W .u/g ! g

is a path in F. yX/, and .r; .u/g/ is a free generator corresponding to a 2-cell of the
universal cover, then this generator also contributes to the group C. yR/.g/ with the
element .c; .u/g/.u;g/ D .cu; g/.

In effect, we are giving:

1) a presentation h yX j O!i of the groupoid zG, and

2) the free crossed module corresponding to this presentation.

That this construction gives a free crossed module is thanks to Theorem 10.1.12.
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2c. Contractibility of the covering up to dimension 2. So we have started the
construction of a crossed complex that we want to be acyclic. To prove this acyclicity
we construct a contracting homotopy at the same time as we are constructing the crossed
complex. So we need to construct h0 W Ob zG ! F. yX/ and h1 W F. yX/! C. yR/ as in
the following diagram:

C. yR/
Oı2 ��

1

��

F. yX/ s ��
t

��

h1
IIII

&&IIII 1

��

G

h0

\\\\\

UU\\\\ 1

��
C. yR/ Oı2

�� F. yX/ s ��
t

�� G.

(10.3.4)

Remark 10.3.2. We note for the record that h1 is to be a morphism, by Example 7.1.44
on the conditions for a contracting homotopy. Later we will use that for n > 2, hn is
to be a morphism killing the operation of the groupoid F. yX/.

For h0, choose a section 
 W G ! F.X/ of  such that 
.1/ D 1. Then 

determines

h0 W G ! F. yX/; g 7! .
g; 1/: (10.3.5)

Thus p1h0.g/ D 
.g/, and h0.1/ D .1; 1/ and by unique path lifting for covering
morphisms, h0.g/ for g 2 G can, if expressed as a word in the free generators, be
thought of as a path g! 1 in the Cayley graph yX .

Remark 10.3.3. Such a choice 
g writing g as a word in the generators is called a
‘normal form’for the element g ofG; even for a finite presentation, 
 cannot always be
found over all ofG by a finite algorithm. The usual way of finding it is by a ‘rewriting’
process, which may or may not terminate in finite time.148

The choice of h0 is often, but not always, made by choosing a maximal tree in the
graph yX – such a choice is equivalent to a choice of what is called in group theory a
Schreier transversal for the subgroup N D Ker  of the free group F.X/.

In the following picture, .x; g/ W .x/g ! g is an arrow in F. yX/; h0..x/g/
represents a path in yX from .x/g to 1, thought of as an element of F. yX/; and h0.g/
represents an path in yX from g to 1, again thought of as an element of F. yX/:

.x/g
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�
�
�

�
�

�
�

�

�
�
�

h0..x/g/ h0.g/

.x; g/

�
�

�

g

h1.x; g/

1



10.3 From presentations to free crossed resolutions 347

We now construct an element h1.x; g/ 2 C. yR/ which fills the middle, as follows. Let

`.x; g/ D .h0.x/g/�1.x; g/h0.g/ D ..
.x/g/�1x
.g/; 1/
which is a loop at 1 in F. yX/; so `.x; g/ maps to 1 in the singleton zG.1; 1/. Hence
`.x; g/ is in the image of Oı2. For each arrow .x; g/ of yX choose an element h1.x; g/ 2
C. yR/.1/ such that

Oı2.h1.x; g// D `.x; g/ D .h0.x/g/�1.x; g/h0.g/: (10.3.6)

Then, recalling Remark 10.3.2, and because F. yX/ is free on these generators .x; g/,
h1 extends uniquely to a morphism

h1 W F. yX/! C. yR/.1/ (10.3.7)

which, because it is a morphism, see again Remark B.7.9, satisfies

Oı2.h1.u; g// D h0..u/g/�1.u; g/h0.g/ (10.3.8)

for all arrows .u; g/ of F. yX/. In particular for r 2 R,

Oı2.h1.!r; g// D h0.g/�1.!r; g/h0.g/: (10.3.9)

It follows also that Oı2h1.h0.g// D .1; 1/ for all g 2 G. Further, if h0 is determined
by a choice of maximal tree T in the Cayley graph, then for each .x; g/ in T we may
choose h1.x; g/ D .1; 1/.
Remark 10.3.4. The specification of h1 is equivalent to choosing for each .x; g/ 2
X � G a representation of .
.x/g/�1x
.g/ as a consequence of the relations R.
There is in general no algorithm for such a choice, but standard rewriting procedures
have been enhanced to give these choices.149

Here are pictures of what we have so far. For each g 2 G; r 2 R we have a
2-cell .r; g/ in the Cayley graph with relations, where the boundary of .r; g/ in F. yX/,
illustrated in the following picture, is .!r; g/.

.x/g

g0
g00

.z; g00/

��������

�
�
�

.x; g/

.y; g0/
.r; g/

�
�
�

g

In this situation we have of course g D .z/g00 and .x/g D .y/g0.
The h1.e/ for all edges e of .r; g/ together form a kind of cone h1.!r; g/ on

the boundary of .r; g/, see Equation (10.3.9); gluing this cone to .r; g/ along the
common boundary forms what is known as a ‘separation element’, giving a polygonally
subdivided 2-sphere as partially shown in the following picture:
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.x; g/

.r; g/

.z; g00/

h1.z; g
00/ h0.g

00/
�

�
�

g00

h1.x; g/

1

.y; g0/

h1.y; g
0/

This ‘separation element’ defines geometrically an element of the module of identities
among relations �.P /. We now show that these separation elements form a set of
generators of �.P / as a G-module; they are determined by h0 and h1, but the proof
that they generate uses h2.

This gives all the maps shown in diagram (10.3.3) necessary to give a contracting
homotopy up to dimension 2. We now extend these to dimension 3, by constructing
elements which ‘fill’ our separation elements.

3a. Resolution of the covering up to dimension 3. Let I be a set in one-to-one
correspondence with R �G with elements written Œr; g�, r 2 R, g 2 G. Let C3.I / be
the free G-module on I . For any Œr; g� 2 I we define

ı3Œr; g� D p2
�
.h1.!r; g//

�1� r	g :
This definition on the free generators extends uniquely to an operator morphism

ı3 W C3.I /! C.R/:

It follows from Equation (10.3.7) that ı2ı3Œr; g� D 1, and so the given values ı3Œr; g�
lie in �.P / D Ker ı2, the G-module of identities among relations. Hence we have a
truncated crossed complex:

C3.I /
ı3 �� C.R/

ı2 �� F.X/
� 
O G (10.3.10)

and we now extend our previous covering truncated crossed complex by including
C3. yI /, defined to be the free zG-module on the projection yI D I � G ! G. This
implies that C3. yI / is the disjoint union of abelian groups C. yI /.g/; g 2 G, all mapped
by p3 isomorphically to C3.I /. Elements of C3. yI /.g/ are pairs .i; g/ 2 C3.I / � fgg
with addition .i; g/ C .i 0; g/ D .i C i 0; g/. The action of zG on C3. yI / is given by
.i; gg0/.g;g0/ D .i; g0/; note that this makes sense since in zG .g; g0/ W gg0 ! g0.

Let Oı3 W C3. yI / ! C. yR/ be the zG-morphism given for c 2 C3.I /, g 2 G by
Oı3.c; g/ D .ı3c; g/.
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These definitions give the morphism of truncated augmented crossed complexes:

C3. yI /
p3

��

Oı3 �� C. yR/
p2

��

Oı2 �� F. yX/
p1

��

O� 
O zG
p0

��
C3.I /

ı3

�� C.R/
ı2

�� F.X/
�


O G

(10.3.11)

where the upper row is proven acyclic up to dimension 1.

3b. Contractibility of the covering up to dimension 2. To construct the next part of
the homotopy, and again recalling Remark 10.3.2, we define h2 W C. yR/! C3. yI /.1/ to
be the groupoid morphism given on generators by .r; g/ 7! .Œr; g�; 1/, .r; g/ 2 R�G,
and killing the operation of F. yX/, i.e. it satisfies h2..c; g/.u;g// D h2.c; g/ for all
.c; g/ 2 C. yR/; u 2 F.X/.

Then from the definition of Oı3 we deduce that

Oı3h2.c; g/ D .h1.ı2c; g//�1 .c	g ; 1/
for all g 2 G; c 2 C.R/ and we have got a contracting homotopy up to dimension 2:

C3. yI /
Oı3 ��

1

��

C. yR/
Oı2 ��

1

��
h2

IIII

&&IIII

F. yX/ s ��
t

��

h1
IIII

&&IIII 1

��

G

h0

\\\\\

UU\\\\ 1

��
C3. yI / Oı3

�� C. yR/ Oı2

�� F. yX/ s ��
t

�� G.

(10.3.12)

We use h2 to prove that h0; h1, which were constructed from the presentation by certain
choices, give all identities among relations.150

Theorem 10.3.5. The module �.P / of identities among relations is generated as G-
module by the elements

ı3Œr; g� D .p2h1.!r; g//�1 r	g

for all g 2 G, r 2 R.

Proof. Since h2 and h1 give a contracting homotopy, we have Oı2 Oı3 D 0, and so the
elements p2. Oı3h2.c; g// do give identities. On the other hand, if c 2 C.R/ and
ı2c D 1, then .c; 1/ D Oı3h2.c; 1/, and so c D ı3.d/ for some d .

We note also that our algebraic setup is rich enough so that for specific presentations
the elements given in this theorem may often be computed.
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4. Dimension 4 and higher. However some of the elements of ı3.I / may be trivial,
and others may depend ZG-linearly on a smaller subset. That is, there may be a proper
subset J of I such that ı3.J / also generates the module �.P /. Then for each element
i 2 I nJ there is a formula expressing ı3i as a ZG-linear combination of the elements
of ı3.J /. These formulae determine a ZG-retraction � W C3.I /! C3.J / such that for
all d 2 C3.I /; ı3.�d/ D ı3.d/. So we replace I in the above diagram by J , replacing
the boundaries by their restrictions. Further, and this is the crucial step, we replace h2
by h0

2 D �0h2 where �0 W C3. yI /.1/! C3. yJ /.1/ is mapped by p3 to �.
This h0

2 W C. yR/ ! C3. yJ /.1/ is now used to continue the above construction. We
define C4. xJ / to be the free G-module on elements written Œd; g� 2 xJ D G � J , with

ı4Œd; g� D �p3.h0
2.ı3d; g//C dg�1:

These boundary elements give generators for the relations among the generators ı3.J /
of �.P /.

Theorem 10.3.6. A G-module generating set of relations among these generators
ı3.J / of �.P / is given by

ı4Œ�; g� D �k2.ı3�; g/C �g�1

for all g 2 G, � 2 J , where k2 W C. yR/! C3.J / is a morphism from the free crossed
F. yX/-module on Oı2 W G �R! F. yX/ such that k2 kills the operation of F. yX/ and is
determined by a choice of writing the generators ı3Œr; g� 2 ı3.I / for �.P / in terms of
the elements of ı3.J /.

Proof. This is a similar argument to the proof of Theorem 10.3.5, using the definition
of ı4 and setting k2 D p3h0

2.

From here onwards we proceed as indicated for the chain complex case in the
introductory paragraphs of this section (p. 341).

Remark 10.3.7. In the above we have defined morphisms and homotopies by their
values on certain generators, and so it is important for this that the structures of the
potential domains for these morphisms and homotopies are free on these generators.
For example, h0

2 is defined by its values on the elements .r; g/ 2 R � G. So, noting
that h2 kills the operation of F. yX/, we calculate for example

h0
2.r

usv; g/ D h0
2.r; g.u/

�1/C h0
2.s; g.v/

�1/:

In this way the formulae reflect the choices made at different parts of the Cayley graph
in order to obtain a contracting homotopy.

Remark 10.3.8. The determination of minimal subsets J of I such that ı3J also
generates �.P / is again not straightforward. Some dependencies are easy to find,
and others are not. A basic result given in Corollary 7.4.24 is that the abelianisation
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map C.R/ ! .ZG/R maps �.P / isomorphically to the kernel of the Reidemeister–
Whitehead–Fox derivative .@r=@x/ W .ZG/R ! .ZG/X . Hence we can test for depen-
dency among identities by passing to the free ZG-module .ZG/R, and we use this in
the next section. For bigger examples, this testing can be a formidable task by hand.151

Exercise 10.3.9. Use the above procedure to calculate identities among relations for
the presentation ha; b j a2; b2; a�1b�1abi of the Klein four group Z2 �Z2.

As an example of these techniques, we give the universal cover and contracting
homotopy for an earlier example.

Example 10.3.10. Here we shall prove that the free crossed resolution of a finite cyclic
group given in Example 10.2.4 is a resolution by describing its universal cover and a
contracting homotopy.

We write C1 for the (multiplicative) infinite cyclic group with generator x, and
Cq for the finite cyclic group of order q with generator c. Let  W C1 ! Cq be the
morphism sending x to c. We show how the inductive procedure given earlier recovers
the small free crossed resolution of Cq together with a contracting homotopy of the
universal cover.

Let p0 W zCq ! Cq be the universal covering morphism, and let p1 W yC1 ! C1
be the induced cover of C1. Then yC1 is the free groupoid on the Cayley graph yX
pictured as follows:

1 c
.x;1/

�� c2
.x;c/

��
.x;c2/

�� cq�2��
cq�1

.x;cq�2/

��

.xq�1;1/

��

A section

 W Cq ! C

of  is given by ci 7! xi , i D 0; : : : ; q � 1, and this defines

h0 W Cq ! yF1
by ci 7! .xi ; 1/. It follows that for i D 0; : : : ; q � 1 we have

h0.c
iC1/�1.x; ci /h0.ci / D

´
.1; 1/ if i ¤ q � 1;
.xq; 1/ if i D q � 1:

So we take a new generator x2 for F2 with ı2x2 D xq and set

h1.x; c
i / D

´
.1; 1/ if i ¤ q � 1;
.x2; 1/ if i D q � 1:
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Hence
h1.x

q; ci / D h1..x; ci /.x; ciC1/ : : : .x; ciCq�1// D .x2; 1/:
Then for all i D 0; : : : ; q � 1 we have

Qı2h1.x; ci / D h0.ci /�1.x; ci /h0.ciC1/:
Hence

�h1 Qı2.x2; ci /C .x2; ci /x�i D .�x2; 1/C .x2c�i ; 1/ D .x2.cq�i � 1/; 1/:
This gives .0; 1/ for i D 0, and .x2.c � 1/; 1/ for i D q � 1. Let N.i/ D

1C c C � � � C ci�1, so that cq�i � 1 D .c � 1/N.q � i/ for i D 1; : : : ; q � 1. Hence
we can take a new generator x3 for F3 with ı3x3 D x2.c � 1/ and define

h2.x2; c
i / D

´
.0; 1/ if i D 0;
.x3N.q � i/; 1/ if 0 < i 6 q � 1:

Now we find that if we evaluate

�h2 Qı2.x3; ci /C .x3c�i ; 1/ D �h2..x2; ci�1/c C .x2; ci //C .x3c�i ; 1/

we obtain for i D 0
�h2.x2; cq�1/C .x3; 1/ D .0; 1/;

for i D 1
0C h2.x2; c/C .x3cq�1; 1/ D .x3.N.q � 1/C cq�1/; 1/ D .x3N.q/; 1/

and otherwise

.x3.�N.q � i C 1/CN.q � i/C cq�i /; 1/ D .0; 1/:
Thus we take a new generator x4 for F4 with ı4x4 D x3N.q/ and

h3.x3; c
i / D

´
.x4; 1/ if i D 1;
.0; 1/ otherwise.

Then

�h3 Qı4.x4; ci /C .x4c�i ; 1/ D �h3.x3N.q/; ci /C .x4c�i ; 1/
D �h3.x3N.q/c�i ; 1/C .x4c�i ; 1/
D .x4.cq�i � 1/; 1/:

Thus we are now in a periodic situation and we have the result given earlier as Exam-
ple 10.2.4:
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Theorem 10.3.11. A free crossed resolution F� of Cq may be taken to have single free
generators xn in dimension n > 1 with .x1/ D c, ı2.x2/ D xq1 and when n > 3

ın.xn/ D
´
xn�1.c � 1/ if n is odd;

xn�1.1C c C � � � C cq�1/ if n is even:

Remark 10.3.12. These methods may also be used to derive the standard free crossed
resolution of a group or groupoid which we have given in Definition 10.2.7.

Some fundamental results relating free crossed complexes to CW-complexes are
the following, for which we cannot give the proofs here.152

Theorem 10.3.13. LetX� be a CW-filtered space, and let W …X� ! C be a homotopy
equivalence to a free crossed complex with a preferred free basis. Then there is a
CW-filtered space Y�, and an isomorphism ˛ W C Š …Y� of crossed complexes with
preferred basis, such that ˛ is realised by a homotopy equivalence f W X� ! Y�, i.e.
˛ D ….f /.153
Corollary 10.3.14. If A is a free crossed resolution of a group G, then A is realised
as free crossed complex with preferred basis by some CW-filtered space Y�.

Proof. We only have to note that the group G has a classifying CW-space BG whose
fundamental crossed complex ….BG/ is homotopy equivalent to A.

Baues also points out in [Bau89], p. 357 an extension of these results which we can
apply to the realisation of morphisms of free crossed resolutions. A new proof of this
extension is given by Faria Martins in [FM07], using methods of Ashley [Ash88].

Proposition 10.3.15. Let X D K.G; 1/; Y D K.H; 1/ be CW-models of Eilenberg–
Mac Lane spaces and let h W …X� ! ….Y�/ be a morphism of their fundamental
crossed complexes with the preferred bases given by skeletal filtrations. Thenh D ….g/
for some cellular g W X ! Y .

Proof. Certainly h is homotopic to….f / for some f W X ! Y since the set of pointed
homotopy classes X ! Y is bijective with the morphisms of groups A ! B . The
result follows from [Bau89], p. 357, (**), (‘if f is …-realisable, then each element in
the homotopy class of f is …-realisable’).

These results are exploited in [Moo01], [BMPW02] to calculate free crossed reso-
lutions of the fundamental groupoid of a graph of groups.

10.4 Acyclic models

The classical theory of acyclic models is a powerful tool for comparing different repre-
sentations of homology by chain complexes.154 It has also been useful for comparing
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cohomology theories of algebraic structures. The traditional method applied to exam-
ples of spaces gives isomorphisms of homology and so does not directly give, even
with an isomorphism of fundamental groups, an isomorphism of homotopy groups.
The same sort of technique works for crossed complexes, but with some technical dif-
ferences. Thus the advantage of the theorem for crossed complexes is that to get a
homotopy equivalence does not require a detour, sometimes mistakenly omitted, via
universal covering spaces. The method of proof is closely related to those of Theo-
rem 10.2.11 and to that of a version of the traditional theorem, but the special features
of crossed complexes in dimensions 6 2 have to be taken into account.

10.4.i The Acyclic Model Theorem

Definition 10.4.1. Let C be a category and let F W C! Crs be a functor. A base B for
F is in the first instance a family of elements bj 2 F.Bj /n where the Bj are objects
of C and the j come from a family J n, n > 0, of indexing sets. Thus B is to consist
of the whole structure of the J n, Bj , bj . The Bj are called the objects of the base and
the bj the elements of the base. The requirement is that for all n > 0 F.X/n is ‘free’
on the elements F.
/.bj / for all j 2 J n and 
 W Bj ! X in C. This means that for
each n > 0 the elements F.
/.bj /:

(i) if n D 0, are distinct and give all elements of F.X/0;
(ii) if n D 1, freely generate the groupoid F.X/1;

(iii) if n D 2, freely generate the crossed module F.X/2 D .ı2 W C2 ! C1/ as
C1-module;

(iv) if n > 3, freely generate the �1F.X/-module F.X/n.

If A � Ob.C/ is a class of objects containing all Bj , j 2 J n, n > 0 then we also say
F has a base in A.

Example 10.4.2. Let C D Top and let …‡ W Top! Crs be given by

…‡ .X/ D ….kS�.X/k�/
where S�.X/ is the simplicial singular complex of X consisting of all continuous
maps �n ! X with its natural structure as simplicial set, and kKk denotes the thick
geometric realisation of a simplicial set as explained in Section A.10 of Appendix A.
Then …‡ has a base where J n consists solely of n, Bn D �n and bn is the identity
map �n W �n ! �n. The point is that a singular simplex 
 W �n ! X is induced
from the identity map 1 W �n ! �n by 
 . Note that this does not give a base for
… W Simp! Crs which is why we need the following definition.

Definition 10.4.3. Let C be a category. A functor P W C! Crs is said to be projective
if there is a functor F W C! Crs which has a base and such that for each n > 1:155

(i) tr2P is a natural retract of tr2F considered as functors to XMod;
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(ii) if n > 3 then Pn is a natural retract of Fn, considered as functors to Mod, and
over the natural retraction �1P of �1F induced by that given by (i).

Remark 10.4.4. It is because the operations in a crossed complex are so much part of
their structure, in a sense are intrinsic, that we have to make this careful definition of
projective; as we shall see, this condition is satisfied in useful circumstances, namely
the functors … from simplicial and cubical sets to crossed complexes.

Definition 10.4.5. Let Q W C! Crs be a functor. We say Q is acyclic on the base B

if Q.Bj / is an acyclic crossed complex for all objects Bj of the base.

Theorem 10.4.6 (Acyclic Model Theorem). Let P;Q W C! Crs be functors such that
Q is acyclic and suppose there is a base B and functor F W C ! Crs free on B, and
for which P is projective. Then any natural transformation � W P0 ! Q0 is realised
by a natural transformation T W P ! Q and any two such realisations are naturally
homotopic.

Proof. Let 	n W Pn ! Fn, �n W Fn ! Pn be the family of natural transformations
supplied by the definition of projective, so that �n	n D 1. We will often drop the
suffix n when it can be understood from the context.

We consider first the right-hand part of the following diagram:

F2

S2��H
H
H
H
H
H
H

�

RR88888888

ı2 �� F1

S1��H
H
H
H
H
H
H

ı�
��

�

RR88888888 ıC

�� F0

�
RR88888888

S0��H
H
H
H
H
H
H

�F �� �0F

�
UU<<<<<<<<

P2
ı2 ��

T2
DDG

G
G

G

�

9988888888
P1

T1
DDG

G
G

G

�

9988888888
ı�

��

ıC

�� P0

�

9988888888

T0
DDG

G
G

G
�P �� �0P

�

YY<<<<<<<<

�

0033333333

Q2
ı2 �� Q1

ı�
��

ıC

�� Q0
�Q

�� �0Q.

Notice that by our assumptions, 	; � give natural morphisms of the crossed module
parts P ! F , F ! P respectively. Our method is to construct Sn W Fn ! Qn, then
define Tn D Sn	, and find this is the appropriate extension.

We are trying to find a natural crossed complex morphism T W P ! Q which
induces � . The general plan is shown by the diagram

b

H
H
H

��H
H
H

�
��]]]]]]]]	

VV]]]]]]]] P ��

�

44B
BBBBBBBB

qb
choose

Q ��
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where b is a free generator.
We first define T in dimension 0.
The points of F.X/0 are of the form F.
/.b/ for b 2 F.B/0, B 2 B and all

morphisms 
 W B ! X . Choose a point qb 2 Q.B/0 such that Qqb D �P�b, and
define SX0 .F.
/.b// D Q.
/.qb/. This defines SX0 and we set T X0 D SX0 	. Then

QT
X
0 D QSX0 	 D �P�	 D �P :

We next verify naturality of S0, and so of T0. Let f W X ! Y be a morphism in
C. Then we check the naturality condition on the basis elements F.
/.b/ of F0.X/.
Then

Q0.f /S0.X/.F.
/.b// D Q0.f /.Q0.
/S0.B/.b//
D Q0.f 
/.S0.B/.b//
D S0.Y /F0.f /.S0.B/.b//:

Thus naturality is automatic from the construction, and we will not repeat this proof in
higher dimensions.

We next define a morphism of groupoids S1 W F.X/1 ! Q.X/1.
LetX 2 C. We know the groupoid F1.X/ has a free basis of elements F.
/.b/ for

b 2 F1.B/, B 2 B and all morphisms 
 W B ! X . Consider q�
b
D T0ı

��b; qC
b
D

T0ı
C�b 2 Q.B/0. By acyclicity of Q.B/1 there is an element qb W q�

b
! qC

b
2

Q.B/1. We therefore define SX1 W F1.X/ ! Q1.X/ to have value Q.
/.qb/ on the
basis element F.
/.b/. We then set T1 D S1	. By naturality, ı˙S1 D S0ı

˙ D
T0ı

˙�. Hence T0ı˙ D ı˙T1.
At the next stage we consider the above diagram and a basis element F.
/.b/ for

b 2 F.B/2. Then from the commutativity of the diagram of solid arrows, T1ı2�b
is a loop in Q2.B/. By acyclicity of Q.B/ we can find qb 2 Q2.B/ such that
ı2qb D T1ı2�b, and we set SX2 .F.
/.b// D Q2.
/.qb/. This defines S2 and we set
T2 D S2	. Since 	, � in dimensions 1 and 2 give crossed module morphisms, because
�	 D 1, and by the above argument on naturality, T2 gives the required extension
of T1.

Continuing this argument, gives the natural transformation T as required.
We now have to show that any two such natural transformations, say T , U are

naturally homotopic. For this, we replace F by F 0 D � ˝ F and use analogous
arguments to extend the natural transformation defined by T;U on f0; 1g˝F to �˝F
on the extra basis elements �˝ .F.
/.b//. We omit further details.

Corollary 10.4.7. Let P;Q W C ! Crs be functors such that P is projective with
respect to a free functor with base B on which Q is acyclic, and Q is projective
with respect to a free functor with base B 0 on which P is acyclic. Then any natural
equivalence �0P ! �0Q extends to a natural homotopy equivalence P ! Q.

Exercise 10.4.8. Develop a version of the Acyclic Model Theorem in which the notion
of free is replaced by relatively free.
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10.4.ii Simplicial sets and normalisation

An introduction to the theory of simplicial objects setting out our notation is given in
Appendix A, Section A.10. In particular we need the notion of simplicial set without
degeneracies which we call a presimplicial set (it might also be called an ‡ -set, since
it is defined by a subcategory which we write ‡ of the usual simplicial site �).156

The singular simplicial setS�X of a topological spaceX has a geometric realisation
as a simplicial set which is written jS�X j and also a realisation as a presimplicial
set which is written kS�Xk, and often called the thick realisation. It is proved in
Section A.10 that the natural projection

kS�Xk ! jS�X j
is a homotopy equivalence, and it follows that the corresponding morphism of free
crossed complexes using their skeletal filtrations is also a homotopy equivalence.

As explained in Section 9.9, there is for each n > 0 a crossed complex a�n

which is a crossed complex model of the n-dimensional simplex; thus the boundary
is given by the Homotopy Addition Lemma, Theorem 9.9.4. This family of crossed
complexes a�n can be regarded as a cosimplicial set a� W �! Crs so that we obtain
the fundamental crossed complex of a simplicial set K as a coend

…K D
Z �;n

Kn � a�n: (10.4.1)

Also we have the unnormalised crossed complex of a simplicial set

…‡K D
Z ‡;n

Kn � a�n: (10.4.2)

These crossed complexes are homotopy equivalent; this is the normalisation theorem
for which we will give an acyclic model proof here.157 Also both crossed complexes
are needed for the purposes of acyclic models. First we prove:

Theorem 10.4.9. For all q > 0 the functors .…K/q , .…‡K/q on simplicial sets K
have the property that the first is a natural retract of the second.

Proof. We first construct an intermediate ‘reduced’ functor …redK.
A simplicial set K contains its subsimplicial set generated by the elements of K0:

we write this as xK0. It is the disjoint union of the simplicial sets generated by the
elements of K0. We form the crossed complex …redK by the pushout in the category
Crs:

…‡ xK0

��

� �� K0

��
…‡K N�

�� …redK

(10.4.3)
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where K0 denotes here also the trivial crossed complex on the set K0. Because as a
crossed complexK0 is a natural retract of…‡ xK0 it follows that…redK is also a natural
retract of …‡K. In fact � is a homotopy equivalence of crossed complexes and so it
follows from the gluing theorem for homotopy equivalences in the category Crs (see
Remark B.8.2) that N� is also a homotopy equivalence of crossed complexes.

We have to consider the dimensions 1, 2 and q > 3.
The groupoid C1 D .…redK/1 is the free groupoid on the elements ofK1, but with

the elements "0v equated to identities for each v 2 K0. Thus .…redK/1 D .…K/1.
In dimension 2, we note that if x 2 K1, then in .…redK/2, ı2."ix/ D 1tx for

i D 0; 1: this is a reason for constructing .…redK/. For i D 0; 1, letˆi W .…redK/2 !
.…redK/2 be given on the basis elements by ˆik D k."i@iC1k/�1. Then

ˆi"ix D 1; ˆ1"0x D ."0x/."20tx/�1 D "0x
in .…redK/2, so that ˆ D ˆ0ˆ1 vanishes on degenerate elements of K2. Further,
ı2ˆ D ı2. So ˆ defines a morphism .…redK/2 ! .…redK/2 of crossed .…K/1-
modules which vanishes on degenerate elements and hence defines in dimension 2 a
section of the projection …redK ! …K.

In dimensions q > 3 and for 0 6 j < q we define ĵ W .…redK/q ! .…redK/q
by ĵk D k � "j @jC1k on the free basis of elements k of Kq not degeneracies of the
vertices, and set ˆ D ˆ0 : : : ˆq�1. Then ĵ "jx D 0 and for i < j we have

ĵ "ix D "ix � "i"j�1@jC1x:

Henceˆ is trivial on degeneracies and so determines a section of .…redK/q ! .…K/q
which is also natural for maps of K.

Theorem 10.4.10 (Simplicial Normalisation Theorem). The natural map …‡K !
…K is a natural homotopy equivalence of crossed complexes.

Proof. This is a consequence of the Acyclic Model Theorem.

10.4.iii Cubical sets and normalisation

The reader should leave this section till after studying cubical sets and their geometric
realisations Chapter 11, but the material here is part of the subject of Acyclic Models.
So in this section we use notions given later in Definition 11.1.4, namely that a cubical
set is a functor K W �op ! Set, where � is the category called the cubical site.
Alternatively, K is defined by a family K D fKngn>0 of sets together with face
operations @i̇ W Kn ! Kn�1 and degeneracy operations "i W Kn�1 ! Kn for i D
1; : : : ; n and n > 1, satisfying the usual cubical relations.

We shall also need the notion of cubical set without degeneracies, which we call
a precubical set; this is given by a functor „op ! Set where „ is the appropriate
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subcategory of �. Clearly any cubical set determines a precubical set by means of the
inclusion „! �.

The family of crossed complexes �n can be regarded as a cocubical set �� W �!
Crs so that the fundamental crossed complex of a cubical set K given in Defini-
tion 11.4.3 may be obtained as a coend

…K D
Z �;n

Kn � �n: (10.4.4)

Also we may define the unnormalised crossed complex of a cubical set K as the coend

…„K D
Z „;n

Kn � �n: (10.4.5)

These crossed complexes are not homotopy equivalent, but we need both for the pur-
poses of acyclic models.

Theorem 10.4.11. For all q > 0 the functors .…K/q , .…„K/q on cubical setsK have
the property that the first is a natural retract of the second.

Proof. Again we work through an intermediate step. A cubical set K contains its
subcubical set generated by the elements of K0: we write this as xK0. It is the disjoint
union of the cubical sets generated by the elements ofK0. We form the crossed complex
…redK by the pushout in the category Crs:

…„ xK0

��

�� K0

��
…„K �� …redK

(10.4.6)

where K0 denotes here also the trivial crossed complex on the set K0. Because as a
crossed complexK0 is a natural retract of…„ xK0 it follows that…redK is also a natural
retract of …„K.

We have to consider the dimensions 1, 2 and q > 3.
The groupoid C1 D .…redK/1 is the free groupoid on the elements ofK1, but with

the elements "1v equated to identities for each v 2 KO . Thus .…redK/1 D .…K/1.
In dimension 2, we note that if x 2 K1, then in .…redK/2, ı2."ix/ D 1tx for

i D 1; 2: this is a reason for constructing .…redK/. Let ˆi W .…redK/2 ! .…redK/2
be given on the basis elements by ˆik D k."ik@C

i k/
�1. Then

ˆi"ix D 1; ˆ2"1x D ."1x/."21tx/�1 D "1x
in .…redK/2, so that ˆ D ˆ2ˆ1 vanishes on degenerate elements of K2. Further,
ı2ˆ D ı2. So ˆ defines a morphism of crossed .…K/1-modules .…redK/2 !
.…redK/2 which vanishes on degenerate elements and hence defines in dimension
2 a section of the projection …redK ! …K.
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In dimensions q > 3 we define ˆi W .…redK/q ! .…redK/q on the free basis of
elements of Kq which are not degeneracies of the vertices by ˆik D k � "i@C

i k, and
set ˆ D ˆ1 : : : ˆq . Then ˆ is trivial on degeneracies and so determines a section of
.…redK/q ! .…K/q which is also natural for maps of K.

10.4.iv Relating simplicial and cubical by acyclic models

In this section we relate simplicial and cubical singular theories on spaces.158

Lemma 10.4.12. LetX be a contractible space. Then the crossed complexes…jS�.X/j
and …jS�.X/j are both contractible.

Proof. Let 	 W I � X ! X be a contracting homotopy. This can also be regarded as
a map 	0 W CX ! X where CX D .I � X/=.f1g � X/. If f W �n ! X is a singular
simplex, define h0.f / W �nC1 ! X to be the composite

�nC1 D C�n Cf��! CX
�0

�! X:

This defines a contracting homotopy on the free basis of …jS�.X/j.
In the cubical case, we get the homotopy by taking f W I n ! X to the composite

I nC1 D I � I n 1�f���! I �X ��! X:

Theorem 10.4.13. For any space X , there is a natural crossed complex homotopy
equivalence

…jS�.X/j ' …jS�.X/j:
Proof. This homotopy equivalence extends the identity in dimension 0.

10.4.v The Eilenberg–Zilber–Tonks Theorem

We have now set up enough machinery to prove this theorem by an acyclic model
argument, but in fact a more precise result has been proved and so it is this that we
state, referring the reader to [Ton03] for the proof and more detail.159

Here we give a statement of Tonks’ result.

Theorem 10.4.14 (Eilenberg–Zilber–Tonks). Let K, L be simplicial sets. Then there
are natural morphisms of crossed complexes

a W ….K � L/! …K ˝…L
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natural in simplicial setsK,L and which are associative in the sense that the following
diagram commutes:

….K � L �M/

a

��

a �� ….K � L/˝…M
a˝id

��
…K ˝….L �M/

id˝a
�� …K ˝…L˝…M .

for simplicial sets K, L, M . Further, there is a homotopy inverse b to a, also asso-
ciative, such that ab D 1, and making b.…K ˝…L/ a strong natural deformation
retract of ….K � L/.

Remark 10.4.15. There should be enough information in this chapter and in standard
facts in simplicial theory on anodyne extensions for you to complete the acyclic model
proof.160

Remark 10.4.16. The formula given by Tonks for a is

an.x; y/ D

8̂̂̂<̂
ˆ̂:
x ˝ y for n D 0;
x ˝ y1 C x0 ˝ y for n D 1;
.x ˝ y2/x0 ˝ y01 C x0 ˝ y C .x01 ˝ y12/x0 ˝ y01 for n D 2;
x0 ˝ y CPn

iD1.x0:::i ˝ yi :::n/x0˝y01 for n > 3:

In this a subscript notation is used for face of simplices:

xi0:::ik D @j1
: : : @jr�k

x 2 Kk
if fi0 < � � � < ikg, fj1 < � � � < jr�kg is a partition of Œr� D f0; 1; : : : ; rg and x 2 Kr .
In particular xi is the i ’th vertex of x and x01 is the 1-simplex between the vertices x0
and x1 of x. Further, in this theorem the following more traditional formula is used for
the boundary operator in …K on x 2 Kn:

ınx D

8̂<̂
:
�@1x C @0x C @2x if n D 2;
@2x C .@0x/x01 � @3x � @1x if n D 3;
.@0x/

x01 CPn
iD1.�1/i@ix if n > 4:

The formula given for b is in terms of shuffles, as in the chain complex approach.161

Remark 10.4.17. Theorem 9.5.4 proves thatr W Crs! Chn preserves tensor products.
So we also obtain an Eilenberg–Zilber–Tonks Theorem with values in chain complexes
with a groupoid of operators.
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10.4.vi Excision

We give here a crossed complex version of a result which in work on singular homology
is commonly called an Excision Theorem.162

We write TopCov for the category of pairs .X;U/ where X is a topological space
and U is a family of subsets of X whose interiors cover X . If Y is a subspace of X
and U is such a cover of X then Y \U consists of the sets Y \ U for all U 2 U.
A morphism f W .X;U/ ! .Y;V/ is a map f W X ! Y such that for every U 2 U

there is a V 2 V such that f .U / � V . Two maps f; g W .X;U/ ! .Y;V/ are called
homotopic, f ' g, if there exists a homotopy H W I � X ! Y from f to g such
that for every U 2 U there is V 2 V such that H.I � U / � V . The definitions of
a homotopy equivalence and of strong deformation retract are the obvious ones. The
trivial pair .X; T / has T consisting solely of X .

Definition 10.4.18. We write S�.X;U/ for the subsimplicial set of S�.X/ of sim-
plices 
 W �n ! X such that 
.�n/ � U for some U 2 U.

Although in this section we are working on simplicial singular complexes, it is
convenient in the following argument to use some notions of collapsing of cubes which
are developed in Section 11.3.i, and to which you may need to refer. You will see that
in the argument of the proof of the next lemma, the geometry of the cube is more
convenient than that of the simplex.

Lemma 10.4.19. Every object .�n;U/ in TopCov is contractible.

Proof. Because of the homeomorphism of�n with I n it is sufficient to prove that any
.I n;U/ is contractible in TopCov.

We construct a finite sequence .Xi ;U i /, i D 0; : : : ; k, of objects in TopCov such
that .X0;U 0/ D .I n;U/ and .Xk;U k/ D .�; T / with � a singleton, and .Xi ;U i /

is a strong deformation retract of .Xi�1;U i�1/.
By the Lebesgue covering lemma, the cube I n may be subdivided by hyperplanes

parallel to its faces into a finite number say k of subcubes each of which is contained in
someU 2 U. Now beginning in one corner we collapse one subcube after another into
that part of its boundary which is in common with the remaining ones, shown in the
diagram by double lines. The last cube is retracted onto the corner �. (An analogous
argument is used in the proof of Proposition 14.2.8.)

1 2 3 4

5 6 :::

k

�

(collapse)
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So we define Xi as Xi�1 with the i -th cube retracted off and U i as Xi \ U i�1.
Obviously .Xi ;U i / is a strong deformation retract of .Xi�1;U i�1/.

Theorem 10.4.20. The inclusion

i W S�.X;U/! S�.X/ (�)

is a homotopy equivalence.

Proof. We actually prove that the induced morphism

i 0 W …S�.X;U/! …S�.X/ (��)

is a homotopy equivalence of crossed complexes.
We consider both sides of .��/ as functors P , Q from TopCov to the category of

crossed complexes with

P.X;U/ D …S�.X;U/; Q.X;U/ D …S�.X/:
We use theAcyclic Model Theorem. As models in TopCov we choose all pairs .�n;V/,
n > 0, with�n a standard simplex and V a covering of�n having an open refinement.
Both functors are acyclic on models, by Lemma 10.4.19.

Let F W TopCov ! Crs be given by … NS�.X;U/ where this singular complex has
n-simplices the maps .�n;V/! .X;U/ in TopCov. Then F has a base the identities
.�n;V/! .�n;V/. The inclusion i W Q.X;U/! F.X;U/ is given by considering

 W �n ! X as 
 W .�n; 
�1U/! .X;U/, and the forgetful functor TopCov ! Top
defines r W F ! Q such that ri D 1. So Q is a retract of a free functor, while P is
actually free with base in dimension n the identity .�n; T /! .�n; T /. So the Acyclic
Model Theorem and its Corollary 10.4.7 applies.

Exercise 10.4.21. Develop an analogue of the above argument for the cubical singular
complex.

Notes

130 p. 324 The notion of resolution by chain complexes has led to an advanced view
of homological algebra using the notion of triangulated category. A substantial
reference is [Nee01]. Perhaps this idea can be usefully developed for crossed
complexes, and so give a somewhat nonabelian view of that area.

131 p. 328 For more references on this kind of argument using fibred exponential
laws see [BH87], [HK89]. The necessity and sufficiency of what is now called
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the Giraud–Conduché condition on a functor of categories is summed up in The-
orem 4.4 on page 40 of [Gir64], and was rediscovered in [Con72]. A general
discussion is in [BN00].

132 p. 329 The notion of free crossed resolution was crucial in the work of Hueb-
schmann [Hue80a], [Hue81a], [Hue81b].

133 p. 331 This free crossed resolution of finite cyclic groups was introduced by Brown
and Wensley in [BW95].

134 p. 331 A proof of a generalisation of this fact to the case r is a proper power, say
of order q, may be found in [DV73]. They attach to the free crossed module on r
a free resolution of the cyclic group of order q.

135 p. 332 An exact sequence of groups 1 ! M ! E ! G ! 1 is also in the
literature called an extension of G byM , see for example [ML63], a terminology
seen to agree with the notationH 2.G;M/ for the caseM is aG-module. However
there is a good case for saying an extension of M should be bigger than M , as in
field extensions. Generalising the following remarks on factor sets from groups to
groupoids is done in [BH82].

136 p. 335 Another method of giving a group is in terms of polynomial laws, and for
this other methods are appropriate, such as homological perturbation theory, see
for example [Hue91], [GL01].

137 p. 336 Tonks proved in [Ton94], Theorem 3.1.5, that the tensor product of free
crossed resolutions of a group is a free crossed resolution: his proof used the
crossed complex Eilenberg–Zilber Theorem, [Ton94], Theorem 2.3.1, which was
published in [Ton03].

138 p. 336 These are special cases of results on graphs of groups which are given in
[Moo01], [BMPW02], but these cases nicely show the advantage of the method
and in particular the necessary use of groupoids. See also [Hor79].

139 p. 337 The injectivity of i 0; j 0 follows from the normal form for this construction,
which may be found in books on combinatorial group theory. This injectivity
result is a special case of the normal form for the fundamental groupoid of a graph
of groups given in [Hig76], [Moo01].

140 p. 338 This idea of forming a fundamental groupoid is due to Higgins in the case
of a graph of groups [Hig76], where it is shown that it leads to convenient normal
forms for elements of this fundamental groupoid. This view is pursued in [Moo01],
see also [BMPW02], from which this section is largely taken. The book [Koz08]
is a handy reference for homotopy colimits from a practical viewpoint.
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141 p. 338 For more elaborate examples and discussion see [Moo01], [BMPW02].

142 p. 340 Further examples are developed in [Moo01].

143 p. 342 This process is carried out for the example of the group S3 in the setting
in [BRS99] for the setting described below. In modules over commutative rings
these ideas involve usually Gröbner basis calculations. These ideas have been
developed in [Ell04] to compute free resolutions of groups.

144 p. 343 The methods of Section 10.3.ii were published in [BRS99]. They have been
developed by Ellis in [Ell04] and in subsequent GAP programs, [Ell08]. He works
by constructing a universal covering CW-complex rather than the corresponding
crossed complex.

145 p. 343 The earlier results of Peiffer, Reidemeister and Whitehead, [Pei49], [Rei49],
[Whi49b] on the relations between identities among relations and second homotopy
groups of 2-complexes were given an exposition in [BH82], written in memory
of Peter Stefan who died in a climbing accident in 1979. The notion of calcu-
lating using pictures explained there was developed by a number of authors, see
for example [CCH81], and the survey in [HAMS93]. The paper [BRS99] gave
the calculation method explained here, which has the advantage over methods in
[HAMS93] of being able to calculate higher syzygies (identities among identities,
and so on). The ideas have been developed in [HW03] and implemented in GAP4,
[WA97].

146 p. 344 This use of homotopies was inspired by work on the Homological Per-
turbation Lemma, for example [BL91], where the construction of homotopies is
crucial. Such use also agrees with the general groupoid philosophy, in which an
arrow g W a ! b in a groupoid may be thought of as a ‘proof that a and b are
equivalent’. The .nC 1/-st stage of the resolution is constructed from algebraic
information on the contraction of the resolution at lower levels. Such a process
is more difficult to carry out geometrically: for example the method of pictures
used in [HAMS93] uses deformations of pictures to obtain generators of second
homotopy groups, but it is not so obvious how to record the information on these
deformations for use at the next stage of syzygies.

147 p. 344 The free groupoid on a graph was introduced in [Hig71], and a recent use
is in [CP01].

148 p. 346 See works on ‘rewriting’, for example [BO93], [EW07], and references in,
say, Wikipedia.

149 p. 347 It is shown in [HW03] how a ‘logged rewriting procedure’ will give such a
choice if the monoid rewrite system determined by R may be completed, and that
this allows for an implementation of the determination of h1.
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150 p. 349 The other method well known in the literature for constructing identities
among relations is that of ‘pictures’, see for example [BH82], [HAMS93]. How-
ever these methods have difficulties with finding the next level of syzygies, since
these should be constructed from deformations of pictures. Such deformations are
described by 3-dimensional information, which is more difficult to record.

151 p. 351 An implementation of Gröbner basis procedures for finding minimal sub-
sets which still generate is described in [HR99]. The above methods are used in
[BRS99] to construct levels 1, 2 and 3 of a free crossed resolution for the symmet-
ric group S3. It would take us too long to give more details. These methods have
been developed by Ellis in [Ell04], [Ell08], phrased in terms of constructing the
universal covering CW-complex, but successful in obtaining results.

152 p. 353 The close relation between free crossed resolutions and CW-complexes
shown in the following results is illustrated by the successful translation of these
methods to the construction of cell complexes in [Ell04] and subsequent imple-
mentations of homological calculations in [Ell08].

153 p. 353 This result goes back to Whitehead [Whi50b], Theorem 17, and Wall
[Wal65], and is discussed further by Baues in [Bau89], Chapter VI, §7. Baues
points out that Wall states his result in terms of chain complexes, but that the
crossed complex formulation seems more natural, and avoids questions of real-
isability in dimension 2, which are unsolved for chain complexes. Also Baues’
results are more general since they deal with complexes under a given complexD.

154 p. 353 The theory of acyclic models was founded in the classic paper [EML53a],
and was in the adjacent paper used to prove what is now called the Eilenberg–Zilber
Theorem in [EZ53], determining the chain complex of a product of simplicial sets
as a tensor product of chain complexes (compare Section 10.4.v). Many other
applications were subsequently developed, for example [GM57]. The work of Barr
which is given an exposition in [Bar02] gives an advanced view of the traditional
chain complex theory, using double chain complexes, and it would be interesting to
know if analogues can be usefully developed for crossed complexes. Our method
is analogous to the exposition in [Dol95]. It is hoped that this version of theAcyclic
Model Theorem will find new applications. Another route to new work could be
relating this theorem to the monoidal structure, see [GSNPR08].

155 p. 354 We refer the reader to texts or web information for further information on
the term ‘projective’, particularly projective module.

156 p. 357 Presimplicial sets were called �-sets in [RS71].

157 p. 357 The crossed complex simplicial normalisation theorem given here was first
proved directly in [BS07], following the chain complex model in [ML63].
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158 p. 360 This relation between simplicial and cubical theory follows the method
given in [EML53a], but obtains a more powerful result.

159 p. 360 This is a theorem that in its chain complex version was first proved by the
method of acyclic models, [EZ53]. See also [Eps66]. The corresponding theorem
for crossed complexes was asserted by an acyclic model proof in [BH91], and
proved directly and in detail in [Ton94], [Ton03]. The theorem and the subtle
extra rules proved by Tonks were used in [BGPT97], [BGPT01]. Tonks’ work
was also inspired by showing him a 10-page letter from Michael Barratt to Brown
written in 1959, reworking in detail the Eilenberg–Mac Lane proof in [EML53b];
the letter ended: ‘Dawn breaks; I hope nothing else does!’.

160 p. 361 For the concept of anodyne extension in the simplicial context, see for
example [GZ67], [GJ99].

161 p. 361 For more on shuffles, see Section 4 in [Gug57]. The extra relations between
a; b;  were first written down in [Shi62], and proved in the crossed complex case
in [Ton03]. These properties of this deformation retraction in the chain complex
case have been used in what is now called homological perturbation theory, see for
example [Bro65b], [LS87], [JL01], [Hue89], but a corresponding crossed complex
version of that theory has not been developed. Indeed, in the traditional chain
theory a considerable importance is attached to twisting cochains, first introduced
in [Bro59]. In later work, a key role is also played by the homotopy  W ba ' 1

and the ‘side conditions’ this satisfies, which enable specific formulae for twisted
differentials. These conditions are valid in the crossed complex situation, as shown
by Tonks, but it has not been seen how to make the perturbation theory work in the
crossed complex situation. These conditions on the maps of the Eilenberg–Zilber
Theorem are also used in two papers on equivariant crossed complexes, [BGPT97],
[BGPT01]. Another application of the EZT Theorem is in [MT07].

162 p. 362 The work for this section is a modified version of [Sch76]. The same
retraction argument on a subdivision of the n-cube is used in our proof of Propo-
sition 14.2.8. For the standard proof of this excision result involving singular
simplicial chain complexes see for example Theorem 9.4.5 in [tD08].



Chapter 11

The cubical classifying space of a crossed complex

Introduction

The homotopy classification of maps between topological spaces is among the most
difficult areas in homotopy theory, and so this chapter is one of the most important in this
book. We define for a crossed complex C , and in a functorial way, a topological space
BC , called the classifying space of C . The main property is the following Homotopy
Classification Theorem which generalises classical theorems of Eilenberg–Mac Lane:

ŒX;BC � Š Œ…X�; C �

for a CW-complex X with skeletal filtration X�, and where …X� is the fundamental
crossed complex of the filtered space X�. Here the left-hand side gives continuous
homotopy classes of maps of spaces and the right-hand side gives algebraic homotopy
classes of morphisms of crossed complexes. The proof uses a considerable part of
the technology of crossed complexes developed in the rest of this book, and the result
is a special case of a description of the weak homotopy type of the space of maps
X ! BC .

Because the crossed complex…X� is free, the right-hand side of the above equation
can be quite explicit, particularly ifX� is a finite cell complex. A morphism…X� ! C

is determined by a list of elements of C in various dimensions, subject to boundary
conditions. The homotopy classification of these is then an explicit equivalence relation.
Of course, because of the nonabelian nature of some of the information in a crossed
complex, there are computability questions, and there are also questions of how to
analyse this information. We shall find the notion of fibration of crossed complexes,
and some associated exact sequences, useful in this respect in the later Section 12.1.ii.

Because of the central nature of cubical methods for some of our major results on
crossed complexes, it is convenient to define the classifying space BC cubically.163

So the first sections of this chapter are devoted to an account of cubical sets and related
results. Cubical sets have an advantage over simplicial sets in the easier account of
homotopies and higher homotopies.

The main applications of the classifying space of a crossed complex follow as for
the simplicial version in [BH91], and are given in Chapter 12.
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11.1 The cubical site

This section contains an introductory account of the category Cub of cubical sets and
its relationship with the category Top of topological spaces.164

11.1.i The box category

The usual definition of cubical set is as a functor from a small category which we call
the site for cubical sets. We begin by defining this category.

Definition 11.1.1. The box category � is the subcategory of Top having as objects the
standard n-cubes I n D Œ0; 1�n for n > 0 and the morphisms �.I n; Im/ are the maps
that can be got by composition of the face inclusions and of projections

ı˛i W I n ! I nC1; 
i W I nC1 ! I n

defined respectively by

ı˛i .x1; : : : ; xi�1; xi ; : : : ; xn/ D .x1; : : : ; xi�1; l.˛/; xi ; : : : ; xn/
for i D 1; 2; : : : ; n, ˛ D C;� where l.C/ D 1, l.�/ D 0; and


i .x1; : : : ; xi�1; xi ; : : : ; xnC1/ D .x1; : : : ; xi�1; xiC1; : : : ; xnC1/

for i D 1; 2; : : : ; nC 1.

Proposition 11.1.2. The morphisms in the category � are given by all possible com-
positions of inclusions of faces and of projections subject to the relations

ı
ˇ
j ı

˛
i D ı˛i ıˇj�1 .i < j /; (A.1.i)


j
i D 
i
jC1 .i 6 j /; (A.1.ii)


j ı
˛
i D

8̂<̂
:
ı˛i 
j�1 .i < j /;

ı˛i�1
j .i > j /;

id .i D j /:
(A.1.iii)

Remark 11.1.3. Using these relations we can easily check that any morphism in � has
a unique expression as ı˛1

i1
: : : ı

˛k

ik

j1

: : : 
jl
with i1 6 � � � 6 ik and j1 < � � � < jl .

11.1.ii The category of cubical sets

Now cubical sets are just covariant functors from the � category to the category of
sets.
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Definition 11.1.4. The category Cub of cubical sets is defined to be the functor category
Cat.�op;Set/. Thus a cubical set is a functor

K W �op ! Set;

and a map of cubical sets is a natural transformation of functors.

Remark 11.1.5. A cubical set K is defined by the family of sets fKn D K.I n/gn>0,
the face maps @˛i D K.ı˛n / W Kn ! Kn�1 .i D 1; 2; : : : ; n, ˛ D C;�/ and the
degeneracy maps "i D K.
i / W Kn�1 ! Kn .i D 1; 2; : : : ; n/ satisfying the usual
cubical relations:

@˛i @
ˇ
j D @ˇj�1@

˛
i .i < j /; (B.1.i)

"i"j D "jC1"i .i 6 j /; (B.1.ii)

@˛i "j D

8̂<̂
:
"j�1@˛i .i < j /;

"j @
˛
i�1 .i > j /;

id .i D j /:
(B.1.iii)

We will need in Chapter 13 the following definition.

Definition 11.1.6. A cubical face operator d is simply a product of various @j̇ s. This
product may be empty, so that we allow d D 1. We say d does not involve @�nC1 if d
cannot be written as d 0@�nC1.

A very important example of cubical set is the ‘free cubical set on one generator in
dimension n’ which we denote In:

Definition 11.1.7. For n > 0 we define In as the cubical set whose m-cells are
�.I n; Im/ for all m > 0 and whose morphisms are defined by composition.

Proposition 11.1.8. Any cubical morphism Ox 2 Cub.In; K/ corresponds to an element
x D Ox.1In/ of Kn, giving a natural bijection Cub.In; K/! Kn.

Remark 11.1.9. Thus there is an embedding �! Cub which sends I n 7! In. This
is an example of theYoneda embedding‡ W C ! Cat.C op;Set/ for any small category
C . One of the properties of this embedding is that any object of Cat.C op;Set/ is a
colimit of images under ‡ of the objects of the category C .

Another important example of cubical set is the singular cubical set of a topological
space:

Definition 11.1.10. For any topological spaceX , its singular cubical set S�X is given
by all singular cubes, i.e.

.S�X/n D f
 W I n ! X j 
 a continuous mapg
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with faces and degeneracies given by composition with the maps ı˛i W I n�1 ! I n and

i W I nC1 ! I n defined above. This gives a functor

S� W Top! Cub: �

For brevity, we will in Part III write KX for S�X .

This definition is a preliminary to the construction of cubical singular homology of
a space which we outline in Section 14.7.165

11.1.iii Geometric realisation of a cubical set

There is a left adjoint to this singular cubical set functor:

Definition 11.1.11. For any cubical set K W � op ! C , its geometric realisation jKj
is the quotient space

jKj D
F
nKn � I n
�

whereKn is given the discrete topology, I n its standard topology, and the equivalence
relation is generated by .@˛i x; u/ � .x; ı˛i u/ and ."iy; u/ � .y; 
iu/ where x 2
KnC1; y 2 Kn�1 and u 2 I n.

This definition comes under the general scheme of a coend (see Appendix A, Sec-
tionA.9. The formal properties of coends and ends are useful for deriving the properties
we need for the geometric realisation.

Remark 11.1.12. The realisation of a cubical set jKj can also be interpreted as a coend:

jKj D
Z �;n

Kn � I n: �

Proposition 11.1.13. The realisation of a cubical set is a CW-complex having one
n-cell for each nondegenerate n-cell.

Remark 11.1.14. Thus each point of the realisation of a cubical set jKj is an equiv-
alence class jx; uj with x 2 Kn and u 2 I n and it has a unique representative jx; uj
with x a nondegenerate cube.

Using this representation it is not difficult to prove that the realisation functor j j
is left adjoint to the singular cubical functor S�.

Theorem 11.1.15. The realisation functor j j is left adjoint to the singular cubical
functor S�. That is for each cubical setK and topological spaceX , there is a natural
bijection

‰ W Top.jKj; X/! Cub.K; S�X/:
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Proof. For any continuous map g W jKj ! X , the cubical map

‰.g/ W K ! S�X

is given in dimension n by

‰n.g/.x/.u/ D g.jx; uj/;
for any n-cube x 2 Kn and point u 2 I n. The maps‰ defines a natural transformation,
whose inverse is given by sending a cubical map f to the continuous map defined by
mapping any class jxn; uj to fn.xn/.u/.

Our aim is to define homotopy theory for cubical sets and to relate this to the
usual homotopy theory for topological spaces. This is essential for our main result on
homotopy classification.

We first recall the following definition, which is put in a broader context in Sec-
tion B.8.

Definition 11.1.16. A map f W X ! Y of spaces is called a weak homotopy equiva-
lence if it induces a bijection�0X ! �0Y and an isomorphism�n.X; x/! �n.Y; f x/

for all x 2 X and all n > 1.

The following result is part of the relation between the homotopy theories of cubical
sets and topological spaces sketched in Section 11.3.iv.

Proposition 11.1.17. For any topological spaceX , the counit of the adjunction between
the realisation and singular functors,

"X W jS�.X/j ! X;

is a weak homotopy equivalence.

Remark 11.1.18. A famous theorem of Whitehead, compare Theorem B.8.1, states
that a weak equivalence of CW-complexes is a homotopy equivalence. So the previous
proposition shows that any CW-complex is naturally of the homotopy type of the
geometrical realisation of a cubical set.

11.2 Monoidal closed structure on the category of cubical sets

A monoidal closed structure on the category of cubical sets gives for cubical sets
K, L, M natural constructions of a tensor product K ˝ L and an internal hom or
morphism object CUB.L;M/which satisfy an exponential law in the form of a natural
isomorphism

Cub.K ˝ L;M/ Š Cub.K;CUB.L;M//: (11.2.1)
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Since there is also a ‘unit interval object’ I as a cubical set, this enables homotopies
between cubical setsL andM to be studied, as in any monoidal closed category with a
unit interval object, using either maps from the product I˝L toM or maps from I to
the internal morphism object CUB.L;M/ from L to M . However a special condition
on the cubical set M (the ‘fibrant’ or ‘Kan extension’, condition) is needed to ensure
homotopy between maps L!M is an equivalence relation.

The monoidal closed structure on cubical sets is very useful for elaborating their
homotopy properties, as we see in Section 11.3.ii.

These results on the monoidal closed structure for cubical sets will also be used in
Chapter 15, applied to cubical sets with connection, and to cubical!-groupoids, whose
clear monoidal closed structure is used to construct the monoidal closed structure for
crossed complexes.

11.2.i Tensor product of cubical sets

We first give the tensor product, which gives the monoidal structure and is an interme-
diate step in the construction of the internal morphisms functor. The tensor product is
defined by a universal property with respect to bicubical maps, analogous to the the
property the usual tensor product of modules has with respect to bilinear maps.

The tensor product is associative (Proposition 11.2.6), but not symmetric; the failure
of symmetry can be controlled by a ‘transposition’ functor which will be given in
Proposition 11.2.20 and Remark 11.2.22.

An n-cube in the tensor product K ˝ L will be the ‘product’ of a p-cube x 2 K
and a q-cube y 2 L for p C q D n. We just take care that the last degeneracy in the
first factor agrees with the first in the second factor, the reason becomes clear in the
geometric example.

Definition 11.2.1. If K, L are cubical sets, their tensor product K ˝L is defined by

.K ˝ L/n D
�F

pCqDnKp � Lq
�



where 
 is the equivalence relation generated by ."rC1x; y/ 
 .x; "1y/ for x 2 Kr ,
y 2 Ls .rC s D n�1/. We write x˝y for the equivalence class of .x; y/. The maps
@˛i , "i are defined for x 2 Kp , y 2 Lq by

@˛i .x ˝ y/ D
´
.@˛i x/˝ y if 1 6 i 6 p;

x ˝ .@˛i�py/ if p C 1 6 i 6 p C q;

"i .x ˝ y/ D
´
."ix/˝ y if 1 6 i 6 p C 1;
x ˝ ."i�py/ if p C 1 6 i 6 p C q C 1

and make K ˝ L a cubical set.
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Remark 11.2.2. We note that in K ˝ L, we have

."pC1x/˝ y D x ˝ ."1y/
when x 2 Kp . The intuitive reason for this is that the tensor product is analogous
to adjoining lists, or words, while the degeneracy operation is analogous to inserting
a 0. Thus for lists a, b, adjoining a0 on the left of b yields a0b which is the same as
adjoining a to the left of 0b.

The realisation functor has a strong and simple relation to the tensor product. This
is one of the reasons for the utility of cubical methods in contrast to simplicial methods.

Proposition 11.2.3. Let K, L be cubical sets. Then there is a cellular isomorphism

� W jKj ˝ jLj ! jK ˝ Lj:
Proof. The bracketing homeomorphism I n Š I r � I s whenever r C s D n yields a
homeomorphism

Kr � Ls � I n Š Kr � I r � Ls � I s
whenever r C s D n. One now checks that the identifications to give the realisations
are on both sides obtained from G

rCsDn
Kr � Ls � I n

by the same identifications.

To give Cub the structure of a monoidal closed category, we have to construct not
only a tensor product, but also an internal hom functor CUB.L;M/ for cubical sets L,
M , and a natural equivalence of the form (11.2.1).

First, we are going to interpret the left part of this equivalence in terms of bicubical
maps. This procedure resembles the use of bilinear maps as an intermediate step
between the tensor product of R-modules and the R-module of homomorphisms.

Definition 11.2.4. A family of maps

fpq W Kp � Lq !MpCq
is called a bicubical map f W .K;L/!M if it satisfies for all p, q and ˛ D ˙:

@˛i fpq.x; y/ D
´
fp�1;q.@˛i x; y/ if 1 6 i 6 p

fp;q�1.x; @˛i�py/ if p C 1 6 i 6 p C q; (i)

"ifpq.x; y/ D
´
fpC1;q."ix; y/ if 1 6 i 6 p C 1
fp;qC1.x; "i�py/ if p C 1 6 i 6 p C q C 1: (ii)

(Notice that this last part gives further vindication of the rule ."pC1x/˝y D x˝."1y/.)
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We now check that the tensor product is the universal construction with respect to
bicubical maps. This fact is used as an intermediate step in our route to the internal
hom functor CUB.

Proposition 11.2.5. The projections

�pq W Kp � Lq ! .K ˝ L/pCq

defined by �pq.x; y/ D x˝ y form a bicubical map which is universal with respect to
all bicubical maps from .K;L/.

Proof. Any cubical map f W K ˝ L ! M defines a family of functions Ofpq W Kp �
Lq !MpCq (given by Ofpq.x; y/ D fpCq.x ˝ y/) that clearly form a bicubical map.

Conversely, given a bicubical map f W .K;L/!M , there is a unique cubical map
Of W K ˝L!M defined by OfpCq.x˝ y/ D fpq.x; y/. The uniqueness is clear. The

map f is well defined because the defining equations (ii) for a bicubical map imply
that, for x 2 Kp and y 2 Lq

fpC1;q."pC1x; y/ D "pC1fpq.x; y/ D fp;qC1.x; "1y/:

It is an easy exercise to prove that the resulting map K ˝ L!M is cubical.

Proposition 11.2.6. For cubical sets K, L, M there is a natural isomorphism

.K ˝ L/˝M Š K ˝ .L˝M/:

Proof. Both sides of the above equation may be defined as universal with respect to
tricubical maps from .K;L;M/. We leave details to the reader.

11.2.ii Homotopies of cubical maps

Let us move on to the construction of CUB, the internal hom for cubical sets. Recall
from Proposition 11.1.8 that for any cubical set K we have Kn Š Cub.In; K/ where
In is the cubical set freely generated by one element cn in dimension n.

Thus the internal morphism construction CUB.K;L/ has to be a cubical set satis-
fying

CUBn.K;L/ Š Cub.In;CUB.K;L// Š Cub.In ˝K;L/
i.e. the n-dimensional elements of CUB.K;L/ are ‘n-fold left homotopies’.

Using Proposition 11.2.5 any element h 2 CUBn.K;L/may be considered also as
a bicubical map

Oh W .In; K/! L:

Let us begin with the case n D 1: then I1 D I is the cubical set generated by c1
in dimension 1. We denote its vertices by 0 D @�c1 and 1 D @Cc1. The cubical set
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I plays a role analogous to that of the unit interval in the usual homotopy theory. It is
clear that a homotopy

h W I ˝K ! L

would be given by the images of all h.c1; x/ 2 LnC1 for all x 2 Kn. Essentially it
should be a ‘degree one’ cubical morphism that forgets about the @1̇ (which are used
to give the images of 0 and 1). Let us make this precise.

Definition 11.2.7. For any cubical setK we define the left path complex PK to be the
cubical set with

.PK/r D KrC1
and cubical operations

@˛2 ; @
˛
3 ; : : : ; @

˛
rC1 W .PK/r ! .PK/rC1;

and

"2; "3; : : : ; "rC1 W .PK/r�1 ! .PK/r

(that is, we ignore the first operations @�
1 , @C

1 , "1 in each dimension r).
This construction gives a functor

P W Cub! Cub: �
Proposition 11.2.8. The functor P is right adjoint to I ˝ �, i.e. there is a natural
one-one correspondence between

1. cubical maps Qf W K ! PL, and

2. cubical maps f W I ˝K ! L.

Proof. The proposition follows because both are clearly equivalent to bicubical maps
.I; K/! L.

Remark 11.2.9. Here corresponding maps f , Qf are related by Qf .x/ D f .c1 ˝ x/
and either of them is termed a left homotopy from f0 to f1, where f˛ W K ! L is given
by

f˛x D f .˛ ˝ x/ D @˛1 Qf x .˛ D 0; 1/: �
The iteration of the left path complex gives a cubical set that is right adjoint to the

tensor product with respect to In, and thus classifies n-fold left homotopies.

Definition 11.2.10. We define the n-fold left path complex P nM inductively by
P nM D P.P n�1M/, so that

.P nM/r DMnCr
with cubical operations

@˛nC1; @˛nC2; : : : ; @˛nCr W .P nM/r ! .P nM/r�1;
"nC1; "nC2; : : : ; "nCr W .P nM/r�1 ! .P nM/r

(that is, we ignore the first n operations @˛i , "i for i D 1; : : : ; n in each dimension.)
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As before, this functor is a special case of the right adjoint to the tensor product.

Proposition 11.2.11. The functor P n is right adjoint to In˝�, i.e. there is a natural
one-one correspondence between

1. cubical maps Qf W L! P nM , and

2. cubical maps f W In ˝ L!M .

Proof. As before, we can check that these two kinds of maps are equivalent to bicubical
maps .In; L/!M .

Remark 11.2.12. Here corresponding maps f , Qf are related by Qf .x/ D f .cn ˝ x/
and either of them is termed a n-fold left homotopy.

That gives the following relation between free cubical sets.

Corollary 11.2.13. There are natural (and coherent) isomorphisms of cubical sets

Im ˝ In Š ImCn:

Proof. This follows from Proposition 11.2.11 since Pm B P n D PmCn.

11.2.iii The internal hom functor on cubical sets

Using homotopies, we have constructed the sets CUBn.L;M/ for cubical sets L and
M and any n > 0. To define the cubical set CUB.L;M/ it remains to define faces and
degeneracies.

Notice that the omitted operations

@˛1 ; : : : ; @
˛
n and "1; "2; : : : ; "n

in each dimension induce morphisms of cubical sets

@˛1 ; : : : ; @
˛
n W P nM �! P n�1M; and "1; "2; : : : ; "n W P n�1M �! P nM:

These morphisms satisfy the cubical laws.

Definition 11.2.14. We now define the cubical internal hom

CUBn.L;M/ D Cub.L; P nM/

and observe that the family CUB.L;M ) of sets CUBn.L;M/ for n > 0 gets a cubical
structure. Its cubical operations

@˛1 ; @
˛
2 ; : : : ; @

˛
n W CUBn.L;M/! CUBn�1.L;M/;

"1; "2; : : : ; "n W CUBn�1.L;M/! CUBn.L;M/

are induced by those of M .
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Remark 11.2.15. Thus a typical f 2 CUBn.L;M/ is a family of maps fr W Lr !
MnCr satisfying

fr�1@˛i D @˛nCifr ; fr"j D "nCjfr�1 .i; j D 1; 2; : : : ; r/
and its faces and degeneracies are given by

.@˛i f /r D @˛i fr ."˛j f /r D "˛j fr .i; j D 1; 2; : : : ; n; ˛ D 0; 1/:
In geometric terms, the elements of CUB0.L;M/ are the cubical mapsL!M , the

elements of CUB1.L;M/ are the (left) homotopies between such maps, the elements
of CUB2.L;M/ are homotopies between homotopies, etc.

Proposition 11.2.16. The functor CUB.L;�/ W Cub! Cub is right adjoint to �˝L.
Moreover, the bijections

Cub.K ˝ L;M/ Š Cub.K;CUB.L;M//

giving the adjointness are natural with respect to K, L, M .

Proof. As before the bijections can be obtained via bicubical maps .K;L/!M .

As a special case:

Corollary 11.2.17. The functor �˝ In is left adjoint to CUB.In;�/ W Cub! Cub.

Corollary 11.2.18. For cubical setsK,L,M there is a natural isomorphism of cubical
sets

CUB.K ˝ L;M/ Š CUB.K;CUB.L;M//:

Proof. It is easy to use associativity of the tensor product and the exponential law
repeatedly to give for any cubical set E a natural bijection

Cub.E;CUB.K ˝ L;M// Š Cub.E;CUB.K;CUB.L;M//:

The result follows.

The tensor product is not symmetric because .x; y/ 7! y ˝ x is not a bicubical
map. We have also seen that the functors � ˝ In and In ˝ � have different right
adjoints. Nevertheless, we can get some symmetry via a ‘transposition’ functor.

Definition 11.2.19. We define a ‘transposition’ functor

T W Cub! Cub;

whereTK has the same elements asK in each dimension but has its face and degeneracy
operations numbered in reverse order, that is, the cubical operations

d˛i W .TK/n ! .TK/n�1 and ei W .TK/n�1 ! .TK/n

are defined by d˛i D @˛nC1�i , ei D "nC1�i .
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There are some immediate consequences:

Proposition 11.2.20. The functor T satisfies

1. T is an involution, i.e. T 2K is naturally isomorphic to K;

2. T .K ˝ L/ is naturally isomorphic to T .L/˝ T .K/; and

3. there is an obvious cubical isomorphism T In Š In.

Instead of an isomorphism of CUB.In; L/ with P nL, we have:

Corollary 11.2.21. There is a natural isomorphism of cubical sets

CUB.In; L/ Š TP nTL:
Proof. By Corollary 11.2.11, P n is right adjoint to In ˝ �, so P nT is right adjoint
to T .In ˝ �/. Hence TP nT is right adjoint to T .In ˝ T�/ Š .� ˝ T In/ that is
naturally isomorphic to .�˝T In/ Š .�˝In/. Hence TP nT is naturally isomorphic
to the right adjoint Cub.In;�/ of �˝ In.

Remark 11.2.22. A simpler argument shows that for any cubical complexK the functor
K˝�W Cub! Cub has right adjoint T .CUB.TK; T�// and hence that the monoidal
closed category Cub is biclosed, in the sense of Kelly [Kel82], even though it is not
symmetric.

Corollary 11.2.23. For cubical sets K, L the functors Cub ! Cub given by K ˝ �
and �˝ L preserve colimits.

11.3 Homotopy theory of cubical sets

In this section we sketch how to develop a homotopy theory of cubical sets directly
from the cubical structure.

11.3.i Fibrant cubical sets

In order to have a useful homotopy theory for a cubical set, and in particular to define
its homotopy groups in a direct way, we need an extra condition known as the Kan
extension, or fibrant, condition, see Definition 11.3.8. In arguing with this condition it
is often easier to work with geometric models.166 These are easier to see as real cubes
made from the geometric I n, where I D Œ0; 1� is the unit interval, and subcomplexes
of I n, but the same arguments can be given for the models In of these complexes
in the category Cub, which we call ‘formal cubes’ and their subcomplexes ‘formal
subcomplexes’. By a ‘cell’ in In we mean a nondegenerate element. We have to be
careful in this section because we are thinking in terms of geometric cubes and their
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union, but for cubical sets we have elements of various dimensions. Thus in C [ a
as given below where C is a subcomplex and a is a cell, the [ means union in the
sense of subcomplexes generated by C , a. We will use the results of this section in
Section 14.1 and later. You should also relate these methods to various retractions used
in Section 6.3.

Definition 11.3.1. Let B;C be subcomplexes of In such that C � B . We say that C
is an elementary collapse of B , written B &e C , if for some s > 1 there is an s-cell
a of B and .s � 1/-face b of a such that

B D C [ a; C \ a D @a n b
(where @a n b denotes the set of the proper faces of a except b). The face b is called
the free face of the collapse.

If there is a sequence

B1 &e B2 &e : : :&e Br

of elementary collapses, then we write B1 & Br and say B1 collapses to Br .

Example 11.3.2. If a is a cell then a˝ I collapses to a˝f0g [ @a˝ I. Here the free
face of the collapse is a˝ f1g.

We will next define the notion of a ‘partial box’. The following picture gives three
examplesB , B1, B2 of these, as stages in a choice of a sequence of collapsingsB & 0
through B1 and B2.

����
����

B

����
����

&e ����

����
����

&e ����

����
����

&e ����

B1

����
����
&e : : : &e ����

B2

����
&e : : :&e 0

The formal definition of ‘partial box’ allows us to give a more widely applicable
formulation of the usual fibrant, or Kan, extension condition on a cubical set.167

Definition 11.3.3. Let C be an r-cell in the n-cube In. Two .r � 1/-faces of C are
called opposite if they do not meet (except possibly in degenerate elements). A partial
.r � 1/-box in C is a subcomplex B of C generated by one .r � 1/-face b of C (called
a base of B) and a number, possibly zero, of other .r � 1/-faces of C none of which is
opposite to b. The partial box is a box if its .r � 1/-cells consist of all but one of the
.r � 1/-faces of C .

Proposition 11.3.4. If B is a partial box in Im then (i) B ˝ In, and (ii) B ˝ In [
Im ˝ @In, are partial boxes in Im ˝ In Š ImCn.
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Proof. Let b be a base for B . Then b ˝ cn is a base for B ˝ In. This proves (i).
Further, @.Im ˝ In/ D .@Im/˝ In [ Im ˝ @In, and so (ii) follows.

We now come to a key theorem on the existence of chains of partial boxes; this
applies to give many examples of collapsing, even as a kind of algorithm, and is also
essential in the work of Chapter 14. This implies that the inclusion of partial boxes in
the following theorem is an anodyne extension in the sense common in the literature.168

Theorem 11.3.5 (Chains of partial boxes). Let B , B 0 be partial boxes in an r-cell C
of In such that B 0 � B . Then there is a chain

B D Bs & Bs�1 & � � � & B1 D B 0

such that

(i) each Bi is a partial box in C ;

(ii) BiC1 D Bi [ ai where ai is an .r � 1/-cell of C not in Bi ;

(iii) ai \ Bi is a partial box in ai .

Proof. We first show that there is a chain

B 0 D B1 � � � � � Bs�1 � B D Bs
of partial boxes and a set of .r � 1/-cells a1, a2; : : : ; as�1 such that BiC1 D Bi [ ai ,
ai ª Bi .

IfB andB 0 have a common base this is clear, since we may adjoin toB 0 the .r�1/-
cells of B nB 0 one at a time in any order. If B and B 0 have no common base, choose a
base b for B and let b0 be its opposite face in C . Then neither b nor b0 is in B 0. Hence
B2 D B 0 [ b is a partial box with base b and we are reduced to the first case.

Now consider the partial box BiC1 D Bi [ ai , a ª Bi . We claim that ai \ Bi is
a partial box in ai . To see this, choose a base b for BiC1 with b ¤ ai ; this is possible
because if ai were the only base for BiC1, then Bi would consist of a number of pairs
of opposite faces of C and would not be a partial box. We now have ai ¤ b, ai ¤ b0,
so ai \ b is an .r � 2/-face of ai . Its opposite face in ai is ai \ b0 and this is not in Bi
because the only .r � 1/-faces of C which contain it are ai and b0. Hence ai \Bi is a
partial box with base ai \ b.

The proof is now completed by induction on the dimension r of C . If r D 1, the
theorem is trivial. If r > 1, choose Bi , ai as above. Since ai \ Bi is a partial box
in ai , there is a box J in ai containing it. The elementary collapse ai &e J gives
BiC1 &e Bi [ J . But by the induction hypothesis, J can be collapsed to the partial
box ai \ Bi in ai , and this implies BiC1 & Bi .

Corollary 11.3.6. If C is a partial .n � 1/-box in In then In collapses to C .

Proof. We extend C to a box B . By definition, In collapses to B . By the previous
theorem, B collapses to C .
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Corollary 11.3.7. In, and any box in In, collapses to any of its vertices.

Proof. It is sufficient to prove collapsing to the vertex 0. We know In collapses to the
partial box f0g ˝ In�1. Similarly, any partial box in In collapses to any of its faces.
Now proceed by induction.

Definition 11.3.8. Let K be a cubical set. We say K is fibrant, or satisfies the Kan
extension condition, or is Kan, if for every r > 1 and any partial .r � 1/-box in Ir , any
map B ! K extends over I r .

Proposition 11.3.9. A cubical set is fibrant if and only if for every n > 1 and any
.n � 1/-box in In, any map B ! K extends over In.

Proof. The implication one way is trivial. Suppose then the extension over boxes
condition is fulfilled, and C is a partial .n � 1/-box in In. Then C is contained in a
box B . By assumption and Theorem 11.3.5, In & B & C . By repeated application
of the fibrant condition, any map C ! K extends over In.

Example 11.3.10. For any space X the singular cubical set S�X is a fibrant cubical
set. This is because there exists a retraction

I n ! f0g � I n�1 [ I � @I n

(see Figure 1.3 p. 20 for the case n D 2) and indeed to any other box in a similar
manner.

11.3.ii Fibrations of cubical sets

The applications of the classifying space of a crossed complex require the notion of
fibration of cubical set, so we give the theory here. This is also useful, as we shall see,
in developing the homotopy theory of cubical sets.

Remark 11.3.11. Given a commutative square

A
f ��

i

��

B

p

��
C g

�� D

in a category C, a morphism � W C ! B such that p� D g and � i D f is called a
regular completion of the diagram.
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Definition 11.3.12. Let p W L ! M be a cubical map. We say p is a fibration if for
all n > 0 and inclusion i W B ! In of a partial .n� 1/-box B in In, any diagram such
as the following

B

i

��

f �� L

p

��
In g

��

�̂

^
^

ZẐ
^

^

M

(11.3.1)

has a regular completion � .

Example 11.3.13. A cubical set L is a fibrant cubical set if and only if the constant
map L! �, where � is a point, is a fibration.

Theorem 11.3.14. Let j W A! K be an inclusion of a subcubical set and let p W L!
M be a fibration of cubical sets. Let m > 0 and let B be an .m � 1/-box in Im. Then
any diagram in Cub of the form

B ˝K [ Im ˝ A f ��

i

��

L

p

��
Im ˝K g

�� M

has a regular completion � W Im ˝K ! L.

Proof. Let P D Im˝K, let cm be the generator of Im and let P Œn� be the subcubical
set of Im˝K generated by Im˝A and cm˝ k for k 2 Ki , 0 6 i 6 n. We construct
�n W P Œn� ! L by induction on n. The case n D 0 is easy since P Œ0� is isomorphic to
the disjoint union of Im˝A and a disjoint union of copies of Im, one for each element
of K0 n A0.

Let k 2 KnC1 n A. Then Ok W InC1 ! K and we construct the square

B ˝ InC1 [ Im ˝ @InC1 fk ��

�
��

L

p

��
Im ˝ InC1

gk

�� M ;

here gk D g B .1˝ Ok/; fkjB˝InC1 D f B .1˝ Ok/; and fkjIm˝@InC1 is determined
by �n. Now B ˝ InC1 [ Im ˝ @InC1 is a partial box in Im ˝ InC1 which has top
cell d D cm ˝ cnC1. Since p is a fibration, this square has a regular completion
� 0 W Im ˝ InC1 ! L. Then we can set �.k/ D � 0.d/. This completes the inductive
step.
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Corollary 11.3.15. If p W L!M is a fibration, then so also is

CUB.K; p/ W CUB.K;L/! CUB.K;M/

for any cubical set K.

Proof. Let p� D CUB.K; p/. We have to prove that if B is a box in In then any
diagram

B
f ��

i

��

CUB.K;L/

p�

��
In g

�� CUB.K;M/

has a regular completion � W In ! CUB.K;L/. By the exponential law, this is equiv-
alent to asking for a regular completion N� of the diagram

B ˝K Nf ��

i 0

��

L

p

��
In ˝K Ng

�� M

where Nf , Ng are the maps corresponding to f , g respectively by the exponential law,
and i 0 D i ˝ 1K . This follows from Theorem 11.3.14, with A D ;.
Corollary 11.3.16. Let j W A! K be an inclusion of a subcubical set, and let L be a
fibrant cubical set. Then j � W CUB.K;L/! CUB.A;L/ is a fibration.

Proof. LetB be an .m�1/-box in Im. We have to prove that any commutative diagram

B
f ��

i

��

CUB.K;L/

j�

��
Im g

�� CUB.A;L/

has a regular completion � W Im ! CUB.K;L/. By the exponential law, the maps f; g
determine a map h W B ˝ K [ Im ˝ A ! L. Since L is fibrant, the constant map
L! � is a fibration. So the corollary follows from Theorem 11.3.14.

Corollary 11.3.17. If K, L are cubical sets such that L is fibrant, then CUB.K;L/ is
also fibrant.

Proof. This follows from Theorem 11.3.14 using the fibration L! �.
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Exercise 11.3.18. Ifp W L!M is a fibration, then for each v 2M0, p�1.v/ is fibrant.
More generally, the pullback of a fibration by any map is also a fibration.

Example 11.3.19. If X� is a filtered space then there is defined a ‘filtered’ cubical
singular complexRX� and a quotient morphism p W RX� ! �X� by taking homotopy
classes through filtered maps and relative to the vertices. A key result of Chapter 15,
whose proof uses Theorem 11.3.5, is that p is a fibration of cubical sets.

11.3.iii Homotopy

In this section we introduce the basic concepts of homotopy for cubical sets, and define
the fundamental groupoid for a fibrant cubical set.

Definition 11.3.20. Let L be a cubical set. For x; y 2 L0, we say x 
 y if there is an
a 2 L1 such that @�

1 a D x, @C
1 a D y.

Proposition 11.3.21. If L is a fibrant cubical set, then the relation 
 on L0 is an
equivalence relation.

Proof. Reflexivity x 
 x is easy by taking a D "1x. For the other conditions we need
the extension condition. In the following two diagrams

x

a

��

������ z

y
b

�� z

"1z

-- x

a

��

"1x �� x

"1x

��
y ������ x

the first shows the box to fill to obtain transitivity, and the second shows the box to fill
to obtain symmetry.

Definition 11.3.22. Two cubical maps f; g W K ! L are said to be homotopic if f 
 g
as elements of CUB.K;L/0.

Remark 11.3.23. Clearly two maps are homotopic if and only if there exists a homotopy

H W I ˝K ! L

from one to the other.

Proposition 11.3.24. If L is a fibrant cubical set , then homotopy is an equivalence
relation on maps K ! L.

Definition 11.3.25. If K, L are cubical sets and L is fibrant, we define the set of
homotopy classes of cubical maps as the quotient

ŒK;L� D Cub.K;L/= 
 :
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Let i W A! K be the inclusion of a subcubical set of the cubical set K. Then the
fibre of the map

CUB.i; L/ W CUB.K;L/! CUB.A;L/

over a map u W A! L, considered as a vertex of CUB.A;L/, is written CUB.K;LIu/.
By previous results, if L is fibrant so also is CUB.K;LIu/.
Definition 11.3.26. If L is a fibrant cubical set, the set �0 CUB.K;LIu/ is written
ŒK;LIu� and called the set of homotopy classes of maps K ! L rel u. The disjoint
union of these sets is the set of homotopy classesK ! L relA and is written ŒK;LI ��.

We need this notion to define the fundamental groupoid �1M of a fibrant cubical
set L.

LetL be a fibrant cubical set. We write �1L for the set of homotopy classes I ! L

rel f0; 1g. We know this is well defined. We now introduce a composition on these
classes in the usual way, using the ideas of the proof of Proposition 11.3.21. This leads
to:

Proposition 11.3.27. IfL is a fibrant cubical set, then �1Lmay be given the structure
of groupoid.

11.3.iv An equivalence of cubical and topological homotopy sets

In this section we state the results that we need on the relation between the cubical and
the topological homotopy theories.

A full account of this relation would take us too far afield.169 The general theory
says that the ‘homotopy theories’ of cubical sets and of spaces of the homotopy type
of CW-complexes are equivalent. For an indication of more theory, see Appendix B,
Section B.8.

The main result we need is the following fragment of the general theory:

Theorem 11.3.28. Let K, L be cubical sets such that L is fibrant. Then geometric
realisation induces a bijection of homotopy classes:

j j W ŒK;L� Š Œ jKj; jLj �
with homotopy classes of maps for cubical sets on the left-hand side, and for spaces
on the right-hand side.

We can use this result to prove the following generalisation.

Theorem 11.3.29. IfK,L are cubical sets such thatL is fibrant, then there is a natural
map

 W jCUB.K;L/j ! TOP.jKj; jLj/
and this map is a weak homotopy equivalence of spaces.
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Proof. There is a continuous map

jCUB.K;L/j � jKj ! jCUB.K;L/˝Kj jevalj���! jLj:
The topological adjoint of this is the map .

To prove that  is a weak homotopy equivalence we look at the effect of this map on
homotopy classes from jM j for an arbitrary cubical setM . We have natural bijections
of homotopy classes:

Œ jM j; jCUB.K;L/j � Š ŒM;CUB.K;L/� by Theorem 11.3.28

Š ŒM ˝K;L� by the exponential law in Cub

Š Œ jM ˝Kj; jLj � by Theorem 11.3.28

Š Œ jM j � jKj; jLj � by Proposition 11.2.3

Š Œ jM j;TOP.jKj; jLj/� by the exponential law in Top:

Since these maps are natural, the composite is induced by . These bijections imply
that  is a weak equivalence of spaces.

We need to move from this to an equivalence of relative, and indeed filtered, the-
ories. Thus in the standard homotopy theory of spaces the relative homotopy group
�n.X;A; a/ is defined as homotopy classes of maps I n, @�

1 I
n, J n�1

.�;1/ ! .X;A; a/

where I n is the standard n-cube, @�
1 I

n is the .�; 1/-face and J n�1
.�;1/ is the union of

the other faces of I n. It is then proved that this set has for n > 2 a group structure
induced by composition of cubes in direction 2, and that this structure is abelian for
n > 3. For a filtered space X� various relative homotopy groups may be combined to
give a crossed complex…X� where .…X�/n is the family of groups �n.Xn; Xn�1; x/
for x 2 X0, for n > 2, .…X�/1 is the fundamental groupoid �1.X1; X0/, and .…X�/0
is X0.

Such a theory can also be formulated for the relative and indeed filtered homotopy
theory of fibrant cubical sets.170 One of the facts we will use is also that in the cubical
set situation we can identify the n-th relative homotopy group of a fibrant pair .K;L/
as given by elements k of Kn such that @�

1 k 2 Ln�1 and @˛i k 2 Im "n�1
1 for .˛; i/ ¤

.�; 1/. This is the way we wish to define the fundamental crossed complex …K� of
a fibrant filtered cubical set, by which is meant a cubical set filtered by subcubical
sets each of which is fibrant. In these terms we have the following corollary of the
equivalence of homotopy categories:

Corollary 11.3.30. If K� is a filtration consisting of fibrant cubical sets, then the
realisation functor gives an isomorphism

…K� ! …jK�j: �

In applying the Homotopy Classification Theorem of later sections, we will need to
use the realisation of fibrations of cubical sets. The following result will be sufficient
for these applications.
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Theorem 11.3.31. Let p W L ! M be a fibration of cubical sets such that M , and
hence also L, is fibrant. Then jpj W jLj ! jM j is homotopy equivalent over jM j to a
fibration of spaces.

Proof. Let f D jpj and choose a factorisation of f

jLj e�! Ef
 �! jM j

through a homotopy equivalence e and a fibration  . Since p is a fibration of cubical
sets there is an associated family of long homotopy exact sequences, one for each base
pointm 2M0 and for the corresponding fibre. Because of the equivalence of homotopy
sets given by Theorem 11.3.28, this long exact sequence is mapped isomorphically to
the long exact sequence of the fibration  .

11.4 Cubical sets and crossed complexes

We proceed now a step further and relate the category Cub of cubical sets (or the
equivalent of topological spaces) to that of crossed complexes. We use extensively the
monoidal closed structure on the category Crs discussed in Chapter 9. The main aim
is the Homotopy Classification Theorem 11.4.19, which gives a considerable general-
isation of classical theorems in algebraic topology.

11.4.i The fundamental crossed complex of a cubical set

We define in this section the fundamental crossed complex …K of a cubical set K; it
is basic to our work on the classifying space of a crossed complex. First we define
…I1 as the groupoid �, with generator � W 0 ! 1, regarded as a crossed complex,
or, equivalently, as the crossed complex F .1/ of Definition 7.1.12. Then we define
…Ir D �˝r , the r-fold tensor product of � with itself. We obtain the following:

Theorem 11.4.1 (Homotopy Addition Lemma). In …In for n > 2 we have a free
generator cn D �˝n in dimension n with boundary given by

ı.c/ D

8̂<̂
:

Pn
iD1.�1/i¹.@C

i c/� .@�
i c/

.uic/º; n > 4;

�.@C
3 c/� .@�

2 c/
.u2c/� .@C

1 c/C .@�
3 c/

.u3c/ C .@C
2 c/C .@�

1 c/
.u1c/; n D 3;

�.@C
1 c/� .@�

2 c/C .@�
1 c/C .@C

2 c/; n D 2;

where ui D @C
1 @

C
2 : : : O{ : : : @C

n .

Proof. The proof is by induction using the explicit description of the tensor product,
analogously to that for the HAL for the simplex �n.
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Remark 11.4.2. The HAL shows that if a is a face of cn then a can be expressed
uniquely in terms of ıcn and the other faces of cn. We use this fact in the proof of
Proposition 12.1.13. �

Definition 11.4.3. The fundamental crossed complex…K of a cubical setK is defined
as the coend in Crs:

…K D
Z �;n

Kn �…In:

Thus …K is freely generated by the nondegenerate cubes of K with boundaries
given by the HAL.

Theorem 11.4.4. For any cubical sets K, L there is a natural isomorphism

…K ˝…L Š ….K ˝ L/:
Proof. It is immediate from the definition that there is an isomorphism

…In ˝…Im Š …InCm:

Now the coend definition of …K yields the result, analogously to the proof of
Proposition 11.2.3, using the isomorphism of crossed complexes for p C q D n:

.Kp � Lq/˝ �n Š .Kp � �p/˝ .Lq � �q/

where Kp , Lq are discrete crossed complexes.

Remark 11.4.5. Another view of this result is given in Theorem 15.2.10, where the
tensor product is set up using the properties of cubical !-groupoids and the monoidal
closed structure on those objects.

Remark 11.4.6. An application of the Higher Homotopy Seifert–van Kampen Theo-
rem 8.1.5 gives an isomorphism …K Š …jKj� for a cubical set K where jKj� is the
skeletal filtration of the realisation.

11.4.ii The cubical nerve of a crossed complex

Let us construct an adjoint to the fundamental crossed complex of cubical sets just
studied.

Definition 11.4.7. We define the cubical nerve NC of a crossed complex C to be in
dimension n the set

.NC/n D Crs.…In; C /:

Remark 11.4.8. In Remark 14.6.6 this definition is related to the fundamental algebraic
equivalence between the category Crs of crossed complexes and that of cubical !-
groupoids with connections.
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Proposition 11.4.9. For a cubical set K and crossed complex C there is a natural
isomorphism

Cub.K;NC/ Š Crs.…K;C /

making … W Cub! Crs left adjoint to N W Crs! Cub.

Proof. The proof is based in the fact that one side of the proposed congruence may be
described as a colimit and the other one as a limit:

Cub.K;NC/ Š
Z

�;n
Set.Kn; .NC/n/

Š
Z

�;n
Set.Kn;Crs.…In; C //

Š
Z

�;n
Crs.Kn �…In; C /

Š Crs.

 Z �;n

Kn �…In
�
; C /

Š Crs.…K;C /: �

Remark 11.4.10. There is an analogous simplicial nerve N� of a crossed complex
C defined in dimension n by N�.C /n D Crs.…�n; C /, and this is right adjoint to
… W Simp! Crs.171

Proposition 11.4.11. The cubical nerveNC of a crossed complexC is a fibrant cubical
set.

Proof. Let n > 0 and let B be a box in In. We use the last proved adjointness relation.
So a map B ! NC corresponds to a morphism f W …B ! C . Let cn be the top cell
in In. We extend f to g W …In ! C by mapping cn to 0, with the value of g on the
omitted .n � 1/-cell of B being given by the HAL (Theorem 11.4.1).

Remark 11.4.12. Actually the result may be strengthened to say that NC is a cubical
T -complex, see Remark 13.7.6; indeed N gives an equivalence between the category
Crs and that of cubical T -complexes.172

Proposition 11.4.13. Let C , D be crossed complexes. There is a natural transforma-
tion of cubical sets173

	 W N.C/˝N.D/! N.C ˝D/:
Proof. It is easy to verify that the function

b W N.C/;N.D/! N.C ˝D/;
f; g 7! f ˝ g

is bicubical.
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Corollary 11.4.14. The nerve functor N W Crs! Cub preserves homotopy.

Proof. A homotopy h W � ˝ D ! E in Crs determines a cubical homotopy as the
composition

I1 ˝ND ��! N.� ˝D/ N.h/���! NE:

Remark 11.4.15. The proof of Proposition 11.4.13 should be compared with the proof
of Theorem 15.3.1.

Now we come to the key theorem which is the basis of the Homotopy Classification
Theorem for maps of spaces.

Theorem 11.4.16. For a cubical set K and a crossed complex C there is a natural
isomorphism of cubical sets:

CUB.K;NC/ Š N.CRS.…K;C //:

Proof. Let L be a cubical set. Then we have natural bijections

Cub.L;CUB.K;NC// Š Cub.L˝K;NC/
Š Crs.….L˝K/;C /
Š Crs.…L˝…K;C/
Š Crs.…L;CRS.…K;C //

Š Cub.L;N.CRS.…K;C //:

Since this natural bijection holds for all cubical sets L, the theorem follows.

Remark 11.4.17. Notice the power of the combination of various adjunctions and the
notion of representability (see Proposition A.2.1) in the proof of the last theorem.

11.4.iii The Homotopy Classification Theorem

Definition 11.4.18. The (cubical) classifying space BC of a crossed complex C is
defined to be the realisation jNC j of the nerve of C .174

Our aim is the following theorem:

Theorem 11.4.19 (Homotopy Classification Theorem). Let X be a CW-complex and
C a crossed complex. Then there is a weak equivalence

� W B.CRS.…X�; C //! TOP.X;BC/:

Hence there is a bijection
Œ…X�; C � Š ŒX;BC �;

where the left-hand side is homotopy classes of crossed complex maps, and the right-
hand side is homotopy classes of maps of spaces.
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Proof. We first assume X is jKj where K is a cubical set. Then the theorem with
X D jKj follows from Theorems 11.3.28, 11.4.16. In particular this applies to the
case K D S�X . Now by Remark 11.1.18 X has the homotopy type of jS�X j.
Remark 11.4.20. This theorem generalises many classical results. It is important that
it includes information on fundamental groups and their actions. We analyse this more
closely in Section 12.2.

Example 11.4.21. Use the Homotopy Classification Theorem and Example 9.3.8 to
analyse the homotopy 2-type of the space LX of free loops on X , i.e. the function
space TOP.S1; X/, when X is given by the classifying space of a crossed module of
groups.

11.5 The pointed case

We are going to consider briefly the modifications needed get a pointed, or base point,
based version of Theorem 11.4.19.

First, recall that we have defined Crs� the category of pointed crossed complexes,
that has objects the crossed complexes C having a distinguished element � 2 C0 and
only morphisms preserving this basepoint are included.

Next, we need the notions of tensor product and homotopy in Crs�. They are the
same notions that in crossed complex but adding the good behaviour with respect to
the base point. let us make the conditions explicit.

For any pointed crossed complexes C and D, we define an m-fold pointed left
homotopy from C to D to be an m-fold left homotopy .H; f / satisfying f .�/ D
� and H.�/ D 0� 2 Dm. The collection of all these is a sub-crossed complex
CRS�.C;D/ � CRS.C;D/ with basepoint the zero morphism c 7! 0�. This defines
the pointed internal hom for crossed complexes.

A pointed bimorphism � W .C;D/! E is a bimorphism satisfying´
�.c;�/ D 0� for c 2 C;
�.�; d / D 0� for d 2 D:

The pointed tensor product C ˝� D is the pointed crossed complex generated by
all c ˝� d with defining relations those for the tensor product and´

c ˝� � D 0� for c 2 C;
� ˝� d D 0� for d 2 D:

It is quite clear that the associativity and the symmetry of the tensor product pre-
serves the relations in the definition of the pointed tensor product, giving as a conse-
quence the following theorem.
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Theorem 11.5.1. The pointed tensor products and internal hom functors described
above define a symmetric monoidal closed structure on the pointed category Crs�.

We denote by ŒX; Y �� the set of pointed homotopy classes of pointed mapsX ! Y

of pointed spacesX , Y . Similarly, for pointed crossed complexes C ,D, we denote by
ŒC;D�� the set of pointed homotopy classes of pointed morphisms C ! D.

Also, notice that if C is a pointed crossed complex, then BC is naturally a pointed
space.

We have all the ingredients to state the pointed version of Theorem 11.4.19.

Theorem 11.5.2. If X is a pointed CW-complex and C is a pointed crossed complex,
there is a commutative diagram

ŒX;BC �� ˛ ��

..++++++++++++++
Œ…X�; C ��

""...............

Hom.�1.X;�/; �1.C;�//;
in which ˛ is a bijection of sets of pointed homotopy classes, natural with respect
to pointed morphisms of C and pointed, cellular maps of X , and in which we have
identified �1.BC;�/ with �1.C;�/, �1.X;�/ with �1.X�;�/.
Proof. The proof of the existence of the horizontal bijection ˛ of sets of pointed ho-
motopy classes follows the same pattern as the proof of Theorem 11.4.19, but using
the pointed constructions ˝� and CRS� described before. We leave the details as an
exercise.

The slanting map on the left is induced by the functor �1.�;�/ and the first iden-
tification indicated in the statement.

The slanting map on the right comes from the second identification indicated in the
statement.

To prove commutativity, it is sufficient to assume that X D jLj for some fibrant
cubical set L. Then we have to check that maps transformed by the following arrows
induce the same map of fundamental groups:

Top.jLj; BC / � Cub.L;NC/! Crs.…L;C /:

But this is clear on checking the values of these maps on 1-dimensional elements.

In the next chapter we will use methods of fibrations of crossed complexes to analyse
these results further and to make specific calculations of some homotopy classes of
maps.
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Notes

163 p. 368 The cubical classifying space of a crossed module is used in [FRS95].

The work of this chapter on homotopy classification is generalised to the equiv-
ariant case in [BGPT97], [BGPT01], but using the simplicial classifying space,
[BH89], which fits better with the published studies on homotopy coherence,
[CP97], which are required for the proof. The simplicial classifying space of a
crossed module is used for work on HQFTs in [PT08], [Por07].

164 p. 369 These basic facts may be found in many places, for example in [Cis06],
[Jar06], [GM03], [Mal09].

165 p. 371 For more on cubical homology theory, see for example [HW60], [Mas80].

166 p. 379This condition was introduced for cubical sets in [Kan55], and is often known
as the Kan extension condition. It has become common to call this the fibrant
condition, thus linking the idea with work on model categories, see Section B.8.

The notions of expansion and collapse that we use below were extensively stud-
ied in a simplicial context by Whitehead in [Whi39], [Whi41b] and in the first
of these papers he writes that transformations of this kind were previously stud-
ied in [Joh32]. Whitehead later rewrote and extended these papers as [Whi49a],
[Whi49b], [Whi50b]. It is interesting to read the earlier papers to see how the later
expositions emerged.

167 p. 380 This method of partial boxes seems related to results used in [Kan55] which
introduced the extension condition.

168 p. 381 This notion of anodyne extension may be found in the cubical case in [Cis06],
[Jar06], and there is a well-known simplicial version going back to [GZ67].

169 p. 386 The relation between the theory of simplicial sets and topological spaces has
been well worked over, see for example [GZ67], [May67], [GJ99] but published
attention to cubical sets has been more recent. The paper [BH81a] relied on a
Masters thesis from Warwick [Hin73]. Later work on cubical theory was done in
[Ant00], and by Cisinski in [Cis06] as part of a general approach to homotopical
conjectures posed by Grothendieck in [GroPS1], [GroPS2] and given a full account
in [Mal05]. The papers [BJT10], [Isa11], [Pat08] show recent uses of cubical
theory in various forms.

170 p. 387 The detailed use of cubical extension conditions for obtaining standard
results of homotopy theory in the abstract case has been analysed by Kamps in
[Kam72] and is explained in [KP97].
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171 p. 390 That construction was defined in essence in [Bla48] in the reduced case, and
further exploited in [And57], and in essence in [Lab99]. It was used as the basis
for the simplicial classifying space of a crossed complex in [BH91], where the
adjointness with … was proved (that paper uses the notation � for what we write
as …). However this paper assumed the Eilenberg–Zilber theorem for crossed
complexes, which was proved by Tonks in [Ton94], [Ton03]. The adjointness and
coherence properties of the crossed complex Eilenberg–Zilber maps developed by
Tonks were exploited in proving homotopy classification results in the equivariant
case in [BGPT97], [BGPT01], using methods of [CP97].

172 p. 390 The relation between crossed complexes and cubical !-groupoids with
connection has been used in [BH03] to give a cubical version of the Dold–Kan
Theorem, namely an equivalence between chain complexes and cubical abelian
groups with connections. We give a brief account of this in Section 14.8. Compare
also Remark 9.10.6.

173 p. 390 This is a result which is more difficult to prove for the simplicial nerve,
see [BH91], and so shows an advantage of cubical methods. A combination of
simplicial and cubical methods is given in the paper [Gug57].

174 p. 391 This classifying space was defined first in [Bro84b] and its properties ex-
tended in [BH89]. An application was given in [FRS95]. However the published
version in [BH91] was a simplicial version, deemed to be more palatable. It also
fitted better with the homotopy coherence theory of [CP97], allowing proofs of an
equivariant version of the homotopy classification, [BGPT97], [BGPT01].



Chapter 12

Nonabelian cohomology: spaces, groupoids

Introduction

Our approach to the cohomology of topological spaces is that it is common for a space
to be given not just in abstract but also with some kind of structure; for example it may
be a simplicial complex, a CW-complex, or even in the case of a manifold have the
so-called ‘handlebody decomposition’, which arises in Morse theory.175 There is also
the notion of ‘stratified space’, which is a filtered space X� with special conditions on
the way the ‘strata’Xn are related. Thus it is quite reasonable to start with a filtered
space X�, and form its associated fundamental crossed complex …X�. To obtain the
cohomology of a group G one can form the simplicial nerve N�G of G and take the
fundamental crossed complex of that. One could also use the cubical nerve.

Thus in these applications one can take as the starting point a free crossed complex,
say F , and consider cohomology derived from that.

We follow the tradition that cohomology of spaces may be interpreted in terms of
homotopy classes of mappings. This derives from the classical theorem of Eilenberg–
Mac Lane that for a CW-complex X , n > 2, and abelian group M there is a bijection

ŒX;K.M; n/� Š Hn.X;M/

between the homotopy classes of maps from X to the Eilenberg–Mac Lane space
K.M; n/ which has exactly one nontrivial homotopy group, namely M in dimension
n and the n-th cohomology group of X with coefficients in M . This result has been
generalised to the case of Kn.M;G/, a connected space with fundamental group G
which operates on the abelian group M .

Of course our homotopy classification result for a CW-complex X and crossed
complex C ,

ŒX;BC � Š Œ…X�; C �;

contains both the above results, and so it is natural to consider the right-hand side of
this bijection as a kind of cohomology of X with coefficients in C .176

Exact sequences of cohomology have a considerable use in traditional cohomology.
They may be determined by a pair of spaces or by an exact sequence of coefficients;
both cases arise from a short exact sequence of chain complexes. In our case Theo-
rem 12.1.15 shows that we get rather more elaborate families of exact sequences from
a fibration of crossed complexes. Such fibrations arise under circumstances given in
Section 12.1. We take advantage of this in our analysis of the above stated Homotopy
Classification Theorem.
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Our first major result is Theorem 12.2.10 on the homotopy classification of mor-
phisms of crossed complexes. Theorem 12.2.10 may be regarded as a generalisation
of what is called ‘abstract kernel theory’ in the cohomology of groups; we explore this
further in Section 12.6.

This theorem has applications to the homotopy classification of maps of spaces, in
Theorem 12.3.12. We give one explicit example, namely the calculation of based homo-
topy classes of maps from X D RP 2 �RP 2 to the space RP 3 with homotopy groups
in dimensions > 3 killed and which induce on fundamental groups the morphism
.1; 1/ W C2 � C2 ! C2 (Example 12.3.13). In this example, the operations of funda-
mental groups are crucial, as is the representation of the cell structure of X in terms of
free crossed complexes, including the formulae for the tensor product from Chapter 9.

In Section 12.4 we show how Œ…X�; C � can be analysed in terms of a ‘local system’
with values in chain complexes with a groupoid of operators, thus generalising the
traditional theory involving a module over a group, and also that of coefficients in a
chain complex.

In Section 12.5 we introduce the notion of cohomology of a groupoid, and apply
this in Section 12.5.i to give an account of the nonabelian Čech cohomology of a cover
of a space with coefficients in a crossed complex.

In Section 12.6 we give an account of the representations of nonabelian extensions
of groups of the type of a crossed module.

In Section 12.7 we explain the representation of the .n C 1/-st cohomology of a
group in terms of crossed n-fold extensions. This in particular gives the notion of
of k-invariant, or Postnikov invariant, of a crossed module, as an element of a third
cohomology group, and our results allow us to do some calculations of these invariants.

12.1 Fibrations of crossed complexes

The notion of fibration of crossed complexes has an important role in analysing the
set ŒF; C � of homotopy classes of morphisms from a free crossed complex F to a
crossed complexC . The notion also allows for relating the homotopy theory of crossed
complexes to homotopy theories in other structures, for example that of cubical sets,
and as briefly described in general in Section B.8. We assume the notion of fibration
of groupoid as developed in [Bro06], §7.2, and given on p. 590.177

Definition 12.1.1. A morphism p W E ! B of crossed complexes is a fibration if178

(i) the morphism p1 W E1 ! B1 is a fibration of groupoids;
(ii) for each n > 2 and x 2 E0, the morphism of groups pn W En.x/ ! Bn.px/ is

surjective.

The morphism p is an acyclic fibration if it is a fibration and also a weak equivalence,
by which is meant that p induces a bijection on �0 and isomorphisms �1.E; x/ !
�1.B; px/, Hn.E; x/! Hn.B; px/ for all x 2 E0 and n > 2.179
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Example 12.1.2. Here is an example we will use later in the proof of Theorem 12.2.10.
Let n > 2, and let C be a crossed complex. Let M D Ker ın, Q D �1C . Then
the following diagram defines a morphism of crossed complexes p W Coskn C !
KnC1.M;Q/:

� � � �� 0

��

�� M ��

D
��

Cn
ın ��

��

Cn�1

��

�� � � � �� C2 ��

��

C1

�

��� � � �� 0 �� M �� 0 �� 0 �� � � � �� 0 �� Q.

It is also a fibration of crossed complexes, since, as a quotient morphism of groupoids,
is a fibration of groupoids, and the other conditions for a fibration are clearly satisfied.

Definition 12.1.3. Consider the following diagram:

A ��

i

��

E

p

��
C ��

ZZ

B .

(12.1.1)

If given i the dotted completion exists for all morphismsp in a classF , then we say that
i has the left lifting property (LLP) with respect to F . We say a morphism i W A! C

is a cofibration if it has the LLP with respect to all acyclic fibrations. We say a crossed
complex C is cofibrant if the inclusion ; ! C is a cofibration.

Here is an important example of a cofibration. The proof is analogous to standard
methods in homological algebra, as in Section 10.2.iii, and to inductive constructions
of maps on CW-complexes.

Proposition 12.1.4. Let i W A ! F be a relatively free crossed complex. Then i is a
cofibration.

Proof. We consider the diagram

A

i

��

a �� E

p

��
F

f
��

g

ZZ

B

in which p is supposed an acyclic fibration, and the morphisms f; a satisfy f i D pa.
We construct the regular completion g on a relatively free basis X of F by induction,
the cases n D 0; 1 being easy.

Suppose n > 2 and g is defined on Xn�1. Consider an element x of the free basis
in dimension n. Then gıx is defined and pgıx D f ıx.
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By the fibration condition, we can choose y 2 En such that py D f x. Let
w D gıx � ıy 2 En�1. Then pw D 0, ıw D 0. By the acyclicity condition, w is a
boundary, i.e. w D ız for some z 2 En. Then ı.z C y/ D gıx. So we can extend g
by defining it on x to be z C y.

Now we can characterise fibrations of crossed complexes in terms of a right lifting
property.

Definition 12.1.5. The morphism p W E ! B has the right lifting property (RLP) with
respect to a class F if in the above diagram (12.1.1) the dotted completion exists for

all i in the class F .

Recall that F .n/ denotes the free crossed complex on one generator cn of dimen-
sion n. Thus F .0/ is a singleton, F .1/ is essentially the groupoid � and for n > 2

F .n/ consists the integers in dimensions n, n�1with boundary the identity map. Also
S.n � 1/ denotes the subcomplex of F .n/ generated by the part in dimension n � 1,
and so is simply K.Z; n � 1/.
Proposition 12.1.6. Let p W E ! B be a morphism of crossed complexes. Then the
following conditions are equivalent:

(i) p is a fibration;

(ii) (covering homotopy property) p has the RLP with respect to the inclusion C ˝
1! C ˝ F .m/ for all cofibrant crossed complexes C and m > 1;

(iii) the covering homotopy property (ii) holds for m D 1; and

(iv) for any cofibrant crossed complex C , the induced morphism

p� W CRS.C;E/! CRS.C;B/

is a fibration.

Proof. (i))(ii) We verify the covering property by constructing a lifting in the left-
hand of the following diagrams, where 1 ! F .m/ is the inclusion. Let p0 in the
right-hand diagram be induced by p and the inclusion 1! F .m/.

C ˝ 1 ��

��

E

p

��
C ˝ F .m/ �� B

; ��

��

CRS.F .m/;E/

p0

��
C �� CRS.1; E/ �B CRS.F .m/; B/

Then a lifting in the left-hand diagram is equivalent to a lifting in the right-hand diagram.
Since C is cofibrant, such a lifting exists if p0 is an acyclic fibration. But by the
exponential law, for this it is sufficient to show that p has the RLP with respect to the
inclusion

S.n/˝ F .m/ [ F .nC 1/˝ 1! F .nC 1/˝ F .m/:
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For n D �1, this corresponds precisely to the fibration property of p. In general, a
lifting of the image of the top basis element of F .nC1/˝F .m/ is chosen, and the value
of the lifting on the remaining basis element of F .nC 1/˝ F .m/, namely cnC1˝ ıcm
ifm > 2, cn˝ 0 ifm D 1, is determined by the boundary formula for cn˝ cm and the
values on ıcnC1 ˝ cm if n > 1 and 0˝ cm and 1˝ cm if n D 0.

(ii))(iii) is immediate.
(iii))(iv) It is sufficient to show that the diagram

1 ��

��

CRS.C;E/

p

��
F .m/ �� CRS.C;B/

has a regular completion; this follows from (iii) an the exponential law, and symmetry
of the tensor product.

(iv))(i) This is easily proved on taking C to be the crossed complex F .n/.

The following is proved in a similar manner, which we leave to you as an exercise.

Proposition 12.1.7. The following are equivalent for a morphism p W E ! B in Crs:

(i) p is an acyclic fibration;

(ii) p0 is surjective; if x; y 2 E0 and b 2 B1.p0x; p0y/, then there is e 2 E1 such
that p1e D y; if n > 1 and d 2 En satisfies sd D td for n D 1; ıd D 0 for
n > 2, and b 2 BnCl satisfies ıb D pnd , then there is

e 2 EnC1 such that pnC1e D b and ıe D d I

(iii) p has the RLP with respect to S.n � 1/! F .n/ for all n > 0;

(iv) ifC is a free crossed complex thenp has the RLP with respect to S.n�1/˝C !
F .n/˝ C for all n > 0;

(v) if C is a free crossed complex then the induced morphism

p� W CRS.C;E/! CRS.C;B/

is an acyclic fibration.

Remark 12.1.8. It is proved in [BG89b], Corollary 2.9, that a cofibration of crossed
complexes is a retract in the category of maps of Crs of a relatively free morphism of
crossed complexes, and from this it is deduced that if i W A ! D is a cofibration and
C is cofibrant, then i ˝ 1 W A ˝ C ! D ˝ C is a cofibration. This enables one to
generalise Proposition 12.1.7 (v) to the case C is cofibrant.

We will also need a pointed version of part of the previous proposition.
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Proposition 12.1.9. If p W E ! B is an acyclic fibration, F is a free crossed complex,
and F , E, B are reduced and pointed, then the induced morphism of internal homs

p� W CRS�.F;E/! CRS�.F; B/

is also an acyclic fibration

Proof. This relies on the pointed exponential law from Section 15.5 and the clear fact
that Sn�1 ˝� F ! F .n/ ˝� F is of relatively free type, as is easy to prove by a
modification of methods of Section 9.6.

Proposition 12.1.10. Let F , C be reduced pointed crossed complexes with F free and
C aspherical. Let G D �1C . Then there are bijections

�0 CRS�.F; C / D ŒF; C �� Š ŒF;K.G; 1/� Š Hom.�1F;G/;

and for all morphisms f W F ! C and n > 1 we have

�n.CRS�.F; C /; f / D 0:
Proof. Since C is aspherical, the natural morphism p W C ! K.G; 1/ is not only a
fibration but also a weak equivalence of crossed complexes, and so p is an acyclic
fibration. Hence so also is p�, by Proposition 12.1.9 (v). In particular, p� is a weak
equivalence. This gives the first result.

The second result also follows, since all homotopies and higher homotopies F !
K.G; 1/ are clearly trivial.

Remark 12.1.11. This type of argument replaces an inductive argument of lifting
morphisms and homotopies which is traditional in homological algebra, and which we
gave in Section 10.2.i, see Theorem 10.2.11. Of course an inductive procedure is at
the heart of the proof we have just given.

We end this section with a statement of a theorem which relates to the notion of
model category given in Section B.8.180

Theorem 12.1.12. The notions of weak equivalence, fibration and cofibration for
crossed complexes satisfy the axioms for a model category for homotopy.

12.1.i Fibrations of crossed complexes and cubical nerves

There is a close relation between a map of crossed complexes being a fibration and the
nerve of the map being a fibration of cubical sets.

Proposition 12.1.13. Let p W E ! D be a morphism of crossed complexes. Then p is
a fibration if and only if the induced map of nerves Np W NE ! ND is a fibration of
cubical sets.
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Proof. Let B be an .n � 1/-box in In. To say that Np W NE ! ND is a fibration is
equivalent to saying that any diagram in Cub:

B ��

��

NE

Np

��
In ��

99

ND

has a regular completion given by the dotted arrow. By adjointness, this is equivalent
to the existence of a regular completion in Crs of the following diagram:

…B
k ��

j

��

E

p

��
….In/

k0
��

g

;;

D.

(�)

The argument depends on the fact that …In has just one free generator cn in
dimension n, by Corollary 8.3.14, and the boundary ıcn is determined by the cubical
Homotopy Addition Lemma, in terms of all the faces of cn, see Proposition 9.9.6. But
B misses one of the faces of cn, the so called free face. The value of g on this free face
is therefore determined by g.cn/ and the HAL, see Remark 11.4.2.

If n D 0, this existence is equivalent to E1 ! D1 being a fibration of groupoids.
If n > 2, let us see that this existence is equivalent to each En.x/ ! Dn.px/

being surjective. To see this, note that if these maps are surjective, and v is the usual
base point of In, then we can choose a 2 En.pv/ such that pa D k0cn. If we now
define g.cn/ D a and g.x/ D k.x/ for each nondegenerate element x of B , then there
is a unique value for g on the free face of B , determined by the Homotopy Addition
Lemma, and this with the other values on B defines a morphism g W ….In/! E. This
g is a regular completion of .�/.

On the other hand, suppose each diagram .�/ has a regular completion. Let b 2
Dn.px/. Define k W …B ! E to be the acyclic morphism with value 0x . Define

k0 W ….In/! D by k0.cn/ D b; k0.B/ D 0px;

and k0 on the free face of B is ıb. Then pk D k0j . Let g be a regular completion.
Then pg.cn/ D b.

Corollary 12.1.14. Letp W E ! D be a fibration of crossed complexes and letx 2 D0.
Let F D p�1.x/. Then the sequence of classifying spaces BF ! BE ! BD is
homotopy equivalent to a fibration sequence.

Proof. This follows from Theorem 11.3.31.
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12.1.ii Long exact sequences of a fibration of crossed complexes

Recall from Definition 12.1.1 that a fibration p W E ! B of crossed complexes is a
morphism of crossed complexes such that p1 is a fibration of groupoids and for each
n > 2 and x 2 E0, the morphism of groups pn W En.x/! Bn.px/ is surjective.

We state how such a fibrationp yields a family of exact sequences involving theHn,
�1 and �0, as follows, and which is clearly related to the exact homotopy sequence
for a pair stated in Equation (2.1.3).181 Let p W E ! B be a morphism of crossed
complexes. By the fibre Fy D p�1.y/ of p over y we mean the sub-crossed complex
of E of all elements of En which for n D 0 map by p to y and for n > 0 map by p to
the identity at y.

Theorem 12.1.15 (Howie). If p W E ! B is a fibration of crossed complexes, and
y 2 B0, then for each object x of Fy there is an exact sequence

� � � ! Hn.Fy ; x/
in�! Hn.E; x/

pn�! Hn.B; y/
@n�!� � �

� � � ! �1.Fy ; x/
i1�! �1.E; x/

p1�! �1.B; y/
@1�!�0.Fy/ i��! �0.E/

p��! �0.B/:

Here the terms of the sequence are all groups, except the last three which are sets with
base points xF , xE , yB the components of x, x, y in Fy , E, B respectively.

(i) There is an operation of the group �1.E; x/ on the right of the group �1.Fy ; x/
making the morphism

i1 W �1.Fy ; x/! �1.E; x/

into a crossed module.

(ii) There is an operation of the group�1.B; y/ on the right of the set�0.Fy/, written
.Œu�; ˛/ 7! Œu� � ˛, such that the boundary

�1.B; y/
@1�! �0.Fy/

is given by @1.˛/ D xF � ˛.

Further we have additional exactness at the bottom end as follows:

(a) if ˛; ˇ 2 �1.B; y/, then @1˛ D @1ˇ if and only if there is a � 2 �1.E; x/ such
that p1� D �ˇ C ˛;

(b) if uF ; vF denote the components in Fy of objects u; v of Fy , then i�uF D i�vF

if and only if there is an ˛ 2 �1.B; y/ such that uF � ˛ D vF ;

(c) if yB denotes the component of y in B then

i�.�0Fy/ D p�1� .yB/:

Proof. The bottom six terms of this sequence are discussed in detail for a fibration of
groupoids in [Bro06], 7.2.9.182 The operation is defined as follows. Let ˛ 2 �1.B; y/
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have representative a 2 B.y/, and let u be an object of Fy . Let a lift to an element
Qa starting at u 2 .Fy/0; then Œu� � ˛ is defined to be the class Œu0� of the final point u0
of Qa. One checks that this definition is independent of the choices made. We leave the
full proof of the theorem as an exercise.

Corollary 12.1.16. Under the conditions of the theorem, we have:

(i) the mapping �1.B; y/! �0.Fy/, ˛ 7! xE � ˛ induces a bijection from the set
of cosets �1.B; y/=p1�1.E; x/ to the set i�1� .xE /;

(ii) the mapping i� W �0.Fy/ ! �0.E/ induces a bijection from the orbit set of
�0.Fy/ under the action of �1.B; y/ to the set p�1� .yB/.

Remark 12.1.17. Notice that the first bijection of the corollary is dependent on the
choice of object x in the fibre Fy . If in a particular example p1�1.E; x/ is normal
in �1.B; y/, then the set of cosets inherits from �1.B; y/ a group structure which is
transferred to i�1� .xE / by the above bijection: but this group structure is dependent on
the choice of x. Results of this type have been long extant in the literature, particularly
in extension theory, but are not usually put in the context of fibrations of groupoids or
crossed complexes.

The power of these results comes when we apply them in the next section to fi-
brations of internal homs CRS.F;E/! CRS.F; B/ using Proposition 12.1.6 (iv).183

12.2 Homotopy classification of morphisms

In this section we analyse the set ŒF; C �� of pointed homotopy classes of morphisms
from a reduced crossed complex F to a reduced crossed complex C for particular
examples of C . Usually F will be free. We stick to the reduced and pointed case as in
this case it is easier to relate the results to classical theorems, but the other case can be
treated by the same methods.184

The cases we are thinking of are

• F D …X� for X� the skeletal filtration of a CW-complex X ; and
• F D F st.G/, the standard free crossed resolution of a group or groupoid G.

In the first case we think of ŒF; C �� as a kind of ‘nonabelian cohomology set of the
space X with coefficients in the crossed complex C ’. In the second case it is a kind of
nonabelian cohomology of the group or groupoidG. In either case, our analysis of this
set works by using fibrations of the ‘coefficients’, i.e. fibrations of crossed complexes.
It turns out that this leads to some nice formulations of or generalisations of classical
results.

Recall from Definition 7.1.11 that K.H; 1/ is the crossed complex which is the
group or groupoid H in dimension 1 and is otherwise trivial. In this simplest case we
have:
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Proposition 12.2.1. For any n > 2, reduced crossed complex F with fundamental
group G, and any group H , there is a natural bijection

ŒF;K.H; 1/�� Š Hom.G;H/:

Proof. This follows easily from the definitions.

For analysis of our next cases we need the following definition.

Definition 12.2.2. LetC;D be crossed complexes, and let f W C ! D be a morphism.
Let i W A ! C be a morphism of crossed complexes. A homotopy h W f ' g rel i
(or rel A) is a homotopy such that hi is a constant homotopy; this of course implies
f i D gi . The resulting set of homotopy classes is written

ŒC;DIf i�: �

We often employ this definition when A is the skeleton Skn C of C (see Defini-
tion 7.1.32) and i is the inclusion, so that we are dealing with a homotopy relative to
levels 6 n.

Remark 12.2.3. The set ŒC;DIf i� of homotopy classes will also be usefully inter-
preted using the internal hom in Crs: the morphism i induces a morphism of crossed
complexes

i� W CRS.C;D/! CRS.A;D/:

Let Ff be the fibre of i� over f i : then

ŒC;DIf i� D �0.Ff /: �

Now we consider Kn.M;H/ the crossed complex which is H in dimension 1, the
H -module M (with the given action of H ) in dimension n > 2, and is otherwise
trivial; in particular, if n D 2 then the boundary M ! H is assumed trivial (see
Definition 7.1.11).

Theorem 12.2.4. Let F be a reduced free crossed complex, let G D �1F and let M
be an H -module. Then there is a bijection

ŒF;Kn.M;H/�� Š
G
�

ŒF;Kn.M;H/I ���

to the disjoint union of sets one for each morphism � W G ! H , namely those homotopy
classes inducing � . Further, the morphisms F ! Kn.M;H/ inducing � W G ! H

may be given the structure of abelian group which is inherited by homotopy classes.

Proof. The morphism q W Kn.M;H/ ! K.H; 1/ which is the identity in dimension
1 and 0 elsewhere is a fibration, which, by the pointed version of Proposition 12.1.6,
induces a fibration of internal homs

q� W CRS�.F;Kn.M;H//! CRS�.F;K.H; 1//:
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The induced map on �0 is surjective since every morphism f W F ! K.H; 1/ may be
lifted by 0 to a morphism F ! Kn.M;H/. By Proposition 12.2.1,

�0 CRS�.F;K.H; 1// Š Hom.G;H/:

So we can write, using the exact sequence of Theorem 12.1.15,

�0 CRS�.F;Kn.M;H// Š
G

� W G!H

ŒF;Kn.M;H/I ���:

The abelian group structure induced by addition of values in dimension n on the
set of morphisms F ! Kn.M;H/ which extend � is clear from the diagram

: : : �� FnC1 ��

��

Fn ��

��

Fn�1 ��

��

: : : �� F2 ��

��

F1
� ��

��

G

��
�

^̂^̂

77^̂^̂
: : : �� 0 �� M �� 0 �� : : : �� 0 �� H H

as is also the fact that this addition passes to homotopy classes rel �.

Remark 12.2.5. Thus the situation for crossed complexes is not quite like that for chain
complexes with a group or groupoid of operators. In that category, two morphisms
C ! D over the same operator morphism G ! H do indeed have a sum by addition
of values.

Definition 12.2.6. Let F be a reduced free crossed complex. We write Hn
��
.F;M/

for ŒF;Kn.M;H/I ���, and call this abelian group the n-th cohomology over � of
F with coefficients inM . Thus we can interpret ŒF;Kn.M;H/�� as the disjoint union
of the abelian groups Hn

��
.F;M/ for all morphisms � W G ! H . When convenient

and clear, we abbreviate � to � .

Remark 12.2.7. In the case F D …X� for a CW-filtration X�, then we recover the
cellular cohomology of X , while in the case F D F st.G/ for a group or groupoid G,
then we recover the usual notions of cohomology ofG as we shall see in Section 12.5.

A generalisation of Theorem 12.2.4 is as follows.

Example 12.2.8. Let C be a reduced crossed complex such that C1 D H , and ı2 D
0 W C2 ! C1. Let F be a free crossed complex. Then Crs�.F; C / and ŒF; C ��� may
be given the structure of abelian group by addition of values.

We can use the previous results to analyse ŒF; C �� in another interesting case, given
partly by the following definition.

Definition 12.2.9. A crossed complex C is called n-aspherical when C has trivial
homology Hi for 1 < i < n.
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Theorem 12.2.10 (Obstruction Class Theorem). Let n > 2 and let F , C be reduced
crossed complexes such that F is free, C is n-aspherical, and Ci D 0 for i > n. Let
G D �1F;H D �1C;M D Ker ın W Cn ! Cn�1. Let � W G ! H be a morphism of
groups. Then there is defined an element k� 2 HnC1

��
.F;M/, called the obstruction

class of � , such that the vanishing of k� is necessary and sufficient for � to be realised
by a morphism F ! C .

If k� D 0, then the set ŒF; C I �� of homotopy classes of morphisms F ! C

realising � is bijective with Hn
��
.F;M/.

Proof. Consider the morphisms of crossed complexes C
j�! �C

p�! KnC1.M;H/ as
shown in the following diagram:

: : : �� 0 ��

��

Cn
ın ��

��

Cn�1 ��

��

: : : �� C2

��

�� C1

��

C

j
��

: : : �� M ��

��

Cn
ın ��

��

Cn�1

��

�� : : : �� C2 ��

��

C1

��

�C

p
��

: : : �� M �� 0 �� 0 �� : : : �� 0 �� H KnC1.M;H/

Then �C is aspherical, and p W �C ! KnC1.M;H/ is a fibration of crossed complexes
which we have given more generally in Example 12.1.2.

Since F is a free reduced crossed complex, we have by Proposition 12.1.6 (iv) an
induced fibration of crossed complexes

p� W CRS�.F; �C /! CRS�.F; �C /: (12.2.1)

On applying �0 to this we get, considering previous identifications, a map of sets

p� W Hom.G;H/!
G

�2Hom.G;H/

HnC1
��

.F;M/; (12.2.2)

and we may define k� D p�.�/.
• k� D 0 if and only if � is induced by a morphism F ! C .
Suppose � is induced by a morphism f W F ! C . Then f factors through pj and

is therefore 0 in HnC1
��

.F;M/.

Suppose conversely that � determines 0 in HnC1
��

.F;M/. We know that � is
induced by a morphism f 0 W F ! �C . Then pf is homotopic to 0 and so by the
fibration condition f 0 is homotopic to f 00 such that pf 00 D 0. Hence f 00 determines
f W F ! C such that jf D f 00. Then f also induces � . This proves the lemma.

• If k� D 0 the set ŒF; C I �� is bijective with Hn
��
.F;M/.

If k� D 0, the morphism � lifts to a morphism of crossed complexes f W F ! C .
Let F .f / denote the fibre of p� W CRS�.F; �C /! CRS�.F; �C / over pf . Then we
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have an exact sequence

� � � ! �1.CRS�.F; �C /; f /! �1.CRS�.F;KnC1.M;H//; pf /
! �0F .f /! �0 CRS�.F; �C /! � � � :

By Proposition 12.1.10, �1.CRS�.F; �C /; f / D 0, so Corollary 12.1.16 (i) gives
a bijection

Hn
��.F;M/! ŒF; C I ��:

This completes the proof of the theorem.

This result generalises the classical theory of extensions of groups and abstract
kernels.185 To apply the theory to that case, the crossed complex F is taken to be a free
crossed resolution of the group G. One advantage of the approach taken here is that it
is clear that the standard free crossed resolution may be replaced by any free crossed
resolution ofG, and in many cases it is possible to construct small such resolutions, so
leading to a finite description of for example the classes of extensions.

Remark 12.2.11. These results can also be related to the question of obtaining a
universal cover of a topological group X . In the case X is connected and admits a
universal cover, the result is easy: any choice Qx of base point in the universal cover
whose projection is the identity of the group structure of X determines a topological
group structure on the universal cover. The nonconnected case is not so straightforward:
for the existence of such a topological structure there is in general an obstruction which
lies in H 3.�0.X/, �1.X; 1// and which can be identified with the first Postnikov
invariant of the classifying space BX of the topological group X .186

12.3 Homotopy classification of maps of spaces

In this section we give some of the many consequences that can be drawn from the
bijection

Œ…X�; C � Š ŒX;BC �
proved in Theorem 11.4.19.187

We first get some results on reduced CW-complexes whose n-type can be realised
by a classifying space of a crossed complex. In fact the main applications we give here
are in the pointed case, but an example for the unpointed case is for free loop spaces
in Example 11.4.21.

We obtain a key homotopy classification result, Corollary 12.3.7, expressing the
topological homotopy set ŒX; Y � as an algebraic homotopy set Œ…X�;…Y�� when Y is
n-aspherical and X is of dimension 6 n.
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We end this section by looking at the algebraic part Œ…X�; C � in some particular
cases.

Our first applications of Theorem 11.4.19 gives sufficient conditions on a homotopy
n-type to be realisable as BC for some crossed complex C .

Theorem 12.3.1. Let n > 1, and let X be a reduced CW-complex with �iX D 0,
1 < i < n. (Notice that this condition is vacuous if n D 1; 2.) Then there is a crossed
complex C with Ci D 0, for all i > n together with a map

f W X ! BC

inducing an isomorphism of homotopy groups f� W �iX ! �iBC for 1 6 i 6 n.

Proof. Let X� be the skeletal filtration of X , let X0 D fxg, and let D D …X�. We
define C be the crossed complex such that

Ci D

8̂<̂
:
Di ; 0 6 i < n;

Cok @nC1; i D n;
0; i > n:

Then there is a unique morphism g W D ! C which is the identity in dimensions
< n and is the quotient morphism in dimension n. Clearly, this morphism g induces
an isomorphism of fundamental groupoids, and of homology groups Hi .D; x/ !
Hi .C; x/ for 2 6 i 6 n.

By Theorem 11.5.2 there is a pointed morphism

f W X ! BC

whose homotopy class corresponds to g W …X� ! C . Without loss of generality we
may assume f is cellular. Then for all i > 1, the following diagram is commutative,
where S i D e0 [ ei is the i -sphere:

ŒS i ; X��
f� ��

��

ŒS i ; BC ��
Š
��

Š
))????????????

Œ…S i�;…X���
.…f /���

Š
��

Œ…S i�;…BC��� Š
�� Œ…S i�; C ��

Š
��

Hi .…X�; x/ Š
Hig

�� Hi .C; x/.

The assumptions on X imply that the map ŒS i ; X�� ! Œ…S i�;…X��� is bijective
for 1 6 i 6 n. So the result on …i follows.

Remark 12.3.2. This theorem shows that if �iX D 0, 1 < i < n, then the n-type of
X is described completely by a crossed complex.188
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Remark 12.3.3. The crossed complex C in the proof of Theorem 12.3.1 has the prop-
erty that

Hi .C / D 0; 1 < i < nI Hj .C / Š �j .X/; j D 1; nI Ci D 0; i > n:
It will be shown in Section 12.7 thatHnC1.�1X;�nX/ can be represented by equiva-
lence classes of such complexes In particular, the equivalence class of C is known as
the first k-invariant, or Postnikov invariant, of X .

In the crossed module case, there is an additional result that is sometimes useful
for giving an explicit presentation of a crossed module representing the 2-type of a
space.189

Proposition 12.3.4. Let X be a reduced CW-complex and let P be a group such that
there is a map f W BP ! X which is surjective on fundamental groups. Let F.f /
be the homotopy fibre of f and let M D �1F.f /, so that we have a crossed module
M ! P . Then there is a map X ! B.M ! P / inducing an isomorphism of �1
and �2.

Proof. Let f W BP ! X be a cellular map which is surjective on fundamental groups.
Let Y be the reduced mapping cylinderM.f / of f , and let j W BP ! Y be the inclu-
sion. Then the crossed module �2.Y; BP /! �1BP is isomorphic to � W M ! P .

Also j is surjective on fundamental groups, and it follows that the inclusionX1 !
Y is deformable by a homotopy to a map g0, say, with image in BP . This homotopy
extends to a homotopy of the inclusion X ! Y to a map g W X ! Y extending g0.

LetY� be the filtered space in whichY0 is the base point ofY , Y1 D BP , Yi D Y for
i > 2. Then C D …Y� is sk2.M ! P /, the acyclic extension by zeros of the crossed
moduleM ! P . The map g W X ! Y induces a morphism g� W …X� ! …Y� which
is realised by a map X ! B.M ! P / inducing an isomorphism of �1 and �2.

Example 12.3.5. We use the HHSvKT for crossed modules to give an application
of the last proposition. Let X be a CW-complex which is the union of connected
subcomplexes Y andZ such thatA D Y \Z is aK.P; 1/, i.e. is a spaceBP . Suppose
that the inclusions of A into Y and Z induce isomorphisms of fundamental groups.
Then, as in Proposition 12.3.4, the 2-types of Y and Z may be described by crossed
modules M ! P and N ! P respectively, say.

By results of Part I, the crossed module describing the 2-type ofX is the coproduct
M BN ! P of the crossed P -modules M and N .

We now give another application to the homotopy classification of maps. It also
concerns n-aspherical spaces and says that the homotopy classes of maps from a CW-
complex of dimension 6 n to an n-aspherical space are classified by the homotopy
classes of morphisms of their fundamental crossed complexes.

Proposition 12.3.6. For any CW-complex Y with skeletal filtration Y�, there is a
homotopy fibration

F ! Y ! B…Y�:



12.3 Homotopy classification of maps of spaces 411

Thus if �i .Y; y/ D 0 for 1 < i < n, then the fibre F is n-connected.

Proof. Results of Chapter 14, particularly Theorem 14.2.7, give a Kan fibration

RY� ! N…Y�:

Also for a CW-complex Y� the inclusion of RY� into the singular complex of Y is
a homotopy equivalence. So when realising, we have a homotopy fibration sequence

F ! Y ! B…Y�:

The results on n-connectedness come from the homotopy exact sequence of this fibra-
tion.

Corollary 12.3.7. If Y is a connected CW-complex such that �iY D 0 for 1 < i < n,
andX is a CW-complex with dimX 6 n, then there is a natural bijection of homotopy
classes190

ŒX; Y � Š Œ…X�;…Y��:

Proof. The assumptions imply that the fibration

Y ! B…Y�

induces a bijection ŒX; Y �! ŒX;B…Y��.
The fact that the map [X;B…Y�� ! Œ…X�;…Y�� is a bijection follows from

Theorem 11.4.19.

By Theorem 11.4.19, we get that the homotopy classes of maps are bijective with
the set Œ…X�; C �. We are going to consider some cases where this algebraic defined
set is computable.

The first case applies to the crossed complex K1.G/ associated to a groupoid G.
Recall that K1.G/, which is actually just sk1.G/, is the crossed complex which is G
in dimensions 0, 1 and trivial elsewhere. Then there is a bijection

Crs.C;K1.G// Š Gpds.�1C;G/;

which carries over to homotopy classes

ŒC;K1.G/� Š Œ�1C;G�
with crossed complexes on the left and groupoids on the right.

Example 12.3.8. Let G be a group, and let C1 be the infinite cyclic group on one
generator. Then the components of the groupoid GPDS.C1; G/ are bijective with the
conjugacy classes of elements ofG, and the vertex group of the groupoid at an element
a is bijective with

Ca.G/ D fb 2 G j ab D ag;
the centraliser of a in G.
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Proposition 12.3.9. If C is a crossed complex and G is a groupoid, then there is a
homotopy equivalence of crossed complexes

CRS.C;K1.G// ' K1.GPDS.�1C;G//:

Proof. Let D be a crossed complex. Then there are natural bijections

ŒD;CRS.C;K1.G//� Š ŒD ˝ C;K1.G/� because Crs is a closed category

Š Œ�1.D ˝ C/;G� as indicated above

Š Œ�1D � �1C;G� because �1 preserves products

Š Œ�1D;GPDS.�1C;G/� because Gpds is a closed category

Š ŒD;K1.GPDS.�1C;G//� as before:

The result follows directly.

If G is connected, x 2 G0, and f W G ! H is a morphism, then the vertex group
GPDS.G;H/.f / is isomorphic to the centraliser of f .G.x// in H.f x/.191 So the
previous result with Theorem 11.4.19 gives results on the homotopy groups of a space
of maps to an Eilenberg–Mac Lane space K.H; 1/.

In the pointed case the proposition gives an even simpler result.

Proposition 12.3.10. If C is a pointed, connected crossed complex andG is a pointed
groupoid, then the crossed complex CRS�.C;K1.G//has its set of components bijective
with Gpds.�1.C;�/; G.�// the set of morphisms of groups �1.C;�/! G.�/, and all
components of CRS�.C;K1.G// have trivial �1 and Hi for i > 2.

Proof. An argument similar to that in the proof of the previous proposition yields

Œ�;CRS�.C;K1.G//� Š Œ�;GPDS�.�1C;G/�;

which gives the first result. The second result is obtained as follows: for any pointed
crossed complex Z and morphism f W C ! K1.G/ which we take as base point,
let u be given by the on the appropriate subcomplex of Z ˝ C by the morphisms
1˝ f W � ˝C ! K1.G/, �W Z ˝ � ! K1.G/ and let v be given on the appropriate
subgroupoid of�1Z��1C by the morphisms 1��1f W ���1C ! G, �W �1Z�� !
G. Then we have

Œ.Z;�/; .CRS�.C;K1.G//; f /� Š ŒZ ˝ C;K1.G/Iu �
Š Œ�1Z � �1C;GI v �
Š Œ�1C;GI�1f �
Š �: �

There is another interesting special case of the homotopy classification. Let M be
an abelian group with automorphism group Aut M and let n > 2. Then we have the
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crossed complex Kn.M;AutM/ which is Aut M in dimension 1, M in dimension n,
has the given action of Aut M on M , and has trivial boundaries.

Let C be a crossed complex; in useful cases, C will be of free type. We suppose C
reduced and pointed. Let ˛ W �1.C;�/ ! Aut M be a morphism. The set of pointed
homotopy classes of morphismsC ! Kn.M;AutM/which induce ˛ on fundamental
groups is written ŒC;Kn.M;AutM/�˛�. This set is easily seen to have an abelian group
structure, induced by the addition on operator morphisms Cn ! M over ˛. So we
obtain the homotopy classification:

Proposition 12.3.11. If X is a pointed reduced CW-complex, and ˛ W �1.X;�/ !
Aut M , then there is a natural bijection

ŒX;BKn.M;AutM/�˛� Š Œ…X�;Kn.M;AutM/�˛�

where the former set of homotopy classes denotes the set of pointed homotopy classes
of maps inducing ˛ on fundamental groups.

Proof. The proof is immediate from Theorem 11.5.2.

We can also interpret the more general Obstruction Class Theorem 12.2.10 as foll-
ows.192

Theorem 12.3.12. LetX be a connected CW-complex of dimension 6 n, and let Y be a
connected CW-complex such that �iY D 0 for 1 < i < n. Let G D �1X , H D �1Y ,
and let M D �nY considered as an H -module. Then a morphism � W G ! H

determines an element k� 2 Hn
��
.X;M/ whose vanishing is necessary and sufficient

for � to be realised by a map f W X ! Y . If � is realisable, then the homotopy classes
of maps realising � are bijective with Hn�1

��
.X;M/.

Example 12.3.13. The following example is intended to illustrate some features of
this homotopy classification result, including the fact that we can sometimes do the
specific group ring calculations involved, in this case easily as the main calculations
are over the group C2.

Let D be the crossed complex Sk3 F.C2/; thus D is a reduced crossed complex
trivial above dimension 3, and is in dimensions 6 3 given as

ZŒC2�
ı3�! ZŒC2�

ı2�! C

with free generators xi in dimension i for i D 1; 2; 3 and

ı2.x2/ D x21 ; ı3.x3/ D x2.1 � c/
where c is the nontrivial element of C2; we also include in D the base point x0. The
classifying space Z D B.D/ is a model of RP 3 with homotopy groups of dimension
> 3 killed. The main Homotopy Classification Theorem 11.4.19 shows that if K is
a CW-complex, then the homotopy classes of maps K ! BD are bijective with the
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homotopy classes of crossed complex morphisms…K� ! D. Then Theorem 12.3.12
can be applied since �2.BD/ D 0.

In order to illustrate our methods and the tensor product, we choose K D RP 2 �
RP 2, and letK� be its standard skeletal filtration. ThenC D …K� is isomorphic to the
tensor product…RP 2� ˝…RP 2� , and so is freely generated by xi˝xj for 0 6 i; j 6 2

with base point x0 ˝ x0 and boundaries given by the rules of the tensor product, i.e.

ı2.x2 ˝ x0/ D x21 ˝ x0;
ı2.x0 ˝ x2/ D x0 ˝ x21 ;
ı2.x1 ˝ x1/ D .x0 ˝ x1/�1.x1 ˝ x0/�1.x0 ˝ x1/.x1 ˝ x0/;
ı3.x2 ˝ x1/ D �x2 ˝ x0 C .x2 ˝ x0/x0˝x1 C x21 ˝ x1

D �x2 ˝ x0 C .x2 ˝ x0/x0˝x1 C x1 ˝ x1 C .x1 ˝ x1/x1˝x0 ;

ı3.x1 ˝ x2/ D �x1 ˝ x21 � x0 ˝ x2 C .x0 ˝ x2/x1˝x0

D �.x1 ˝ x1/ � .x1 ˝ x1/x0˝x1 � .x0 ˝ x2/C .x0 ˝ x2/x1˝x0 ;

ı4.x2 ˝ x2/ D x21 ˝ x2 C x2 ˝ x21
D x1 ˝ x2 C .x1 ˝ x2/x1˝x0 C .x2 ˝ x1/x0˝x1 C x2 ˝ x1:

Now the group �1.C / is isomorphic to C2 �C2 so we have to consider the morphisms
� W C2�C2 ! C2 and consider which of these lift to a morphismC ! D. We consider
only the case � D .1; 1/. Then � lifts to a morphism f W C ! D given by

f1.x1 ˝ x0/ D �f1.x0 ˝ x1/ D x1;
f2.x2 ˝ x0/ D �f2.x0 ˝ x2/ D x2;
f2.x1 ˝ x1/ D 0;
f3.x2 ˝ x1/ D �f3.x1 ˝ x2/ D x3;
f4.x2 ˝ x2/ D 0:

We leave the checks to the reader.
So we have the following diagram:

Y4

f4

��H
H
H

ı4 �� Y3

f3

��H
H
H

ı3 �� Y2

f2

��H
H
H

ı2 �� Y1

f1

��H
H
H

� 
O C2 � C2

�

��
0 �� ZŒC2�

ı3

�� ZŒC2�
ı2

�� C
�


O C2.

(12.3.1)

Let M D Ker.ı3 W ZŒC2�! ZŒC2�/; then M is generated in ZŒC2� by x3.1C c/.
The based homotopy classes of maps inducing � are bijective withH 3

��
.C;M/. So

we have to see how to calculate this.
A morphism g W Y3 !M over � is determined by its values on the free generators

x2 ˝ x1, x1 ˝ x2 of Y3 and g is a cocycle if and only if gı4 D 0. From the formulae
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above we see that

gı4.x2 ˝ x2/ D .g.x1 ˝ x2/C g.x2 ˝ x1//.1C c/;

and therefore g is a cocycle if and only if g.x1 ˝ x2/C g.x2 ˝ x1/ D 0.
Now the question is how much such a g can be altered by a homotopy, i.e. byHı3

where H W Y2 !M is a morphism over � . But as H is a � -morphism, with values in
M , which is generated by x3.1C c/ we find that if H.x1 ˝ x1/ D ax3.1C c/ where
a 2 Z then

Hı3.x2 ˝ x1/ D H.x2 ˝ x0/.c � 1/CH.x1 ˝ x1/.1C c/
D 0C x3.1C c/2a say, where a 2 Z

D 2ax3.1C c/:

Similarly, Hı3.x1 ˝ x2/ D 2ax3.1C c/. Hence H 3
��
.K;M/ Š Z2.

12.4 Local coefficients and local systems

The homotopy classification result of Theorem 11.4.19 suggests that if A is a crossed
complex, andX is a space, with singular complexSX (either simplicial or cubical), then
the set Œ…jSX j; A� may be thought of as singular cohomology of X with coefficients
in A, and written H 0.X;A/. With our present machinery, it is easy to see that this
cohomology is a homotopy functor of both X and of A. We show in this section
that H 0.X;A/ is (non-naturally) a union of abelian groups, each of which is a kind of
cohomology with ‘local coefficients’in a generalised local system where the coefficients
are chain complexes with a groupoid of operators.193

Let C and A be crossed complexes. In examples, C is to be thought of as …X�
for some CW-complex X . Let ˛ be a morphism of groupoids ˛ W C1 ! A1 such that
˛.ı2C2/ � ı2A2. This last condition ensures that ˛ induces a morphism of groupoids
�1C ! �1A. It is also a necessary condition for there to exist a morphism C ! A

extending ˛.

Definition 12.4.1. By a local system of type A on C we mean the crossed complex A
together with an ˛ satisfying the above condition.

The morphism ˛ induces an operation of C1 on all the groupoids An for n > 2.
By a cocycle of C with coefficients in ˛ we mean a morphism f W C ! A of crossed
complexes such that f1 D ˛. By a homology of such cocycles f , g we mean a
homotopy .h; g/ W f ' g of morphisms of crossed complexes such that h0x is a zero
for all x 2 C0, and ı2h1 D 0. The set of homology classes of cocycles of C with
coefficients in A is written ŒC; A�˛ .
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Definition 12.4.2. If A is a crossed complex and n > 1 we write A.n/ for the crossed
complex

sknC1.Im ınC1 ! An
ın�! An�1 ! � � � ! A1/:

The projection p W A ! A.n/ is a fibration which is an n-equivalence and its kernel
is written AŒn�. This is often called the n-th Postnikov decomposition of the crossed
complex A.

Remark 12.4.3. You should notice in the proof of the following proposition how the
choice of a cocycle f with coefficients in ˛, i.e. a choice of morphism C ! A

extending ˛, allows the imposition of an abelian group structure on the morphisms also
extending ˛, with f as zero. The proof uses the axiom CM2) for crossed modules.

Proposition 12.4.4. Let C , A be crossed complexes and let ˛ be a local system of type
A on C . Let Q D �1A and let A0 be the crossed complex which is Q in dimension 1
and agrees with AŒn� in higher dimensions, with Q as groupoid of operators and with
trivial boundary from dimension 2 to dimension 1. Let ˛0 be the composite

C1
˛�! A1 ! Q:

Then a choice of cocycle f with coefficients in ˛ determines a bijection

ŒC; A�˛ ! ŒC; A0�˛0 ;

and hence an abelian group structure on ŒC; A�˛ .

Proof. We are given f extending ˛. Let g be another morphism C ! A extending ˛.
Then g1 D f1 and ıg2 D ıf2. For such a g we define rgn D gn�fn , n > 2. Clearly
rgn is a morphism of abelian groups for n > 3; we prove that it is also a morphism for
n D 2. Let c; d 2 C2. Then

rg2.c C d/ D g2.c C d/ � f2.c C d/
D g2c C .g2d � f2d/ � f2c
D g2c � f2c C .g2d � f2d/ since ı2.g2 � f2/ D 0
D rg2c C rg2d:

Clearly rgn is aC1-operator morphism whereC1 acts onAŒ1� via ˛. Also ırg2 D 0
and for n > 3, ırgn D rıgn�1. So we may regard rg as a morphism C ! A0
extending ˛. It is clear that r defines a bijection between the morphisms g W C ! A

extending ˛ and the morphisms g0 W C ! A0 extending ˛0. Next suppose that .h; g/
is a homology Ng ' g as defined above. Then ıh1 D 0. Hence h1 defines uniquely
k1 W C1 ! Ker ı2. Further we have for n > 2

Ngn D gn C hn�1ın C ınC1hn:
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For n > 2 let kn D hn. Then kn is a C1-operator morphism. Now for x 2 Cn and
n > 3, we have hn�1ınx C ınC1hnx lies in an abelian group, while for n D 2 it lies
in the centre of A2 and so commutes with f2x . It follows that .k; rg/ is a homology
r Ng ' rg.

Conversely, a homology r Ng ' rg of ˛0-cocycles determines uniquely a homology
Ng ' g of A-cocycles. It follows that r defines a bijection ŒC; A�˛ ! ŒC; A0�˛0 as
required.

Notice also that the set ŒC; A0�˛0 obtains an abelian group structure, by addition of
values, and with the class of rf as zero.

Let C be a reduced cofibrant crossed complex, and let A be a reduced crossed
complex. We are interested in analysing the fibres of the function

	 W ŒC; A�� ! Hom.�1C; �1A/:

We write ŒC; A�˛� for 	�1.˛/. This set may be empty. We have in Theorem 12.2.10
analysed the obstruction to an element ˛ lying in the image of 	. Here our aim is to
show that if f W C ! A is a morphism realising ˛ W �1C ! �1A then f determines an
abelian group structure on 	�1.˛/. To this end we recall from Section 7.4 the relations
between crossed complexes and chain complexes with operators.

Let Q D �1A. If AŒ1� is as in Definition 12.4.2 we consider the pair .AŒ1�;Q/ to
be a chain complex with Q as groupoid of operators.

Proposition 12.4.5. Let C;A be reduced crossed complexes such that C is free. Let
f W C ! A be a morphism inducing ˛ W �1C ! �1A on fundamental groups. Then f
determines a bijection

ŒC; A�˛� Š ŒrC; .AŒ1�;Q/�˛;
where the latter term is the set of pointed homotopy classes of morphisms which are
morphisms of chain complexes with operators and which induce ˛ on operator groups.

Proof. Let p W A ! A.1/ denote the Postnikov fibration so that AŒ1� is the kernel of
p. Let G D �1C . Recall that K.Q; 1/ denotes the crossed complex which is Q
in dimension 1 and is zero elsewhere. The projection A.1/ ! K.Q; 1/ is a acyclic
fibration. Since C is free, Proposition 12.1.10 implies that the induced morphism
CRS�.C;A.1// ! CRS�.C;K.Q; 1// is also a acyclic fibration. It follows from
Proposition 12.2.1 that CRS�.C;A.1// has component set Hom.G;H/ and has trivial
fundamental and homology groups.

Suppose that f W C ! A induces ˛ W G ! Q on fundamental groups. Let F.f /
be the fibre of CRS�.C;A/ ! CRS�.C;A.1// over pf . Then the exact sequence of
this fibration yields an exact sequence

1! �0F.f /! ŒC; A��
��! Hom.G;Q/

such that the first map is an inclusion with image 	�1.˛/.
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Let A D f1. Then �0F.f / D ŒC; A�A. So by Proposition 12.4.4 �0F.f / is
bijective with ŒC; A0�A0 . But A0 D ‚.AŒ1�;Q/. The proposition follows directly from
the adjointness of r and ‚.

Corollary 12.4.6. If ˛ W �1C ! �1A is realisable by a morphism f W C ! A, then a
choice of such morphism determines an abelian group structure on ŒC; A�˛�.

This result gives the expected abelian group structure on this generalised cohomol-
ogy with local coefficients.

12.5 Cohomology of a groupoid

We now introduce in our terms the notion of cohomology of a groupoid. This general-
isation from groups to groupoids is used in Section 12.5.i to give a formulation of the
cohomology of a cover of a topological space.

Definition 12.5.1. Let G be a groupoid, andM a G-module. The n-th cohomology of
G with coefficients in M is defined to be the set of homotopy classes

Hn.G;M/ D ŒF st� .G/;Kn.M;G/I� (12.5.1)

where F st� .G/ is the standard free crossed resolution of the groupoid G, and the map
 W F st

1 .G/! G is the standard morphism; recall that F st
1 .G/ is the free groupoid on

the elements of G.

Recall from Definition 10.2.7 that the standard free crossed resolution of a groupoid
G is:

: : : �� F st� .G/3
ı3 �� F st� .G/2

ı2 �� F st� .G/1
� 
O G

in which F st
n .G/ is free on the set .N�G/n of composable sequences

Œg1; g2; : : : ; gn�

of elements gi of G, and the base point t Œg1; g2; : : : ; gn� is the final point tgn of gn.
For n > 2 the boundary

ın W F st
n .G/! F st

n�1.G/

is given by

ı2Œg; h� D Œgh��1Œg�Œh�;
ı3Œg; h; k� D Œg; h�kŒh; k��1Œg; hk��1Œgh; k�;
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and for n > 4

ınŒg1; g2; : : : ; gn� D Œg1; : : : ; gn�1�gn C .�1/nŒg2; : : : ; gn�

C
n�1X
iD1
.�1/n�i Œg1; g2; : : : ; gi�1; gigiC1; giC2; : : : ; gn�:

See also the pictures in Example 9.10.3.194

Example 12.5.2. Let G, M be groups, let M D .� W M ! AutM/ be the automor-
phism crossed module of M and let � W F st� .G/ ! sk2 M be a morphism of crossed
complexes. Then � is determined by its values on the free generators of F st� .G/ in
dimensions 1 and 2 and so is equivalent to a pair of functions

�1 W G ! AutM; �2 W G �G !M

satisfying

��2.g; h/ D �1.gh/�1�1.g/�1.h/; (fset1)

1 D �2.g; h/�1.k/�2.h; k/�1�2.g; hk/�1�2.gh; k/ (fset2)

for all g; h; k 2 G. The last two conditions are (possibly with different conventions)
the conditions for what is known in the literature as a factor set, usually with M being
the crossed module M ! AutM . Then an extension of M by G may be constructed
by giving a product structure on E D G �M by the rule

.g;m/.h; n/ D .gh; �2.g; h/m�1hn/; (prod)

and defining i W M ! E;p W E ! G by i.m/ D .1;m/; p.g;m/ D g. The condition
(fset2) is then exactly the condition for the product on E to be associative. This is not
surprising because of the relation to associativity of the boundary ı3 in F st� .G/.

Conversely, given an extension 1!M
i�! E

p�! G ! 1 of M by G, then choose
a section s W G ! E of p such that s.1/ D 1. This defines a bijection ˛ W E ! G �M
by e 7! .pe; i�1..sp.e//�1e//. Note that p..sp.e//�1e// D 1 since ps D 1G . The
problem is to define a multiplication on G �M so that ˛ is a morphism (and so an
isomorphism). This choice of s is also equivalent to choosing �0 W F st

1 .G/ ! E such
that p�0 D . But since M is normal in E the operation of E on M by conjugation
gives a morphism �E W E ! AutM . Let �1 D �E�

0. The rule (prod) then gives the
‘obstruction’ to the product on E being just the semidirect product.

Exercise 12.5.3. Verify the assertions of the last example, and relate the construction
to that in Proposition 12.6.3.

Remark 12.5.4 (Homotopies for F st). We have shown in Corollary 11.4.14 that the
cubical nerve N W Crs ! Cub is a homotopy functor, and from this one can deduce
that … BN W Crs! Crs is also a homotopy functor.
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However it is the simplicial nerve which gives rise to the more usual standard
crossed resolution F st of a group or groupoid, and we also want to see this resolution
as a homotopy functor. This remark explains the background to this.

Methods analogous to those of Section 11.4.ii also give an adjunction for the sim-
plicial nerve

… W Simp � Crs W N�

with counit " W …N� ! 1. If the crossed complex C is essentially a groupoid, this
counit "C W …N�C ! C is a weak homotopy equivalence. The crossed complex
simplicial Eilenberg–Zilber–Tonks Theorem of Section 10.4.v may be used to show
that the simplicial nerveN� of a crossed complex is a homotopy functor. For suppose
given a homotopy h W � ˝ C ! D of crossed complexes. We need to construct from
h a simplicial homotopy h� W �1 � N�C ! N�D. Recall that …�1 Š �. By
adjointness, we need a map

….�1 �N�C/! D:

This is to be the composite

….�1 �N�C/
a�! …�1 ˝…N�C

1˝"��! � ˝ C h�! D;

where a is the map of the Eilenberg–Zilber–Tonks Theorem 10.4.14, and " is the counit
of the adjunction. From h� we can get a morphism � ˝…N�C ! …N�D as the
composite

…�1 ˝…N�C
b�! ….�1 �N�C/

….h�/����! …N�D

where b is the other map of the Eilenberg–Zilber–Tonks Theorem 10.4.14.195

Remark 12.5.5. It might be argued that the case of the cohomology of a groupoid is
not so interesting as that of a group, since the homotopy type of a groupoid is that of a
disjoint union of groups. The argument against this is that very often we are interested
in structured groupoids or, as we have seen in the Seifert–van Kampen Theorem, the
relations between families of groupoids, and very often there is no way to obtain this
‘reduction to a family of groups’ in a way respecting the structure. In the next section,
we consider a groupoid arising from a cover of a space, and this groupoid has a natural
topology making it a topological groupoid. This topological groupoid again does ‘not
reduce to a family of disjoint topological groups’. In such case it is possible to make
the standard resolution into a topological standard resolution in such a way that it has
the universal property of a free crossed resolution but for continuous maps. This allows
for cohomology with coefficients in a topological module or crossed complex.

12.5.i The cohomology of a cover of a space

In this section we show how to assign a free crossed complex to a cover U of a
topological space X , so leading to a notion of nonabelian cohomology of the cover.



12.5 Cohomology of a groupoid 421

Let U D fU�g�2ƒ be family of subsets of the topological space X . We define the
projection map

p W EU D
G
�

U� ! X (12.5.2)

to send .x; �/ 7! x, x 2 U�. This projection defines an equivalence relation Equ U on
EU, which is of course a special kind of groupoid: the objects of Equ U are pairs .x; �/
such that x 2 U�; there is a unique arrow .x; �/! .x; �/ if and only if x 2 U� \U�.
Hence we can form

F�.U/ D F st� .Equ U/; (12.5.3)

which we call the standard crossed resolution of the cover U. IfC is a crossed complex,
then we can form

H 0.U; C / D ŒF�.U/; C �: (12.5.4)

Example 12.5.6. A free basis element Œg1; : : : ; gn�ofFn.U/ is equivalent to a sequence
Œx; �0; �1; : : : ; �n� such that x 2 U�0

\� � �\U�n
. Then we have the boundary formulae

in F�.U/:196

ı2Œx; �; �; �� D Œx; �; ���1Œx; �; ��Œx; �; ��;
ı3Œx; �; �; �; �� D Œx; �; �; �; ��Œx;
;�� Œx; �; �; ���1Œx; �; �; ���1Œx; �; �; ��:

So we can analyse this definition in the particular case when C is a crossed module
of groups @ W M ! P , and say that a cocycle f D .f1; f2/ of U with values in this
crossed module consists of functions with values f1Œx; �; �; � 2 P , f2Œx; �; �; �� 2M
and satisfying

@f2Œx; �; �; �� D f1.Œx; �; ���1Œx; �; ��Œx; �; ��/;
f2ı3Œx; �; �; �; �� D 1:

Now let the cover V D fV˛g˛2A of X be a refinement of the cover U. This means
there is a function  W A! ƒ such that for each ˛ 2 A we have V˛ � U�.˛/. Such a
refinement map defines a groupoid morphism � W Equ.V/! Equ.U/ by .x; ˛; ˇ/ 7!
.x; .˛/; .ˇ//. One easily checks that if  W A ! ƒ is another refinement map,
then the two groupoid morphisms �;  � W Equ.V/! Equ.U/ are homotopic by the
homotopy h which assigns to .x; ˛/ the element .x; ˛/! .x;  ˛/ of Equ.U/.

The weight of this is that , then induce homotopic morphisms �, � W F.V/!
F.U/ of free crossed resolutions, by Remark 12.5.4; hence �,  � induce the same
function

ŒF .U/; C �! ŒF .V/; C �:

This is the start of defining the nonabelian Čech cohomology of the space X with
coefficients in the crossed complex C using refinements of open covers and taking
inverse limits of the corresponding sets of homotopy classes.197
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12.6 Dimension 2 cohomology of a group

This section gives an account of the theory of nonabelian extensions of a group M by
a group G, that is the aim is to classify extensions 1 ! M ! E ! G ! 1. An
immediate difference between this and the abelian case is that we do not get an action
of G on M from such an extension. We have already mentioned in Example 12.5.2
the ‘factor sets’ which arise. It turns out that it is convenient to be more specific about
how the actions arise by using extensions of the type of a crossed module.198

Definition 12.6.1. Let M denote the crossed module � W M ! P . An extension
.i; p; 
/ of type M of the group M by the group G is

(i) an exact sequence of groups

1!M
i�! E

p�! G ! 1

so that E operates on M by conjugation, and i W M ! E is hence a crossed
module; and

(ii) a morphism of crossed modules

1 �� M
i �� E

	

��
M

� �� P

i.e. 
 i D � and me D m	e for all m 2M , e 2 E; thus the action of E on M is
also via 
 .

We shall write such an extension as

1 �� M
i �� E

p �� G �� 1; E
	 �� P:

Two such extensions of type M

1 �� M
i �� E

p �� G �� 1; E
	 �� P;

1 �� M
i 0 �� E 0 p0

�� G �� 1; E 0 	 0
�� P:

are said to be equivalent if there is a morphism of exact sequences

1 �� M �� E ��

�

��

G �� 1 E
	 ��

�

��

P

1 �� M �� E 0 �� G �� 1; E 0 	 0
�� P:
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such that the right-hand square also commutes. Of course in this case  is an iso-
morphism, by the 5-lemma, and hence equivalence of extensions is an equivalence
relation.

We denote by

OpExtM.G;M/

the set of equivalence classes of all extensions of type M of M by G.

The usual theory of extensions of a groupM by a groupG considers extensions of
the type of the crossed module �M W M ! AutM . The advantages of replacing this
by a general crossed module are first that the group AutM is not a functor of M , so
that the relevant cohomology theory in terms of �M appears to have no morphisms of
coefficients, and second, that the more general case occurs geometrically.199

Theorem 12.6.2. Suppose given a crossed sequence

0! �
i�! F2

ı�! F1
��! G ! 1

and a crossed module M D .� W M ! P /. Let F denote the crossed module ı W F2 !
F1. Let ŒF ;M�0 denote the set of homotopy classes of morphisms k D .k2; k1/ W F !
M of crossed modules, such that k2.i�/ D 1. Then there is a natural injection

E W ŒF ;M�0 ! OpExtM.G;M/

sending the class of a morphism k to the extension

1!M ! E.k/! G ! 1

where E.k/ is the quotient of the semidirect product group F1 ËM , in which F1 acts
on M via P . The function E is surjective if F1 is a free group.

Proof. The heart of the proof is in the following proposition, which gives a formulation
as a kind of pushout of the construction of nonabelian extensions of groups. This
formulation is convenient for the development of the theory and the proof of theorems.

Proposition 12.6.3. Suppose given a crossed sequence

0! �
i�! F2

ı�! F1
��! G ! 1

and a morphism of groups k2 W F2 ! M , together with an action of F1 on M such
that

AP1) if m 2M , r 2 F2 then .k2r/�1m.k2r/ D mır ;
AP2) if r 2 F2, x 2 F1 then k2.rx/ D .k2r/x .
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Then there is a commutative square

F2
ı ��

k2

��

F1

k1

��
M

ik

�� Ek

such that

CP1) ik W M ! Ek is a crossed module;

CP2) if m 2M; x 2 F1 then mx D mk1x;

CP3) the square is universal for properties CP1), CP2);
CP4) there is an exact sequence

M
ik�! Ek

 �! G ! 1I

CP5) the morphism ik is injective if and only if k2.i�/ D 1.
Proof. Let Ck be the semidirect product group F1 ËM formed with the given action
of F1 on M . Let Ck act on F2 via the projection to F1 and the action of F1 on F2.

We first prove that the function � W F2 ! Ck , r 7! .ır; .k2r/�1/ is a morphism.
Let r; s 2 F2. Then by the semidirect product rule

�.r/�.s/ D .ır ıs; k2..r�1/ıs s�1/
D .ır ıs; k2.s�1r�1//
D �.rs/:

Next we prove � preserves the action. Let r 2 F2, .x;m/ 2 Ck . Then

.x;m/�1�.r/.x;m/ D .x�1; .m�1/x�1

/.ır; .k2r/�1/.x;m/

D .x�1.ır/x; .m�1/x�1.ır/x.k2r�1/xm/
D .x�1.ır/x; .k2rx/�1m�1.k2rx/.k2.r�1//xm/
D �.rx/:

Finally we prove easily the second crossed module rule:

r�1sr D sır by the crossed module rule for ı

D s.ır;k2r�1/ by definition of the action of Ck

D s�r as required.
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Let Ek D Cok �, and let Œx;m� denote the image in Ek of .x;m/ 2 Ck . Let
ik W M ! Ek be given by m 7! Œ1;m�. Then the formula mŒx;n� D n�1mxn gives, by
AP1), a well-defined action of Ek on M which is easily shown to make ik a crossed
module.

Let  W Ek ! G be given by Œx;m� 7! .x/. Then  is well defined and is the
cokernel of ik .

Suppose given a morphism of crossed modules

F2
ı ��

k2

��

F1

l

��
M ˛

�� P

such that mx D mlx , x 2 F1; m 2 M . Suppose ! W Ek ! P determines a morphism
of crossed modules such that !l D k1, !ik D ˛. Since Œx;m� D Œx; 1�Œ1;m�, we
easily check that !Œx;m� D .lx/.˛m/. So such an ! is unique. On the other hand, we
easily check this does define a morphism as required.

The morphism  of CP4) is defined by  Œx;m� D x. This gives the exact
sequence.

Finally ikm D 1 for all m 2 M is equivalent to .1;m/ D .ır , k2r�1/ for some
r 2 F2; this easily proves CP5).

Exercise 12.6.4. Complete the proof of Theorem 12.6.2, including the analysis of the
equivalence of extensions.

Example 12.6.5. In the applications of Theorem 12.6.2 we would take a free crossed
resolutionF.G/ of a groupG and let ı W F2 ! F1 be the crossed module ı2 W F2.G/!
F1.G/with  W F1.G/! G given by the resolution. Then� is the module of identities
among relations for the presentation hX j Ri of G determined by the free bases X , R
of F1.G/, F2.G/ respectively.

Example 12.6.6 (Extensions by a cyclic group). Let Cn denote the cyclic group of
order n, written multiplicatively, and generated by an element c, and let the infinite
cyclic group C1 be generated by x. The presentation hx j xni for Cn gives rise to the
free crossed module ı W ZŒCn� ! C1 where ZŒCn� is also the free Cn module on a
generator x1 and ı.x1/ D xn. A morphism

ZŒCn�
ı ��

k2

��

C1

k1

��
M ˛

�� P

of crossed modules is thus specified by elements q D k1.x/ 2 P , a D k2.x1/ 2 M
such that ˛a D qn. Further, Ker ı, the module of identities for the presentation, is the
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submodule generated by the element x1.1 � c/. Hence the condition k2.Ker ı/ D 0

is equivalent to k2.x1.1 � c// D a.aq/�1 D 1, that is a D aq . An equivalence
.a0 W q0/ ' .a W q/ of such data is given by a derivation h W C1 ! M , and so by an
element b D h.x/ 2M , such that q0 D q.˛b/ and

a0 D ah.xn/ D abqn�1

bq
n�2

: : : b2b:

The extension group E determined by the data .a W q/ is the quotient of C1 Ë M by
the element .xn; a�1/.200

Example 12.6.7 (The trefoil group). Let G be the trefoil group with presentation
hx; y j x2 D y3i. This is a one relator presentation whose relator is not a proper
power, and so there are no identities among the relations.201 Therefore the extension
data of M by G of type ˛ W M ! P is given by elements qx , qy 2 P , ar 2 M ,
such that ˛ar D .qx/

2.qy/
�3. An equivalence .a0

r W q0
x; q

0
y/ ' .ar W qx; qy/ of such

data is given by elements b; c 2 M such that q0
x D qx.˛b/, q0

y D .qy/.˛c/ and
a0
r D arh.x2y�3/ where h is the derivation F fx; yg !M given by hx D b; hy D c.

Thus

h.x2y�3/ D h.x2/q�3
y h.y�3/

D .bqxb/q
�3
y .c�1/q�3

y .c�1/q�2
y .c�1/q�1

y :

The group E determined by the extension data .ar W qy ; qy/ is the quotient of the
semidirect product F fx; yg ËM by the element .x2y�3; a�1

r /. Here F fx; yg acts on
M by ax D aqx , ay D aqy , a 2M .

Example 12.6.8 (Extensions by a product). The tensor product of crossed complexes
as defined in Section 9.3.iii may be used to describe extensions by a productG �H of
groups. Let F�.G/, F�.H/ be free crossed resolutions of groups G, H respectively.
The tensor product F�.G/ ˝ F�.H/ is then a free crossed resolution of G � H . A
proof of asphericity will be given in Corollary 15.8.5. It is proved in Theorem 9.6.1
that the tensor product of free crossed complexes is free on the tensor product of the
free generators, so that in particular F�.G/˝ F�.H/ is freely generated as a crossed
complex by ai ˝ bj , where the ai , bj run over sets of free generators of F�.G/,
F�.H/ respectively. Thus it is easy to specify morphisms from F�.G/˝ F�.H/ to a
crossed module or crossed complex. Further, generators for the module of identities
for a presentation of the product G � H are the images under ı3 of free generators
of .F�.G/˝ F�.H//3, by asphericity. Such free generators are of the form a3 ˝ �,
� ˝ b3, a2 ˝ b1, a1 ˝ b2 where ai , bj run over free generators of Fi .G/, Fj .H/
respectively.

This implies the following. Let hX j Ri; hY j Si be presentations of G;H respec-
tively, and let I , J be generating sets for the modules of identities for these presenta-
tions. Then a free crossed resolution F�.G/ corresponding toX ,R, I is in dimensions
6 3 of the form

C3.I /
ı3�! FC .R/

ı2�! F.X/
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where C3.I / is the freeG-module on I , and similarly for F�.H/. Thus in dimensions
6 3, F�.G/˝ F�.H/ has generators as follows, where for Z any set, NZ denotes a set
of formal generators Nz, z 2 Z:

• dimension 1: X , Y ,
• dimension 2: NR, NS , fx ˝ y W x 2 X; y 2 Y g,
• dimension 3: NI , NJ , fx ˝ Ns, Nr ˝ y W x 2 X; y 2 Y; r 2 R; s 2 Sg.

The boundaries are given by

ı2 Nr D r; ı2 Ns D s; ı2.x ˝ y/ D y�1x�1yx;
ı3Ni D i; ı3 Nj D j; ı3.x ˝ Ns/ D Ns�1 Nsx.x ˝ s/�1;

ı3. Nr ˝ y/ D .r ˝ y/ Nr�1 Nry :

Now the elements x˝ s, r˝y have to be expressed in terms of the free generators
in dimension 2. This is done by using the biderivation rules

x ˝ uv D .x ˝ u/v .x ˝ v/;
!z ˝ y D .z ˝ y/.! ˝ y/z;

which are part of the crossed complex structure of the tensor product.
Note that in this example, we obtain nice generators of the module of identities for

the product, by applying the boundary operator to free generators in dimension 3 of a
crossed resolution.202

Exercise 12.6.9. Examine free crossed resolutions and homotopical syzygies of the
free abelian group Zn using the tensor product of free crossed resolutions.203

12.7 Crossed n-fold extensions and cohomology

The description of the second cohomology of a group in terms of extensions of groups
led to a desire to find analogous interpretations of the third and higher cohomology
groups. It turned out they could be described in terms of crossed n-fold extensions of
a G-module M by the group G, as we explain in this section.204

Definition 12.7.1. A crossed n-fold extension of M by G is a crossed resolution E of
G such that EnC1 D M as a G-module, and Ei D 0 for all i > nC 1. We can write
E as an exact sequence:

E: D 0 �!M
@nC1���! En

@n�! � � � @3�! E2
@2�! E1

��! G ! 1:

This means of course that: the above sequence is exact; E1 and the part above is a
(truncated) crossed complex; and  maps �1E isomorphically to G. Thus for n D 1
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we have exactly an abelian extension of M by G, since by the crossed module rule
CM2), M abelian is equivalent to E1 acts on M via G. A crossed 2-fold extension is
also called a crossed sequence.

Example 12.7.2. Let G be a group and E a crossed resolution of G. Then CosknE
together with  W E1 ! G is the crossed n-fold extension

EnC1: D 0 �! Ker @n
i�! En

@n�! � � � @3�! E2
@2�! E1

��! G: �

Definition 12.7.3. A morphism E ! E 0 of crossed n-fold extensions of M by G is a
morphism of crossed resolutions which induces the identity on M and on G as shown
in the following diagram:

0 �� M

D
��

�� En

��

�� En�1

��

�� : : : �� E1

��

� �� G

D
��

�� 1

0 �� M �� E 0
n

�� E 0
n�1 �� : : : �� E 0

1

�0

�� G �� 1

Two crossed n-fold extensions resolutions E, E 0 of M by G are similar if there is a
ziz-zag (see page 579) of morphismsE ! E 0. This relation is an equivalence relation,
and we denote the quotient set by OpExtn.G;M/.

This quotient set may be given an abelian group structure called the ‘Baer sum’.205

Here we merely note that for n > 1 there is a class which we call 0 namely the class
of the crossed n-fold extension

0 �� M
D �� M

0 �� : : : �� G
� �� G �� 1

n 1

Further we shall give below a bijection

OpExtn.G;M/ Š HnC1.G;M/

which then defines an abelian group structure on the set OpExtn.G;M/. The class in
HnC1.G;M/ of the crossed n-fold extension will be called its Postnikov invariant, or
k-invariant.206

Remark 12.7.4. A crossed 2-fold extension is also called a crossed sequence. Such a
crossed sequence

0!M ! E ! P ! G ! 1

determines and is determined up to equivalence by the crossed module E ! P . Thus
we find as a particular case that crossed modules with kernel M and cokernel G can
be classified by the k-invariant of the associated crossed sequence, i.e. by an element
of the cohomology group H 3.G;M/.
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Example 12.7.5. We recall the dihedral crossed module � W zD2n ! D2n from Exam-
ple 5.6.12. Here D2n, zD2n have presentations

hx; y j xn; y2; xyxyi; hu; v j un; v2; uvuvi;
respectively, and �.u/ D x2, �.v/ D y. We show the dihedral crossed module
represents the trivial cohomology class in H 3.Cok�;Ker�/.

For n odd, we know that � is an isomorphism, so the result is trivial.
For n even, we have Ker� Š Cok� Š C2 and we simply construct a morphism

of crossed 2-fold extensions as in the following diagram

0 �� C2
1 ��

D
��

C2

f2

��

0 �� C2

f1

��

1 �� C2

D
��

�� 0

0 �� C2 �� zD2n �
�� D2n �� C2 �� 0

where if c denotes the nontrivial element of C2 then f1.c/ D x, f2.c/ D un=2.

Example 12.7.6. In this example, we give another crossed 2-fold extension˛ ofA byG
which represents 0 in its class. However to prove this triviality we use an intermediate
crossed 2-fold extensionˇ to give maps 0 ˇ ! ˛, and it is not clear how to construct
a direct map between 0 and ˛.

Let Cn denote the cyclic group of order n (including the case n D 1), written
multiplicatively, with generator t . Let �n W Cn2 ! Cn2 be given by t 7! tn. This
defines a crossed module, with trivial operations. This crossed module represents the
trivial cohomology class in H 3.Cn;Cn/, in view of the morphisms of crossed 2-fold
extensions

0 �� Cn
1 �� Cn

0 �� Cn
1 �� Cn �� 0

0 �� Cn

1

--

.1;0/ ��

1

��

Cn � C1

p1

--

g

��

h �� C1 � ��

�

--

�

��

Cn ��

1

��

1

--

0

0 �� Cn
i

�� Cn2
�n

�� Cn2 �� Cn �� 0

where g.t; 1/ D tn, g.1; t/ D t , h.t; 1/ D 1, h.1; t/ D tn, i.t/ D tn and �, � are
given by t 7! t . You should check that each square of this diagram is commutative,
and each row is exact.

We now sketch the relation between crossed n-fold extensions and cohomology.

Proposition 12.7.7. For a group G and G-module M , a crossed n-fold extension E
ofM by G determines a cohomology class kE 2 HnC1.G;M/. Conversely, any such
class determines a crossed n-fold extension of M by G.
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Proof. Suppose given the crossed n-fold extension as in Definition 12.7.1. Let F be a
free crossed resolution of G. Since F is free and E is aspherical, there is a morphism
f W F ! E over the identity on G. Then fnC1 determines the required cohomology
class.

Conversely, suppose given a morphism ofG-modules fnC1 W FnC1 !M such that
fnC1ınC2 D 0. Suppose first n > 1. We form a crossed n-fold extension E of M by
G on setting

Ei D
´
Fi if i < n;

.Fn �M/=D if i D n
where D is the submodule of the product module which is generated by the elements
.ınC1c; fnC1c/ for all c 2 FnC1. The morphism i W M ! En is induced by the
inclusion m 7! .0;m/ into the product, and the morphism En ! Fn�1 is induced by
.x;m/ 7! ınx. To prove that i is injective, suppose that im D .ınC1c; fnC1c/ for
some c 2 FnC1. Then ınC1c D 0 and so c D ınC2c0 for some c0 2 FnC2. By the
condition fnC1ınC2 D 0, we have m D 0.

If n D 1, then F1 operates nontrivially on M via  W F1 ! G, and instead of the
product in the above formula we take the semidirect product .F1 ËM/.

We also want to show that similar crossed n-fold extensions E, E 0 give rise to
cohomologous invariants. For this is enough to assume there is a morphism g W E !
E 0. Let f W F ! E, f 0 W F ! E 0 be morphisms. Then gf W F ! E 0 and so gf , f 0
are homotopic. Hence their corresponding k-invariants are the same.

We omit further details.

Exercise 12.7.8. Complete the details of the above proof. In particular, prove that the
construction does give a crossed n-fold extension, i.e. verify exactness. Also show that
homotopic k-invariants give rise to equivalent crossed n-fold extensions. For some
extra points with regard to the case n D 1 we refer forward to Proposition 12.6.3.

Now we give examples of crossedQ-modules with nontrivial Postnikov invariants.
These examples arise from induced crossed modules, as in Example 5.6.11, and so
actually arise as the 2-type of certain mapping cones of maps of classifying spaces of
groups. Our examples also have Q with finite cyclic quotient and so we use the free
crossed resolution of finite cyclic groups given in Example 10.2.4. Thus the point we
want to stress here is that the use of crossed techniques is amenable to calculation.
These examples show that success in computing a Postnikov invariant of a crossed
n-fold extension of A by G is increased by having a convenient small free crossed
resolution of G. Methods for the computation of such small free crossed resolution
from a presentation for a finite group are given in Section 10.3.ii.207

Let us extract some more applications of the small free crossed resolution of Ca.
We study the crossed module induced from � W M ! P by the inclusion of a normal
subgroup � W P C Q when the crossed module is also the inclusion M C P of a
normal subgroup such that M is also normal in Q. Then Theorem 5.8.12 shows that
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the induced crossed module may be described as

� W M � .M ab ˝ I.Q=P //! Q

where I.Q=P / denotes the augmentation ideal of the quotient group Q=P and, for
m; n 2 M , x 2 I.Q=P /, the map � is defined by �.m; Œn� ˝ x/ D m 2 Q and the
action of q 2 Q is given by

.m; Œn�˝ x/q D .mq; Œmq�˝ . Nq � 1/C Œnq�˝ x Nq/ (12.7.1)

where Nq denotes the image of q in Q=P .

Remark 12.7.9. It might be imagined from this that the Postnikov invariant of this
crossed module is trivial when M D P , since one could argue that the projection

pr2 W P � P ab ˝ I.Q=P /! P ab ˝ I.Q=P /
should give a morphism � from ��P to the crossed module 0 W P ab ˝ I.Q=P / !
Q=P such that � represents 0 in the cohomology group H 3.Q=P;P ab ˝ I.Q=P //.
However, the projection pr2 is a P -morphism, but is not in general a Q-morphism,
as the description of the action in Equation (12.7.1) shows. In the next theorem we
give a precise description of the Postnikov invariant of ��P when Q=P is cyclic of
order n.

Theorem 12.7.10. Let P be a normal subgroup ofQ such thatQ=P is isomorphic to
Ca, the cyclic group of order a. Let u be an element ofQ which maps to the generator
t of Ca under the quotient map. Then the first Postnikov invariant k3 of the crossed
module induced by the inclusion P ! Q lies in a third cohomology group

H 3.Ca; P
ab ˝ I.Ca//:

This group is isomorphic to

P ab ˝ I.Ca/

I.Ca/.1 � t /
and under this isomorphism the element k3 is taken to the class of the element

Œua�˝ .1 � t /:
This class is in general not zero.

Proof. We first recall that a free crossed resolution of Ca is given by

: : : �� ZŒCa�
ı4 �� ZŒCa�

ı3 �� ZŒCa�
ı2 �� C1

� 
O Ca

x4 x3 x2 x1

(12.7.2)
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where the row gives free modules on x4, x3, x2 respectively and the free group on
x1 with boundaries ı2x2 D xa1 , ı3x3 D x2.1 � t /, ı4x4 D x3N.a/ and N.a/ D
1C t C � � � C ta�1, and t is a generator of Ca, so that .x1/ D t .

So if A is a Ca-module, then by forming HomCa
.�; A/ with the above free crossed

resolution, each term of which has a single free generator, we see that the cohomology
group H 3.Ca; A/ is the homology of the sequence of modules over Ca

A
M �� A

N �� A (12.7.3)

where M , N are action by 1 � t and 1C t C t2 C � � � C ta�1 respectively.
In the case under discussion, A D P ab ˝ I.Ca/. Now I.Ca/ is generated by

elements 1 � t r , for 0 < r < a and 1 � t r D .1C t C � � � C t r�1/.1 � t / and hence
N.I.Ca// D 0. So

H 3.Ca; A/ Š P ab ˝ I.Ca/

I.Ca/.1 � t / :
We have to determine the cohomology class represented by the crossed module

� W P � A! Q:

We consider the diagram

: : : �� ZŒCa�
ı4 �� ZŒCa�

ı3 ��

f3

��H
H
H

ZŒCa�
ı2 ��

f2

��H
H
H C1

� 
O

f1

��H
H
H Ca ��

1

��

0

: : : �� 0 �� A
i

�� P � A
�

�� Q ��
 


O Ca �� 0.

(12.7.4)

We are given u 2 Q such that u D t . Then ua 2 P , since Q=P Š Ca. Let
w D .ua; 0/ 2 P � A. Then by the description of the action in Equation (12.7.1),
wu D .ua; ua ˝ .t � 1//.

Now we chose our morphism of crossed complexes. We define f1.x1/ D u, and
then f2.x2/ D w. This ensures that �f2 D f1ı2.

Then

f2ı3.x3/ D w.w�1/u

D .ua; 0/.ua; Œua�˝ .t � 1//�1
D .0; Œua�˝ .1 � t //

which lies in A D P ab˝ I.Ca/. So we can define f3 to have this value on x3, and this
gives the Postnikov invariant k3 as required.

Remark 12.7.11. The aim of giving this result is to show that such calculations can
be obtained using a free crossed resolution. A Postnikov invariant is conveniently
calculated by this route since a free crossed resolution has a structure analogous to that
of a crossed sequence so that we can use freeness and the notion of morphism from
one to the other. The traditional chain complex approach seems more ad hoc.
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Example 12.7.12. Here is a small example of the last theorem. Let Q D C4 with
generator u and let P be the subgroup generated by u2. The crossed module induced
by the inclusion is � W C2 � C2 ! C4 where each factor is included into C4 which
operates by twist on the product. The above theorem givesH 3.C2;C2/ Š C2 and this
crossed module represents the nontrivial element of the group.208 Note that it is not
so easy to be more explicit on I.Ca/=.I.Ca/.1 � t // for a > 2. But if a D 2 then
.1 � t /2 D 1 � 2t C t2 D 0 mod 2.

Remark 12.7.13. The examples in this section show how a representation of a coho-
mology class in terms of a crossed n-fold extension can be quite explicit algebraically,
whereas the ‘meaning’ of a cohomology class is less clear, though it is interesting if
we can know its order, or if it is not zero. Also the cohomology group relates of course
many cohomology classes, and that is its main interest. By contrast, one can make
elaborate algebraic manipulations with crossed n-fold extensions, using for example
limits or colimits. Thus it was long believed that no algebraic description of the ho-
motopy 2-type of a union of spaces was possible, yet the description of the 2-type of
a union in terms of a pushout of crossed modules is clear and elegant. On the other
hand the calculation of the corresponding Postnikov invariant of a pushout of crossed
modules, or even of a second homotopy group, in terms of the given invariants of the
parts of the union is fraught with difficulties, though we have made some such calcu-
lations in this section. Again the description of the free loop space in Example 9.3.8 is
clear and complete, but has not yielded a calculation of the Postnikov invariants of the
components of the free loop space.

12.8 Concluding remarks to Part II

We have now ended this account of the theory and applications of crossed complexes,
apart from the justification given in Part III of some fundamental results and methods.
There are many ways in which this work might be pursued, and we try to indicate some
of them and speculate on others in Chapter 16.

Notes

175 p. 396 The applications of crossed complexes to handlebody decompositions are
discussed in [Sha93], Chapter VI, with different terminology.

176 p. 396 The notion of cohomology with a chain complex as coefficients was put
forward in [Bro62] and applied to problems on the homotopy type of function
spaces, particularly the calculation of kY where k is a cohomology operation.
That thesis also noted and used the existence of many occurrences of exponential
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laws involving a tensor product and internal hom. The main features of this work
were published in [Bro64a], [Bro64c], [Bro66]. The first paper explains how to
choose an isomorphism

� W H�.X � Y;A/ Š H�.X;H�.Y; A//

for an abelian group A which is natural with respect to maps of X . The second
paper applies this to find a convenient homotopy equivalence from K.A; n/Y to a
product of Eilenberg–Mac Lane spaces, and so to do some calculations of kY for
k a cohomology operation, with another example in the third paper. The existence
of the isomorphism � depends on working with chain complexes over the integers,
and so does not work for chain complexes with operators. Nonetheless, the use
in essence of monoidal closed categories were a model for the crossed complex
development in the 1980s and described in this book.

177 p. 397 The notion of fibration of groupoids was defined in exercises in [Bro68],
seen there as part of the ‘homotopy theory of groupoids’, and given a full account
in [Bro70]. It was also seen as part of general homotopy theories in [And78].
Fibrations of groupoids are particularly useful in the theory of ‘orbit groupoids’,
as shown by Higgins and Taylor, see the references in [Bro06], Chapter 11.

178 p. 397 This definition and the exact sequence given later in the book are due to
Howie in [How79].

179 p. 397 The term trivial fibration has been used, but the term acyclic fibration is
now more standard, see for example [DS95].

180 p. 401 That Crs with these notions is a model category was proved in [BG89b];
it implies, in virtue of the result of [BH81b], a model structure on the category
of globular1-groupoids. That model structure is related to a model structure for
higher categories in [AM11].

181 p. 403 This long exact sequence of a fibration of crossed complexes was first stated
by Howie in [How79].

182 p. 403 The definition of fibration of groupoids was an exercise in [Bro68] and an
account was published in detail in [Bro70], though with different conventions to
those given here. For further applications of that part, see [HK81], [HK82].

183 p. 404 We refer to Exercises 1–5 in Section 10.7 of [Bro06], and previously cited
papers, for applications of the lower part of the exact sequence, e.g. to problems
in group theory. Notice also that there should be a useful Mayer–Vietoris type
sequence for a pullback of a fibration of crossed complexes generalising that of
[Bro06], 10.7.6. See also [BHK83].
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184 p. 404 Homotopy classification theorems of the kind given here were proved by
different methods by Olum in [Olu50], [Olu53], and were in essence found also
by Whitehead in [Whi49b].

185 p. 408 For the classical approach to abstract kernels, see for example [ML63],
Section IV.8. The relation with factor systems is shown in [BH82], [BP96].

186 p. 408 The discussion of the existence of a topological group structure on the uni-
versal cover was started by R. L. Taylor in [Tay54], with some interesting examples,
and continued in [BM94]; in fact the methods of fibrations of crossed complexes
explored above were developed in the latter paper, and further in [Bro08a]. The re-
lation with the classifying space of the topological group was discussed in [BS76b].
The general theory of group extensions was developed by Taylor in [Tay53] and
continued in [Tay55]. A more recent work relating to crossed modules is [CLV02].

187 p. 408 These applications of the Homotopy Classification Theorem appeared for
the simplicial classifying space in [BH91]. An account of the main results on
homotopy classification in [Whi49b] is given by Ellis in [Ell88b], for both the
pointed and free case, and related to other results on homotopy classification such
as those by Olum, [Olu53].

Ellis writes in [Ell88b]: “In view of the ease with which Whitehead’s methods
handle the classifications of Olum and Jajodia, it is surprising that the papers
[Olu53] and [Jaj80] (both of which were written after the publication of [Whi49b])
make respectively no use, and so little use, of [Whi49b].”

“We note here that B. Schellenberg, who was a student of Olum, has rediscovered
in [Sch73] the main classification theorems of [Whi49b]. The paper [Sch73] relies
heavily on earlier work of Olum.”

188 p. 409 For n D 1, this is well known (the Eilenberg–Mac Lane spaces do this),
and for n D 2 it is essentially due to Mac Lane and Whitehead [MLW50]. Indeed,
they prove that the 2-type (for which they use the term 3-type) of a reduced CW-
complexX is described by the crossed module �2.X;X1/! �1X

1, which is the
same crossed module as arises for n D 2 in the proof of Theorem 12.3.1.

189 p. 410 This is due to Loday [Lod82].

190 p. 411 This corollary may also be obtained as a concatenation of results proved
by J. H. C. Whitehead in [Whi49b]. It is also proved in general circumstances by
Baues in his book [Bau89].

191 p. 412 This result on spaces of maps to an Eilenberg–Mac Lane space yields a
result of Gottlieb [Got69] on the fundamental group of spaces of maps into an
Eilenberg–Mac Lane space K.H; 1/.
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192 p. 413 This type of result was first found in [EML50], and developed by Ando in
[And57], and Huebschmann, [Hue80b]. The approach considered here appeared in
a special case in [BM94], and in full in [Bro08a]. Related results are in [Whi50a],
[CGCO02].

193 p. 415 The notion of cohomology with local coefficients was introduced by Steen-
rod in [Ste43]. An application to obstruction theory is given in [McC71], and there
are many other applications, and relations for example with sheaf theory, as a web
search shows. A recent work is [MP02]: the equivariant nature of those results
suggests a possible relationship with [BGPT97], [BGPT01]. Cohomology with
chains as coefficients was introduced in [Bro64a] and applied to function spaces
in [Bro64c]. It is possible that some subtle invariants could be obtained from
cohomology with coefficients in chains with a group(oid) of operators.

194 p. 418 The formulae for the differential given on this page are different in detail
from those given in [Hue80a], [BH82], [Ton94]. This reflects the different conven-
tions we have used. The formulae are forced on us by choices made in Chapter 13
for the equivalence of categories which is central to the work of this book, and
which determine the tensor product formulae. The standard formula is obtained
from this one by applying it to the ‘transpose’ of the standard simplex, so that in
the above formulae the given @i is replaced in dimension n by @n�i .

195 p. 420 The details of the simplicial nerve as a right adjoint of … are in [BH91].
This result is used in [BJ99].

196 p. 421 Formulae of this type go back to Dedecker, [Ded60] Compare also (2.6.5)
of [Bre94]. These formulae are related to the notion of the simplicial nerve of a
cover. For a more cubical approach, see [FMP11], Section 3.1; that paper strongly
utilises the cubical methods of this book for certain local-to-global problems in
differential geometry.

197 p. 421 See also [BS09] for an account of Čech cohomology of a space with coef-
ficients in a topological ‘2-group’, but without the machinery given here

198 p. 422 This idea was introduced by Dedecker in [Ded64]; see also Taylor [Tay53].

199 p. 423 Such examples are in [Tay54], [BM94]; the first gives examples of bundles
and the second gives examples of covering maps of nonconnected topological
groups. The following exposition is an adaptation of the work of [BP96].

200 p. 426 This classification of extensions by a cyclic group is given in [Zas49],
Chapter III, Section 7, for the case of the crossed module M ! AutM .

201 p. 426 This was proved by Lyndon, [Lyn50]. See also [DV73] and [BH82] for
more information.
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202 p. 427 The above description explains the determination of extensions by a product
of cyclic groups given in [Zas49]. Different conventions for the tensor product of
crossed complexes have been adopted by Baues in [Bau91]. The use of identities
among relations for discussing nonabelian extensions was given in [Tur38] and
the exposition here of the Schreier theory is based on that in [BP96].

203 p. 427 This example is made a feature in [Lod00], [Ell04] but without using the
tensor product of crossed complexes.

204 p. 427 The description of higher cohomology of a group in terms of crossed n-
fold extensions was given in [Hue77], [Hue80a], and also in [Hol79]. See the
Historical Note [ML79]. However these results are also part of a general theory
of cohomology of algebras as in [Lue71], as pointed out in [Lue81]. They are
also related to work of Glenn in [Gle82], and what is called the ‘triple’ views of
cohomology, also used in [BFGM05].

205 p. 428 The definition may be found for the case n D 1 in [ML63], and in general
in [Hue80a]. See also a general discussion in [Dan91].

206 p. 428 The theory of Postnikov decompositions of crossed complexes is discussed
in [BFGM05]. It should be asked: what is the value, the usage, of the Postnikov
invariant, considered as an element of an abelian group? It is of course interesting
to know if it is not zero, or what is its order. How else can one ‘get hold’ of it, or
do useful things with it?

207 p. 430 These methods of calculating a small free crossed resolution have been
implemented in GAP4, see [HW03]. Related methods, using universal covering
cell complexes, also implemented in GAP4, but without the crossed information,
are in [Ell04].

208 p. 433 This example and others of nontriviality of the k-invariant of a crossed
module have been discussed also in [Hue81b], [Hue81b].





Part III

Cubical !-groupoids





Introduction to Part III

In Part II we have explored the techniques of crossed complexes, and hope we have
shown convincingly that they are a powerful tool in algebraic topology. In this part,
we give the proofs of the main theorems on which those tools depend.

To this end, we introduce the algebra of!-groupoids, or in full, cubical!-groupoids
with connections. It was the way in which this algebra could be developed to model
the geometry of cubes which suggested the possibility of the theory and calculations
described in this book.

As intimated in Chapter 6 of Part I, the crucial advantages of cubical methods are
the capacity to encode conveniently:

A) subdivision;
B) multiple composition as an algebraic inverse to subdivision;
C) commutative cubes, and their composition.

These properties allow us to prove a HHSvKT by verifying the required universal
property: here A) and B) are used to give a candidate for a morphism, and C) is used
to verify that this morphism is well defined.

A further advantage of the cubical methods is:

D) the formula Im˝ I n Š ImCn allows for a convenient modelling of homotopies
and higher homotopies.

The techniques which enable analogous arguments for A)–C) in all dimensions are
more elaborate than those of Part I. The main achievements are as follows:

• In order to define the notion of commutative shell, we have to relate the cubi-
cal theory of !-groupoids to that of crossed complexes. This purely algebraic
equivalence is established in Chapter 13, and is a central feature of this book.

• The proof in Chapter 14 that the natural definition of the fundamental!-groupoid
�X� of a filtered space actually is an !-groupoid requires the techniques of
collapsing for subcomplexes of a cube which were given in Chapter 11. These
techniques are also used to prove the equivalence of the two functors � and …
under the equivalence of algebraic categories proved in Chapter 13.

• The proof of the HHSvKT for the functor � is also given in Chapter 14.
• The penultimate Chapter 15 constructs the monoidal closed structure on the

category of !-groupoids, and deduces the precise formulae for the equivalent
structure on crossed complexes used in Part II. Also proved is the Eilenberg–
Zilber type natural transformation �.X�/ ˝ �.Y�/ ! �.X� ˝ Y�/, for filtered
spaces X�; Y�.

• The final Chapter 16 points to a number of areas which require further study and
research to develop further this new foundation for algebraic topology.





Chapter 13

The algebra of crossed complexes and cubical
!-groupoids

As stated in the Introduction to Part III, this chapter contains the generalisation to all di-
mensions of the algebraic part of Chapter 6. There we proved the equivalence between
the category XMod of crossed modules over groupoids and the category DGpds of dou-
ble groupoids with connections. To obtain this equivalence we defined in Section 6.2
a functor

� W DCatG! XMod

and in Section 6.6 another functor

� W XMod! DGpds:

We proved also in Section 6.6 that these functors give an equivalence of categories.
The composition �� is clearly naturally isomorphic to the identity. Nevertheless, we
had to work hard to prove that �� is also isomorphic to the identity. We shall come
back to this point later.

In this chapter we will follow analogous steps:209 the first of these is to give the
appropriate generalisation of both categories.

The generalisation of XMod has already been studied: it is the central algebraic
category for most of Part II, namely the category Crs of crossed complexes. In the
reduced case, this category had been studied in the literature, because of its connections
with relative homotopy groups and with group cohomology.210

It was not so hard to write down a definition of !-Gpds, the category of ‘multiple
groupoids with connections’ or ‘!-groupoids’, as a reasonable generalisation to all
dimensions of DGpds, the category of double groupoids with connections. The defini-
tion and general properties of this category are given in Section 13.2 while earlier, in
Section 13.1, we extend the notion of cubical sets given in Section 11.1 to include the
structures of connections and compositions.

Once these two categories of !-groupoids and of crossed complexes are fixed, it is
easy to define the functor

� W !-Gpds! Crs:

As in Section 6.2, to associate a crossed complex to an!-groupoid we take the elements
of �Gn to be cubes with all faces but one (@�

1 in our convention) concentrated at a point
and the boundary maps are given by the restriction to the nontrivial face. All this is
developed in Section 13.3.
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As in the 2-dimensional case it is considerably more difficult to define the appro-
priate functor in the other direction

� W Crs! !-Gpds:

The still harder part is to give the natural equivalence �� ' 1, by showing that an
!-groupoid G may be rebuilt from the crossed complex �G it contains. The idea
is essentially the same as that in Chapter 6 but requires considerably more careful
organisation to carry it through.

This equivalence, which is completed in Section 13.6, is a purely algebraic equiva-
lence between two algebraically defined categories. So we have to use only the algebraic
definition, however much we rely on geometry for formulating the definitions and for
structuring the proof. Each axiom for the two categories is used at least once, proving
that all of them are needed.

Let us recall that in Chapter 6 to define the functor � on a crossed module M D
.� W M ! P / we used as 2-dimensional elements of �M the ‘squares of arrows in P
commuting up to an element of M ’ as explained at the beginning of Section 6.6.

The clear generalisation of squares are the ‘n-shells’. They are families of n-cubes
that fit together as do the faces of an .nC 1/-cube, that is they satisfy the appropriate
face relations. These n-shells are studied in Section 13.5 where they are used to give
the construction of right and left adjoints for the truncation functor.

It is more difficult to define a ‘commutative n-shell’. But even in dimension 2 we
found the ‘commutative cube’rather an inconvenient idea and in Section 6.6 we worked
instead with the ‘folding map’. We explore this avenue in Section 13.4. We define first
the ‘folding’ˆi in direction i and then the ‘folding map’

ˆ D ˆ1ˆ2 : : : ˆn�1 W Gn ! �Gn

as the composite of the foldings in decreasing order. The effect of ˆ is to ‘fold’ all
faces of a cube into one face, which in our convention is taken to be the .�; 1/ face.
This folding map allows us to say that an n-shell is commutative if and only if it folds
to the trivial n-shell. We define the foldings in Section 13.4 and explore their behaviour
with respect to all operators: i.e. faces, degeneracies, connections, compositions.

A main result is that every element x 2 Gn is determined by its total boundary @x

and the foldingˆx; this is a consequence of Proposition 13.5.10. In essence, this says
that the folding process can be inverted and suggests how to construct �Cn inductively
using pairs .x; �/ where x is a ‘shell’ (generalisation of the total boundary) and � 2 Cn
‘fills’ the folding of the shell (ı� D ıˆx). We work inductively using the coskeleton
functor of Section 13.5; the construction of � is done in Section 13.6.

In Chapter 6 we saw that connections and the folding map give a characterisation
of commutative cubes. In the general case this may be taken as the definition of
commutative n-cube, i.e. of the thin cubes. The basic thin n-cubes are images of
degeneracies and connections: the general thin n-cubes are formed from the basic ones
using negatives and compositions (see Definition 13.4.17). In Proposition 13.4.18 we
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prove that the thin n-cubes are exactly the elements that fold to the trivial one: i.e. they
represent the ‘commutative n-cubes’, or, more precisely, the cubes with commutative
boundary, or shell. Hence we obtain that any composite of commutative cubes is
commutative. This is a key result for the proof of the Higher Homotopy Seifert–van
Kampen Theorem in Chapter 14.

The last section (13.7) contains the algebraic Homotopy Addition Lemma (HAL)
13.7.1 and some of its consequences, which will be used in Chapter 14. The HAL gives
an expression for the only nontrivial face of the folding of ann-shell (†x D ıˆx). Thus
a commutative shell is one having†x D 0 and by Proposition 13.5.10 any commutative
n-shell has a unique thin filler. The main consequence is that the thin cubes satisfy
Dakin’s axioms for T -complexes ([Dak77]):

• degenerate cubes are thin;
• any box has a unique thin filler (so!-groupoids are fibrant cubical sets in a strong

way);
• if a thin cube has all faces but one thin, then this last face is also thin.

This chapter involves a substantial amount of work, and checking of detail. The
advantage of this is that we can often apply the main result, the equivalence of categories,
without using the details, and even if the application seems simple, this simplicity may
be deceptive, since powering it is a well crafted machine. Sufficient detail is given that
all proofs should be checkable by a graduate student.

13.1 Connections and compositions in cubical sets

To generalise the category of double groupoids, it is important to notice that every
double groupoid has an underlying 2-truncated cubical set. Moreover they have some
extra ‘degeneracies’ that we have called connections. In this section we explore some
definitions generalising these concepts to every dimension, adding extra structure to
the cubical sets studied in Section 11.1.

A key example of a cubical set is the singular cubical set of a space S�X (see
Definition 11.1.10), which in this part we write also as KX . But we are interested in
the filtered spaces whose definition and main properties were studied in Section 7.1.i,
partly as these are a tool for studying spaces. There is a natural generalisation of the
singular cubical set of a space to the filtered case, which we call the filtered singular
cubical set.

Definition 13.1.1. For any filtered space X� we denote by RnX� the set of filtered
maps I n� ! X� where I n� represents the standard n-cube with its standard cell structure
as a product of n copies of I D Œ0; 1�.

The sets RnX� for n > 0, together with the face and degeneracy maps defined for
the singular cubical set of a space, form a cubical set called the filtered singular cubical
complex of the filtered space X�, which we write RX�.
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There is every reason to have a pictorial image for n-cubes very similar to the one
we used for squares in Chapter 6 since it also useful here to state the laws of connections
and compositions and to prove some results.

Remark 13.1.2. We now have to extend the conventions for multiple compositions
which we used in Chapter 6. Since now we cannot picture all n dimensions, we
have got to state which directions we are representing in any 2-dimensional picture,
e.g. sometimes it is useful to show just one direction condensing all the orthogonal
directions, as in

@�
i u u @C

i u ¤i
i

��
��

:

The degeneracies can be represented by

"i .a/ D a a D D ¤i
i

��
��

:

Singular cubical sets have a lot of extra structure arising from geometric maps on
cubes, and which we used in Part I for squares. We are going to give generalisations
to all dimensions of connections and compositions.

Let us first generalise the connections studied in Section 6.5; these connections
should be thought of as giving more forms in which an n-cube can be ‘degenerate’.211

Definition 13.1.3. We say that a cubical set K has connections if it has additional
structure maps

�i W Kn�1 ! Kn; i D 1; 2; : : : ; n � 1
(called connections) satisfying the relations

@˛i �j D
´
�j�1@˛i .i < j /;

�j @
˛
i�1 .i > j C 1/; (1)

@�
j �j D @�

jC1�j D id;

@C
j �j D @C

jC1�j D "j @C
j ;

�i"j D
´
"j�1�i .i < j /;

"j�i�1 .i > j /;
(2)

�j "j D "2j D "jC1"j ;

�i�j D �jC1�i .i 6 j /: (3)
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Remark 13.1.4. This definition generalises axioms CON 1, CON 2 of Definition 6.5.1

Example 13.1.5. 1. The singular cubical set KX of a space X is a cubical set with
connections. The connection �i W Kn�1 ! Kn is induced by the map �i W I n ! I n�1
defined by

�i .t1; t2; : : : ; tn/ D .t1; t2; : : : ; ti�1;max.ti ; tiC1/; tiC2; : : : ; tn/:

2. The connections of the previous example also give a structure of cubical set with
connections to the filtered singular cubical set RX� of a filtered space X�.

Remark 13.1.6. The connections are to be thought of as extra ‘degeneracies’. (A
degenerate cube of type "jx has a pair of opposite faces equal and all other faces
degenerate. A cube of type �ix has a pair of adjacent faces equal and all other faces
of type �jy or "jy).

We can get a 2-dimensional picture of the connection �i representing only the two
dimensions i and i C 1:

�i .x/ D
x

x i

iC1
��

��

:

The singular cubical set KX of a space has another extra piece of structure which
we will exploit in a substantial way: the possibility of ‘adding together’ cubes in a
direction if the appropriate faces in this direction coincide. The multiple forms of
this composition give a method of ‘algebraic inverse to subdivision’, as discussed for
dimension 2 in the section on groupoids in our Introduction to the book (see p. xxii).
The precise definition of the basic compositions is as follows.

Definition 13.1.7. A cubical set with connections and compositions is a cubical set
K with connections in which each Kn has n partial compositions Ci and n unary
operations �i i D 1; 2; : : : ; n/ satisfying the following axioms.

If a; b 2 Kn, then aCi b is defined if and only if @C
i a D @�

i b, and then for ˛ D ˙:

´
@�
i .aCi b/ D @�

i a;

@C
i .aCi b/ D @C

i b;
@˛i .aCj b/ D

´
@˛i aCj�1 @˛i b .i < j /;

@˛i aCj @˛i b .i > j /:
(1.i)

If a 2 Kn, then �ia is defined and´
@�
i .�ia/ D @C

i a;

@C
i .�ia/ D @�

i a;
@˛i .�ja/ D

´
�j�1@˛i a .i < j /;

�j @˛i a .i > j /;
(1.ii)
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"i .aCj b/ D
´
"iaCjC1 "ib .i 6 j /;

"iaCj "ib .i > j /;
(2.i)

"i .�j b/ D
´
�jC1"ia .i 6 j /;

�j "ia .i > j /;
(2.ii)

�i .aCj b/ D
´
�iaCjC1 �ib .i < j /;

�iaCj �ib .i > j /;
(3.i)

�j .aCj b/ D .�jaCjC1 "j b/Cj ."jC1b CjC1 �j b/:

(This last equation is called the transport law.)

�i .�ja/ D
´
�jC1�ia .i < j /;

�j�ia .i > j /:
(3.ii)

We have for i ¤ j and whenever both sides are defined,

.aCi b/Cj .c Ci d/ D .aCj c/Ci .b Cj d/: (4.i)

These relations are called the interchange laws. Further:

�i .aCj b/ D .�ia/Cj .�ib/ and �i .�ja/ D �j .�ia/ if i ¤ j , (4.ii)

�j .aCj b/ D .�j b/Cj .�ja/ and �j .�ja/ D a:

Example 13.1.8. 1. It is easily verified that the singular cubical set KX of a space X
satisfies these axioms ifCj , �j are defined by

.aCj b/.t1; t2; : : : ; tn/ D
´
a.t1; : : : ; tj�1; 2tj ; tjC1; : : : ; tn/ .tj 6 1

2
/;

b.t1; : : : ; tj�1; 2tj � 1; tjC1; : : : ; tn/ .tj > 1
2
/

whenever @C
j a D @�

j b; and

.�ja/.t1; t2; : : : ; tn/ D a.t1; : : : ; tj�1; 1 � tj ; tjC1; : : : ; tn/:

2. The faces and degeneracies of the previous example also give a structure of
cubical set with connections and compositions to the filtered singular cubical set RX�
of a filtered space X�.

Remark 13.1.9. We have a 2-dimensional pictorial image of the compositionCi given
by

a b ¤i
i

��
��

:
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Also the interchange law can be stated in a matrix form. The diagram�
a c

b d

�
i

j

��

��

will be used to indicate that both sides of the equation (4.i) are defined and also to
denote the unique composite of the four elements. With this notation, the transport law
can be stated

�j .aCj b/ D
�
�ja "j b

"jC1b �j b

�
j

jC1
��

��

:

Remark 13.1.10. The interchange law and forms of multiple composition were dis-
cussed in dimension 2 in Chapter 6 and you should refer back to that. The interchange
laws in Definition 13.1.7 and the associativity laws (when they hold) have as a conse-
quence that we can define the composition of some complicated arrays of elements in
any cubical set G with associative compositions satisfying the interchange laws.212

A rectangular array of n-cubes is a family of n-cubes xpq 2 Gn .1 6 p 6 P ,
1 6 q 6 Q/ satisfying for some i ¤ j the relations

@C
i xpq D @�

i xpC1;q .1 6 p < P; 1 6 q 6 Q/;

@C
j xpq D @�

j xp;qC1 .1 6 p 6 P; 1 6 q < Q/:

It is written .xpq/f16p6P;16q6Qg or

�
xpq

� D
0BB@
x11 x12 : : : x1Q
x21 x22 : : : x2Q
: : : : : : : : : : : :

xP1 xP2 : : : xPQ

1CCA i

j

��

��

:

An array .xpq/ has a unique composite x D Œxpq� 2 Gn obtained by applying the
operationsCi ;Cj in any well-formed fashion; for example

x D .x11 Ci x21 Ci � � � Ci xP1/Cj � � � Cj .x1Q Ci x2Q Ci � � � Ci xPQ/:
We write

�
xpq

	 D
2664
x11 x12 : : : x1Q
x21 x22 : : : x2Q
: : : : : : : : : : : :

xP1 xP2 : : : xPQ

3775 i

j

��

��

:

The same is true for multi-dimensional arrays, and the most general situation can
be described as follows. Let .m/ D .m1; m2; : : : ; mn/ be a sequence of positive
integers. A composable array inGn of type .m/ is a family of cubes x.p/ 2 Gn, where
.p/ D .p1; p2; : : : ; pn/; 1 6 pi 6 mi , satisfying the relations

@C
i x.p/ D @�

i x.p/0i
for all i
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where .p/0i D .p1; p2; : : : ; pi�1; pi C 1; piC1; : : : ; pn/. We denote the unique com-
posite inGn of such an array by Œx.p/�. The previous case is obtained by takingmk D 1
for k ¤ i; j . We shall also sometimes write Œx1; x2; : : : ; xr �j for the linear composite
x1 Cj x2 Cj � � � Cj xr , and an unlabeled �x in such a composite will always mean
�jx.

We introduce some notation for multiple compositions in the singular cubical sets
KX and RnX�.

Remark 13.1.11. Let .m/ D .m1; : : : ; mn/ be an n-tuple of positive integers and let

.m/ W I n ! Œ0;m1� � � � � � Œ0;mn�
be the map .x1; : : : ; xn/ 7! .m1x1; : : : ; mnxn/. Then a subdivision of type .m/ of a
map ˛ W I n ! X is a factorisation ˛ D ˛0 B .m/; its parts are the cubes ˛.r/ where
.r/ D .r1; : : : ; rn/ is an n-tuple of integers with 1 6 ri 6 mi , i D 1; : : : ; n, and where
˛.r/ W I n ! X is given by

.x1; : : : ; xn/ 7! ˛0.x1 C r1 � 1; : : : ; xn C rn � 1/:
We then say that ˛ is the composite of the cubes ˛.r/ and write ˛ D Œ˛.r/�. The domain
of ˛.r/ is then the set f.x1; : : : ; xn/ 2 I n j ri � 1 6 xi 6 ri ; 1 6 i 6 ng.

The composite is in direction j if mj is the only mi > 1, and we then write
˛ D Œ˛1; : : : ; ˛mj

�j I the composite is in the directions j , k .j ¤ k/ if mj , mk are the
only mi > 1, and we then write

˛ D Œ˛rs�j;k
for r D 1; : : : ; mj and s D 1; : : : ; mk .

These definitions and notations are some of the keys to our use of cubical methods
in the proof of the Higher Homotopy Seifert–van Kampen Theorem, since they allow
for

‘algebraic inverses to subdivision’.213 �

13.2 !-groupoids

In this section we restrict to cubical sets with connections and compositions such that
each composition gives a structure of groupoid. These objects give the category!-Gpds
of !-groupoids which generalises the category DGpds of double groupoids studied in
Chapter 6.

Definition 13.2.1. An !-groupoid (or cubical !-groupoid)G D fGngn>0 is a cubical
set with connections and compositions in which eachCj gives a groupoid structure on
Gn such that for x 2 Gn the identity elements are

	˛j x D "j @˛j x
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(the left identity when ˛ D � and the right identity when ˛ D C) and the inverse
is �jx.

A morphism of!-groupoids is a morphism of cubical sets preserving all the connec-
tions and all the groupoid operations. We denote the resulting category of !-groupoids
by !-Gpds.

Remark 13.2.2. Of course the compositions of the cubical singular setKX of a space
X are not groupoid compositions, for the same reason as the usual composition of paths
in a space do not form a category.214 In dimension 1 it is easy to define the fundamental
groupoid �1X by taking homotopy classes rel end points.

For higher dimensions, there is a solution in the filtered case.215 A major result in
Chapter 14 is the definition of the fundamental !-groupoid �X� of the filtered space
X�. The applications of this construction are a major theme of this book.

Let us point out that in defining !-groupoids some of the laws in Definition 13.1.7
are redundant.

Proposition 13.2.3. If one assumes that each Cj is a groupoid structure on Gn with
identities 	˛j x for all x 2 Gn and inverse�j , then one may omit parts (1.ii), (2.ii), (3.ii)
and (4.ii) of all the laws in Definition 13.1.7 since they follow from the first parts and
the groupoid laws. One may also rewrite the transport law (3.i) of the same definition
in the form

�j .aCj b/ D .�jaCjC1 "j b/Cj �j b D .�jaCj "jC1b/CjC1 �j b (3.i*)

and deduce that

�j .�ja/ D .�j�ja/ �jC1 "ja D .�jC1�ja/ �j "jC1a: (3.ii*)

Definition 13.2.4. An !-subgroupoid of G is a sub cubical set closed under all
the connections and all the operations Cj ;�j . Any set S of elements of G gen-
erates an !-subgroupoid, namely, the intersection of all !-subgroupoids containing
S . Repeated applications of all the structure maps and operations allow one to build
this !-subgroupoid from S : first, it can be verified that the elements of the form
" : : : "� : : : �@ : : : @x .x 2 S/make up the subcomplex-with-connectionsK generated
by S ; (here @ stands for various @˛i , etc.) the !-subgroupoid generated by S then
consists, as again can be verified, of all composites of arrays of cubes of the form
�i �j � � � �l y .y 2 K/.

We also use finite-dimensional versions of the above structures and categories.

Definition 13.2.5. A cubical n-groupoid is an n-truncated cubical set

G D .Gn; Gn�1; : : : ; G0/

with connections, having m groupoid structures in dimension m .m 6 n/, and sat-
isfying all the laws for an !-groupoid in so far as they make sense.216 We denote
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by !-Gpdsn the category of cubical n-groupoids. The category !-Gpds2 is another
name for the category DGpds of double groupoids, which we studied in Chapter 6, and
was the prototype for !-Gpds.

13.3 The crossed complex associated to an !-groupoid

Analogously to Chapter 6, we consider for an !-groupoidG the elements ofG having
all faces trivial but one. A main result is that these elements may be given the structure
which was the main subject of Part II, namely that of crossed complex:

�G W � � � ! �Gn
ın�! �Gn�1

ın�1���! : : :
ı3�! �G2

ı2�! G1;

where ın D @�
1 . We shall prove in the next few sections that crossed complexes are

equivalent to !-groupoids. Moreover, this associated crossed complex is obtained in
such a way that the crossed complex ��X� associated to the fundamental !-groupoid
�X� of the filtered space X� is naturally isomorphic to…X�, the fundamental crossed
complex of a filtered space described in Section 7.1.v: the proof of this result is again
delayed to the next chapter (see Theorem 14.4.1).

Let us start by defining �Gn as a set. The definition is motivated by the standard
definition of relative homotopy groups, see p. 35.

Definition 13.3.1. For any !-groupoid G and for n > 2 and p 2 G0, we define the
set of n-cubes x all of whose faces except @�

1 x are concentrated at p to be

�Gn.p/ D fx 2 Gn j @˛i x D ."1/n�1p for all .˛; i/ ¤ .�; 1/g:
We observe that for any p 2 G0, such a concentrated r-cube ."1/rp is an identity

for all compositionsCk ofG since ."1/rp D "k."1/r�1p for 1 6 k 6 r ; accordingly,
we will write 0 (sometimes 0p) for such a cube ."1/rp .p 2 G0/. With this convention,
we have the rules @˛i 0 D 0, "i0 D 0, �i0 D 0.

Remark 13.3.2. An element of �Gn can be represented as

0 u 0

0

1

¤1
��

��

:

Now we define the operations on the �Gn.p/which make them a family of groups,
abelian for n > 3.

Proposition 13.3.3. Let n > 2 and p 2 G0. Then for 2 6 j 6 n each composition
Cj of Gn induces a group structure on �Gn.p/. For n > 3 this group structure is
independent of j and is abelian.
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Proof. The first part is easy to verify, while the last part is proved by applying the
interchange law to the composites�

x 0p
0p y

� �
0p x

y 0p

�
j

k

��
��

for x; y 2 �Gn.p/ and 2 6 j < k 6 n.

Definition 13.3.4. We write x C y for x Cj y if x; y 2 �Gn.p/ and 2 6 j 6 n, and
the zero element for this addition is 0p . If n D 1 we also write C for the groupoid
operationC1 on �G1 D G1.

The face map @�
1 W Gn ! Gn�1 restricts to

ın W �Gn.p/! �Gn�1.p/:

Let n > 2, p; q 2 G0. We define the action of a 2 G1.p; q/ on x 2 �Gn.p/ by

xa D Œ�"n�1
1 a; x; "n�1

1 a�n D
�a @�

1 x

x

a

�a 0 a

¤n

n

��
��

:

Also, if x 2 G1.p/, we define xa D �aC x C a.

We now check that these definitions imply �G is a crossed complex. We have
seen that �Gn.p/ is a group (abelian for n > 3) where G1.p/ D G1.p; p/. It is also
immediate that:

Proposition 13.3.5. The maps ın are group homomorphisms and satisfy ı2 D 0.
We now verify the main properties of the action.

Proposition 13.3.6. Let n > 2; p; q 2 G0. For any x 2 �Gn.p/ and a 2 G1.p; q/
the element xa defined above lies in �Gn.q/, and the rule .x; a/ 7! xa defines an
action of the groupoid G1 on the groupoid �Gn. This action is preserved by the map
ı W �Gn.p/! �Gn�1.p/ for n > 2.

Proof. We follow in essence the proof of Proposition 6.2.3, but use arrays rather than
pictures.

First, note that, for 1 6 i < n,

@˛i .x
a/ D Œ�"n�2

1 a; @˛i x; "
n�2
1 a�n�1;

while @˛n.x
a/ D "n�1@C

1 a D 0q . From this it follows that xa 2 �Gn.q/ and ı.xa/ D
.ıx/a.

The equation
"n�1
1 .aC b/ D Œ"n�1

1 a; "n�1
1 b�n

implies that xaCb D .xa/b .
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We next show that the action by elements of ı2.�G2/ satisfies the crossed complex
conditions.

Proposition 13.3.7. Let y 2 �G2.p/ and a D ıy. If x 2 �Gn.p/, then xa D x for
n > 3 and xa D �y C x C y for n D 2.
Proof. If a D ıy and n > 2, the two ways of composing��n"n�1

1 a x "n�1
1 a

�n"n�2
1 y 0p "n�2

1 y

�
n�1

n

��

��

give xa D Œ�n"n�2
1 y; x; "n�2

1 y�n, which is the result we require when n D 2. For
n > 3 we may also compose��n �n�1 "n�2

1 y 0p �n�1"n�2
1 y

�n"n�2
1 y x "n�2

1 y

�
n�1

n

��

��

in two ways to obtain, by what we have just proved, xa D x.

Putting together the above properties we obtain:

Theorem 13.3.8. IfG is an !-groupoid then �G is a crossed complex, and this defines
a functor

� W !-Gpds! Crs:

By restriction, we also have a functor � W !-Gpdsm ! Crsm.

We shall show in Section 13.6 that the !-groupoidG can be reconstructed from its
associated crossed complex �G and hence that � W !-Gpds ! Crs is an equivalence
of categories.

On our way to prove this result we will use (see p. 461) the alternative description
of the action of G1 on �Gn given in the next proposition, whose proof gives the first
time in this section that we use the connections.

Proposition 13.3.9. The action of G1 on �Gn defined in Proposition 13.3.6 is also
given by

xa D Œ�"j�1
1 "

n�j
2 a; x; "

j�1
1 "

n�j
2 a�j

for x 2 �Gn.p/, a 2 G1.p; q/ and any j with 2 6 j 6 n.

Proof. Let 2 6 j 6 n, and write bj D "j�1
1 "

n�j
2 a D "n"n�1 : : : O| : : : "1a 2 Gn. Then

bj is an identity for all the compositions ofGn exceptCj . Also @C
j .�j bj / D @�

j .bj / D
0 and

@˛jC1.bj / D @˛j .bjC1/ D "n�1"n�2 : : : O| : : : "1a D c;
say. Thus, if j > 2, we may form the composite

y D
24�j �jC1 �j c �j bj �j�j c
�jC1bjC1 x bjC1
�jC1�j c bj �j c

35
j

jC1
��

��

:
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Since bjC1 is an identity for Cj , the composite of the last column is "j @
C
j �j c D 0p ,

and similarly the composites of the first column and of the first and last rows are 0p .
Hence, computing y by rows and by columns, we have

Œ�bjC1; x; bjC1�jC1 D Œ�bj ; x; bj �j .j > 2/:

It follows that, for j > 2, Œ�bj ; x; bj �j D Œ�bn; x; bn�n, which is the definition of xa.

13.4 Folding operations

As explained in the introduction to this chapter we have to take a detour to define the
notion of a ‘commutative n-shell’.217 Instead of trying to make sense of all possible
compositions of the .n � 1/-faces, we just fold all faces into one face.

First we introduce a ‘folding in the i -th direction’ which for i D 2 is analogous
to the 2-dimensional case. The composition of the foldings in all directions gives an
operation ˆ on cubes in an !-groupoid G (or in a cubical n-groupoid) which has the
effect of folding all faces of x 2 Gn onto the face @�

1ˆx. The resulting face can be
seen as the ‘ordered sum of the faces of x’. This operation ˆ transforms x into an
element of the associated crossed complex �G.

Later in this section we study the behaviour of the foldings with respect to the
operators of an!-groupoid, namely faces, degeneracies, connections and composition.

We end the section by proving that the thin elements (i.e. the composites of an array
of degeneracies and connections) are just those folding to the trivial cube, i.e. those
having ‘commuting boundary’. This relation between thin elements and those having
commuting boundary is crucial in the next chapter.

We emphasise again that these results and techniques, though with a geometric
motivation, are purely algebraic, that is we use only the operations and laws that we
have given. This is essential for the theory and the geometric applications.

Definition 13.4.1. In any cubical n-groupoid G, we define operations

ĵ W Gm ! Gm;

for any 1 6 j < m 6 n, by the formula

ĵx D Œ�"j @C
j x; ��j @�

jC1x; x; �j @C
jC1x�jC1:

The map ĵ is called the folding in the j -th direction.

It is easy to check that the composite ĵx is defined. Writing a, b, c, d for the
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relevant faces of x,

x

c

b d

a

j

jC1
��

��

the effect of ĵ can be seen from the diagram

ĵx D

�ja �j b

xb

c

d

d

�ja a

j

jC1
��

��

in which unlabeled faces are appropriate degenerate cubes.
Next we study the various relations for the compositions of operations ĵ with the

operators of a cubical n-groupoid (i.e. faces, degeneracies, connections, compositions
and inverses). Recall that to simplify the notation we have written 	˛j x for "j @˛j x, the
left .˛ D 0/ or right .˛ D 1/ identity for x with respect toCj .

We begin by the compositions of foldings and faces.

Proposition 13.4.2. The faces of the folding in the j -th direction are given by:

@˛i ĵ D
´

ĵ�1@˛i .i < j /;

ĵ @
˛
i .i > j C 1/I (i)

@�
j ĵx D Œ�@C

j x; �@�
jC1x; @�

j x; @
C
jC1x�j I (ii)

@˛jC1 ĵ D @C
j ĵ D 	C

j @
C
j D 	C

j @
C
jC1: (iii)

Proof. These are proved by using the laws for faces of degeneracies, connections and
compositions contained in the Remark 11.1.5 and Definitions 13.1.3 and 13.1.7. We
shall prove them using the array form.

(i) If i < j then

@˛i ĵx D Œ�@˛i 	C
j x; �@˛i �j @�

jC1x; @˛i x; @˛i �j @C
jC1x�j

D Œ�	C
j�1@

˛
i x; ��j�1@�

j @
˛
i x; @

˛
i x; �j�1@C

j @
˛
i x�j

D ĵ�1@˛i x:

The case i > j C 1 is similar.
(ii) This is proved by a routine argument of the same kind and we will omit all such

routine proofs from now on.
(iii) As before,

@C
j ĵx D Œ�@C

j 	
C
j x; �@C

j �j @
�
jC1x; @C

j x; @
C
j �j @

C
jC1x�j

D Œ�@C
j x; 	

C
j @

�
jC1x; @C

j x; 	
C
j @

C
jC1x�j :
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But 	C
j @

�
jC1x and 	C

j @
C
jC1x are identities forCj , so

@C
j ĵx D Œ�@C

j x; @
C
j x�j D 	C

j @
C
j x:

The other cases are easily verified.

From this proposition we deduce immediately a formula which we will use later in
this section.

Corollary 13.4.3. With the notation of the above proposition

@˛jC1 ĵ ĵC1 : : : ˆn�1 D @C
j ĵ ĵC1 : : : ˆn�1 D 	C

j 	
C
jC1 : : : 	

C
n�1@

C
n :

Proof. This follows from (iii).

Now we give the relation with degeneracies.

Proposition 13.4.4. The foldings in the j -th direction behave on degeneracy operators
as follows: ´

ĵ "i D "i ĵ�1; ĵ	
˛
i D 	˛i ĵ if i < j;

ĵ "i D "i ĵ ; ĵ	
˛
i D 	˛i ĵ if i > j C 1I (i)

ĵ "j D 	C
jC1"j ; ĵ	

˛
j D 	C

jC1	
˛
j I (ii)

ĵ "jC1 D 	C
jC1"j ; ĵ	

˛
jC1 D 	C

j 	
˛
jC1: (iii)

and of course 	C
jC1"j D 	C

j "jC1.

Proof. (i) and (ii) are routine; the parts about ĵ	
˛
j involve also the use of the previous

proposition.
(iii)

ĵ "jC1x D Œ�	C
j "jC1x; ��jx; "jC1x; �jx�jC1

D Œ�	C
j "jC1x�jC1 D Œ�	C

jC1"jx�jC1
D 	C

jC1"jx:

The other equations follow easily.

From this proposition we deduce immediately another formula that we use later in
this section.

Corollary 13.4.5. With the notation of the above proposition

ˆ1ˆ2 : : : ĵ�2	C
j�1 D 	C

1 	
C
2 : : : 	

C
j�1; ˆ1ˆ2 : : : ĵ�1"j D 	C

1 	
C
2 : : : 	

C
j�1"j :

Proof. This follows from (iii) in the preceding proposition.
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Now we give the relations with connections:

Proposition 13.4.6. The foldings in the j -th direction behave on connection operators
as follows:

ĵ�i D
´
�i ĵ�1 .i < j /;

�i ĵ .i > j C 1/I (i)

ĵ�j D "j	C
j D "jC1	C

j I (ii)

ĵ�jC1x D Œ��jC1	C
j x; ��jx; �jC1x; �j	C

jC1x�jC1: (iii)

Proof. (i) and (iii) are routine. For (ii),

ĵ�jx D Œ�	C
j �jx; ��j @�

jC1�jx; �jx; v�j @C
jC1�jx�jC1

D Œ�"j	C
j x; ��jx; �jx; �j	C

j x�jC1 by 13.1.3

D Œ�"jC1	C
j x; "jC1	C

j x�jC1 by 11.1.5 and 13.1.3

D "jC1	C
j x D "j	C

j x:

We now define for n > 2 the folding operation

ˆ W Gn ! �Gn

by folding in each direction in decreasing order.

Definition 13.4.7. On G0 and G1 we defineˆ as the identity map. We now define for
n > 2

ˆx D ˆ1ˆ2 : : : ˆn�1x
for any x 2 Gn.

Let us see that the folding has the image we want, i.e. thatˆx has all faces but one
trivial. To do this, we introduce some notation.

Definition 13.4.8. For x 2 Gn, we call .@C
1 /
nx the base-point of x and denote it

by ˇx.

Proposition 13.4.9. If .˛; j / ¤ .0; 1/ then @˛j ˆ D "n�1
1 ˇ. Hence, for any x 2 G,ˆx

lies in the associated crossed complex �Gn.

Proof. If 2 6 j 6 n then

@˛j ˆ D ˆ1ˆ2 : : : ĵ�2@˛j ĵ�1 : : : ˆn�1 by 13.4.2 (i)

D ˆ1ˆ2 : : : ĵ�2	C
j�1 : : : 	

C
n�1@

C
n by 13.4.3

D 	C
1 	

C
2 : : : 	

C
n�1@

C
n by 13.4.5

D "n�1
1 .@C

1 /
n by 11.1.5.
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If j D 1 and n > 2, then ˛ D 1 and the equation follows from Proposition 13.4.2 (iv)
and Remark 11.1.5. The case n D 1 is trivial. Thus, for x 2 Gn, we have @˛j ˆx D 0p
for .˛; j / ¤ .0; 1/, where p D ˇx. This shows that ˆx 2 �Gn.p/.

This gives the following important characterisation of the elements in �G as those
invariant under the folding.

Corollary 13.4.10. If x 2 G, then x is in �G if and only if ˆx D x. In particular
ˆ2y D ˆy for all y in G.

Proof. It is clear that if x 2 Cn.p/ D .�Gn/.p/, then Definition 13.4.1 implies
ĵx D x. This implies ˆx D x.

To end the study of the behaviour of the folding map with respect to the operators
of a cubical set with connections, let us record the effect the folding map has on
degeneracies and connections.

Proposition 13.4.11. If n > 2, then on Gn�1,

ˆ"j D "n1ˇ and ˆ�j D "n1ˇ:
Proof. Making computations:

ˆ1ˆ2 : : : ˆn�1"j D ˆ1ˆ2 : : : ĵ "j ĵ ĵC1 : : : ˆn�2 by 13.4.4 (i)

D ˆ1ˆ2 : : : ĵ�1	C
jC1"j ĵ : : : ˆn�2 by 13.4.4 (ii)

D ˆ1ˆ2 : : : ĵ�1"j "j @C
j ĵ : : : ˆn�2 by 11.1.5

D 	C
1 	

C
2 : : : 	

C
j�1"j "j	

C
j : : : 	

C
n�2@

C
n�1 by 13.4.3 and 13.4.5

D "n1ˇ by 11.1.5.

and

ˆ1ˆ2 : : : ˆn�1�j D ˆ1ˆ2 : : : ĵ�j ĵ ĵC1 : : : ˆn�2 by 13.4.6 (i)

D ˆ1ˆ2 : : : ĵ�1"j	C
j ĵ : : : ˆn�2 by 13.4.6 (ii)

D "n1ˇ as above. �
We now study the behaviour of the folding mapˆ with respect to composition and

inverses. The rules are easy to state (see Proposition 13.4.14) but their proof involves
more complicated rules for the partial foldings ĵ .

Proposition 13.4.12. We have the following relations of ĵ with the compositions and
inverses:

ĵ .x Ci y/ D ĵx Ci ĵy

ĵ .�ix/ D �i ĵx

μ
if i ¤ j; j C 1I (i)

ĵ .x Cj y/ D Œ ĵy;�"j @C
jC1y; ĵx; "j @

C
jC1y�jC1I (ii)

ĵ .x CjC1 y/ D Œ�	C
j y; ĵx; 	

C
j y; ĵy�jC1: (iii)
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Proof. (i) This is routine, using the interchange law for the directions i and j C 1.
(ii) Let the relevant faces of x and y be given by

x

u

a b

v

y

v

c d

w

j

jC1
��

��

:

Then

ĵ .x Cj y/ D Œ�"jw; ��j .aCj c/; .x Cj y/; �j .b Cj d/�jC1:

Using the transport law, this can be written as the composite

A D
� �"jw �"j c ��ja x �j b "jd

�"jw ��j c �"jC1c y "jC1d �jd

�
j

jC1
��

��

where � stands for �jC1. Consider the composite

B D
"

�"jw �"j c "j
 "jd �"jd �"jv ��ja x �jb "jd

�"jw ��j c y �jd �"jd �"jv �"j�C

j
a "jv "j�

C

j
b "jd

#
j

j C1

��

��

:

By composing the columns first, we see thatB is equal to the right-hand side of (ii).
However, the composites of the rows of B are the same as the composites of the rows
of A, since "j	

C
j b D "jC1	C

j b is an identity of the horizontal composition as well as
the vertical one. Hence A D B .

(iii) This is routine.

To state the behaviour of the folding map ˆ with respect to compositions and
inverses, we need some extra notation.

Definition 13.4.13. For x 2 Gn, the edges of x terminating at the base point, ˇx D
.@C
1 /
nx will have special importance and we denote them by

uix D @C
1 @

C
2 : : : O{ : : : @C

n x

for all 1 6 i 6 n.

Proposition 13.4.14. Let n > 2 and x; y; z 2 Gn with @C
i x D @�

i y. Then, in �Gn:

ˆ.x Ci y/ D
´
ˆy C .ˆx/u1y if n D 2 and i D 1;
.ˆx/uiy Cˆy otherwise;

(i)

ˆ.�iz/ D �.ˆz/�uiz : (ii)
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Proof. (i) First consider the case i D n > 2. We have, by Proposition 13.4.12,

ˆ.x Cn y/ D ˆ1ˆ2 : : : ˆn�2Œ�	C
n�1y; ˆn�1x; 	C

n�1y; ˆn�1y�n
D Œ�u; ˆx; u; ˆy�n

where

u D ˆ1ˆ2 : : : ˆn�2	C
n�1y

D 	C
1 	

C
2 : : : 	

C
n�1y by 13.4.5

D "n�1
1 uny by 11.1.5:

Hence ˆ.x Cn y/ D .ˆx/uny Cˆy in this case.
In the remaining cases we have 1 6 i < n, so we may put

X D ˆiC1ˆiC2 : : : ˆn�1x;
Y D ˆiC1ˆiC2 : : : ˆn�1y;

and then

ˆ.x Ci y/ D ˆ1ˆ2 : : : ˆi .X Ci Y / by 13.4.12 (i)

D ˆ1 : : : ˆi�1ŒˆiY; �"i@C
iC1Y; ˆiX; "i@

C
iC1Y �iC1 by 13.4.12 (ii)

D Œˆy; �V; ˆx; V �iC1 by 13.4.12 (i),

where

V D ˆ1 : : : ˆi�1"i@C
iC1ˆiC1 : : : ˆn�1y

D 	C
1 	

C
2 : : : 	

C
i�1"i	

C
iC1 : : : 	

C
n�1@

C
n y by 13.4.3 and 13.4.5

D ."1/i ."2/n�i�1uiy by 11.1.5.

Hence, by Proposition 13.3.9, ˆ.x Ci y/ D ˆy C .ˆx/uiy in this case. (Note that
i C 1 > 2, so addition in direction i C 1 is addition in �Gn). If n D 2 and i D 1, this
is the required formula. Otherwise, we have n > 3, so �Gn is commutative and the
formula can be rewritten in the required form.

(ii) Put x D �ix; y D z in (i) and note that, by 13.4.11, ˆ..�iz/ Ci z/ D
ˆ"i@

C
i z D "n1ˇz D 0 in �Gn.

The folding map is idempotent. More precisely

Proposition 13.4.15. For any 1 6 j 6 n � 1, we have

ˆ ĵ D ˆ W Gn ! Gn:
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Proof. By definition, for x 2 Gn,

ĵx D Œ�"j @C
j x; ��j @�

jC1x; x; �j @C
jC1x�jC1

D Œa; b; x; c�jC1; say.

By Proposition 13.4.11 and 13.4.14 (ii),ˆa,ˆb andˆc are all zero in �Gn, so Propo-
sition 13.4.14 gives

ˆ ĵx D .ˆx/u;
where

u D ujC1c
D @C

1 : : : @
C
j @

C
jC2 : : : @

C
n �j @

C
jC1x by definition of ujC1

D "1@C
1 @

C
2 : : : @

C
n x by 11.1.5 and 13.1.3.

Thus ˆ ĵx D .ˆx/"1ˇx D ˆx.

Corollary 13.4.16. The folding operation ˆ is idempotent, i.e. for any n, we have

ˆˆ D ˆ W Gn ! Gn:

We end this section with the definition of the thin n-cubes and their characterisa-
tion as those n-cubes that fold to the trivial cube; thus, in particular, a thin cube has
commutative boundary. 218

Definition 13.4.17. An element x 2 Gn, for n > 1, is thin if it can be written as a
composite of an array x D Œx.r/�, where each entry is either of the form "iy or of the
form �i �j � � � �l �my.

The collection of all thin elements of G is clearly closed under all the !-groupoid
operations except possibly the face operations. It is useful to think of the thin elements
as the most general kind of ‘degenerate’ cubes. They are important in the topological
applications, see for example Theorem 14.2.9, and we establish their main properties
in Section 13.7. For the present we prove only the following characterisation.

Proposition 13.4.18. For n > 1 an element x 2 Gn is thin if and only if ˆx D 0.
Proof. We have shown that ˆ"jy D 0;ˆ�jy D 0 for all y 2 Gn�1 (see Proposi-
tion 13.4.11). It follows from Proposition 13.4.14 thatˆx D 0 whenever x is thin. To
see the converse, we recall the definition

ĵx D Œ�"j @C
j x; ��j @�

jC1x; x; �j @C
jC1x�jC1

which can be rewritten as

x D Œ�j @�
jC1x; "j @C

j x; ĵx; ��j @C
jC1x�jC1:

These two equations show that ĵx is thin if and only if x is thin. Hence ˆx is thin if
and only if x is thin. In particular, if ˆx D 0 (i.e. ˆx D "n1ˇx ) then ˆx is thin, so x
is also thin.
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13.5 n-shells: coskeleton and skeleton

To work inductively on an !-groupoid, we have at each step n to restrict our attention
to dimensions 6 n and the minimal part accompanying it. To this end, it is useful
to introduce the n-skeleton of an !-groupoid as the !-subgroupoid generated by the
part of dimensions 6 n, analogously to the constructions for crossed complexes in
Section 7.1.vi. Again, it is useful to make the construction a bit more categorical.219

Definition 13.5.1. If we ignore the elements of dimension higher than n in an !-
groupoid we obtain a cubical n-groupoid. This gives the n-truncation functor

trn W !-Gpds! !-Gpdsn:

We shall show that trn has both a right adjoint coskn W !-Gpdsn ! !-Gpds, the
n-coskeleton functor (Definition 13.5.5) and a left adjoint skn W !-Gpdsn ! !-Gpds,
the n-skeleton functor (Definition 13.5.14).

We will see that both can be described in terms of ‘shells’, i.e. families of r-cubes
that fit together as the faces of an .r C 1/-cube do. A trivial example is the total
boundary of an n-cube.

For any cubical n-groupoid G D .Gn; Gn�1; : : : ; G0/ we will construct an !-
groupoid cosknG by adding ‘shells’ in all dimensions > n. To check that cosknG is
an !-groupoid we need to explain how to apply faces, degeneracies and connections
to these shells. As a consequence, we describe the result of applying the folding
operations ˆi and ˆ to these shells. In particular, we prove that ˆ commutes with the
total boundary.

All these results may be used to prove the existence and uniqueness of fillers for
n-shells. Associated to anyn-cubex 2 Gn we have its total boundary @x and its folding
ˆx satisfying @ˆx D ˆx. Conversely, for any x 2 �0Gn�1 and � 2 �Gn.ˇx/ and
n > 2 such that ı� D ıˆx exists x 2 Gn with @x D x andˆx D � is. This x is unique
and it is denoted x D hx; �i. This property and notation allows the reconstruction of
G from �G.

We finish the section by constructing skn then-skeleton functor as an!-subgroupoid
of coskn, and proving that it is the left adjoint of trn.

Definition 13.5.2. In any cubical set K, an n-shell is a family x D .x˛i / of n-cubes
.i D 1; 2; : : : ; nC 1I˛ D ˙/ satisfying

@
ˇ
j x

˛
i D @˛i�1xˇj for 1 6 j < i 6 nC 1 and ˛; ˇ D ˙:

We denote by �0Kn the set of alln-shells ofK. We usually write shells in boldface.

Example 13.5.3. Notice that the faces f@˛j yg for any .nC 1/-cube y form an n-shell
@y that we call its total boundary. It could be said that an n-shell is just a collection of
n-cubes which forms a candidate to be the total boundary of an .nC 1/-cube. If this
.nC 1/-cube exists it is called a filler of the n-shell.
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Now, to any n-truncated cubical set we associate an .nC 1/-truncated cubical set
by adding the n-shells.

Definition 13.5.4. Let K D .Kn; Kn�1; : : : ; K0/ be an n-truncated cubical set.
To give to K 0 D .�0Kn; Kn; Kn�1; : : : ; K0/ the structure of .n C 1/-truncated

cubical set we need only to define faces and degeneracies involving the top dimension.
Thus the faces

@˛i W �0Kn ! Kn

are given by @˛i x D x˛i for any x 2 �0Kn, and, the degeneracies

"j W Kn ! �0Kn

are given by "jy D z, for any y 2 Kn, where

z˛i D

8̂<̂
:
"j�1@˛i y .i < j /;

"j @
˛
i�1y .i > j /;

y .i D j /:
(i)

Clearly the cubical rules of 11.1.5 are satisfied.
If K has also connections, we can define connections on K 0 by:

�j W Kn ! �0Kn

given by �jy D w, where

w˛i D
´
�j�1@˛i y .i < j /; w�

j D w�
jC1 D y;

�j @
˛
i�1y .i > j C 1/; wC

j D wC
jC1 D 	C

j y:
(ii)

Again this is the definition needed for the connections to satisfy the relations in Defini-
tion 13.1.3. In this wayK 0 becomes an .nC1/-truncated cubical set with connections.

If K has compositions, we can also define compositions in �0Kn as follows. Let
x; y 2 �0Kn with y�

j D xC
j . Define xCj y D t and �j x D s, where (cf. 13.1.7)´

t�j D x�
j ;

tCj D yC
j ;

t˛i D
´
x˛i Cj�1 y˛i .i < j /;

x˛i Cj y˛i .i > j /;

(iii)´
s�
j D xC

j ;

sC
j D x�

j ;
s˛i D

´
�j�1x˛i .i < j /;

�jx˛i .i > j /:

ThenK 0 becomes an .nC1/-truncated cubical set with connections and compositions.
Moreover, ifK is a cubical n-groupoid, thenK 0 is a cubical .nC1/-groupoid. The

verification of these facts is a tedious but entirely routine computation.



13.5 n-shells: coskeleton and skeleton 465

The coskeleton functor can now be obtained by iteration of this construction.

Definition 13.5.5. For any cubical n-groupoidG D .Gn; Gn�1; : : : ; G0/we define its
n-coskeleton by

.cosknG/m D
´
Gm for m 6 n;

�0 m�nGn for m > n

with operations defined as above.

Proposition 13.5.6. IfG D .Gn; Gn�1; : : : ; G0/ is a cubicaln-groupoid, then cosknG
is an !-groupoid. This construction gives a functor

coskn W !-Gpdsn ! !-Gpds

which is right adjoint to trn.

Proof. By definition, it is clear that cosknG is an !-groupoid.
If H is any !-groupoid and �k W Hk ! Gk are defined for k 6 n so as to form a

morphism of cubical n-groupoids from trnH to G, then there is a unique extension to
a morphism of !-groupoids � W H ! cosknG defined inductively by

�my D z; where z˛i D �m�1@˛i y; m > n:

This shows that coskn is right adjoint to trn.

Proposition 13.5.7. If G D .Gn; Gn�1; : : : ; G0/ is a cubical n-groupoid, then all
elements of cosknG in dimension nC 2 and higher are thin.

Proof. To prove the result it is enough to show that, for any !-groupoid G, elements
of �02Gr are always thin, or equivalently, by Proposition 13.4.18, that their foldings
are trivial.

Let z 2 �0 2Gr and w D ˆz. Then w 2 �0 2Gr and all its .r C 1/-dimensional
faces @˛i w are 0p , where p D ˇz, except possibly @�

1w. Let us check that this one is
also 0p .

The condition that all .rC1/-faces but one are 0p implies that all the r-dimensional
faces of w are 0p . Hence @�

1w is an r-shell all of whose faces are 0p . By definition,
therefore @�

1w D 0p .
Hence w itself is an .r C 1/-shell all of whose faces are 0p and therefore w D 0p .

By Proposition 13.4.18, z is thin.

We next see that the total boundary commutes with the folding.

Proposition 13.5.8. For any element x of dimension at least two in any cubical m-
groupoid

ˆ@x D @ˆx:
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Proof. Given an n-shell y D .y˛i / 2 �0Gn, we obtain n-shells ˆiy and

ˆy D ˆ1ˆ2 : : : ˆn�1y:

By Proposition 13.4.9, all faces ofˆy except @�
1ˆy are 0p , wherep D ˇy D .@C

1 /
nyC
1 .

If H is a given !-groupoid, then adjointness gives a canonical morphism

� W H ! CosknH D coskn.trnH/;

with �nC1x D @x for x 2 HnC1. Since � preserves the folding operations we have
the result.

Remark 13.5.9. Note that by Proposition 13.4.2 the faces of ĵx depend only on the
faces of x, and this gives a recipe for ĵ@x.

We can now prove that an n-shell x 2 �0Gn�1 has a unique filler x 2 Gn for each
element � 2 �Gn.p/ having the same boundary as the folding ˆx. This is the key to
the inductive reconstruction of an !-groupoid G from its associated crossed complex
�G (Theorem 13.6.2), a construction which in essence arises from the fact that the
folding operations are invertible, given complete information on the needed boundary.

Proposition 13.5.10. Let G be an !-groupoid, and let �G be its associated crossed
complex. Let x 2 �0Gn�1 and � 2 �Gn.p/, where p D ˇx and n > 2. Then a
necessary and sufficient condition for the existence of x 2 Gn such that @x D x and
ˆx D � is that ı� D ıˆx. Furthermore, if x exists, it is unique and it is denoted
x D hx; �i.
Proof. Clearly the condition is necessary, since if @x D x and ˆx D � , then @ˆx D
ˆ@x D ˆx, by the previous proposition, so ıˆx D .ˆx/�1 D @�

1ˆx D ı� .
Suppose, conversely, that we are given x and � with ı� D ıˆx, i.e. @�

1 � D .ˆx/�1 .
Since all other faces of � and ˆx are concentrated at p, this condition is equivalent to
@� D ˆx, an equation in �0Gn�1. We have to show that there is a unique x 2 Gn such
that @x D x and ˆx D �.

Since ˆx D ˆ1ˆ2 : : : ˆn�1x, by induction, it is enough to show that if y 2 Gn
and @y D ˆiz for some 1 6 i 6 n�1 and z 2 �0Gn�1, then there is a unique z 2 Gn
with @z D z and ˆiz D y. But this is clear since the equation

Œ�"i@C
i z; ��i@�

iC1z; z; �i@C
iC1z�iC1 D y

becomes
Œ�"izC

i ; ��iz�
iC1; z; �izC

iC1�iC1 D y
under the stated conditions, and therefore has a unique solution for z in terms of y
and z. It is easy to check that this z has boundary z.

An easy consequence of this and Proposition 13.4.18 is a characterisation of when
an n-shell has a thin filler, plus the fact that this filler is unique.
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Corollary 13.5.11. A thin element of an !-groupoid is determined by its faces. Given
a shell x, there is a thin element t with @t D x if and only if ıˆx D 0.
Proof. Put � D 0 in Proposition 13.5.10 and use that t is thin if and only if ˆt D 0

(Proposition 13.4.18).

Definition 13.5.12. A shell x will be called a commuting shell if its folding is trivial,
i.e. if ıˆx D 0. This can be interpreted as ‘the sum of its folded faces is 0’. By the
previous corollary, a commuting shell has a thin filler and that filler is unique.

Another consequence of Corollary 13.5.11 is that any !-groupoid G can be recov-
ered from its associated crossed complex �G.

Proposition 13.5.13. Let G be an !-groupoid. Then the substructure �G generates
G as !-groupoid.

Proof. Let H be any !-subgroupoid of G containing �G. Then �H D �G by defini-
tion. We show inductively that Hn D Gn.

This is true for n D 0; 1 since �G0 D G0; �G1 D G1.
Suppose x 2 Gn.n > 2/. Then ˆx 2 �Gn and, by induction hypothesis, @x 2

�0Hn�1. By Proposition 13.5.10, there is a unique y 2 Hn with @y D @x and
ˆy D ˆx. But x is the unique element of Gn with this property, so Hn D Gn.

We shall finish the section by constructing the n-skeleton functor skn as a substruc-
ture of coskn and proving that it is the left adjoint of trn.

Definition 13.5.14. Given a cubical n-groupoidG D .Gn; Gn�1; : : : ; G0/, the n-skel-
eton sknG of G is the !-subgroupoid of cosknG generated by G.

There is a characterisation of skn in terms of commuting shells.

Proposition 13.5.15. Given a cubical n-groupoid G D .Gn; Gn�1; : : : ; G0/, the n-
skeleton

sknG D S
where S is defined by

Sm D
´
Gm if m 6 n;

¹x 2 �0Sm�1 j ıˆx D 0º if m > n:

i.e. form > n, sknGm consists entirely of thin elements, namely, the commuting shells.
Moreover, form > nC2, cosknGm D sknGm, i.e. all shells in �0Sm�1 are commuting
shells.

Proof. It is clear that S � cosknG. By Proposition 13.5.7 all elements of Sm are thin
for m > n.

Clearly, S is closed under face maps, degeneracy maps and connections (since "jy
and �jy are always thin).



468 13 The algebra of crossed complexes and cubical !-groupoids

Also, by induction on m, Sm is closed underCi , �i .1 6 i 6 m/; for if x; y 2 Sm
.m > n/ and xCi y is defined, then xCi y has faces in Sm�1 (by induction hypothesis)
and ıˆ.x Ci y/ D 0 because composites of thin elements in cosknG are thin. Thus
xCi y 2 Sm, and similarly �ix 2 Sm. Hence S is an !-subgroupoid of cosknG.

By Corollary 13.5.11, any!-subgroupoid of cosknG containing Sm�1 (form > n)
must contain Sm, so S is generated by G and S D sknG.

To prove the last statement, if m > nC 2, all shells in cosknGm D �0m�n
Gk are

thin by Proposition 13.5.7 and therefore satisfy ıˆx D 0 by Corollary 13.5.11.

Proposition 13.5.16. The functor skn W !-Gpdsn ! !-Gpds is left adjoint to trn.

Proof. If H is any !-groupoid and  W G ! trnH is a morphism of cubical n-
groupoids, then  extends uniquely to a morphism of !-groupoids  W sknG ! H

inductively.
For m > n, consider a commuting shell x 2 �0 sknGm�1. Since the elements

 m�1x˛i form a commuting shell in H , by Corollary 13.5.11 exists t 2 Hm thin such
that @˛i t D  m�1x˛i for 1 6 i 6 m and ˛ D 0; 1. Then, we define  mx D t .

Given an !-groupoid G, we define SknG D skn.trnG/ and call this, by abuse
of language, the n-Skeleton of G. There is a unique morphism 
 W SknG ! G of
!-groupoids (the adjunction) which is the identity in dimensions 0, 1, 2, …, n. Let
us prove that the image is what we would call intuitively the n-skeleton of G, i.e. the
!-groupoid of G generated by Gn.

Proposition 13.5.17. The adjunction 
 W SknG ! G is an injection and identifies
SknG with the !-subgroupoid of G generated by Gn.

Proof. For m D 0; 1; 2; : : : ; n, 
m W Gm ! Gm is the identity map.
Then, for m > n, .SknG/m is the set of commuting shells in �0

m�1.SknG/, by
Proposition 13.5.15. Suppose that, for some m > n, 
m�1 W .SknG/m�1 ! Gm�1
is an injection. For any x 2 .SknG/m, the elements 
m�1x˛i form a commuting
shell y in �0Gm�1 and 
mx is the unique thin element t of Gm with @t D y. Thus
x˛i D 
�1

m�1y˛i D 
�1
m�1@˛i t is uniquely determined by t for all .i; ˛/ and therefore 
m

is an injection. This shows, inductively, that 
 is an injection.
Now Gn generates trnG as cubical n-groupoid (even as n-truncated cubical set)

and therefore generates SknG as !-groupoid, by Proposition 13.5.15. It follows that
Gn generates the image of SknG in G.

Corollary 13.5.18. If G is an !-groupoid, and n > 0 then the crossed complexes
� SknG and Skn �G coincide.
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13.6 The equivalence of !-groupoids and crossed complexes

In this section we construct a functor

� W Crs! !-Gpds

which together with � gives an equivalence of categories.
The key idea for constructing � in such a way that there is an equivalence �� '

1!-Gpds comes from Proposition 13.5.10, which shows that any element ofGn is deter-
mined by its total boundary and its folding.

We have proved that given x 2 �0Gn�1, � 2 �Gn with ı� D ıˆx there is a unique
element x 2 Gn such that @x D x and ˆx D � . We write hx; �i D x.

To define �G we use these elements hx; �i. It is clear how to express its faces,
degeneracies and connections of G following Definition 13.5.4. Our next proposition
shows how to define the compositions.

Proposition 13.6.1. If x D hx; �i, y D hy; 	i in Gn, and xC
i D y�

i , then

x Ci y D
´
hxC1 y; 	C �u1yi if n D 2 and i D 1;
hxCi y; �u1y C 	i otherwise;

and

�ix D h�ix;���ui xi:
Proof. This follows immediately from Proposition 13.4.14 and the rule

@.x Ci y/ D @x Ci @y: �

These results show how to construct from any crossed complex C an !-groupoid
G D �C with �G Š C .

Theorem 13.6.2. There is a functor� from the category Crs of crossed complexes to the
category !-Gpds of !-groupoids such that � W Crs! !-Gpds and � W !-Gpds! Crs
are inverse equivalences.

Proof. Let C be any crossed complex. We construct an !-groupoid G D �C and an
isomorphism of crossed complexes 
 W C ! �G by induction on dimension.

We start withG0 D C0,G1 D C1, so that .G1; G0/ is a groupoid. We write �Gn (in
any cubical complex) for the set of n-cubes x with all faces except @�

1 x concentrated at
a point. Then �G0 D C0, �G1 D C1, and we take 
0 W C0 ! �G0 and 
1 W C1 ! �C1
to be the identity maps.

Suppose, inductively, that we have defined Gr and 
r W Cr ! �Gr for 0 6 r <

n (where n > 2) so that .Gn�1; Gn�2; : : : ; G0/ is a cubical .n � 1/-groupoid and
.
n�1; 
n�2; : : : ; 
0/ is an isomorphism of .n�1/-truncated crossed complexes. Then
.�0Gn�1; Gn�1; : : : ; G0/ is a cubical n-groupoid and we define

Gn D f.x; �/ j x 2 �0Gn�1; � 2 Cn; ıˆx D 
n�1ı�g:
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For y 2 Gn�1, let "jy D ."jy; 0/, where "j is defined in Definition 13.5.4 (i). Then
"jy 2 Gn, since ˆ"jy D 0 by Proposition 13.4.11. The maps "j W Gn�1 ! Gn,
together with the obvious face maps @˛i W Gn ! Gn�1 defined by @˛i .x; �/ D x˛i , give
.Gn; Gn�1; : : : ; G0/ the structure of an n-truncated cubical set.

Similarly one can define connections �j W Gn�1 ! Gn by �jy D .�jy; 0/, where
�j is defined in Definition 13.5.4 (ii), and the laws in Definition 13.1.3 are clearly
satisfied, since they are satisfied by �j .

Recalling Proposition 13.6.1, we define operationsCi , �i . For .x; �/; .y; 	/ 2 Gn
with xC

i D y�
i , let

.x; �/Ci .y; 	/ D
´
.xC1 y; 	C �u1y/ if n D 2 and i D 1;
.xCi y; �u1y C 	/ otherwise;

and

�i .x; �/ D .�ix;��ui x/:

By Proposition 13.4.14, for all .n; i/ ¤ .2; 1/,
ıˆ.xCi y/ D ı..ˆx/ui y Cˆy/

D .
n�1ı�/ui y C 
n�1ı	
D 
n�1ı.�ui y C 	/;

so Gn is closed underCi . The case n D 2, i D 1 is similar. Also

ıˆ.�ix/ D ı.�ˆx/�ui x D 
n�1ı.��ui x/;

and therefore �ix 2 Gn.
We claim that .Gn; Gn�1; : : : ; G0/ is now a cubical n-groupoid. Firstly, it is clear

that, for t 2 Gn�1, "i t acts as an identity forCi , and that�i is an inverse operation for
Ci . The associative law is verified as for semi-direct products of groups. Secondly,
the laws (1),(2) and (3) of Definition 13.1.7 are true for �0Gn�1. It remains, therefore,
to prove the interchange law (4i) (from which (4ii) follows, using the groupoid laws).

Let 1 6 i < j 6 n and let x D .x; �/, y D .y; 	/, z D .z; �/; t D .t; �/ be
elements of Gn such that the composite shell

w D
�
x y
z t

�
i

j

��

��

is defined. Let g D @C
1 @

C
2 : : : O{C : : : O|C : : : @C

n t 2 G2 have boundary

g

c

b d

a

1

2

��

��

:



13.6 The equivalence of !-groupoids and crossed complexes 471

Then

.x Ci z/Cj .y Ci t / D .w; !/; .x Cj y/Ci .z Cj t / D .w; !0/;

say, and we have to show that ! D !0 in Cn.
If n D 2 then i D 1 and j D 2 and we find that

! D .� C �b/a C .� C 	d /; !0 D .�a C �/C .�c C 	/d :
To show that these are equal, it is enough to show that �bCaC � D � C �cCd . But this
follows from the crossed module laws since

ı� D 
1ı� D ıˆt D ıˆg D �a � b C c C d
and therefore

�� C �bCa C � D .�bCa/ı� D �cCd :
If n > 2, we find that

! D .�b C �/a C 	d C �; !0 D .�c C 	d /C �a C �;
and since addition is now commutative, the equation ! D !0 reduces to �aCb D
�cCd , that is, �ıˆg D �. But, by induction hypothesis, we have an isomorphism

2 W C2 ! �G2 preserving the crossed module structure, and if � 2 C2 is the element
with 
2.�/ D ˆg, then �ıˆg D �ı� D � by the crossed complex laws. This completes
the proof of the interchange law.

We now have a cubical n-groupoid .Gn; Gn�1; : : : ; G0/, and we must identify �Gn.
For any � 2 Cn.p/, let d� denote the shell x 2 �0Gn�1 with x�

1 D 
n�1ı� and all
other x˛i concentrated at p. Define


n� D .d�; �/:
Clearly 
n� 2 �Gn and every element of �Gn is of this form. The bijection 
n W Cn !
�Gn is compatible with the boundary maps since ı
n� D @�

1 
n� D 
n�1ı� . It
preserves addition because, for �; 	 2 Cn.p/,

.d�; �/C .d	; 	/ D .d� Cn d	; �und� C 	/
D .d.� C 	/; � C 	/:

Furthermore, if � 2 Cn.p/ and a 2 C1.p; q/ D G1.p; q/, then

.
n�/
a D �n"n�1

1 aCn 
n� Cn "n�1
1 a

D .�n"1"
n�2
1 a; 0/Cn .d�; �/Cn ."1"n�2

1 a; 0/

D .y; �a/;
in all cases. Since .
n�/a 2 �Gn, it follows that y D d.�a/, making
n an isomorphism
of crossed complexes up to dimension n.
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This completes the inductive step in our construction, and we therefore obtain
an !-groupoid G D �C and an isomorphism 
 W C ! �G of crossed complexes.
This !-groupoid has the following universal property: If G0 is any !-groupoid and

 0 W C ! �G0 any morphism of crossed complexes then there is a unique morphism
� W G ! G0 of !-groupoids making the diagram

C
	 ��

	 0
>>________ �G

��

��

� � � G D �C
�

��
�G0 � � � G0

commute.
We define � inductively, starting with �0 D 
 0

0, �1 D 
 0
1. For n > 2, each x0 2 G0

n

is uniquely of the form hx0; � 0i where x0 2 �0G0
n�1; � 0 2 �Gn and ıˆx0 D ı� 0. We

define �n W Gn ! G0
n by .x; �/ 7! hx0; � 0i, where .x0/˛i D �n�1x˛i and � 0 D 
 0

n� . This
definition is forced, and it clearly gives a morphism of !-groupoids.

From this universal property, it follows that the functor � W Crs ! !-Gpds is left
adjoint to � W !-Gpds! Crs.

The adjunction 
c W C ! ��C is an isomorphism for allC , so 1Crs ' ��. Also, the
adjunction ��G0 ! G0 is obtained by putting G D �G0; 
 0 D identity, in which case
� is an isomorphism ��G0 ! G0, as is clear from its definition. Hence �� ' 1!-Gpds

and we have inverse equivalences � and � between Crs and !-Gpds.

13.7 The Homotopy Addition Lemma and properties of thin
elements

Another very important property of !-groupoids is that they are fibrant cubical sets
(see Section 11.3.i), i.e. that any n-box has a filler.

Moreover the n-boxes have a set of canonical fillers, i.e. the thin elements giving
an !-groupoid the structure of T -complex.220

The proof of both these facts may be deduced from Proposition 13.5.10 via an
algebraic Homotopy Addition Lemma that expresses the only nontrivial face of the
folding of a shell in term of the elements of the shell.

Lemma 13.7.1 (Homotopy Addition Lemma). Let G be an !-groupoid (or a cubical
m-groupoid with m > n). Let x 2 �0Gn and define †x 2 Cn D .�G/n by

†x D

8̂<̂
:
�xC

1 � x�
2 C x�

1 C xC
2 D �ˆxC

1 �ˆx�
2 Cˆx�

1 CˆxC
2 if n D 1;

�ˆxC
3 � .ˆx�

2 /
u2x �ˆxC

1 C .ˆx�
3 /
u3x CˆxC

2 C .ˆx�
1 /
u1x if n D 2;PnC1

iD1 .�1/i¹ˆxC
i � .ˆx�

i /
ui xº if n > 3

where ui D @C
1 @

C
2 : : : O{ : : : @C

nC1 as in Definition 13.4.13. Then ıˆx D †x in all cases.
Hence, if t is a thin element of G, then †@t D 0.
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Proof. The case n D 1 is trivial, so we assume n > 2. First, notice

ıˆx D ˆıˆx (because ıˆx 2 Cn/
D .ˆ@�

1ˆx/u1ˆx (because u1ˆx D "1ˇx/

D †ˆx:

So, we have to prove †ˆx D †x. It is enough to show that † ĵ x D †x for
j D 1; 2; : : : ; n.

To prove that † ĵ x D †x, put y D ĵ x (for fixed j ). By Proposition 13.4.2, we
have

y˛i D
´

ĵ�1x˛i .i < j /;

ĵx
˛
i .i > j C 1/I

y˛jC1 D yC
j D 	C

j x
C
j I

y�
j D Œ�xC

j ;�x�
jC1; x�

j ; x
C
jC1�j :

Hence, by Proposition 13.4.15 and Proposition 13.4.18,

ˆy˛i D ˆx˛i .i ¤ j; j C 1/;
ˆy˛jC1 D ˆyC

j D 0; (�)

ˆy�
j D ˆŒ�xC

j ;�x�
jC1; x�

j ; x
C
jC1�j :

We write aj D Œ�xC
j ;�x�

jC1; x�
j ; x

C
jC1�j and use Proposition 13.4.14 to computeˆaj .

First we study the case .n; j / ¤ .2; 1/. Then

ˆaj D �.ˆxC
j /

pj � .ˆx�
jC1/qj C .ˆx�

j /
rj CˆxC

jC1;

where pj D ujaj , qj D uj Œx
C
j ; aj �j , rj D ujx

C
jC1. By the relations in Defini-

tion 13.1.7, uj is a morphism of groupoids from .Gn;Cj / to .G1;C/ so

pj D �ujxC
j � ujx�

jC1 C ujx�
j C ujxC

jC1

in G1, and qj D ujxC
j C pj . The four terms of pj are the edges of the square

sj D @C
1 @

C
2 : : :

Oj 1j C 1 : : : @C
n xI

hence pj D †@sj D ıˆsj . Also ujx
C
j D ujC1x and ujx

C
jC1 D uj x, so

ˆy�
j D ˆaj D �.ˆxC

j /
ıˆsj � .ˆx�

jC1/uj C1xCıˆsj C .ˆx�
j /
uj x CˆxC

jC1: (��)

We have to differentiate two subcases.
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If n > 3 then ıˆsj acts trivially on Cn, since C D �G is a crossed complex, and
addition is commutative. Hence by .�/,

†y D
nX
iD1
.�1/ifˆyC

i � .ˆy�
i /
ui yg

D
X

i¤j;jC1
.�1/ifˆxC

i � .ˆx�
i /
ui ĵ xg C .�1/jC1.ˆy�

j /
uj ĵ x:

But ui ĵ x D uix if i ¤ j , i ¤ j C 1I and uj ĵ x D 0I so substituting from .��/ we
find †y D †x.

If n D 2 and j D 2 then s2 D @C
1 x D xC

1 , and ıˆs2 D ıˆxC
1 acts on C2 by

aıˆs2 D �ˆxC
1 C aCˆxC

1 . Hence .��/ becomes

ˆy�
2 D �ˆxC

1 �ˆxC
2 � .ˆx�

3 /
u3x CˆxC

1 C .ˆx�
2 /
u2x CˆxC

3

which, together with .�/, gives

†y D �ˆyC
3 � .ˆy�

2 /
u2ˆ2x �ˆyC

1 C .ˆy�
3 /
u3ˆ2x CˆyC

2 C .ˆy�
1 /
u1ˆ2x

D 0 �ˆy�
2 �ˆxC

1 C 0C 0C .ˆx�
1 /
u1x

D †x:

Finally, in the case n D 2; j D 1, we have

ˆy�
1 D ˆŒ�xC

1 ;�x�
2 ; x

�
1 ; x

C
2 �1

D ˆxC
2 C .ˆx�

1 /
r1 � .ˆx�

2 /
q1 � .ˆxC

1 /
p1

by Proposition 13.4.14, where p1, q1, r1 are as defined above. As in the previous cases,
this gives

ˆy�
1 D ˆxC

2 C .ˆx�
1 /
u1x �ˆxC

3 � .ˆx�
2 /
u2x �ˆxC

1 CˆxC
3

and hence

†y D �ˆxC
3 C .ˆx�

3 /
u3xCˆxC

2 C .ˆx�
1 /
u1x �ˆxC

3 �ˆ.x�
2 /
u2x �ˆxC

1 CˆxC
3 :

Writing b D .ˆx�
3 /
u3x C ˆxC

2 C .ˆx�
1 /
u1x � ˆxC

3 and c D �.ˆx�
2 /
u2x � ˆxC

1 ,
it can be verified that ıb D �ıc, and hence, by the crossed module laws, b C c D
c C bıc D c C b�ıb D c C b. It follows easily that †y D †x, as required.

To prove the last statement, if t is thin, then †@t D ıˆ@t D @�
1ˆt D 0 by

Lemma 13.5.8 and Proposition 13.4.18.

Remark 13.7.2. The element†x in the case n D 2 is in the centre of C2.ˇx/, because
conjugation by †x D ıˆx is the same as action by ııˆx D 0. Hence †x can be
rewritten, for example, by permuting its terms cyclically.
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Proposition 13.7.3. Let G be an !-groupoid. Then each box in G has a unique thin
filler. In particular, G is a fibrant cubical set.

Proof. Let y be an n-box with missing .�; k/-face. The result is trivial if n D 0, so
we assume n > 1. By Corollary 13.5.11, it is enough to prove that there is a unique
n-cube y�

k
which closes the box y to form an n-shell xy with ıˆxy D †xy D 0.

If n > 2, the edges of the given box y form the complete 1-skeleton of an .nC 1/-
cube; in particular, y determines the nC1 edgeswi D uiy terminating at ˇy. We write
F.s˛i / for the word in the indeterminates s˛i .i D 1; 2; : : : ; nC 1I˛ D 0; 1/ obtained
from the formula for †x in Lemma 13.7.1 by substituting s˛i for ˆx˛i and the given
edges wi D uiy for uix. If n D 1, then F.s˛i / D �sC

1 � s�
2 � s�

1 C sC
2 does not

involve the wi .
If we put z˛i D @y˛i for .˛; i/ ¤ .�; k/, then the z˛i form a box of .n�1/-shells, and

there is a unique .n�1/-shell z�
k

which closes this box to form an n-shell Nz 2 �2Gn�1.
Since ı preserves addition and the action of the edges wi , we find

F.ıˆz˛i / D ıF.ˆz˛i / D ı†Nz D ı2ˆNz D 0: (�)

Next, put �˛i D ˆy˛i for .˛; i/ ¤ .�; k/ and let ��
k
2 Cn be the unique element

determined by the equation F.�˛i / D 0. Then

ı�˛i D ıˆy˛i D ıˆz˛i for .˛; i/ ¤ .�; k/;
while

F.ı�˛i / D 0:
From these equations and .�/ we deduce that ı��

k
D ıˆz�

k
also. Hence, by Proposi-

tion 13.5.10, there is a unique y�
k
2 Gn such that @y

�

k
D z�

k
and ˆy�

k
D �

�

k
; this y�

k

completes the box y to form a shell xy with †xy D F.�˛i / D 0, as required.

Proposition 13.7.4. Let t be a thin element in an !-groupoid. If all faces except one
of t are thin, then the remaining face is also thin.

Proof. Let the faces of t be t˛i .i D 1; 2; : : : ; nI˛ D 0; 1/. By Proposition 13.4.18,
ˆt˛i D 0 for .˛; i/ ¤ .�; k/ say, so †@t D ˙.ˆt�

k
/w for some edge w of t . But t is

thin so, by the Homotopy Addition Lemma 13.7.1, †@t D 0. Hence ˆt�
k
D 0 and t�

k

is thin.

The thin elements of an !-groupoid have another property which is crucial in the
proof of the HHSvKT in the next chapter; it is used in proving Lemma 14.3.5 on
page 496 to show that a constructed element of an !-groupoid is independent of the
choices in the construction. It is also used to relate the fundamental !-groupoid �X�
and fundamental crossed complex …X� of a filtered space (Proposition 14.5.1). For
the following proposition, we need Definition 11.1.6 of cubical operators not involving
a given face.
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Proposition 13.7.5. Let G be an !-groupoid and x a thin element of GnC1. Suppose
that for m D 1; : : : ; n and each face operator d W GnC1 ! Gm not involving @�

nC1 or
@C
nC1, the element dx is thin. Then x D "nC1@�

nC1x and hence

@�
nC1x D @C

nC1x:

Proof. The proof is by induction on n, the case n D 0 being trivial since a thin element
in G1 is degenerate.

The inductive assumption thus implies that every face @�i x with i ¤ nC 1 is of the
form "n@

�
n @
�
i x. So the box consisting of all faces of x except @C

nC1x is filled not only by
x but also by "nC1@�

nC1x. Since a box inG has a unique thin filler (Proposition 13.7.3),
it follows that x D "nC1@�

nC1x.

Remark 13.7.6. The properties of thin elements in Propositions 13.7.3 and 13.7.4,
together with the fact that degenerate cubes are thin, can be taken as axioms for ‘cubical
T -complexes’or ‘cubical sets with thin elements’.221 Precisely, a (cubical) T -complex
is a cubical set with a distinguished set of elements called ‘thin’, satisfying:

(i) all degenerate cubes are thin;

(ii) every box has a unique thin filler;

(iii) if a thin cube has all faces except one thin then the last face is also thin.222

Remark 13.7.7. IfG is any!-groupoid, we may define the fundamental groupoid�1G
and the homotopy groups �n.G; p/ .p 2 G0, n > 2/ as follows. For a; b 2 G1.p; q/,
define a 
 b if there exists c 2 G2 such that

@�
1 c D a; @C

1 c D b; @�
2 c D "1p; @C

2 c D "1q:
Then 
 is a congruence relation on G1 and we define �1G D G1= 
. For n > 2

and p 2 G0, let Zn.G; p/ D fx 2 Gn j @˛1x D "n�1
1 p for all .˛; i/g. Then the Ci

.i D 1; 2; : : : ; n/ induce onZn.G; p/ the same abelian group structure. Two elements
x, y ofZn.G; p/ are homotopic, x 
 y, if there exists h 2 GnC1 such that @�

nC1h D x,
@C
nC1h D y and @˛i h D "n1p for i ¤ nC 1. This is a congruence relation on Zn.G; p/

and we define �n.G; p/ to be the quotient group Zn.G; p/= 
.
Now G is a fibrant cubical set, by Proposition 13.7.3, so, there is a standard pro-

cedure suggested in Proposition 11.3.27 and in that Section 11.3.iii, for defining �1G
and �n.G; p/, without using the compositionsCi . As sets they coincide with the defi-
nitions above, but their groupoid and group structures are defined by a procedure using
only the properties of Kan fillers.

It is not hard to see that the special properties of thin fillers in G ensure that the
groupoid and group structures obtained in this way coincide with those induced by the
compositionsCi .

It is also clear that the groupoid �1G and the groups �n.G; p/ coincide with the
fundamental groupoid �1�G and the homology groups Hn.�G; p/ of the crossed
complex �G (see the definitions in Section 7.1.iv).
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We will later (in the proof of Theorem 15.6.1) need the following result.

Proposition 13.7.8. Let G;H be !-groupoids and let f W G ! H be a morphism of
the underlying cubical sets with connections which also preserves the thin structures.
Then f is a morphism of !-groupoids.

Proof. This involves the fact that the compositions can be recovered from the thin
structures, which is the main result of [BH81c], showing the equivalence of cubical
T -complexes and !-groupoids. In our terms, this can be shown as follows.

In Proposition 11.3.27 we showed how the fundamental groupoid of a fibrant cubical
set can be defined. In the case of a cubical T -complexK, with unique Kan fillers, this
method actually determines a groupoid structure C1 on K1.

By using the functorP nK we can similarly get a composition, and in fact a groupoid
structure,Cn derived from the T -structure.

However we showed in Chapter 6, that double groupoids with connection admit
rotations, which exchange the two groupoid structures in dimension 2 (Theorems 6.4.10
and 6.4.11). In higher dimensions, this argument gives an operation of the symmetry
group Sn in dimension n of an !-groupoidG, interchanging the operationsCi . Hence
any additionCi is determined by the thin structure.

The same argument applies toH and hence f preserves the compositionsCi .
Remark 13.7.9. It will be shown in Remark 14.6.4 that the crossed complex …I n�
has one generator for each cell of I n, with defining relations given by the cubical
Homotopy Addition Lemma 9.9.4. The corresponding statement for the !-groupoid
�I n� is that it is the free !-groupoid on a single generator in dimension n; this is the
subject of Section 14.6, as part of the description of the free !-groupoid on a cubical
set (Proposition 14.6.3).

Notes

209 p. 443 Most of the results of this chapter are taken from [BH81].

210 p. 443 For the single vertex case, the term ‘crossed complex’is due to Huebschmann
in [Hue77], [Hue80a], but the concept has a longer history. The immediate interest
for Huebschmann was the generalisation of a result on an interpretation in terms
of classes of crossed sequences ofH 3.G;M/, the third cohomology of a groupG
with coefficients in a G-moduleM . More background to this is given in [ML79].
There is also more to say. Lue in [Lue81] shows that his earlier work in [Lue71]
can be specialised to the case of the cohomology of groups with respect to the
variety of abelian groups to give the interpretation of HnC1.G;M/ in terms of
n-fold crossed sequences which we have derived in Chapter 12. The first formal
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definition of crossed complex in the single vertex case seems to have been in
Blakers, [Bla48], using the term ‘group system’. Almost contemporaneously,
Whitehead in [Whi49b] uses the term ‘homotopy system’ for what we call a free
crossed complex. He remarks there that the concept is a translation using chain
complexes and relative homotopy groups of the term ‘natural system’ on p. 1216
of [Whi41b]. That paper shows a deep study of the work of Reidemeister, [Rei34],
on chain complexes with operators; see [Rei50] for a later account.

211 p. 446 Cubical sets with this, and other, structures have also been considered by
Évrard [Evr76]. See also M. Grandis and L. Mauri, [GM03], which deals with
various normal forms, including those for cubical sets with connections. Various
papers use connections �i̇ , for example [AABS02], [Hig05]; these are not needed
in this book because we are dealing with multiple groupoid structures. The work of
[Mal09] shows that cubical sets with connections have good properties for models
of homotopy, in that they form a ‘strict test category’. Here ‘strict’ means that
the geometric realisation of the cartesian product of cubical sets has the same
homotopy type as the cartesian product of the realisations. The failure of this fact
for the original cubical sets of [Kan55] was a main reason for abandoning cubical
for simplicial sets. Another was that cubical groups are in general not fibrant
cubical sets: but cubical groups with connections are fibrant, [Ton92].

212 p. 449 These results apply also to the more general n-fold categories defined in
[BH81b]. The question of defining compositions of more complicated subdivisions
in double categories is studied in [DP93b], see also [DP93a].

213 p. 450 Several authors refer to the singular simplicial complex of a space X as a
kind of1-groupoid and write it …X , see for example [Lur09], [Ber02], and also
discussions on the ncatlab. However there seems little discussion of the singular
cubical complex in similar terms.

214 p. 451 See [Bro09b] for another construction which yields a strict multiple category.

215 p. 451 This raises the question of the significance of the fact that this construction
can be made in the case of a filtered topological space but not in any obvious manner
for just a space. There are results in dimension 2 for the case of a Hausdorff space,
see [BHKP02], [BKP05], but it is not so clear how to obtain applications from this.
There are intriguing analogous constructions in the smooth case, see for example
in dimension 2 [FMP11].

216 p. 451 The term ‘cubical n-groupoid’ is analogous to that of ‘globular n-groupoid’
which is the more common form in the literature. The definitions and relation
between the two are given in [BH81b], [Bro08b].
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217 p. 455 For an extension of these methods to the case of cubical !-categories, see
[Hig05], [Ste06].

218 p. 462 Thin elements are also used in higher categorical rather than groupoid
situations, see for example [Str87], [Hig05, Ste06], [Ver08a].

219 p. 463 Here we follow the notation and terminology of Duskin [Dus75].

220 p. 472 This notion was discovered in the simplicial context by Dakin in [Dak77].
The simplicial account was completed by Ashley in his 1978 PhD thesis published
as [Ash88]. The work of these two students was a key input to the work of [BH81],
[BH81a]. See also [Bro83].

221 p. 476 The definition was first given by Dakin [Dak77] in the simplicial case. These
axioms are related to the axioms for a group composition given in [Lev57]: the last
of these axioms is essentially the dimension 3 simplicial case of the third axiom
for thin elements, and is rightly linked by Levi to associativity of the composition.

222 p. 476 We have shown that every !-groupoid is a T -complex, and it is a remark-
able fact (see [BH81c], [BH81b]) that the converse is also true: all the !-groupoid
structure can be recovered from the set of thin elements using these three assump-
tions. Thus the category of cubical T -complexes is equivalent (in fact isomorphic)
to the category of!-groupoids; it is therefore, by 13.6.2, equivalent to the category
of crossed complexes. Ashley has shown [Ash88] that the category of simplicial
T -complexes is also equivalent to the category of crossed complexes (see also
[NT89a] for the relation to ‘hypergroupoids’) – this should be called the Ashley
Theorem. He has also shown that this result generalises the theorem of Dold and
Kan [Dol58], [Kan58b], [May67] which gives an equivalence between the category
of simplicial abelian groups and the category of chain complexes; the T -complex
structure on a simplicial abelian group is obtained by defining the thin elements
to be sums of degenerate elements. For more information on the cubical case, see
also [BH03]. Some writers use the term ‘complicial set’ rather than T -complex,
for analogous concepts, see for example [Ver08a], [Ver08b].



Chapter 14

The cubical homotopy !-groupoid of a filtered space

This chapter contains the construction and applications of the cubical higher homotopy
groupoid �X� of a filtered space X�. Without the idea for this construction, the major
results of this book would not have been conjectured, let alone proved.223

The definition of �X� as a cubical set with connections is easy: it is a quotient of
RX�, the filtered cubical singular complex of X�, by the relation of thin homotopy
rel vertices. The difficult part is to prove that the compositions on RX� are inherited
by �X�, so that it becomes an !-groupoid: the proof is a generalisation of that in
dimension 2, but needs an organisation of the collapsing of cubes in order to fill some
‘holes’ starting in low dimensions. It is remarkable that there is exactly enough room,
in the filtration sense, to fill these holes as required; this gives one confidence that the
definitions are the right ones, and that filtered spaces do have a special role in algebraic
topology.

These collapsings which were introduced in Section 11.3.i also enable a proof of a
key result, the Fibration Theorem 14.2.7 stating that the projection p W RX� ! �X� is
a fibration of cubical sets. Some more precise properties of this fibration are a key to
later results. For example, since �X� is an !-groupoid, it has a notion of thin element,
by Definition 13.4.17: these elements we call algebraically thin. There is also a notion
of a geometrically thin, or deficient, element of .�X�/n for any n > 1, namely those
which have a representative f W I n� ! X� such that f .I n/ � Xn�1. The precise
Fibration Theorem implies these two notions coincide (see Theorem 14.2.9).224

The main part of this chapter gives proofs of a Higher Homotopy Seifert–van
Kampen Theorems (HHSvKT) both for !-groupoids (Section 14.3) and for crossed
complexes (Section 14.4). In Section 14.3.1 we prove the result for !-groupoids. It
shows, in succinct terms, that the functor � preserves certain colimits of connected
filtered spaces.

The proof of the Higher Homotopy Seifert–van Kampen Theorem (HHSvKT) for
!-groupoids (Section 14.3) follows the same structure as the proofs of the Seifert–
van Kampen Theorems in dimension 1 and 2, given in Part I (Section 1.6 and Theo-
rem 6.8.2). It goes as follows.

Let U D fU �g�2ƒ be an open cover of a space X with a given filtration X� and
assume that for any finite intersection U 
 of elements of U, the induced filtration U 
�
is connected. The theorem says that in the induced diagram

F

2ƒ2 �U 
�

a ��

b
��
F
�2ƒ �U ��

c �� �X�

c is the coequaliser of a and b in the category !-Gpds of !-groupoids.
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To prove the universality condition of the coequaliser, we show that for any !-
groupoid G and morphism of !-groupoids

f W
G
�2ƒ

�U �� ! G

which is compatible with the double intersections (i.e. fa D f b), there is a unique
morphism

f 0 W �X� ! G

such that f 0c D f . This morphism f 0 is constructed by using choices to construct a
map

F W RX� ! G

following the same pattern as in the proof of Theorem 6.8.2.
For any element ˛ 2 Rn.X�/ we choose a subdivision ˛ D Œ˛.r/� such that each

˛.r/ lies in some element U �.r/ 2 U. The connectivity conditions imply, analogously
to the 2-dimensional case, that there are elements �� 2 Rn.X�/ and a thin homotopy
h W ˛ � � such that in the subdivision given by ˛ we have h.r/ W ˛.r/ � �.r/, �.r/ 2
RnX� and h.r/ lies in U �.r/. We define

F.˛/ D Œf �.r/�.r/�
the composite of the array.

The central part of the proof is to show that F is well defined up to homotopy. Here
we diverge from the proof of the theorem in dimension2. There, the HomotopyAddition
Lemma was used in dimension 2 to see that any composition of commuting 3-shells is
also a commuting 3-shell. In higher dimensions, the ‘commuting .nC 1/-shells’ are
replaced by the thin elements defined in 13.4.17. The geometric characterisation of
thin elements already stated is crucial in the proof.

The Higher Homotopy Seifert–van Kampen Theorem (HHSvKT) for crossed comp-
lexes (Section 14.3) follows from the HHSvKT for !-groupoids using the equivalence
of categories in Section 13.6

� W !-Gpds! Crs

from the category of !-groupoids to the category of crossed complexes. In the case of
the !-groupoid �X�, we prove that ��X� is naturally isomorphic to the fundamental
crossed complex …X� of the filtered space X� (Theorem 14.4.1). This isomorphism
gives the Higher Homotopy Seifert–van Kampen Theorem (HHSvKT) for fundamental
crossed complexes (8.1.5) whose applications have been described in Chapter 8, as-
suming the Higher Homotopy Seifert–van Kampen Theorem for the !-groupoid �X�.

Section 14.5 shows that every !-groupoid and every crossed complex arise up to
isomorphism from our functors from filtered spaces. This shows our axioms for these
structures to be optimal. These results are surprisingly used in Section 14.6 to show that
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the functor � from cubical sets to !-groupoids is left adjoint to the forgetful functor,
and so gives the free !-groupoid on a cubical set. This result is very useful for our next
chapter on monoidal closed structures.

Section 14.7 gives a final link with classical results by showing how these cubical
methods help in proving the classical Absolute Hurewicz Theorem, and also relate
to an exact sequence of J. H. C. Whitehead which includes the Hurewicz morphism
from homotopy to homology. This exact sequence is necessary for applications of
our fundamental homotopy classification of maps to the classifying space of a crossed
complex, since it gives useful conditions for a space Y to be of the homotopy type of
BC for some crossed complex C .

Section 14.8 relates previous work to a classical theorem of Dold and Kan giving
an equivalence between chain complexes and simplicial abelian groups. Here we give
a cubical analogue.

Some results of this chapter in Section 14.5 link with results of Chapter 11 and
indeed depend on results on realisations of cubical sets stated there. It is of course
important that this chapter is otherwise independent of results from Part II, though we
assume some of the definitions given there.

14.1 The cubical homotopy !-groupoid of a filtered space

It is natural to associate to a filtered space X� its filtered singular cubical set RX�
which in dimension n is the set of filtered maps I n� ! X�. The aim is to define a
homotopy relation on RX� which gives an !-groupoid �X� whose associated crossed
complex is exactly…X� as used in Part II. The fact that the 0-dimensional part of…X�
is justX0 suggests that the homotopy relation we require is thin homotopy rel vertices.
It turns out that this works: the ‘rel vertices’ condition is enough to start the inductive
constructions required to prove that the compositions onRX� are inherited by �X�.225

Definition 14.1.1. LetX�, Y� be filtered spaces. A thin homotopy f W Y�˝I� ! X� is
a map h W Y �I ! X such that f .Ys�I / � Xs , s > 0, and it is rel vertices if f jY0�I
is the constant homotopy. Such a homotopy is as usual also written ft W Y� ! X�,
0 6 t 6 1, and called a homotopy from f0 to f1. Two elements ˛; ˇ 2 RnX� are
thinly homotopic rel vertices if there is a thin homotopy f W I n � I ! Y from ˛ to ˇ
rel vertices. We write ˛ � ˇ.226

The set of equivalence classes of elements ofRnX� under thin homotopy rel vertices
is written �nX�, and the class of ˛ 2 RnX is written hh˛ii. So we have a quotient map
p W RX� ! �nX�.

It is easy to check that the connections and the face and degeneracy maps of RX�
are inherited by �X�, giving it the structure of cubical complex with connections. In
order to generalise to all dimensions the arguments given in dimension 2 in Chapter 6
for constructing the compositions, we need some preliminary definitions and results.
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Definition 14.1.2. Let B be a subcomplex of I n, let m > 2, and let B � Im be given
the product cell structure, so that the skeletal filtration gives a filtered space B�˝ Im� .
Let

h W B � Im ! X

be a map. Fixing the i -th coordinate of Im at the value t , where 0 6 t 6 1, we obtain
a map

@tih W B � Im�1 ! X:

If X� is a filtered space, and @tih W B� ˝ Im�1� ! X� is a filtered map for each
0 6 t 6 1, we say h is a thin homotopy in the i-th direction of Im. In such case we
write h W ˛ �i ˇ where ˛ D @0i h; ˇ D @1i h. It is easy to see that the relation�i defined
on filtered maps B� ˝ Im�1� ! X� by the existence of such an h is an equivalence
relation independent of i , 1 6 i 6 m.

Definition 14.1.3. A map h W B� ˝ I 2� ! X� is called a thin double-homotopy if it is
a thin homotopy in each of the two directions of I 2; this is equivalent to

h.Bs � I 2/ � XsC1; h.Bs � @I 2/ � Xs; s D 0; 1; 2; : : : :
(If K is a proper subcomplex of I 2, and k W B �K ! X satisfies k.Bs �K/ � Xs ,
s D 0; 1; 2; : : : , then by an abuse of language we also call k a thin double-homotopy.)

Consider now a filtered space X�.

Proposition 14.1.4. Let B , C be subcomplexes of I n such that B & C . Let

f W B� ˝ @I 2� ! X�; g W C� ˝ I 2� ! X�

be two thin double homotopies which agree on C � @I 2. Then their union f [ g
extends to a thin double-homotopy h W B� ˝ I 2� ! X�.

Proof. It is sufficient to consider the case of an elementary collapseB &e C . Suppose
then B D C [ a, C \ a D @a n b, where a is an s-cell and b is an .s � 1/-face of a.

Let r W a � I 2 ! .a � @I 2/ [ ..@a n b/ � I 2/ be a retraction. Then r defines an
extension h W B � I 2 ! X of f [ g. Since f is a thin double-homotopy,

h.a � @I 2/ D f .a � @I 2/ � Xs;
and since g is a thin double-homotopy

h..@a n b/ � I 2/ D g..@a n b/ � I 2/ � Xs:
Hence h.a � I 2/ � Xs , and in particular h.b � I 2/ � Xs . These conditions, with
those on f and g, imply that h is a thin double-homotopy.
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Corollary 14.1.5. Let X� be a filtered space and let B be a subcomplex of I n such
that B collapses to one of its vertices. Then any thin double-homotopy rel vertices

f W B� ˝ @I 2� ! X�

extends to a thin double-homotopy rel vertices h W B� ˝ I 2� ! X�.

Proof. Let v be a vertex ofB such thatB & fvg. Now f .fvg� @I 2/ � X0. Since the
homotopies are rel vertices, f jfvg�@I2 extends to a constant map g W fvg � I 2 ! X

with image in X0. Thus g is a thin double-homotopy. By Proposition 14.1.4, f [ g
extends to a thin double-homotopy h W B� ˝ I 2� ! X�.

We now show that the compositions inRX� are inherited by the quotient to give �X�
the structure of !-groupoid. This gives us the definition of the fundamental homotopy
groupoid of a filtered space.

Definition 14.1.6. Let X� be a filtered space. A composition Ci on �nX� is defined
for i D 1; : : : ; n as follows:

Let hh˛ii; hhˇii 2 �nX� satisfy @C
i hh˛ii D @�

i hhˇii. Then @C
i ˛ � @�

i ˇ, so we may
choose h W I n ! X , a thin homotopy rel vertices in the i -th direction, so that Œ˛; h; ˇ�i
is defined in RnX�. We let

hh˛ii Ci hhˇii D hhŒ˛; h; ˇ�i ii
and prove next in Theorem 14.1.7 that this composition is well defined.

Theorem 14.1.7. If X� is a filtered space, then the compositions on RX� induce
compositions on �X� which, together with the induced face and degeneracy maps and
connections, give �X� the structure of !-groupoid.

Proof. We have to prove that the definition of the composition Ci given in Defini-
tion 14.1.6 is independent of the representatives. For this it is sufficient, by symmetry,
to suppose i D n.

To prove independence of choices, let ˛0 2 hh˛ii and ˇ0 2 hhˇii be alternative
choices. Let h0 W @C

i ˛
0 � @�

i ˇ
0 be any thin homotopy rel vertices, so that Œ˛0; h0; ˇ0�n

is defined. We must prove that

hhŒ˛; h; ˇ�nii D hhŒ˛0; h0; ˇ0�nii:
By construction there exist thin homotopies

k W ˛ � ˛0; l W ˇ � ˇ0

in the .nC 1/-st direction.
We view I nC1 as a product I n�1�I 2 and define a thin double-homotopy rel vertices

f W I n�1 � @I 2 ! X
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1; : : : ; n � 1
n

nC 1

˛

k

˛0

h

h0

ˇ

ˇ0

l

Figure 14.1. Compositions are well defined.

by f .x; t; 0/ D h.x; t/, f .x; t; 1/ D h0.x; t/, f .x; 0; t/ D k.x; 1; t/, f .x; 1; t/ D
l.x; 0; t/, where x 2 I n�1 and t 2 I . Figure 14.1 illustrates the situation. (Compare
Figure 6.3 on p. 159.)

By Corollary 14.1.5 with B D I n�1, f extends to a thin double-homotopy

H W I n�1 � I 2 ! X:

Then Œk;H; l�n is well defined and is a thin homotopy Œ˛; h; ˇ�n � Œ˛0; h0; ˇ0�n. This
completes the proof thatCn, and by symmetryCi , is well defined.

Suppose now that ˛Ci ˇ is defined in RnX�. Let h W @C
i ˛ �i @�

i ˇ be the constant
thin homotopy in the i -th direction. Then ˛Ci ˇ is thinly homotopic to Œ˛; h; ˇ�i and
so hh˛ Ci ˇii D hh˛ii Ci hhˇii. Thus the operations Ci on �nX� are induced by those
on RnX� in the usual algebraic sense.

Further, if hh˛iiCi hhˇii is defined in �nX�, then we may choose representatives ˛0
, ˇ0 of hh˛ii, hhˇii such that ˛0Ci ˇ0 is defined and represents hh˛iiCi hhˇii (for example
we may take ˛0 D ˛, ˇ0 D hCi ˇ0 where h W @C

i ˛ �i @�
i ˇ/.

Defining �i hh˛ii D hh�i˛ii, one easily checks thatCi and �i make �nX� a group-
oid with initial, final and identity maps @�

i , @C
i and "i .

The laws for "j , @�j , �j of a composite hh˛iiCi hhˇii follow from the laws in RnX�
by choosing the representatives ˛, ˇ so that ˛ Ci ˇ is defined.

Finally, we must verify the interchange law for Ci , Cj .i ¤ j /. By symmetry, it
is sufficient to assume i D n � 1, j D n.

Suppose that

hh˛ii Cn�1 hhˇii; hh�ii Cn�1 hhıii; hh˛ii Cn hh�ii; hhˇii Cn hhıii
are defined in �nX�. We choose representatives ˛, ˇ, � , ı and construct inRnX� most
of the composite 24˛ k �

h H h0
ˇ k0 ı

35
n�1;n

: (�)
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Here the thin homotopies h, h0 in the .n � 1/-st direction and the thin homotopies k,
k0 in the n-th direction already exist, because the appropriate composites are defined,
but H has to be defined (by ‘filling the hole’).

To construct H , we define a thin double-homotopy

f W I n�2� ˝ @I 2� ! X�

byf .x; 0; t/ D k.x; 1; t/,f .x; 1; t/ D k0.x; 0; t/,f .x; t; 0/ D h.x; t; 1/,f .x; t; 1/ D
h0.x; t; 0/where x 2 I n�2, and t 2 I . By Corollary 14.1.5, f extends to a thin double-
homotopy

H W I n�2� ˝ I 2� ! X�:

Then the composite (�) is defined in RnX and the interchange law that�hh˛ii hh�ii
hhˇii hhıii

�
n�1;n

is well defined is readily deduced by evaluating (�) in two ways.
This completes the proof that �X� is an !-groupoid.

Remark 14.1.8. An examination of the proof shows that there is exactly enough ‘fil-
tered room’ to accommodate the proof. This is evidence for the construction giving the
‘right’ concept.

Definition 14.1.9. We call �X� the homotopy !-groupoid (or the fundamental !-
groupoid, or cubical homotopy groupoid ) of the filtered space X�.

A filtered map f W X� ! Y� clearly defines a map Rf W RX� ! RY� of cubical
sets with connections and compositions, and a map �f W �X� ! �X� of !-groupoids.
So we have a functor

� W FTop! !-Gpds: �

The behaviour of � with regard to homotopies of filtered maps will be studied in
the next chapter. At this stage we can use standard results in homotopy theory to prove:

Proposition 14.1.10. Let f W X� ! Y� be a filtered map of filtered spaces such
that each fn W Xn ! Yn is a homotopy equivalence. Then �f W �X� ! �Y� is an
isomorphism of !-groupoids.

Proof. This is immediate from [tDKP70], 10.11. Here is some detail of a different
proof in the form of a set of remarks and exercises.

1) First recall that a set of conditions on functions can often be represented as
describing a limit of sets of functions. In particular if A�, X� are n-truncated filtered
spaces, i.e. Ai D An, Xi D Xn for i > n, then FTop.A�; X�/ can be represented as
an iterated pullback.

2) We now want to prove that if A� is n-truncated and f W X� ! Y� is such that
each fn W Xn ! Yn is a homotopy equivalence, then so also is the induced map on
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the topological spaces f� W FTop.A�; X�/! FTop.A�; Y�/. Start with the fact that if
f W X ! Y is a homotopy equivalence, then so also is the induced map of function
spaces Top.A;X/ ! Top.A; Y /, which is easy to prove, and that if i W A ! B is a
cofibration, then

i� W Top.B;X/! Top.A;X/

is a fibration.
3) Now use 1) to apply inductively the cogluing theorem from [BH70]227 to show

by induction that if A� is an n-truncated cofibred filtered space and f W X� ! Y� is
such that each fn W Xn ! Yn, n > 0 is a homotopy equivalence, then so also is the
induced map FTop.A�; X�/! FTop.A�; Y�/.

14.2 The fibration and deformation theorems

In this section we provide all the technical results on extensions of thin homotopies
needed for the further development of the theory.

The main result is the Deformation Theorem 14.2.5 which explains how to extend
a thin homotopy from a special kind of subcomplex B � I n to the full I n.

To get this Deformation Theorem we use some consequences of the construction of
thin double homotopies in Corollary 14.1.5. Particularly useful is the filter homotopy
extension property of Proposition 14.2.4. The proofs use the methods of collapsing
from Section 11.3.i already seen at work in Proposition 14.1.4.

We finish the section with some consequences of the Deformation Theorem; perhaps
the most intuitively striking is Proposition 14.2.8 which gives the possibility of lifting
composable arrays of homotopy classes of filtered maps to composable arrays of maps.

Let us begin with consequences of Corollary 14.1.5.

Proposition 14.2.1. Let B � A be subcomplexes of I n such that B collapses to one
of its vertices. Let X� be a filtered space. Let ˛; ˇ W A� ! X� be filtered maps and let

 W ˛ � ˇ;  W ˛jB � ˇjB
be thin homotopies rel vertices. Then there is a thin double-homotopy

H W A� ˝ I 2� ! X�

such that H is a homotopy rel end maps of  to a thin homotopy

H1 W ˛ � ˇ
extending .

Proof. Let L D .I � f0g/ [ .@I � I /. Define

l W .A � L/ [ .B � I � f1g/! X
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by l.x; t; 0/ D  .x; t/, l.x; 0; t/ D ˛.x/, l.x; 1; t/ D ˇ.x/, l.y; t; 1/ D .y; t/,
x 2 A, y 2 B , t 2 I . Then f D l jB�@I2 and k D l jA�L are thin double-homotopies.

By Corollary 14.1.5, f extends to a thin double-homotopy h W B � I 2 ! X .

1

2
A

B b

 

˛

ˇ

 h

A � L [ B � I � f1g B � I 2

Figure 14.2. Starting the construction.

We are going to extend the map

k [ h W .A � L/ [ .B � I 2/! X

to a thin double-homotopy H W A� I 2 ! X by induction on the dimension of A nB .
Suppose thatH s is a thin double-homotopy defined on .A�L/[ ..As �B/� I 2/,

extending H�1 D k [ h. For each .s C 1/-cell a of A n B , choose a retraction

ra W a � I 2 ! .a � L/ [ .@a � I 2/:
These retractions extendH s toH sC1 defined also on AsC1 � I 2. Since ra.a� I 2/ �
XsC1, it follows that H sC1 is also a thin double-homotopy.

Clearly H D Hn is a thin double-homotopy as required.

Corollary 14.2.2. Let B , A, X� be as in Proposition 14.2.1. If ˛; ˇ W A� ! X�
are maps which are thin homotopic rel vertices, then any thin homotopy rel vertices
˛jB � ˇjB extends to a thin homotopy ˛ � ˇ.

We need to pay attention to the filtered maps which ‘drop filtration’ by at least one;
we call these deficient.

Definition 14.2.3. If f W Y� ! X� is a filtered map, where Y� is a CW-complex with
its skeletal filtration, we say that f is deficient on a cell a of Y if dim a D s but
f .a/ � Xs�1. In particular, a filtered map I n� ! X� is deficient if it is deficient on
the top dimensional cell of I n.

Proposition 14.2.4 (Thin homotopy extension property). Let B , A be subcomplexes
of I n such that B � A. Let

f W A � f0g [ B � I ! X
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be a map such that f jA�f0g is a filtered map and f jB�I is a thin homotopy rel vertices.
Then f extends to a thin homotopy

h W A � I ! X:

Further, h can be chosen so that if f is deficient on a cell a � f0g of .A n B/ � f0g,
then h is deficient on a � f1g.
Proof. The proof of this proposition is an easy induction on the dimension of the cells
of A n B , using retractions a � I ! a � f0g [ @a � I for each cell a of A n B .

Now we can proceed to the proof of the Deformation Theorem which is needed as
a technical tool for the results of the next section. The proof uses the results on partial
boxes from Section 11.3.i.

Theorem 14.2.5 (Deformation Theorem). Let X� be a filtered space, and let ˛ 2
RnX�. Any filtered map

� W B� ! X�
defined on a partial box B � I n such that for each .n� 1/-face a of B , the maps ˛ja,
� ja are thin homotopic rel vertices has an extension to a filtered map

ˇ W I n� ! X�

that is thin homotopic to ˛.
Further, if ˛ is deficient (i.e. ˛.I n/ � Xn�1), then ˇ may be chosen to be deficient.

Proof. Let B1 be any .n � 1/-cell contained in B . We choose a chain

B D Bs & Bs�1 & � � � & B1

of partial boxes and .n � 1/-cells a1; a2; : : : ; as�1 as in Theorem 11.3.5.
We construct thin homotopies i W ˛jBi

� � jBi
by induction on i , starting with 1

any thin homotopy ˛jB1
� � jB1

. Suppose i has been constructed and extends i�1.
Then i j.ai \Bi / is defined. Since ai \ Bi is a partial box, it collapses to any of its
vertices. Since ˛jai

� � jai
, the homotopy i j.ai \Bi / extends, by Corollary 14.2.2, to

a thin homotopy ˛jai
� � jai

I this, with i , defines iC1.
Finally, we apply the thin homotopy extension property (Proposition 14.2.4) to

extend s W ˛jB � � to a thin homotopy ˛ � ˇ, for some ˇ extending � . The last part
of Proposition 14.2.4 gives the final part of this theorem.

For some applications of the Deformation Theorem, it is convenient to work in
the category of cubical sets. Recall that we write In for the free cubical set on one
generator cn of dimension n (See Definition 11.1.7). Then an element � of dimension
n of a cubical set C determines a unique cubical map O� W In ! C such that O�.cn/ D �
(Proposition 11.1.8). As a useful abuse of notation we are going to ‘drop the hat’.
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In particular, a filtered map � W I n� ! X� determines a unique cubical map � W In !
RX� such that �.cn/ D � . Also, if B is a subcomplex of the geometric n-cube I n

then B determines a cubical subset, also written B , of the cubical set In, and a filtered
map � W B� ! X� determines uniquely a cubical map O� W B ! RX�. The same may
be said about homotopy classes of maps Œ��.

We can now rewrite the Deformation Theorem in the category of cubical sets as
follows:

Corollary 14.2.6. Let B be a box in In and let i W B ! In be the inclusion. Let X�
be a filtered space, and suppose given a commutative diagram of cubical maps

B
� ��

i

��

RX�
p

��
In

Œ˛�
�� �X� .

Then there is a cubical map
ˇ W In ! RX�

such that ˇi D � , pˇ D Œ˛�, i.e. extends � and induces Œ˛�.
Further, if Œ˛�.cn/ has a deficient representative, then ˇ may be chosen so that

ˇ.cn/ is deficient.

The following result is an easy and memorable consequence of the first part of
Corollary 14.2.6. This result is used later in this chapter in Theorem 14.7.9, which
has been used in applications to the homotopy classification of maps in Section 12.3.

Theorem 14.2.7 (Fibration Theorem). Let X� be a filtered space. Then the quotient
map

p W RX� ! �X�

is a fibration of cubical sets.

Another application of Corollary 14.2.6 is to the lifting of subdivisions from �nX�
to RnX�. For the proof of this, and of the Higher Homotopy Seifert–van Kampen
Theorem 14.3.1, we require the following construction.

Let .m/ D .m1; : : : ; mn/ be an n-tuple of positive integers. The subdivision of I n

with small n-cubes c.r/, .r/ D .r1; : : : ; rn/, 1 6 ri 6 mi , where c.r/ lies between
the hyperplanes xi D .ri � 1/=mi and xi D ri=mi for i D 1; : : : ; n, is called the
subdivision of I n of type .m/.

Proposition 14.2.8 (Lifting arrays of homotopy classes). Let X� be a filtered space
and

hh˛ii D Œhh˛rii�
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a subdivision of an element hh˛ii 2 �nX�. Then there is an element ˇ 2 RnX� and a
subdivision

ˇ D Œˇ.r/�
of ˇ, where all ˇ.r/ lie in RnX� such that hhˇii D hh˛ii and hhˇ.r/ii D hh˛.r/ii for all
.r/.

Further, if each hh˛.r/ii has a deficient representative, then the ˇ.r/, and hence also
ˇ, may be chosen to be deficient.

Proof. LetK be the cell complex of the subdivision of I n of the same type as the given
subdivision of hh˛ii. ThenK collapses to a vertex, see diagram (10.4.vi), page 363, so
that there is a chain

K D As & As�1 & � � � & A1 D fvg

of elementary collapses, where AiC1 D Ai [ ai for some cell ai of K, and Ai \ ai is
a box in ai .

We now work in terms of the corresponding cubical sets K D As , As�1; : : : ; A1,
where K has unique nondegenerate elements c.r/ of dimension n. The subdivision of
hh˛ii determines a unique cubical map

g W K ! �X�

such that g.c.r// D hh˛.r/ii. We construct inductively maps

fi W Ai ! RX�;

for i D 1; : : : ; s, such that fi extends fi�1, produces gjAi
, and fiC1.ai / is deficient if

g.ai / has a deficient representative. The induction is started by choosing f1.v/ to be
any element such that pf1.v/ D g.v/. The inductive step is given by Corollary 14.2.6.

Let
f D fs W K ! RX�;

and let ˇ.r/ D f .c.r// for all .r/. Then the ˇ.r/ compose in RnX� to give an element
ˇ D Œˇ.r/� as required.

Recall from Definition 13.4.17 that in any !-groupoid G, an element x 2 Gn is
thin if it can be written as a composite x D Œx.r/� with each entry of the form "jy or of
the form a repeated negative of �jy. The following characterisation of thin elements
of �nX� is essential for later work.

Theorem 14.2.9 (Geometric characterisation of thin elements). Let n > 2 and let X�
be a filtered space. Then an element of �nX� is thin if and only if it has a deficient
representative.



492 14 The cubical homotopy !-groupoid of a filtered space

Proof. We suppose n > 2 and that ˛ in RnX� is deficient. Define ‰i˛ 2 RnX� by

‰i˛ D Œ�"i@C
i ˛;��i@�

iC1˛; ˛; �i@C
iC1˛�iC1

where � denotes �iC1. Let ‰˛ D ‰1 : : : ‰n�1˛; then ‰˛ also is deficient.
In Section 13.4 we defined for any !-groupoid, and hence also for �nX�, a ‘folding

operation’ ˆ. The above formula for ‰ is the same as that for ˆ. It follows that
p‰ D ˆp, where p W RX� ! �X� is the quotient map. So by Proposition 13.4.9, if
.�; j / ¤ .�; 1/ then @�1ˆp.˛/ D "n�1

1 Œx� for some Œx� 2 �0X D �0X0.
Thus ifB is the box in I n with base @C

1 I
n, then for each .n�1/-cell a ofB ,‰˛ ja

is thin homotopic to the constant map at x. By the Deformation Theorem 14.2.5, ‰˛
is thin homotopic to an element ˇ such that ˇ.B/ D fxg, and such that ˇ is deficient.
Therefore, the homotopy of ˇ to the constant map at x, defined by a strong deformation
retraction of I n onto B , is a thin homotopy giving p‰˛ D pˇ D 0. Soˆp˛ D 0. By
Proposition 13.4.18, hh˛ii D p˛ is thin.

For the other implication, suppose that hh˛ii is thin. Then hh˛ii has a subdivision
hh˛ii D Œhh˛.r/ii� in which each ˛.r/ is deficient. By Proposition 14.2.8, hh˛ii has a
deficient representative.

14.3 The HHSvKT Theorem for !-groupoids

Suppose for the rest of this section thatX� is a filtered space. We suppose given a cover
U D fU �g�2ƒ ofX such that the interiors of the sets of U coverX . For each � 2 ƒn
we set U 
 D U 
1 \ � � � \ U 
n , U 
i D U 
 \ Xi . Then U 
0 � U 
1 � � � � is called
the induced filtration U 
� of U 
 . So the fundamental !-groupoids in the following
�-diagram of the cover are well defined:

F

2ƒ2 �U 
�

a ��
b

��
F
�2ƒ �U ��

c �� �X� .

Here
F

denotes disjoint union, which is the same as coproduct in the category of
!-groupoids; a, b are determined for each index � D .�; �/ 2 ƒ2 by the inclusions

a
 W U � \ U� ! U �; b
 W U � \ U� ! U�I
and c is determined by the inclusions c� W U � ! X .228

Theorem 14.3.1 (HHSvKT theorem for !-groupoids). Suppose that for every finite
intersection U 
 of elements of U, the induced filtration U 
� is connected. Then

(Con) X� is connected;

(Iso) in the above �-diagram c is the coequaliser of a, b in the category of !-
groupoids.
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Proof. The proof of (Con) will be made on the way to verifying the universal property
which proves (Iso).

Suppose we are given a morphism

f 0 W
G
�2ƒ

�U �� ! G (*)

of !-groupoids such that f 0a D f 0b. We have to show there is a unique morphism
f W �X� ! G of !-groupoids such that fc D f 0. It will be clear that if a morphism f

satisfying fc D f 0 exists, then it must be given by the following recipe. The problem
is to show that this recipe gives a well-defined morphism.

Let i� be the inclusion of �U �� !
F
�2ƒ �U �� . Let p� W RU �� ! �U �� be the

quotient map, and let F� D f 0i�p� W RU �� ! G. We can use these F� to construct
F� in Gn for certain kinds of elements � in RnX�.

1. Suppose that � in RnX� is such that � lies in some set U � of U. Then � de-
termines uniquely an element �� of RnU �� , and the rule f 0a D f 0b implies that an
element of Gn,

F� D F���;
is determined by � .

2. Suppose given a subdivision Œ�.r/� of an element � of RnX� such that each �.r/
is inRnX� and also lies in someU �.r/ of U. Since the composite � D Œ�.r/� is defined,
it is easy to check, again using f 0a D f 0b, that the elements F�.r/ form a composable
array in Gn. We write the composition as F� ,

F� D ŒF �.r/�
although a priori it could depend on the subdivision chosen.

3. Suppose now that ˛ is an arbitrary element of RnX�. The construction from ˛

of an element g in Gn and the proof that g depends only on the class of ˛ in �nX� are
based on the following lemma which generalises Lemma 6.8.3.

Lemma 14.3.2. Let ˛ W I n ! X and let ˛ D Œ˛.r/� be a subdivision of ˛ such that
each ˛.r/ lies in some set U �.r/ of U. Then there is a homotopy h W ˛ ' � with
� 2 RnX� such that in the subdivision h D Œh.r/� determined by that of ˛, each
homotopy h.r/ W ˛.r/ ' �.r/ satisfies:

(i) h.r/ lies in U �.r/ ;

(ii) �.r/ belongs to RnX� ;

(iii) if some m-dimensional face of ˛.r/ lies in Xj , so also do the corresponding
faces of h.r/ and �.r/;

(iv) if v is a vertex of I n and ˛.v/ 2 X0 then h is the constant homotopy on v.

Proof. Let K be the cell-structure on I n determined by the subdivision ˛ D Œ˛.r/�.
Let Lm D Km � I [K � f0g. We construct maps

hm W Lm ! X
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for m D 0; : : : ; n such that hm extends hm�1, starting with h�1 D ˛. Further we
construct hm to satisfy the following conditions, for each m-cell e of K:

(i)m if e is contained in the domain of ˛.r/, then hm.e � I / � U �.r/;
(ii)m hm je�f1g is an element of Rm.X�/;

(iii)m if ˛ maps e into Xj , then hm.e � I / � Xj ;
(iv)m if ˛ je W e ! X is a filtered map, then h is constant on e.

For an m-cell e of K, let j be the smallest integer such that ˛ maps e into Xj . Let
U e be the intersection of all the sets U �.s/ such that e is contained in the domain of
˛.s/.

Let hm jK�0 be given by ˛, and for those cells e of K such that ˛je is filtered, let
hm be the constant homotopy on e � I .

Let e be a 0-cell ofK. If ˛.e/ does not lie inX0, then, since U e� is connected, there
is be a path in U e joining e to a point of X0. We define h0 on e � I by using this path.

Let m > 1. The construction of hm from hm�1 is as follows on those m-cells e
such that the restriction of ˛ to e is not a filtered map. If j 6 m, then hm�1 can be
extended to hm on e � I by means of a retraction ˛ � I ! e � f0g[ @e � I . If j > m
the restriction of hm�1 to the pair .e � f0g [ @e � I; @e � I / determines an element
of �m.U ej ; U

e
m�1/. By .X�; m/, hm�1 extends to hm on e � I mapping into U ej and

such that e � f1g is mapped into U em.

Corollary 14.3.3. Let ˛ 2 RnX�. Then there is a thin homotopy rel vertices h W ˛ � �
such that F� is defined in Gn.

Proof. Choose a subdivision ˛ D Œ˛.r/� such that ˛.r/ lies in some set U �.r/ of U.
Lemma 14.3.2 gives a thin homotopy h W ˛ � � and subdivision � D Œ�.r/� as required.

We will show in Lemma 14.3.5 below that this element F� depends only on the
class of ˛ in �nX�. But first we can now prove that X� is connected.

Proof of (Con). The condition .X�; 0/ is clear since each point of Xj belongs to
some U � and so may be joined in U � to a point of X0.

Let Jm�1 D I � @Im�1 [ f1g � Im�1. Let j > m > 0, x 2 X0 and let
Œ˛� 2 �m.Xj ; Xm�1; x/, so that ˛ W .Im; f0g � Im�1; Jm�1/ ! .Xj ; Xm�1; x/. By
Lemma 14.3.2, ˛ is deformable as a map of triples into Xm.

This proves X� is connected.

Remark 14.3.4. Up to this stage, our proof of the HHSvKT is very like the proof for
the 2-dimensional case given in 6.8. We now diverge from that proof for two reasons.
First, the form of the Homotopy Commutativity Lemma given in 6.7.6 is not so easily
stated in higher dimensions. So we employ thin elements, since these are elements
with ‘commuting boundary’. Second, we can now arrange that the proof is nearer in
structure to the 1-dimensional case, for example the proof of the classical Seifert–van
Kampen Theorem given in 1.6.
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Two facts about !-groupoids which make the proof work are that composites of
thin elements are thin (as is obvious from Definition 13.4.17), and Proposition 13.7.5.

Suppose now that h0 W ˛ � ˛0 is a thin homotopy between elements of RnX�, and
h W ˛ � � , h00 W ˛0 � � 0 are thin homotopies constructed as in Corollary 14.3.3, so that
F� , F� 0 are defined. From the given thin homotopies we can obtain a thin homotopy
H W � � � 0. So to prove F� D F� 0 it is sufficient to prove the following key lemma.
In fact, it could be said that the previous machinery has been developed in order to give
expression to this proof.

Lemma 14.3.5. Let �; � 0 2 RnX� and let H W � � � 0 be a thin homotopy. Suppose

� D Œ�.r/�; � 0 D Œ� 0
.s/�

are subdivisions into elements of RnX� each of which lies in some set of U. Then
in Gn,

ŒF �.r/� D ŒF � 0
.s/�:

Proof. Suppose �.r/ lies in U �.r/ 2 U, � 0
.s/

lies in U �
0.s/ 2 U, for all .r/, .s/. Now

� D @�
nC1H , � 0 D @C

nC1H . We choose a subdivision H D ŒH.t/� such that each H.t/
lies in some set V .t/ of U and so that on @�

nC1H and @C
nC1H it induces refinements

of the given subdivisions of � and � 0 respectively. Further, this subdivision can be
chosen fine enough so that @�

nC1H.t/, if it is a part of �.r/, lies in U �.s/, and @C
nC1H.t/,

if it is part of � 0
.s/

, lies in U �
0.s/. So we can and do choose V .t/ D U �.r/ in the first

instance, V .t/ D U �0.s/ in the second instance (and avoid both cases holding together
by choosing, if necessary, a finer subdivision).

We now apply Lemma 14.3.2 with the substitution of nC 1 for n, H for ˛, K for
� , and .t/ for .r/, to obtain in RnC2X� a thin homotopy h W H � K such that in the
subdivision h D Œh.t/� determined by that of H , each homotopy h.t/ W H.t/ ' K.t/
satisfies

(i) h.t/ lies in V .t/;
(ii) K.t/ belongs to RnC1X�;

(iii) if somem-dimensional face ofH.t/ lies inXj , so also do the corresponding faces
of h.t/ and K.t/.

Now k D @�
nC1h, k0 D @C

nC1h are thin homotopies k W � � , k0 W � 0 � 0, say.
Further, the previous choices ensure that in the subdivision k D Œk.r/� induced by that
of � , k.r/ is a thin homotopy �.r/ � .r/ (by (iii)) and lies in U �.r/ (by (i)). It follows
that F�.r/ D F.r/ in Gn and hence F� D F. Similarly F� 0 D F0, so it is
sufficient to prove F D F0.

We have a thin homotopy K W  � 0 and a subdivision K D ŒK.t/� such that
each K.t/ belongs to RnC1X� and lies in some V .t/ of U. Thus FK D ŒFK.t/� is
defined in GnC1. Further, the induced subdivisions of @�

nC1FK, @C
nC1FK refine the
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subdivisions ŒF.r/�, ŒF0
.s/
� respectively. Hence @�

nC1FK D F, @C
nC1FK D F0,

and it is sufficient to prove @�
nC1FK D @C

nC1FK. For this we apply Proposition 13.7.5.
Let d be a face operator from dimension nC 1 to dimension m, and not involving

@�
nC1 or @C

nC1. Let 
 D d.H/, � D d.K/. Then 
 is deficient (since H is a filter
homotopy) and so by the choice of h in accordance with (iii), � is deficient. In the
subdivision � D Œ�.u/� induced by the subdivision K D ŒK.t/�, �.u/ 2 RmX� and is
deficient. By Theorem 14.2.9, the F�.u/ 2 Gm are thin, and hence their composite
F� 2 Gm is thin. But FK D ŒFK.t/� has, by its construction, the property that
dFK D F� . So dFK is thin. By Proposition 13.7.5, @�

nC1FK D @C
nC1FK.

Proof of (Iso). We have completed the proof that there is a well-defined function
f W �nX� ! Gn given by f .hh˛ii/ D F.�/, where � is constructed as in Coroll-
ary 14.3.3. These maps f W �nX� ! Gn, n > 0, determine a morphism f W �X� ! G

of !-groupoids. By its construction, f satisfies fc D f 0 and is the only such mor-
phism. Thus the proof of Theorem 14.3.1 is complete.

14.4 The HHSvKT for crossed complexes

In order to interpret the HHvK Theorem 14.3.1, we relate the !-groupoid �X� to the
fundamental crossed complex …X� of Part II.

In Section 13.3 we have defined a functor

� W !-Gpds! Crs

associating a crossed complex �G to any !-groupoid G.
Now we prove that for any filtered space the crossed complex ��X� is canonically

isomorphic to…X� the fundamental crossed complex used throughout Part II.229Hence
we can translate Theorem 14.3.1 to obtain the HHvK Theorem for crossed complexes
(Theorem 8.1.5) whose consequences we have studied in Part II.

Theorem 14.4.1. If X� is a filtered space then ��X� is naturally isomorphic to…X�.

Proof. It is clear that the dimension 1 groupoids in both structures are the same.
Let n > 2, and x 2 X0. We construct an isomorphism

�n W �n.Xn; Xn�1; x/! .��X�/n:

The elements of �n.Xn; Xn�1; x/ are homotopy classes of maps of triples

˛ W .I n; @�
1 I

n; B/! .Xn; Xn�1; x/;

where B is the box in I n with base @C
1 I

n. Such a map ˛ defines a filtered map

� 0˛ W I n� ! X�
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with the same values as ˛, and � 0˛ is constant on B .
If ˛ is homotopic to ˇ (as maps of triples), then � 0˛ is thin homotopic to � 0ˇ, and

so � 0 induces a map �n W �n.Xn; Xn�1; x/ ! .��X�/n. But addition in the relative
homotopy group �n.Xn; Xn�1; x/ is defined using anyCi , i > 2. So �n is a morphism
of groups.

Suppose ˛ represents in �n.Xn; Xn�1; x/ an element mapped to 0 by �n. Then
there is a filter homotopy rel vertices

H W � 0˛ � x�;

where x� is the constant map at x. Now we want a map of triples

F W .I n � I; @�
1 I

n � I; B � I /! .Xn; Xn�1; x/

with F0 D ˛ and F1 D x�. We know that ˛jB is constant. By Corollary 14.2.2
and since B collapses to a vertex (by Corollary 11.3.7), the constant thin homotopy
� 0˛jB � x�jB extends to a thin homotopy � 0˛ � x�. This thin homotopy defines a
homotopy F W ˛ ' x�. So �n is injective.

We now prove �n surjective. Let hh�ii 2 .��X�/n. Then for each .n� 1/-face a of
B , � ja is thin homotopic to Qxja (where Qx is the constant map B ! X� at x ). By the
deformation Theorem 14.2.5, � is thin homotopic to a map � 0 W I n ! X� extending Qx.
Hence �n is surjective.

The isomorphism � also preserves the boundary maps ı. To complete the proof,
we only have to show that � preserves the action of C1 on C .

Let ˛ represent an element of �n.Xn; Xn�1; x/, and let � represent an element of
�1X1.x; y/. A standard method of constructing ˇ D ˛� representing an element of
�n.Xn; Xn�1; y/ (as seen in Section 2.1) is to use the homotopy extension property
as follows. Let � 0 W B � I ! X� be .x; t/ 7! �.t/. Then � 0 is a homotopy of ˛jB
which extends to a homotopy h W ˛ ' ˇ, and we set ˛� D ˇ. We want to prove that
�nŒ˛

� � D �nŒˇ� D .�nŒ˛�/
Œ��. So, if we recall that h is constructed by extending � 0

over @�
1 I

n� I using a retraction of @�
1 I

n� I to its box with base @�
1 I

n�f0g, and then
extending again using a retraction of I n � I to its box with base I n � f0g. Thus h is
a filtered map I nC1� ! X� with h and @�i h .i ¤ nC 1/ deficient; hence Œh� and @�i Œh�
.i ¤ nC 1/ are thin (Theorem 14.2.9). Therefore the folding map ˆ W �nX� ! �nX�
defined in Section 13.4 vanishes on these elements by Proposition 13.4.18 and so the
Homotopy Addition Lemma 13.7.1 reduces to

ˆ@C
nC1Œh� D .ˆ@�

nC1Œh�/unC1Œh�:

By Corollary 13.4.10, ˆ is the identity on .��X�/n, to which belong both

@C
nC1Œh� D �nŒˇ� and @�

nC1Œh� D �nŒ˛�:
Further unC1Œh� D Œ��. So

�nŒˇ� D .�nŒ˛�/Œ��:
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Thus � preserves the operations.
Finally, the naturality of � is clear.

Proof of Theorem 8.1.5. Since the functor � is an equivalence of categories, we ob-
tain immediately from the previous theorem and the HHSvK Theorem 14.3.1 for !-
groupoids, the HHSvK Theorem 8.1.5 for crossed complexes.

Proposition 14.4.2. Let n > 2 and let cn 2 �nI n� be the class of the identity map
I n� ! I n� . Then �n.I n; @I n; 1/ is isomorphic to Z and is generated by ��1ˆcn.

Proof. There exists an alternative definition of relative homotopy groups, namely
� 0
n.X; Y; x/ is the set of homotopy classes of maps .I n; @I n; 1/ ! .X; Y; x/, with

addition induced by a map I n ! I n
W
I n. An isomorphism � W �n.X; Y; x/ !

� 0
n.X; Y; x/ is induced by˛ 7! ˛0 where (in the notation of the proof of Theorem 14.4.1)

if ˛ W .I n; @�
1 I

n; B/! .X; Y; x/, then ˛0 W .I n; @I n; 1/! .X; Y; x/ has the same val-
ues as ˛. (Here 1 D .1; : : : ; 1/ is the base point of I n.)

Let �n.I n� ; 1/ be the set of y in �nI n� such that .@C
1 /
ny D 1. Then a map

	 W �n.I n� ; 1/! � 0
n.I

n; @I n; 1/

is induced by ˇ 7! ˇ0 where ˇ W I n� ! I n� satisfies ˇ.1/ D 1; and ˇ0 has the same
values as ˇ. Clearly 	� D �.

A standard deduction from Corollary 8.3.12 is that � 0
n.I

n; @I n; 1/ is isomorphic
to Z and is generated by an, the class of the identity map. Now clearly 	cn D an.
Also, it is easily checked that for any y 2 �n.I n� ; 1/ and j D 1; : : : ; n � 1, we have
	 ĵy D 	y. Hence 	ˆcn D 	cn D an. The result now follows.

From now on, we identify …X� with �…X� D ��X� for any filtered space X�.

14.5 Realisation properties of !-groupoids and crossed
complexes

In this section, we show that each of the functors � and… from FTop to respectively !-
groupoids and crossed complexes are representative functors, i.e. all !-groupoids and
all crossed complexes are, up to isomorphism, values of these functors. An implication
of this is that the axioms for these structures well reflect the properties of these functors.

Let G be any !-groupoid and define Gm to be the !-subgroupoid of G generated
by all elements of dimension 6 m. Then Gm has only thin elements in dimension
greater than m and is the largest such !-groupoid. In fact,

Gm Š SkmG D skm.trmG/
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as described in Section 13.5, and by abuse of language we call it the m-skeleton of G
(not to be confused with the m-skeleton of G considered as a cubical set). We define
the skeletal filtration of G to be

G� W G0 � G1 � � � � :
The elements of Gmn are the same as those of Gn for n 6 mI and for n > m, Gmn can
be described inductively as the set of thin elements of Gn whose faces are in Gmn�1.

Since Gm is an !-groupoid, it is a fibrant cubical set. Therefore if x 2 G0; and
0 < l < m, the r-th relative homotopy group �r.Gm; Gl ; x/ is defined for r > 2. So
there is a crossed complex …G� which in dimension n > 2 is the family of groups
�n.G

n; Gn�1; x/, x 2 G0, and in dimension 1 is the groupoid �1G1.

Proposition 14.5.1. IfG� is the skeletal filtration of an!-groupoidG then the crossed
complex …G� is naturally isomorphic to �G. Further, G� is connected.

Proof. The elements of �n.Gn; Gn�1; p/, p 2 G0, n > 2, are classes of elements
x of Gn such that @�i x D "n�1

1 p for .�; i/ ¤ .0; 1/, two such elements x, y being
equivalent if there is an h 2 GnnC1 such that @�

nC1h D x, @C
nC1h D y, @�i h D "n1p for

.�; i/ ¤ .0; 1/ and i ¤ nC 1, and @�
1 h 2 Gn�1

n . Then h is thin, as is dh for any face
operator d not involving @�

nC1 or @C
nC1. It follows from Proposition 13.7.5 that x D y.

Thus �n.Gn; Gn�1; p/ can be identified with Cn.p/ D .�nG�/.p/.
The identification of the groupoid �1G1 with G1 is simple, as is the identification

of the boundary maps. The identification of the operations may be carried out in a
similar manner to the proof of Theorem 14.4.1.

Finally, that G� is connected follows from the fact that Grn D Gn for r > n.

Remark 14.5.2. By Corollary 13.5.18, the crossed complex filtration associated to this
filtration is precisely also the filtration by skeleta. That is,

� sknG D skn.�G/:

We now use the geometric realisation jKj of a cubical set K as described in Sec-
tion 11.1.iii of Chapter 11. If G is an !-groupoid, then jUGj denotes the geometric
realisation of the underlying cubical set UG of G.230 Note that UG has a filtration
by the usual cubical skeleta, and this is written U�G. Note that for all n, UnG is a
subcubical set of UGn.

Proposition 14.5.3. LetG be an!-groupoid,G� its skeletal filtration, and let jUG�j be
the filtration of jGj induced by the filtration jGnj. Then there is a natural isomorphism
of !-groupoids

G Š �jUG�j:
Proof. By the previous remarks and Proposition 14.5.1 we have natural isomorphisms

�G Š …G� Š …jUG�j:
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The result follows since …jUG�j Š ��jUG�j and � is an equivalence of categories.

Corollary 14.5.4. If C is a crossed complex, there is a filtered space X� such that C
is isomorphic to …X�.

Proof. Let G be the !-groupoid �C (cf. 13.6) and let X� D jUG�j. By Proposi-
tion 14.5.3, C Š …X�.

Remark 14.5.5. This result contrasts with Whitehead’s example of a crossed complex
C which is of dimension 5, has �1C D Z2, is free in each dimension but is not isomor-
phic to …X� for the skeletal filtration X� of any CW-complex X (see [Whi49b]).231

Remark 14.5.6. Note also that when X D j�C j, the absolute homotopy groups
�n.X; x/ are isomorphic to �1.C; x/ for n D 1,Hn.C; x/ for n > 2 by Remark 13.7.7
of Section 13.7. Thus Corollary 14.5.4 generalises a cubical version of the construc-
tion of Eilenberg–Mac Lane spaces. We will see in the next section that there is a
natural isomorphism �C Š NC whereNC is the nerve ofC defined in Section 11.4.ii
of Chapter 11. Hence j�C j is essentially the classifying space BC of the crossed
complex C .

14.6 Free properties

In this section, we give the important notion of the free !-groupoid �.K/ on a cubical
set K. We show that the methods of this Part III recover some results obtained in
Chapter 11 by different methods.

Definition 14.6.1. Let K be a cubical set. We write �.K/ for �.jK�j/. An element
k 2 Kn defines a cubical map Ok W In ! K, and so a map of spaces j Okj W j Inj ! jKj.
But j Inj D I n and so we have a filtered map Nk W I n� ! jK�j. This gives a cubical map
i W K ! �K, which we call the canonical map.

Proposition 14.6.2. For any cubical set K, the canonical cubical map iK W K ! �K

makes �K the free !-groupoid on K.

Proof. Let G be an !-groupoid, and let f W K ! UG be a cubical map. Then f
induces a filtered map jK�j ! jU�Gj, which composes with the inclusion jU�Gj !
jUG�j to give jf j W jK�j ! jUG�j. The natural isomorphism iG W G ! �jG�j and
the natural map i 0 W K ! U�jK�j give a commutative diagram

K

i 0

��

f �� UG

UiG
��

U�jK�j
U�jf j

��
U Qf

((�
�

�
�

�
U�jUG�j:
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Thus Qf D .iG/.�jf j/ W �jK�j ! �jUG�j is a morphism of!-groupoids extending
f . Its uniqueness follows if we can show that �jK�j is generated, as an !-groupoid,
by i 0.K/. But �jK�j is generated by the crossed complex ��jK�j D …jK�j which it
contains, by Corollary 13.5.13. Also …jK�j is generated, as crossed complex, by the
cells of jK�j, i.e. by nondegenerate elements of K, by Corollary 9.6.5. So uniqueness
is proved.

Corollary 14.6.3. The homotopy !-groupoid �I n� is the free !-groupoid on the class
cn 2 �nI n� of the identity map.

Remark 14.6.4. The above corollary will be used in Section 15.6. We can now re-
cover by these methods what was deduced in Chapter 11 from the HHSvKT and the
tensor product results, namely the description of the crossed complex …I n� , compare
Proposition 9.9.6. The cell complex I n has one cell for each cubical face operator d
from dimension n to r , 0 6 r 6 n, and d determines a characteristic map Qd W I r� ! I n�
for this cell. Then Qd induces �. Qd/ W �I r� ! �I n� and �. Qd/.cr/ D dcn. Since �. Qd/
is a morphism of !-groupoids, it follows that �. Qd/.ˆcr/ D ˆdcn: Hence …I n� has
generators ˆdcn for each face operator d from dimension n to r , 0 6 r 6 n. The
boundary ıˆdcn is given by the HAL 13.7.1.

Corollary 14.6.5. If G is an !-groupoid, then there is a natural bijection

Gn Š Crs.…I n� ; �G/:

Proof. Gn Š Gpds.�I n� ; G/ Š Crs.…I n� ; �G/.

Remark 14.6.6. This corollary gives another description of the functor � W Crs !
!-Gpds, the inverse equivalence of � , namely that � is naturally equivalent to C 7!
Crs.…I n� ; C /. In view of the explicit description of …I n� given above, a morphism
f W …I n� ! C of crossed complexes is describable as a family ff .d/g where d runs
through all the cubical face operators from dimension n to dimension r .0 6 r 6 n/,
f .d/ 2 Cr , and the elements f .d/ are required to satisfy the relations (compare with
Proposition 9.9.6 and Lemma 13.7.1)

ıf .d/ D

8̂̂̂<̂
ˆ̂:

Pr
iD1.�1/i¹f .@C

i d/ � f .@�
i d/

f .uid/º .r > 4/;

�f .@C
3 d/ � f .@�

2 d/
f .u2d/ � f .@C

1 d/C f .@�
3 d/

f .u3d/

Cf .@C
2 d/C f .@�

1 d/
f .u1d/

.r D 3/;
�f .@C

1 d/ � f .@�
2 d/C f .@�

1 d/C f .@C
2 d/ .r D 2/;

and ı�f .d/ D f .@�1d/ .r D 1/. (These relations imply that f .d/ 2 Cr.p/ where
p D f .ˇd//.
Corollary 14.6.7. For any cubical set K, there is a natural isomorphism ��.K/ Š
…jK�j.
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By virtue of this corollary we identify these two crossed complexes and write either
as….K/. So we have a functor… W Cub! Crs. Again we obtain a result of Chapter 11,
namely Proposition 11.4.9.

Corollary 14.6.8. The functor … W Cub ! Crs is left adjoint to the nerve functor
N W Crs! Cub.

Proof. This follows from the fact that the functor � W Cub! !-Gpds is left adjoint to
U W !-Gpds! Cub, that… D ��, thatN D �U , and that � and� give the equivalence
of the categories of !-groupoids and crossed complexes.

Remark 14.6.9. The fact that the functor � W Cub ! !-Gpds has a right adjoint
implies that � preserves all colimits. However, the Higher Homotopy Seifert–van
KampenTheorem 14.3.1 is not an immediate consequence of this fact since that theorem
is about the functor � W FTop ! !-Gpds from filtered spaces to !-Gpds, and one
of the conditions for � colimU� Š colim �U� is that each filtered space U� should
be connected, in the sense of 14.3. It would be interesting to know whether this
Higher Homotopy Seifert–van Kampen Theorem can be deduced from the fact that
� W Cub! !-Gpds preserves all colimits.

14.7 Homology and homotopy

The homology groups of a cubical setK are defined as follows. First we form the chain
complex C 0.K/ where C 0

n.K/ is the free abelian group on Kn, and with boundary

@k D
nX
iD1
.�1/i .@�

i k � @C
i k/: (14.7.1)

It is easily verified that this gives a chain complex, i.e. @@ D 0. However if K is a
point, i.e. Kn is a singleton for all n, then the homology groups of C 0.K/ are Z in
even dimensions, whereas we want the homology of a point to be zero in dimensions
> 0. We therefore normalise, i.e. factor C 0.K/ by the subchain complex generated by
the degenerate cubes. This gives the chain complex C�.K/ of K, and the homology
groups of this chain complex are defined to be the homology groups of K. In partic-
ular the homology groups of S�X are the (cubical) singular homology groups of the
space X .232

Let X� be a filtered space. Then RX� is a fibrant cubical set and �X� is an !-
groupoid, and hence also a fibrant cubical set by Proposition 13.7.3. A direct proof
that �X� is fibrant can be given using Theorem 14.2.5.

The following proposition is one step towards the Hurewicz theorem.233 In the
proof, a useful lemma is that if .Y;Z/ is a cofibred pair, and f W .Y;Z/ ! .X;A/ is
a map of pairs which is deformable (as a map of pairs) into A, then f is deformable
into A rel Z ([Bro06], 7.4.4).
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Proposition 14.7.1. Let X� be a filtered space such that the following conditions
 .X�; m/ hold for all m > 0:

•  .X�; 0/: The map �0X0 ! �0X induced by inclusion is surjective.

•  .X�; 1/: Any path in X joining points of X0 is deformable in X rel end points
to a path in X1.

•  .X�; m/.m > 2/X : For all � 2 X0 , the map

�m.Xm; Xm�1; �/! �m.X;Xm�1; �/

induced by inclusion is surjective.

Then the inclusion i W RX� ! KX D S�X is a homotopy equivalence of cubical
sets.

Proof. There exist maps hm W KmX ! KmC1X , rm W KmX ! KmX for m > 0 such
that

(i) @�
mC1hm D 1, @C

mC1hm D rm;
(ii) rm.KX/ � RmX� and hmjRmX� D "mC1;

(iii) @�i hm D hm�1@�i for 1 6 i 6 m and � D �;C;
(iv) hm"j D "jhm�1 for 1 6 j 6 m.

Such rm, hm are easily constructed by induction, starting with h�1 D ; , and using
 .X�; m/ to define hm˛ for elements ˛ of KmX which are not degenerate and do not
lie in RmX�. Here is a picture for h1:

�

h1k

r@�
1 k

r@C
1 k

rk

H
H
H
H
H
H
H

h0@
�
1 k �@�

1 k

@C
1 k

k

�
h0@

C
1 k

�

These maps define a retraction r W KX ! RX� and a homotopy h ' ir rel
RX�.

Corollary 14.7.2. If the conditions  .X�; m/ of the proposition hold for all m > 0,
then the inclusion i W RX� ! KX induces a homotopy equivalence of chain complexes
and hence an isomorphism of all homology and homotopy groups.

Proof. The result on homotopy is standard, and that on homology follows from the
development in [Mas80].

Corollary 14.7.3. If X� is the skeletal filtration of a CW-complex, then the inclusion
RX� ! S�X is a homotopy equivalence of fibrant cubical sets.
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14.7.i Relative Hurewicz Theorem: dimension 1

In this section we identify the total abelianisation of the groupoid �1.X;A/ in certain
cases.234 One reason for including this result is that it gives a natural generalisation
of a classical result in algebraic topology, which is the case when A is a singleton,
see p. 10. The other reason is that we use the result in Proposition 8.4.2 which when
X� is a CW-filtration identifies r…X� with the cellular chains of the universal covers
of X . The latter is a commonly used construction in algebraic topology, and indeed in
essence goes back to Reidemeister.

Definition 14.7.4. LetC�.X/ denote the chain complex of normalised cubical singular
chains of the space X . We now coin a term: let

C�.X rel0A/

for a subspace A of X denote the sub chain complex of C�.X/ generated for n >
1 by singular cubes f W I n ! X which map the vertices of I n into A, and in
which C0.X rel0A/ D 0, so that all elements of C1.X rel0A/ are cycles. We write
H�.X rel0A/ for the homology of this chain complex.

For the notion of total abelianisation G totab of a groupoid G, see Section A.8:
this functor is the left adjoint of the inclusion of categories from abelian groups to
groupoids.

Theorem 14.7.5. Let A be a subspace of the space X . Then a Hurewicz morphism

! W �1.X;A/! H1.X rel0A/

is defined and induces an isomorphism

!0 W �1.X;A/totab ! H1.X rel0A/:

Proof. For each path class Œf � 2 �1.X;A/ the representative f determines a generator
of C1.X rel0A/. Differing choices of f yield homologous elements of C1.X rel0A/,
so this defines ! as a function. If f B g is a composite of paths with vertices in A then
the diagram

f ��

��f B g
�� 1

g
��

(14.7.2)

extends to a map of I 2 ! X with vertices mapped to A whose boundary shows that !
is a morphism to H1.X rel0A/. It hence defines !0 W �1.X;A/totab ! H1.X rel0A/.

Now C1.X rel0A/ is free abelian on the nondegenerate paths f W I ! X with
vertices in A. So a morphism 	 W C1.X rel0A/! �1.X;A/

ab is defined by sending f
to its class in �1.X;A/ab. It is easy to check that 	@2 D 0, so that 	 defines a morphism
H1.X rel0A/! �1.X;A/

totab, and that 	 is inverse to !0.
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Next we relate H�.X rel0A/ to the standard relative homology.
For a subspace A of X , we define the filtered space XA to be A in dimension 0

and X in dimensions > 0. Our next result generalises a classical case when X is path
connected and A consists of a single point.

Proposition 14.7.6. If A meets each path component of X , then the inclusion

C�.XA/! C�.X/

is a chain equivalence.

Proof. This is an immediate consequence of Corollary 14.7.2.

We say C�.A/ is concentrated in dimension 0 if Ci .A/ D 0 for i > 0. This occurs
for example if A is totally path disconnected, and so if A is discrete.

Theorem 14.7.7 (Relative Hurewicz Theorem: dimension 1). If A is totally path
disconnected and meets each path component of X then the natural morphism

�1.X;A/
totab ! H1.X;A/

is an isomorphism.

Proof. We define A� to be the constant filtered space with value A. So we regard A�
as a sub-filtered space of XA.

We consider the morphism of exact sequences of chain complexes

0 �� C�.A/ ��

D
��

C�.X/ ��

i

��

C�.X;A/ ��

j

��

0

0 �� C�.A�/ �� C�.XA/ �� C�.XA; A�/ �� 0

(14.7.3)

where classically the first sequence defines relative homologyH�.X;A/, and the second
sequence definesH�.XA; A�/. Under our assumptions, the morphism i is a homotopy
equivalence and hence so also is j (since all the chain complexes are free in each
dimension).

Our assumption that A is totally path disconnected implies that Ci .A/ D 0 for
i > 0. This implies that C�.XA; A�/ Š C�.X rel0A/. So the theorem follows from
Theorem 14.7.5 and Proposition 14.7.6.

14.7.ii Absolute Hurewicz Theorem and Whitehead’s exact sequence

We now outline a proof of the Absolute Hurewicz Theorem (Theorem 14.7.8) using
Corollary 14.7.2 and the Homotopy Addition Lemma in the following form. Let n > 2,
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and let ˇ W .I nC1; I nC1
n�1 /! .X; �/ be a map. Then each @�i ˇ represents an element ˇ�i

of �n.X; �/, and we have

nC1X
iD1

.�1/i .ˇ�
i � ˇC

i / D 0: (14.7.4)

This follows from the form of the Homotopy Addition Lemma given in (13.7.1) applied
to the !-groupoid �X� where X� is the filtered space with Xi D f�g, i < n, Xi D X ,
i > n.

Theorem 14.7.8 (Absolute Hurewicz Theorem). IfX is an .n� 1/-connected pointed
space for n > 2, then HiX D 0 for 0 < i < n and the Hurewicz map

!n W �nX ! HnX

is an isomorphism.

Proof. Again, let X� be the filtered space with

Xi D f�g; i < n; Xi D X; i > n:

Then X� satisfies the condition  .X�; m/ of Proposition 14.7.1 for all m > 0 and so
i W RX� ! KX is a homotopy equivalence. But HiRX� D 0 for 0 < i < n; hence
HiX D HiKX D 0 for 0 < i < n.

For m > 0 let CmX� denote the group of (normalised) m-chains of RX�. Then
every element of CnX� is a cycle, and the basis elements ˛ 2 RnX� of CnX� are
maps I n ! X with ˛.@I n/ D f�g. So they determine elements Œ˛� of �n.X; �/, and
˛ 7! Œ˛� determines a morphism CnX� ! �n.X; �/. But by Equation (14.7.4), this
morphism annihilates the group of boundaries. So it induces a mapHnX ! �n.X; �/

which is easily seen to be inverse to the Hurewicz map.

We know from Theorem 14.2.7 that if X� is a filtered space, then p W RX� ! �X�
is a fibration of cubical sets. Notice that if � 2 X0, then � also belongs to RX� and to
the fibre of p over �.

Theorem 14.7.9 (Whitehead’s exact sequence235). Let X� be a filtered space, and let
� 2 X0. Let F be the fibre of p W RX� ! �X� over �, so that also � 2 F0. Then:

(i) There is an exact sequence

� � � !�n.F; �/! �n.RX�; �/! �n.�X�; �/
! � � � ! �1.F; �/! �1.RX�; �/! �1.�X�; �/! 1:

(ii) The group �n.F; �/ is isomorphic to the image of the morphism

in W �n.Xn�1; �/! �n.Xn; �/

induced by inclusion.
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(iii) If all the Xn are Hausdorff, have universal covers zXn.�/ for all � 2 X0, and the
filtrationX� is connected and satisfies the conditions of Proposition 14.7.1, then
the above exact sequence is equivalent to one of the form

� � � ! �n.X; �/! �n.X; �/
!�! Hn. zX.�//! � � �

where ! is called the Hurewicz morphism. In particular, these conditions hold
if X� is a CW-filtration.

Proof. (i) This is just the exact sequence of the fibration of cubical sets

F ! RX�
p�! �X�:

(We leave to you the proof of the exact homotopy sequences of a fibration of fibrant
cubical sets.)

(ii) We define a map � W �n.F; �/! �n.Xn; �/.
An element of�n.F; �/ is represented by an element ˛ in dimension n of the cubical

setF such that ˛ has all its faces at the base point �. SinceF is a subcubical set ofRX�,
˛ determines ˛0 W .I n; @I n/! .Xn; �/ with the same values as ˛; and � is determined
by ˛ 7! ˛0.

We now prove Im � � Im in. If ˛ 2 Fn , then p.˛/ D hh˛ii D "n1� in �nX , and
so ˛ is thin homotopic to N�, the constant map at �. Suppose further that ˛ has all its
faces at the base point. Let B be the box in I n with base @�

n I
n: By Corollary 14.2.2,

the constant thin homotopy N�jB � ˛jB extends to a thin homotopy h W N� � ˛. Let
ˇ D @C

n h; k D �nˇ. Then hCn k is a thin homotopy N� Cn ˇ ' ˛Cn N�; rel @I n. Let
ˇ0 W .I n; @I n/! .Xn�1; �/ be the map with the same values as ˇ. Then ˛0 ' iˇ0.

We next prove Im in � Im � . Let ˛0 W .I n; @I n/! .Xn�1; �/ represent an element
of �n.Xn�1; �/. Let ˛ W I n� ! X� have the same values as ˛0. Then �n˛ is a thin
homotopy ˛ � N�, so that ˛ 2 Fn. Clearly �Œ˛� D inŒ˛0�.

For the final part of (ii), we prove � injective. Suppose �Œ˛� D 0. Then there is a
homotopy h W ˛0 ' N� of maps .I n; @I n/! .Xn; �/. Clearly h 2 RnC1X�. However,
�nC1h is a thin homotopy h � N�. Therefore h 2 FnC1, and so Œ˛� D 0.

(iii) We have proved in Proposition 8.4.2 that with these conditions and for n > 2,
Hn.…X�; �/ Š Hn. zX.�//, and in Corollary 14.7.3, that the inclusion RX� ! S�X
is a homotopy equivalence. So this exact sequence follows from that in (i).

Definition 14.7.10. We say X� is a Jn-filtered space if for 0 6 i < n and � 2 X0, the
map

�iC1.Xi ; �/! �iC1.XiC1; �/
induced by inclusion is trivial.236

Corollary 14.7.11. If X� is a Jn-filtered space, then each fibre of p W RX� ! �X� is
n-connected, and the induced maps �iRX� ! �i�X�;HiRX� ! Hi�X�, of homo-
topy and homology, are isomorphisms for i 6 n and epimorphisms for i D n C 1.
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14.8 The cubical Dold–Kan Theorem

We have shown in Chapter 13 the equivalence of the categories of crossed complexes
and of cubical !-groupoids with connections. In this section we relate this result to a
famous theorem of Dold and Kan stating that the categories of chain complexes and
of simplicial abelian groups are equivalent, and which we have already mentioned
in Remark 9.10.6237. We use the notion of structure internal to a category, more
information on which can be found in many texts and expositions of category theory.

The basic elements of what we say next are well known, but are given for com-
pleteness.

Suppose we are given an action of a group P on the right of a group M such
that the action  W M � P ! M is a morphism of groups. Then, as is well known,
the action is trivial. The proof is easy: let m 2 M , p 2 P . Then mp D .m; p/ D
.m; 1/.1; p/ D m11p D m. It follows that a crossed module internal to the category
of groups is just a morphism of abelian groups.

We need to consider below the more general case of crossed modules over groupoids.
Internally to the category of groups, these are more complicated; but internally to the
category of abelian groups they are again equivalent to morphisms of abelian groups.

Theorem 14.8.1 (Cubical Dold–Kan Theorem). Let A be an additive category with
kernels. The following categories, defined internally to A, are equivalent.

B1: The category of chain complexes.

B2: The category of crossed complexes

B3: The category of cubical sets with connection.

B4: The category of cubical !-groupoids with connections.

Proof. By working on the morphism sets, we can as usual assume that we are working
in the category of abelian groups. Note that the theorem corresponding to the title of
this section is the equivalence B1 ' B3.

B1 ' B2: By a chain complex we shall always mean a sequence of objects and
morphisms @ W An ! An�1; n > 1, such that @@ D 0. Let C be a crossed complex
internal to A. The associated chain complex ˛C will be defined by

.˛C /0 D C0;

.˛C /1 D Ker .ı0 W C1 ! C0/;

.˛C /n D Cn.0/; n > 2:

The crossed complex ‚A associated to a chain complex A will be defined by

.‚A/0 D A0;

.‚A/1 D A1 � A0;

.‚A/n D An � A0; n > 2:
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The groupoid structure on‚A in dimension 1 is defined as usual by s.a; y/ D yC @a,
t .aa; y/ D y and with composition .b; x/.a; y/ D .bCa; y/. The structure on .‚A/n
forn > 2 is that the only addition is .b; x/C.c; x/ D .bCc; x/. The operation of .‚A/1
on .‚A/n, n > 2; is .b; x/.a;y/ D .b; y/. This gives our first equivalence, between
chain complexes and crossed complexes internal to A. Notice that‚ is essentially the
special case of the functor ‚ in Section 7.4.v in which the acting groupoid H is the
trivial group.

B2 ' B3: An equivalence between crossed complexes and cubical !-groupoids
with connections internally to the category of sets is established in previous sections.
Although choices are involved in this, the end result is a natural equivalence. It follows
that this can be applied internally to a category A, simply by applying it to the morphism
sets A.X;A/ for all objects X of A. This yields our equivalence between crossed
complexes and cubical !-groupoids with connections internal to A.

In Remark 14.6.6 we have shown that the equivalence � W Crs! !-groupoids may
be given by

�.C /n D Crs.….I n� /; C /:

If we apply this to C D ‚A as above we find that

�.‚A/n D Crs.….I n� /;‚A/
D Chn.r….I n� /; A/ (by adjointness)

D Chn.C�.I n� /; A/;

which is the cubical analogue of the classical formulation of the Dold–Kan theorem.

B3 ' B4: Let K be a cubical abelian group with connections, in the sense of
previous sections. The following is an easy result, related to work of Section 2.5 238.

Lemma 14.8.2. If G is an abelian group, and if s; t W G ! G are endomorphism of
G such that st D s, ts D t , then we can define a groupoid structure on G with source
and target maps s, t by

g B h D g � tg C h;
for g; h 2 G with tg D sh, and this defines on G the structure of groupoid internal to
abelian groups.

This result can be applied to Kn; n > 1, and for each i D 1; : : : ; n, with

si D "i@�
i ; ti D "i@C

i ;

giving n compositions and so a cubical complex with compositions and connections in
the sense of Definition 13.1.3. The interchange law is easily verified, and there remains
essentially only the transport law for the connections, which is again simple, showing
that K is now a cubical !-groupoid with connections. It is easy to see that the functor
thus defined is adjoint to the forgetful functor B4 ! B3.
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Remark 14.8.3. The lack of an equivalence between chain complexes and cubical
abelian groups (without connections) was a further reason for abandoning the use of
cubical sets for simplicial sets. The pros and cons of simplicial sets versus cubical sets
with connections need further development and argument.239

Notes

223 p. 480 Most of the results of this chapter come from [BH81a]. In that paper a
condition J0 was imposed on the filtered spaces, namely that each loop in X0 is
contractible inX1: this condition was sufficient to define �.X�/without requiring
the homotopy relation � defined in Section 14.1 to be rel vertices. However this
implied that �.X�/, and similarly …X�, in dimension 0 was �0.X0/, which does
not agree with usual conventions; the condition J0 is also inconvenient in practice
since it is rarely satisfied by the filtered space FTOP.X�; Y�/. Thus the arguments
of this book differ from those in [BH81a] in the first stage of various inductive
processes.

224 p. 480 There is a current tendency to write…X for the singular simplicial complex
of a space X and to term …X an 1-groupoid of some kind, see for example
[Ber02], [Lur09]. Now Ashley in [Ash88] gives in the simplicial case a fibration
theorem analogous to Theorem 14.2.7, so various questions arise. One is whether
the singular cubical complex might be a better candidate for such a lax1-groupoid,
and indeed it is possible to give a definition using ‘rectangles’ which makes the
compositions Ci into category structures, see [Bro09b]. The other is whether in
the filtered case, the Fibration Theorem 14.2.7 gives some interesting control over
the laxity of the totality of structures on RX�.

225 p. 482 Brown wishes to thank C. T. C. Wall who in conversation after a splinter
group talk by Brown at a British Mathematical Colloquium in 1975 pointed out
that the ‘free face’ argument was likely to work. Collapsing arguments go back to
the paper of J. H. C. Whitehead, [Whi41b]. The term ‘nuclei’ in that paper refers
to what was later called ‘simple homotopy type’, [Whi50b].

226 p. 482 This concept is called ‘filter homotopy ’ in [BH81a].

227 p. 487 The cogluing theorem from [BH70] is the dual of a gluing theorem which
was first published in [Bro68], is now available in [Bro06], and has been set up
in abstract homotopy in for example [Bau89], and Theorem 7.1 in [KP97], with
different proofs. See also [tD08], (5.3.3) Proposition. One advantage of the
original proof in [Bro68], [Bro06] is that it gives more control of the homotopies.
Using function spaces, the cogluing theorem implies the gluing theorem.
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228 p. 492 The indexing by ƒ2 implies there is repetition in the first disjoint union,
and also that pairs .�; �/ occur. This could be avoided by totally ordering ƒ and
then considering only pairs .�; �/ such that � < �, but that seems not worth the
effort.

229 p. 496 An analogous argument to the following is used in [Bro08b] to show that a
globular higher homotopy groupoid is well defined.

230 p. 499 It is proved in [Ant00] that the realisation with connections collapsed has
the same homotopy type as the usual realisation. The paper [Mal09] shows that
the former realisation has better properties with respect to the cartesian product
than the usual realisation.

231 p. 500 There is an exposition on obstructions to the realisability of chain complexes
in [Bau91], Proposition A.2, p. 136.

232 p. 502 A full exposition of this cubical homology theory is in [Mas80]. It is
proved in [EML53a] using acyclic models that the cubical singular homology
groups are isomorphic to the simplicial singular homology groups. Recent works
using cubical methods are [GNAPGP88], [BJT10], [Isa11].

233 p. 502 This retraction proposition should be compared with the special case dis-
cussed in [Mas80], Section III.7. The history of classical papers on singular
homology and the Hurewicz Theorem shows the use of deformation theorems of
the type of Proposition 14.7.1, as for example in Blakers [Bla48]. However our
use of cubical methods rather than the traditional chain complexes and simplicial
methods, simplifies the proofs; one reason is that cubical methods are easier than
simplicial methods for constructing homotopies.

234 p. 504 The results of this section are taken from [Bro11].

235 p. 506 Theorem 14.7.9 gives a certain exact sequence considered by Whitehead
in the paper [Whi50c]. The term ‘Whitehead exact sequence’ may be found in
many papers. The reason for our choosing the notation � in this theorem is
that Whitehead used the notation � , which is used in this book for the cubical
connections. The methods of Whitehead in [Whi50c] for his exact sequence are
more direct and he also proves a remarkable determination of �3X as the value of
a ‘universal quadratic functor’ � on �2.X/. This is related to results in [BL87].
For further work in this area see [MW10] and the references there.

236 p. 507 The condition that X� be a Jn-filtered space is in the CW-complex case
precisely the condition that X is a Jn-complex in the sense of [Whi49b], and is
also by Theorem 14.7.9 equivalent to p W RX� ! �X� being an n-equivalence.
Thus these results are related to the results of [Ada56] which give necessary and
sufficient conditions for X to be a Jn-complex.



512 Notes

237 p. 508 This theorem was stated and proved by Dold in [Dol58]. The reason for
the addition of the name of Kan to the theorem is that an earlier preprint by Dold
was purely combinatorial, and then Kan shed a huge light on this by showing
that the functor K from chain complexes to simplicial abelian groups could be
defined by the formula K.A/n D Chn.C�.�n/; A/. Dold also states that his
results were found earlier by Kan. Our formulation of the cubical analogue is
taken from [BH03], which also includes the case of globular !-groupoids, using
the equivalence of these with crossed complexes proved in [BH81b]. Part of the
result, namely relating a groupoid to a morphism of abelian groups is essentially
in [Gro68].

Thus we see that various results related to, or generalisations of, the Dold–Kan
Theorem are shown in the diagram:

polyhedral
T -complexes

�� ŒJon88� �� cubical
T -complexes !-groupoids

ŒBH81b�

��

ŒBH81c���
99

ŒBH81�

RR�������������������������

simplicial
J -groupoids [[

ŒNT89b�

55̀`````````````

simplicial
T -complexes

��
ŒAsh88�

�� crossed
complexes

��
ŒBH81b�

��1-groupoids

where each arrow denotes an explicit equivalence of categories, and the citations
give full details. There could be a case for using notations such as …cell, …cub,
…glob, …simp for the fundamental object of a filtered space lying in each of the
categories Crs, !-Gpds, 1-groupoids (also called strict globular !-groupoids,
[Bro08b]), simplicial T -complexes, respectively.

Generalisations of the Dold–Kan Theorem to more general categories than additive
categories with kernels are given in [Bou07], while the paper [CC91] gives general
structure on a nonabelian chain complex C of groups to be able to reconstruct a
simplicial groupG of which C is the Moore complex. This generalises a result in
[Con84] on 2-crossed modules. Further references to and applications of 2-crossed
modules are in [FM11]; they also occur in [Bİ03a].

238 p. 509 This result comes from [Gro68], and is also a special case of a nonabelian
result on cat1-groups, [Lod82], where the condition ŒKer s; Ker t � D 1 is required,
and is here trivially satisfied.

239 p. 510 As an example, there has been little exploitation of the fact that cubi-
cal groups with connections are fibrant cubical sets, [Ton92], whereas the corr-
esponding result for simplicial groups is well used.



Chapter 15

Tensor products and homotopies

We now explain the final and vital piece of algebraic structure which gives power
to the machinery of crossed complexes, particularly to the Homotopy Classification
Theorem 11.4.19: this is the monoidal closed structure on crossed complexes, and its
properties, which were stated in Chapter 9.240 Our justification of these properties
is in terms of the category !-Gpds of cubical !-groupoids, where the corresponding
monoidal closed structure has a simple and convenient expression. In this category it
is also easy to construct a natural transformation of Eilenberg–Zilber type

	 W �X� ˝ �Y� ! �.X� ˝ Y�/

and so this may be transferred to the category of crossed complexes and the functor…
via the equivalence of categories � and Theorem 14.4.1.

The design of this chapter is as follows. In Section 15.1 we extend to !-groupoids
the structure of monoidal closed category constructed for cubical sets in Chapter 11.
This part is straightforward.

Then, in Section 15.2 we study the translation of the closed structure from !-
groupoids to crossed complexes using the details of the inverse equivalences

� W !�Gpds � Crs W �
getting the fairly complicated description of the closed category structure for closed
complexes given in Part II. In some sense this difficulty is an advantage, since the results
of the story are fairly easy to use, see Chapter 9, and when we do use these results, we
know we have a powerful machine in the background, so that the applications have the
potential of being highly nontrivial.

In Section 15.3, we define the natural transformation 	 mentioned above. Again
this result can be transferred to crossed complex giving the important Theorem 9.8.1,
that there is a natural transformation

� W …X� ˝…Y� ! ….X� ˝ Y�/

for all filtered spacesX�; Y� and which is an isomorphism ifX�, Y� are CW-filtrations.
In Section 15.4 we establish the symmetry of the tensor product which, by contrast
with the other results, is easier to prove for crossed complexes than for !-groupoids. It
is interesting to note that the tensor product of cubical sets is not symmetric, as pointed
out in Proposition 11.2.20: the extra structure of !-groupoids is needed to define the
symmetry mapG˝H ! H ˝G. In Section 15.5 we give a brief account of the case
of !-groupoids with base-point.
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In the last two sections we give a dense subcategory of the category of!-groupoids,
and use this to show certain covering crossed complexes of tensor product of crossed
complexes are also a tensor product of coverings. We use this to prove that the tensor
product of two free aspherical crossed complexes is also aspherical. This is a useful
result for our earlier Chapters 10 and 12 on resolutions and on homotopy classification
of maps and cohomology.

For further background on monoidal closed categories, see Section C.7 of App-
endix C.

15.1 Monoidal closed structure on !-groupoids

The category !-Gpds of !-groupoids is a convenient algebraic model for certain ge-
ometric constructions. In particular it is well-suited for the discussion of homotopies
and higher homotopies and their composition.

The precise definition of !-groupoid is in a previous chapter, Section 13.2; recall
that an !-groupoid is a cubical set with extra structures of connections and composi-
tions, the latter giving groupoid structures. The internal hom functor for cubical sets
developed in Section 11.2.iii generalises immediately to !-groupoids as follows.241

Definition 15.1.1. Any !-groupoidG has an underlying cubical set and we have given
in Definition 11.2.10 the n-fold left path cubical set P nG. It is

.P nG/r D GnCr ;

with cubical operators

@˛nC1; @˛nC2; : : : ; @˛nCr W .P nG/r ! .P nG/r�1; ˛ D C;�;
and

"nC1; "nC2; : : : ; "nCr W .P nG/r�1 ! .P nG/r :

Now, we can define connections

�nC1; �nC2; : : : ; �nCr�1 W .P nG/r�1 !.P nG/r
and compositions

CnC1; CnC2; : : : ; CnCr on .P nG/r :

They make P nG an !-groupoid since the laws to be checked are just a subset of the
!-groupoid laws of G. We call P nG the n-fold (left) path !-groupoid of G.

The operators of G not used in PmG give maps

@˛1 ; : : : ; @
˛
m W PmG ! Pm�1G;

"1; : : : ; "m W Pm�1G ! PmG;

�1; : : : ; �m�1 W Pm�1G ! PmG
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which are morphisms of !-groupoids and obey the cubical laws. The unused additions
of G define partial compositionsC1;C2; : : : ;Cm on PmG which, by the !-groupoid
laws for G, are compatible with the !-groupoid structure of PmG.

Definition 15.1.2. The ‘internal hom’!-groupoid !- GPDS.G;H/ is defined for any
!-groupoids G, H by

!- GPDSm.G;H/ D !-Gpds.G; PmH/;

with cubical operators

@˛1 ; : : : ; @
˛
m W !- GPDS.G;H/m ! !- GPDS.G;H/m�1;

"1; : : : ; "m W !- GPDS.G;H/m�1 ! !- GPDS.G;H/m;

connections

�1; : : : ; �m�1 W !- GPDS.G;H/m�1 ! !- GPDS.G;H/m

and compositions

C1; : : : ; Cm on !- GPDS.G;H/m

all induced by the similarly numbered operations on H .
We make!- GPDS.G;H/ a functor inG andH (contravariant inG) in the obvious

way: if g W G ! G0 and h W H ! H 0 are morphisms, the corresponding morphism

!- GPDS.g; h/ W !- GPDS.G;H/! !- GPDS.G0;H 0/

is given, in dimension r , by

!- GPDS.g; h/r.f / D .P rh/ B f B g;
for each f W G ! P rH .

Remark 15.1.3. Thus in dimension 0, !- GPDS.G;H/ consists of all morphisms
G ! H , while in dimension n it consists of n-fold (left) homotopies G ! H .

The definition of tensor products of !-groupoids is harder. We require that �˝G
be left adjoint to !- GPDS.G;�/ as a functor from !- GPDS to !- GPDS, and this
determines˝ up to natural isomorphism.

One way of getting the tensor product is using the power of generalities, because
the representability of the functor !- GPDS.F , !- GPDS.G;�// can be asserted on
general grounds. The point is that !- GPDS is an equationally defined category of
many sorted algebras in which the domains of the operations are defined by finite
limit diagrams. General theorems on such algebraic categories imply that !- GPDS
is complete and cocomplete and that it is monadic over the category Cub of cubical
sets.242
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We are going to follow an alternative path strengthening the bicubical maps of
Section 11.2.i to bimorphisms. The definition requires for any !-groupoid H the
transposition TH (see Definition 11.2.19): here we just say that TH has the same
elements asH but has its cubical operations, connections and compositions numbered
in reverse order.

Definition 15.1.4. For any !-groupoids F , G, H a bimorphism f W .F;G/! H is a
family of maps

fpq W Fp �Gq ! HpCq .p; q > 0/

such that
(i) for each x 2 Fp , the map

fx D f .x;�/ W G ! P pH

given by y 7! f .x; y/ is a morphism of !-groupoids;
(ii) for each y 2 Gq the map

fy D f .�; y/ W F ! T .P q/TH

given by x 7! f .x; y/ is a morphism of !-groupoids.

These bimorphisms may be reinterpreted in terms of morphisms.

Proposition 15.1.5. There is a natural one-one correspondence between
1. bimorphisms .F;G/! H , and
2. morphisms f W F ! !- GPDS.G;H/.

Proof. The conditions in the definition of a bimorphism from .F;G/ to H , may be
interpreted as saying that condition (i) gives maps Fp ! !- GPDSp.G;H/ for each
p, and condition (ii) states that these combine to give a morphism of !-groupoids
F ! !- GPDS.G;H/.

Definition 15.1.6. We define the !-groupoid tensor product F ˝ G as given by the
bimorphism

� W .F;G/! F ˝G
universal with respect to bimorphisms .F;G/! H . We shall denote�.x; y/ by x˝y.

The universality condition says of course that every bimorphism f W .F;G/! H

factors uniquely as .x; y/ 7! Of .x ˝ y/ where Of W F ˝ G ! H is a morphism of
!-groupoids.

Proposition 15.1.7. The tensor product is associative: i.e. for all!-groupoidsE;F;G
there is a natural isomorphism

.E ˝ F /˝G Š E ˝ .F ˝G/:
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Proof. Both sides of the above equation are determined by a universal property with
respect to ‘trimorphisms’ from E, F , G.

Remark 15.1.8. We do not delve into the question of coherence for the monoidal closed
structures considered in this book. One reason is lack of space. The other reason is that
because tensor products are universal for bimorphisms, the coherence properties for
the tensor product derive ultimately from the coherence properties of various cartesian
products, and coherence there derives from the universal properties of that product.
This relationship seems not to have been studied abstractly. The subject of coherence
is standard in many references on category theory.

Proposition 15.1.9 (Exponential law for !-groupoids). For any !-groupoid G, the
functor !- GPDS.G;�/ is right adjoint to the functor �˝G; so there are bijections

!-Gpds.F ˝G;H/ Š !-Gpds.F; !- GPDS.G;H//

natural with respect to !-groupoids F , G, H .

Proof. We get the bijection just by putting together the previous definitions and the
universality condition.

This proposition can be strengthened in a standard way:

Proposition 15.1.10. For !-groupoids F , G, H there is a natural equivalence

!- GPDS.F ˝G;H/ Š !- GPDS.F; !- GPDS.G;H//:

Proof. We can use Proposition 15.1.9 repeatedly and the associativity of the tensor
product to give for any !-groupoid E a natural isomorphism

!-Gpds.E; !- GPDS.F ˝G;H// Š !-Gpds.E; !- GPDS.F; !- GPDS.G;H//:

The result follows.

We will show in Section 15.4 that the tensor product of !-groupoids is symmetric,
although the isomorphism G ˝H Š H ˝G is not an obvious one.

We now show that, as in the tensor product of R-modules, the tensor product for
!-groupoids may also be given by a presentation.

We may specify an !-groupoid by a presentation, that is, by giving a set of genera-
tors in each dimension and a set of defining relations of the form u D v, where u, v are
well-formed formulae of the same dimension made from generators and the operators
@˛i , "i , �i ,Ci , �i .

Given !-groupoids F , G, we now give an alternative, but equivalent, definition of
F ˝G by giving a presentation of it as an !-groupoid. The universal property of the
presentation will then give the required adjointness.
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Definition 15.1.11. Let F ,G be !-groupoids. We define F ˝G to be the !-groupoid
generated by elements in dimension n > 0 of the form x ˝ y where x 2 Fp; y 2 Gq
and p C q D n, subject to the following defining relations (plus, of course, the laws
for !-groupoids)

(i) @˛i .x ˝ y/ D
´
.@˛i x/˝ y if 1 6 i 6 p;

x ˝ .@˛i�py/ if p C 1 6 i 6 nI

(ii) "i .x ˝ y/ D
´
."ix/˝ y if 1 6 i 6 p C 1;
x ˝ ."i�py/ if p C 1 6 i 6 nC 1I

(iii) �i .x ˝ y/ D
´
.�ix/˝ y if 1 6 i 6 p;

x ˝ .�i�py/ if p C 1 6 i 6 nI
(iv) .xCi x0/˝ y D .x˝ y/Ci .x0˝ y/ if 1 6 i 6 p and xCi x0 is defined in F ;
(v) x ˝ .y Cj y0/ D .x ˝ y/CpCj .x ˝ y0/ if 1 6 j 6 q and y Cj y0 is defined

in G.

Remark 15.1.12. There are quite a few relations that can be deduced from this defini-
tion, for example:

(vi) �i .x ˝ y/ D
´
.�ix/˝ y if 1 6 i 6 p;

x ˝ .�i�py/ if p C 1 6 i 6 n

and

(vii) ."pC1x/˝ y D x ˝ ."1y/.

15.1.i Relations between the internal homs for cubes and for !-groupoids

We now use the free !-groupoid �K on a cubical set K, which gives the left adjoint

� W Cub! !-Gpds

to the forgetful functor
U W !-Gpds! Cub;

to relate the monoidal closed structures of Cub and !-Gpds. This will enable us to tie
in the theory with results in Sections 11.2, 11.4 on the nerve of a crossed complex.

It is easy to see that �.K/ is the!-groupoid generated by elements Œk� for all k 2 K
with defining relations given by @˛i Œk� D Œ@˛i k� and "i Œk� D Œ"ik� for all n > 1 and
face and degeneracy maps @˛i W Kn ! Kn�1 and "i W Kn�1 ! Kn.

This notation is consistent with our previous use of �.K/ as the fundamental !-
groupoid of the filtered space jK�j because, for any cubical set K, �.K/ Š �.jK�j/,
by the HHSvKT, as a deduction from Theorem 14.3.1. In particular we will write
In for the !-groupoid �.In/, which is also the free !-groupoid on one generator of
dimension n.
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Proposition 15.1.13. For a cubical set L and an !-groupoid G, there is a natural
isomorphism of cubical sets

U.!- GPDS.�.L/;G// Š CUB.L; UG/:

Proof. Let us get first the bijections at every dimension, i.e.

!- GPDSr.�.L/;G/ Š CUBr.L; UG/

for all r > 0.
They follow from the adjointness since the bijections

!- GPDSr.�.L/;G/ D !-Gpds.�.L/; P rG/ Š Cub.L; UP rG/ D CUBr.L; UG/

are compatible with the cubical operators.

From this proposition we easily deduce that the free !-groupoid functor preserves
the tensor product.

Proposition 15.1.14. If K, L are cubical sets, there is a natural isomorphism of !-
groupoids

�K ˝ �L Š �.K ˝ L/:
Proof. From the previous Proposition 15.1.13 and the closed category structures of
Cub and !-Gpds, we get the bijection of cubical sets

U.!- GPDS.�.K ˝ L/;G//
Š CUB.K ˝ L;UG/ by 15.1.13

Š CUB.K;CUB.L; UG// since Cub is monoidal closed

Š CUB.K;U.!- GPDS.�.L/;G/// by 15.1.13

Š U.!- GPDS.�.K/; !- GPDS.�.L/;G/// by 15.1.13

Š U.!- GPDS.�.K/˝ �.L/;G// since !-Gpds is monoidal closed:

This natural bijection gives in dimension 0

!-Gpds.�.K ˝ L/;G/ Š !-Gpds.�.K/˝ �.L/;G/
from which the proposition follows.

We get as a consequence the following relation among the!-groupoids �.In/ freely
generated by one element in dimension n, n > 0.

Corollary 15.1.15. There are natural isomorphisms of !-groupoids

�.Im/˝ �.In/ Š �.ImCn/:
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Proposition 15.1.16. (i) �.In/˝� is left adjoint to P n W !- GPDS! !- GPDS.

(ii) �˝ �.In/ is left adjoint to !- GPDS.�.In/;�/.
(iii) !- GPDS.�.In/;�/ is naturally isomorphic to TP nT .

Proof. (i) There are natural bijections

!-Gpds.�.In/˝H;K/ Š !-Gpds.�.In/; !- GPDS.H;K//

Š !- GPDSn.H;K/ D !-Gpds.H;P nK/:

(ii) This is a special case of Proposition 15.1.9.
(iii) It follows from (i) that TP nT W !- GPDS ! !- GPDS has left adjoint

T .�.In/˝ T .�// Š �˝ T�.In/. But the obvious isomorphism T I ! I induces an
isomorphism T�.In/ Š �.In/, so �˝ T�.In/ is naturally isomorphic to �˝ �.In/.
The result now follows from (ii).

Remark 15.1.17. It was proved in Section 14.6 that �.In/ is the fundamental !-
groupoid �.I n� / of the n-cube with its skeletal filtration. We will show, by similar
methods, that for any cubical set K, there is a natural isomorphism �.K/ Š �.jK� j/,
where jK� j is the geometric realisation of K, with its skeletal filtration. Thus Propo-
sition 15.1.14 gives an isomorphism

�.jK�j ˝ jL�j/ Š �.jK�j/˝ �.jL�j/
which will be generalised in Corollary 15.3.3 to an isomorphism

�.X�/˝ �.Y�/ Š �.X� ˝ Y�/

for arbitrary CW-complexes X , Y .

15.2 The monoidal closed structure on crossed complexes
revisited

It is an easy exercise to prove that given a monoidal closed category C and an equivalent
category C0, we can use the equivalence to transfer the closed category structure from
C to C0. Thus the monoidal closed structure defined on !- GPDS in Section 15.1 can
be transferred to the category Crs by defining for arbitrary crossed complexesC andD

C ˝D D �.�C ˝ �D/ and CRS.C;D/ D �.!- GPDS.�C; �D//:

Remark 15.2.1. There is one aspect of the notion of monoidal categories which should
in principle be given more coverage than we are giving, namely the various coherence
laws which are part of the standard definition, see Section C.7 and Chapter VII in
[ML71]. These laws will not be important for our purposes, and so we leave their
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investigation in our cases to the reader. Because the tensor product is defined in the
various cases by a universal property of ‘bi’-morphisms of various types, coherence
properties may be deduced from those for the usual cartesian product of sets, where
coherence follows from the universal property. An example on p. 160 of [ML71]
shows that the cartesian product cannot always be taken to give a strict monoidal
structure.243

Our goal in this section is to derive our monoidal closed structure on the category Crs
from that on !-groupoids and so arrive at the definitions already given in Section 9.3.

We begin with the translation of the internal hom functor; this can be done ex-
plicitly because the internal hom is defined by families of functions satisfying certain
conditions. Then we translate the concept of bimorphism since that is essentially a
‘morphism of morphisms’. The definition of the tensor product is not so explicit, since
it is given in terms of a presentation, which makes it difficult to identify the elements
of a tensor product.

The difficulty in passing from presentations in !- GPDS to presentations in Crs
may be illustrated by the example �.In/. In !- GPDS, this is free on one generator in
dimension n; however, the corresponding crossed complex ��.In/ Š ….I n� / requires,
for each r-dimensional face d of I n, a generator x.d/ in dimension r , with defining
relations of the form

ı.x.d// D
X
.˛;i/

fx.@˛i d/g;

where the formula for the ‘sum of the faces’ on the right is given by the Homotopy
Addition Lemma 13.7.1.

15.2.i The internal hom on crossed complexes

As we have seen we could define

CRS.C;D/ D �.!- GPDS.�C; �D//

for any crossed complexesC;D and get a closed category structure on Crs. We want to
describe the structure of CRS.C;D/ in terms internal to the crossed complexes C;D
and arrive at the definition of left (or right) m-fold homotopy for crossed complexes
given in Definition 9.3.3, i.e. a pair .F; f /wheref is a morphism of crossed complexes
and F has degree m over f satisfying some conditions.

So, for two !-groupoids G;H we have to study �.!- GPDS.G;H//m, whose
elements are m-fold homotopies of !-groupoids which satisfy an extra degeneracy
condition (almost all faces are degenerate). Thus we need to examine such homotopies.

The main technical tool for changing a cube to another one with extra degeneracies
is the folding map ˆ. Thus we are going to use the folding map to relate both kinds of
m-fold homotopies.
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Proposition 15.2.2. Let G;H be !-groupoids, let  W G ! H be an m-fold left
homotopy. We may define

(i) a morphism of crossed complexes

f W �G ! �H

defined by f D @C
1 @

C
2 : : : @

C
m ;

(ii) a homotopy over f ,
F W �G ! �H;

given by F D ˆ .
This m-fold left homotopy of crossed complexes .F; f / is said to be associated

to  .

Proof. The part (i) is clear since

@C
1 @

C
2 : : : @

C
m W G ! H

is a morphism of !-groupoids. Thus it maps �G to �H and restricts to a morphism

f W �G ! �H

of crossed complexes.
Part (ii) is much longer since we have to check all conditions for a homotopy in

Definition 9.3.3.
Let us begin with the base point. Let us see that F is a map over f . For any

c 2 .�G/n, the base point is

ˇF.c/ D ˇˆ .c/ D ˇ .c/ D @C
1 @

C
2 : : : @

C
mCn .c/

D @C
1 : : : @

C
m .@

C
1 : : : @

C
n c/ D f .ˇc/:

Thus F.c/ 2 f0ˇ.c/.
The other conditions for .F; f / to be a homotopy follow from the formulae for

ˆ.x Ci y/ in Proposition 13.4.14.
First the operations. Recall that in previous notation, for a k-dimensional cube x,

uix D @C
1 : : : @

C
i�1@

C
iC1 : : : @

C
k
x:

• If c C c0 is defined in .�G/1 D G1, then

F.c C c0/ D ˆ .c C1 c0/ D ˆ. .c/CmC1  .c0//
D .ˆ .c//u Cˆ .c0/ D h.c/u C h.c0/;

where u D umC1 .c0/ D @C
1 : : : @

C
m .c

0/ D f .c0/.
• Similarly, if n > 2 and c C c0 is defined in .�G/n, then

F.c C c0/ D F.c/u C F.c0/;
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where

u D umCn .c0/ D @C
1 : : : @

C
m@

C
mC1 : : : @

C
mCn�1 .c

0/ D @C
1 : : : @

C
m .@

C
1 : : : @

C
n�1c

0/:

But since c0 2 .�G/n, the element @C
1 : : : @

C
n�1c0 of .�G/1 is the identity element

"1ˇc
0; so u D f ."1ˇc0/ is also an identity element and F.c C c0/ D F.c/C F.c0/.

Now the action. If ct is defined, where c 2 .�G/n .n > 2/ and t 2 .�G/1, then

F.ct / D ˆ .ct / D ˆ .�n"n�1
1 t Cn c Cn "n�1

1 t /

D �mCn"n�1
mC1 .t/CmCn  .c/CmCn "n�1

mC1 .t/
D �.ˆ"n�1

mC1 .t//u C .ˆ .c//v Cˆ"n�1
mC1 .t/

for certain edges u; v 2 .�H/1.
Butn > 2, so "n�1

mC1 .t/ is degenerate andˆ"n�1
mC1 .t/ D 0 for Proposition 13.4.18.

Hence
F.ct / D F.c/v;

where v D umCn."n�1
mC1 .t// D @C

1 : : : @
C
mCn�1"n�1

mC1 .t/ D @C
1 : : : @

C
m .t/ D f .t/

giving the result.

Remark 15.2.3. Notice that given an m-fold left homotopy  W G ! H of !-
groupoids, the m-fold left homotopy of crossed complexes associated to this, .F; f /,
satisfies an extra condition with respect to the folding map, namely:

F.ˆx/ D ˆ .ˆx/ D ˆ .ˆ1 : : : ˆn�1x/ D ˆˆmC1 : : : ˆmCn�1 .x/ D ˆ .x/
using Proposition 13.4.15. We call this extra condition

(Fold) F.ˆx/ D ˆ .x/.
So we have associated to anym-fold left homotopy between!-groupoids anm-fold

left homotopy between the associated crossed complexes satisfying the extra condi-
tion (Fold). Now we prove that the former homotopy between !-groupoids may be
reconstructed from the homotopy between the associated crossed complexes.

Proposition 15.2.4. Let G;H be !-groupoids, and F be any m-fold left homotopy
from �G to �H beginning at f . Then there is a uniquem-fold left homotopy  W G !
H such that F is the associated homotopy and satisfies the extra condition about
degeneration of the faces

(Deg) @˛i  .x/ D "m�1
1

Of .x/
for 1 6 i 6 m, ˛ D 0; 1 and .˛; i/ ¤ .0; 1/ and all x 2 G, where Of W G ! H

denotes the unique morphism of !-groupoids extending the morphism f W �G ! �H

of crossed complexes.

Proof. We are looking for the existence and uniqueness of an m-fold left homotopy
 W G ! H having F as associated homotopy and satisfying the extra conditions
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(Deg) @˛i  .x/ D "m�1
1

Of .x/ for i 6 m; .˛; i/ ¤ .0; 1/, and
(Fold) ˆ .x/ D F.ˆx/.

Using these conditions we construct  inductively.
When n D 0, all faces but one of  .x/ are specified by (Deg). The elements

z˛i D "m�1
1

Of .x/ D "m�1
1 f .x/ of Hm�1 for .˛; i/ ¤ .0; 1/ form a box and the

Homotopy Addition Lemma (13.7.1) gives a unique last face z�
1 such that ıˆz D †z

has the value ıF.ˆx/ 2 .�H/m�1. Proposition 13.5.10 then gives a unique filler .x/
for the box such that ˆ. .x// has the value F.ˆx/. (Of course, one must verify
that ıF.ˆx/ D ıF.x/ has the same basepoint as the given box, but this is clear since
ˇF.x/ D f̌ .x/).

Now suppose that n > 1 and assume that  .x/ is already defined for all x of
dimension < n and that it satisfies (Deg) and (Fold) for all such x. Assume further
that  satisfies all the conditions for anm-fold left homotopy in so far as they apply to
elements of dimension < n.

Then, for x 2 Gn we need to find  .x/ 2 HmCn satisfying (amongst others) the
conditions8̂<̂

:
@˛j  .x/ D "m�1

1
Of .x/ for 1 6 j 6 m; .˛; j / ¤ .0; 1/;

@˛mCj .x/ D  .@˛j x/ for 1 6 j 6 n;

ˆ .x/ D F.ˆx/:
(15.2.1)

It is straightforward to verify that the specified faces of  .x/ form a box whose base-
point is t Of .x/ D f .ˆx/ D F.ˆx/ and therefore, as in the case n D 0, there is a
unique  .x/ satisfying these conditions.

To complete the induction we have only to verify that this  .x/ has all the defining
properties of an m-fold homotopy.

For example, to prove that

 .x Ci y/ D  .x/CmCi  .y/; (15.2.2)

we first note that @C
mCi .x/ D  .@C

i x/ D  .@�
i y/ D @�

mCi .y/ so that

z D  .x/CmCi  .y/ (15.2.3)

is defined. We then verify easily, using the induction hypotheses, that the faces of z
other than @�

1 z are given by´
@˛j z D "m�1

1
Of .x Ci y/ for 1 6 j 6 m; .˛; j / ¤ .0; 1/;

@˛mCj z D  .@˛j .x Ci y// for 1 6 j 6 n:

Also
ˆz D ˆ. .x/CmCi  .y// D .ˆ .x//u Cˆ .y/;
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by Proposition 13.4.14, where

u D umCi .y/ D @C
1 : : : @

C
m .uiy/ D Of .uiy/ D f .uiy/:

But it may be verified that

F.ˆ.x Ci y// D F.ˆx/f .uiy/ C F.ˆy/
using the defining properties of F and formulae of Proposition 13.4.14. (In the case
n D 1, i D 1 one needs to observe that addition in .�H/mCn is commutative). Hence

ˆz D F.ˆ.x Ci y//
in all cases.

The uniqueness of  .x/ satisfying conditions (15.2.1) implies that

z D  .x Ci y/;
and this proves (15.2.2). The other properties of  are proved in a similar way.

These propositions set up for m > 1 a bijection between m-fold left homotopies
�G ! �H and elements of � (!- GPDS.G;H//m, namely m-fold left homotopies
 W G ! H which satisfy the extra degeneracy condition:

(Deg) @˛i  .x/ D "m�1
1 @C

1 @
C
2 : : : @

C
m .x/ for i 6 m, .˛; i/ ¤ .0; 1/.

(Note that if @˛i u D "m�1
1 v, then v must be @C

1 : : : @
C
mu).

We complete this correspondence by defining a 0-fold left (or right) homotopy of
crossed complexes C ! D to be a morphism f W C ! D. We then have:

Proposition 15.2.5. The elements of CRS.C;D/ in dimension m > 0 are in natural
one-one correspondence with the m-fold left homotopies from C to D.

In view of this result we will, from now on, identify CRS.C;D/with the collection
of morphisms and left homotopies fromC toD. The operations which give this collec-
tion the structure of a crossed complex can be deduced from the above correspondence.
They will also be described later in internal terms.

15.2.ii Bimorphisms on crossed complexes

Next, we need to relate the concepts of bimorphism of !-groupoids given in Def-
inition 15.1.4 with that of bimorphism of crossed complexes introduced in Defini-
tion 9.3.10. This section is the technical heart of the work on establishing the monoidal
closed structure on the category of crossed complexes.

We are going to use extensively the previous section since in both cases a bimor-
phism may be interpreted by fixing the first variable as a family of m-fold left homo-
topies one for each element of dimension m (see Definition 15.1.4 and 9.3.10) and
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we know from the previous section how both kinds of m-fold homotopies are related,
essentially by the folding map.

Before entering in the proof of this correspondence let us state a result that will be
used later.

Lemma 15.2.6. If � W .F;G/ ! H is a bimorphism of !-groupoids, then �.x; y/ is
thin whenever x or y is thin.

Proof. We have just remarked that �y W F ! P nH is a morphism of !-groupoids. If
x is thin in F , it follows that �.x; y/ is a thin element of P nH . But the thin elements
of P nH are a subset of the thin elements of H .

Proposition 15.2.7. Let F , G, H be !-groupoids with associated crossed complexes
�F , �G, �H . If

� W .F;G/! H

is any bimorphism of !-groupoids, then we have an associated bimorphism of crossed
complexes

� W .�F; �G/! �H

defined by �.c; d/ D ˆ�.c; d/ for any c 2 �F and d 2 �G.

Proof. To check that � is a bimorphism of crossed modules we have to see the behaviour
with respect to source and target, actions and operations and boundary maps is according
to Definition 9.3.10.

With respect to the base point,

ˇ�.c; d/ D ˇˆ�.c; d/ D ˇ�.c; d/ D �.ˇc; ˇd/ D �.ˇc; ˇd/:

With respect to actions and operations: For c 2 .�F /0, the map �c W G ! H is a
morphism of !-groupoids. Thus

ˆ�c W �G ! �H

is a morphism of crossed complexes.
Similarly, by Proposition 15.2.2, if c 2 .�F /m is fixed, then the map �c W G ! H

is an m-fold left homotopy of !-groupoids. Thus the map

�c D ˆ�c W �G ! �H

is an m-fold left homotopy �G ! �H over the morphism �ˇc D ˆ�ˇc .
The morphism �ˇc maps �G into �H , so �.ˇc; d/ D ˆ�.ˇc; d/ D �.ˇc; d/ and

�c is an m-fold homotopy over �ˇc .
Now we repeat the same process with respect to the second variable. Note that in this

version for n-fold right homotopies �F ! �H the formula f .d/ D @C
1 : : : @

C
m .d/
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is replaced by f .c/ D @C
nC1 : : : @

C
nCm .c/. Hence, if d 2 .�G/n, the right homotopy

c 7! ˆ�.c; d/ W �F ! �H has base morphism

c 7! @C
nC1 : : : @

C
nCm�.c; d/ D �.c; ˇd/:

With respect to boundary maps we use the Homotopy Addition Lemma 13.7.1; in
order to compute ı�.c; d/ D ıˆ�.c; d/we need to computeˆ@˛i �.c; d/ for each face
of �.c; d/ and sum them according to the formulae in Lemma 13.7.1.

To compute ı�.c; d/ in the casem > 2, n > 2we note that the faces of c and d other
than @�

1 c, @�
1 d are all thin, so all but two faces of �.c; d/ are thin by Lemma 15.2.6,

and we conclude that ˆ@˛i �.c; d/ D 0 except when ˛ D 0 and i D 1 or mC 1. The
appropriate formula of the Homotopy Addition Lemma 13.7.1 now gives

ıˆ�.c; d/ı�.c; d/ D ıˆ�.c; d/
D .ˆ�.@�

1 c; d//
v C .�1/m.ˆ�.c; @�

1 d//
w

D �.ıc; d/v C .�1/m�.c; ıd/w ;
where

v D u1�.c; d/ D �.u1c; ˇd/ and w D umC1�.c; d/ D �.ˇc; u1d/:
Since c 2 �F , d 2 �G, both u1c and u1d are identities, so v, w act trivially and we
obtain the formula

ı�.c; d/ D �.ıc; d/C .�1/m�.c; ıd/:
The other formulae of Definition 9.3.10 are proved in the same way using the dif-
ferent forms of the Homotopy Addition Lemma 13.7.1 in various cases. Thus � is a
bimorphism of crossed complexes.

Proposition 15.2.8. Let F , G, H be !-groupoids with corresponding crossed comp-
lexes �F , �G, �H . Given any bimorphism

� W .�F; �G/! �H

of crossed complexes, there is a unique bimorphism

� W .F;G/! H

of !-groupoids satisfying �.c; d/ D ˆ�.c; d/ for c 2 �F and d 2 �G.

Proof. For each c 2 .�F /m we have an m-fold left homotopy

.�c ; fc/ W �G ! �H:

By Proposition 15.2.4, there is a unique m-fold left homotopy

 c W G ! H
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satisfying the conditions´
ˆ c.d/ D �c.d/ D �.c; d/ for d 2 D;
 c 2 �.!- GPDS.G;H//:

(��)

The required bimorphism � must yield such an n-fold left homotopy y 7! �.c; y/,
so the definition �.c; y/ D  c.y/ is forced. Furthermore, since �F generates F as
!-groupoid by Proposition 13.5.13 and �.x; y/must preserve first variable x, for fixed
y, the values �.c; y/ for c 2 �F , y 2 G determine � completely. Thus � is unique if
it exists.

To prove that the required bimorphism� exists we first note that we have a map c 7!
 c from �F to �.!- GPDS.G;H// of degree 0 and we will show that it is a morphism
of crossed complexes where the crossed complex structure of �.!- GPDS.G;H// has
been given in Definition 9.3.5

We need to show that  cCc0 D  c C  c0 ,  ct D  
 t
c ,  ıc D ı c if c 2

.�F /m.m > 2/, and  ı˛c D ı˛ c if c 2 .�F /1. Using the characterisation .��/ of
 c and the fact that  c C  c0 ,   t

c , etc. are all elements of �.!- GPDS.G;H//, it is
enough to prove that, for d 2 �G,

(i) ˆ. c.d/Cm  c0.d// D �.c C c0; d / if c C c0 is defined in .�F /m,
(ii) ˆ.�m"m�1

1  t .d/ Cm  c.d/ Cm "m�1
1  t .d// D �.ct ; d / if t 2 A1 and ct is

defined in .�F /m.m > 2/,
(iii) ˆ.@�

1 c.d// D �.ıc; d/ if c 2 .�F /m, m > 2,
(iv) ˆ.@˛1 c.d// D �.ı˛c; d/ if c 2 .�F /1, ˛ D ˙.

The calculations for (i) and (ii) are similar to calculations done in the proof of Proposi-
tion 15.2.4. For example, in (ii), if c 2 .�F /m, d 2 .�G/n, then ˆ."m�1

1  t .d// D 0,
so

ˆ.�m"m�1
1  t .d/Cm  c.d/Cm "m�1

1  t .d// D .ˆ c.d//v D �.c; d/v

where

v D um"m�1
1  t .d/ D @C

1 : : : @
C
m�1@

C
mC1 : : : @

C
mCn"

m�1
1  t .d/

D @C
2 : : : @

C
nC1 t .d/ D  t .@C

1 : : : @
C
n b/

D  t .ˇd/ D �.t; ˇd/ (since ˆ D id in dimension 1).

Hence �.c; d/v D �.c; d/�.t;ˇd/ D �.ct ; d / since c 7! �.c; d/ is an n-fold right
homotopy with base morphism c 7! �.c; d/.

The calculations for (iii) and (iv) use the Homotopy Addition Lemma 13.7.1 and the
behaviour of � with respect to the boundary map. For example, to prove (iii) we observe
that ˆ c.d/ D �.c; d/ and ıˆ c.d/ D †fˆ@˛i  c.d/g, the sum of the folded faces
on the right being calculated by the appropriate formula of the Homotopy Addition
Lemma 13.7.1, depending on the dimensions of c and d . Now c 2 �F and d 2 �G so
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most terms in this sum are 0. In the case m > 2, n > 2, two terms survive and one of
these, ˆ@�

mC1 c.d/, we can calculate: because  c is an m-fold left homotopy of !-
groupoids, ˆ@�

mC1 c.d/ D ˆ c.@
�
1 d/ D �.c; ıd/. Hence the Homotopy Addition

Lemma 13.7.1 says

ı�.c; d/ D ˆ@�
1 c.d/C .�1/m�.c; ıd/:

Comparing this with the defining property

ı�.c; d/ D �.ıc; d/C .�1/m�.c; ıd/
we obtain (iii). The other cases are similar. This proves that c 7!  c is a morphism of
crossed complexes from �F to � (!- GPDS.G;H//.

It therefore extends uniquely to a morphism of !-groupoids x 7!  x , say, from F

to !- GPDS.G;H/. But now the definition �.x; y/ D  x.y/ gives a bimorphism of
!-groupoids � W .F;G/ ! H such that ˆ�.c; d/ D ˆ c.d/ D �.c; d/ for c 2 �F ,
d 2 �G, and this completes the proof.

15.2.iii The tensor product of crossed complexes

Last, we want to describe tensor products of crossed complexes. Let C;D be crossed
complexes. If we choose !-groupoids F;G such that C D �F;D D �G, we should
have

C ˝D D �.F ˝G/:
If we consider the universal bimorphism of !-groupoids

� W .F;G/! F ˝G;
it is clear that the bimorphism of crossed complexes

� W .C;D/! C ˝D
given by the restriction of the compositionˆ� is universal with respect to bimorphisms
of crossed complexes from .C;D/.

By the universality of the bimorphism of crossed complexes

� W .C;D/! �.F ˝G/;
it is clear that �˝D is the left adjoint to Crs.D;�/.

A warning about notation. For any c 2 C D �F and d 2 D D �G, we have
already defined their tensor product by

c ˝ d D �.c; d/ 2 F ˝G:
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Clearly we have good reason for writing also

c ˝ d D �.c; d/ 2 C ˝D:
We shall keep c ˝ d for this last definition, while writing c Ő d for the tensor product
element in F ˝G.

The Definition 9.3.10 of a bimorphism now gives the presentation of C ˝D de-
scribed in Definition 9.3.12.

This completes the derivation of the monoidal closed structure on the category Crs.

15.2.iv Another description of the internal hom in Crs

We now go back to CRS.C;D/ and produce a description of its crossed complex
structure in terms of the crossed complex structures of C and D.

Recall from Definition 7.1.12 that F .m/ is the crossed complex freely generated
by one generator a in dimension m. Any element of CRSm.C;D/ corresponds to a
morphism F .m/ ! CRS.C;D/, or, equivalently, to a bimorphism � W .F .m/; C / !
D. If m D 0 the given element is the morphism

 a W C ! D

defined by  a.c/ D �.a; c/.
Ifm > 1 then a.c/ D �.a; c/; fa.c/ D �.ˇa; c/defines them-fold left homotopy

 a D . a; fa/.
Similarly, if two elements of CRS.C;D/ are given, we may choose A to be the

free crossed complex on two generators of appropriate dimensions and represent both
the given elements as induced by the same bimorphism � W .A; C / ! D for suitable
fixed values of the first variable. We have seen that the map a 7!  a from A to
CRS.C;D/ given in this way by � is a morphism of crossed complexes, so we can now
read off the crossed complex operations on CRS.C;D/ from the bimorphism laws of
Definition 9.3.10 for �.

For example, given .F; f / 2 CRSm.C;D/.m > 2/ we determine ı.F; f / as
follows. Write .F; f / D .Fa; fa/ for suitable a 2 A as above, where Fa.c/ D
�.a; c/; fa.c/ D �.ˇa; c/. Then ı.F; f / D .Fıa; fıa/. We note that fıa D f since
ıˇa D ˇa. We write ıF forFıa, so that ı.F; f / D .ıF; f /. Now .ıF /.c/ D �.ıa; c/
is given by the formula in Definition 9.3.10 in terms of known elements, namely
(assuming m > 2)

�.ıa; c/

D

8̂<̂
:
ı.�.a; c//C .�1/mC1�.a; ıc/ if c 2 Cn .n > 2/;

.�1/mC1�.a; ı�c/�.ˇa;c/ C .�1/m�.a; ıCc/C ı.�.a; c// if c 2 C1;
ı.�.a; c// if c 2 C0:
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In other words

.ıF /.c/

D

8̂<̂
:
ı.F.c//C .�1/mC1F.ıc/ if c 2 Cn .n > 2/;

.�1/mC1F.ı�c/f .c/ C .�1/mF.ıCc/C ı.F.c// if c 2 C1;
ı.h.c// if c 2 C0:

.���/

This automatic procedure gives the crossed complex structure of CRS.C;D/ as
stated in Definition 9.3.5.

15.2.v Crossed complexes and cubical sets

We now revisit Section 11.4 in the light of the current results. Recall that in Defini-
tion 11.4.3 we set

…K D
Z �;n

Kn �…In

for a cubical set K, so that …K is freely generated by the nondegenerate cubes of K
with boundaries given by the cubical Homotopy Addition Lemma.

Proposition 15.2.9. For any cubical set K, there is a natural isomorphism of crossed
complexes

��K Š …K:
Proof. We have since K Š R �;n

Kn � In

�K Š �
Z �;n

Kn � In

Š
Z �;n

�.Kn � In/

Š
Z �;n

Kn � �.In/

and since � is an equivalence of categories

��K Š
Z �;n

Kn � ��.In/
Š …K:

This proves the proposition.

For any cubical set K we define the fundamental crossed complex of K to be
….K/ D ��.K/. Propositions 15.1.14 and 15.1.15 then give immediately
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Theorem 15.2.10. IfK, L are cubical sets, there is a natural isomorphism of crossed
complexes

….K/˝….L/ Š ….K ˝ L/:
In particular

….Im/˝….In/ Š ….ImCn/:

For any crossed complex C we define the cubical nerve of C to be NC D U�C ,
which is a cubical set. Since � is left adjoint to U;… D �� is left adjoint to N D U�,
but we now prove a stronger result. We observe that, for any !-groupoid G and
any cubical set L, Cub.L; UG/ has a canonical !-groupoid structure induced by the
structure of G (see Proposition 15.1.13). In particular Cub.L;NC/ is an !-groupoid
and Proposition 15.1.13 gives

Theorem 15.2.11. For any cubical setL and any crossed complexC , there are natural
isomorphisms of crossed complexes

Crs.…L;C / Š �.!- GPDS.�L; �C// Š �.Cub.L;NC//:

By taking cubical nerves and connected components we obtain

Corollary 15.2.12. Let L be a cubical set and C be a crossed complex.

(i) There is a natural isomorphism of cubical sets

Cub.L;NC/ Š N.Crs.…L;C //:

(ii) There is a natural bijection

ŒL;NC � Š Œ…L;C �;
where Œ�;�� denotes the set of homotopy classes of morphisms in Cub or in Crs,
as the case may be.

15.3 The Eilenberg–Zilber natural transformation

We now prove the important Theorem 9.8.1 that ifX�, Y� are filtered spaces, then there
is a natural transformation

� W …X� ˝…Y� ! ….X� ˝ Y�/

which is an isomorphism if X�, Y� are CW-filtrations.244

In view of the previous sections, it is sufficient to prove a similar result for !-
groupoids.
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Theorem 15.3.1. If X� and Y� are filtered spaces, then there is a natural morphism

	 W �X� ˝ �Y� ! �.X� ˝ Y�/

such that:

i) 	 is associative;

ii) if � denotes a singleton space or crossed complex, then the following diagrams
are commutative:

�X�

Š ����������� .�X�/˝ �Š��

�

��
�.X� ˝ �/ ,

� ˝ �X�
�

��

Š �� �X�

Š&&IIIIIIIII

�.� ˝X�/;

iii) 	 is commutative in the sense that if Tc W G ˝H ! H ˝G is the transposition
and Tt W X�˝Y� ! Y�˝X� is the twisting map, then the following diagram is
commutative

�X� ˝ �Y�
� ��

Tc

��

�.X� ˝ Y�/

�.Tt /

��
�Y� ˝ �X�

� �� �.Y� ˝X�/ .

Proof. To construct a natural morphism

	 W �X� ˝ �Y� ! �.X� ˝ Y�/

all we need is to construct a bimorphism of ! -groupoids

	0 W .�X�; �Y�/! �.X� ˝ Y�/:

Let f W Ip� ! X�, g W I q� ! Y� be representatives of elements of �pX�, �qY�
respectively. We define 	0.Œf �; Œg�/ to be the class of the composite

IpCq� Š Ip� ˝ I q�
f˝g���! X� ˝ Y�:

It is easy to check that 	0.Œf �; Œg�/ is independent of the choice of representatives. Also,
the conditions that 	0 be a bimorphism are almost automatic. Thus, we have a natural
morphism 	.

The proofs of (i) (associativity) and (ii) (preserves base point) are clear.
The proof of (iii) (symmetry) follows from the description of the isomorphism

G ˝H ! H ˝ G of !-groupoids as given by x ˝ y 7! .y� ˝ x�/� where, in the
geometric case G D �X�, x 7! x� is induced by the map .t1; : : : ; tp/ 7! .tp; : : : ; t1/

of the unit cube.
This gives conditions (i)–(iii) of Theorem 9.8.1
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Remark 15.3.2. The above construction of 	 should be compared with the proof of
Proposition 11.4.13.

Corollary 15.3.3. For any filtered spaces X�, Y� there is a natural transformation

� W …X� ˝…Y� ! ….X� ˝ Y�/

which is an isomorphism if X�; Y� are CW-filtrations.

Proof. The first part is an immediate consequence of Theorem 15.3.1 and the translation
of the monoidal structure from !-groupoids to crossed complexes.

To prove that � is an isomorphism for CW-filtrations, recall that X� ˝ Y� is a
CW-filtration, and so the crossed complex ….X� ˝ Y�/ is free, with basis the charac-
teristic maps of the product cells ep � eq of X� ˝ Y�. So the theorem follows from
Theorem 9.6.1 that the tensor product of free crossed complexes is also free.

15.4 The symmetry of tensor products

We have seen that in the category Cub, the map x ˝ y 7! y ˝ x does not give an
isomorphismK˝L! L˝K; indeed it is easy to construct examples of cubical sets
K, L such that K ˝ L and L ˝ K are not isomorphic. However, in !- GPDS, and
Crs the situation is different. Although the map x ˝ y 7! y ˝ x still does not give
an isomorphism K ˝ L ! L ˝ K, there is a less obvious map which does. This is
easiest to see in Crs.

Theorem 15.4.1. LetC ,D be crossed complexes. Then there is a natural isomorphism
C ˝ D ! D ˝ C which, for c 2 Cm, d 2 Dn, sends the generator c ˝ d to
.�1/mnd ˝ c. This isomorphism, combined with the structure studied until now,
makes the category of crossed complexes a symmetric monoidal closed category.

Proof. One merely checks that the relations defining the tensor product are preserved
by the map c˝d 7! .�1/mnd˝c. The necessary coherence and naturality conditions
are obviously satisfied.

Remark 15.4.2. This proof is unsatisfactory because, although it is clear that c˝d 7!
d ˝ c does not preserve the relations of the tensor product, the fact that c ˝ d 7!
.�1/mnd ˝ c does preserve them seems like a happy accident. A better explanation is
provided by the transposition functor T (see Sections 11.2 and 15.1).

For a cubical setK,TK is not in general isomorphic toK. But for any!-groupoidG
and any crossed complex C we will construct isomorphismsG ! TG and C ! TC .
Since in all these categories we have obvious natural isomorphisms T .X ˝ Y / Š
T Y ˝ TX , this implies the symmetry X ˝ Y Š Y ˝X .
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For an !-groupoid G, the transpose TG has the same elements as G but has all
its operations @˛i , "i , �i , Ci , �i numbered in reverse order with respect to i (but not
with respect to ˛ D ˙): compare Definition 11.2.19. For a crossed complex C , TC
is defined, of course, as �.T �C/. The calculation expressing this crossed complex in
terms of the crossed complex structure of C is straightforward (though it needs a clear
head).

Proposition 15.4.3. The crossed complex TC is defined, up to natural isomorphism,
in the following way:

(i) .TC /0 D C0 as a set;

(ii) .TC /2 D C op
2 as a groupoid;

(iii) .TC /n D Cn as a groupoid for n D 1 and n > 3;

(iv) the action of .TC /1 on .TC /n.n > 2/ is the same as the action of C1 on Cn;

(v) the boundary map T ı W .TC /nC1 ! .TC /n is given by

T ı D .�1/nı W CnC1 ! Cn:

We note that �ı W C2 ! C1 is an anti-homomorphism, that is a homomorphism
C

op
2 ! C1, as required; the mapCı W C3 ! C

op
2 is also a homomorphism because the

image is in the centre of C2. In higher dimensions the groupoids Cn and C op
n are the

same.

Corollary 15.4.4. Let bxc denote the integer part of a real number x. For any crossed
complex C there is a natural isomorphism � W C ! TC given by

�.c/ D .�1/bn=2cc for c 2 Cn:
Remark 15.4.5. The somewhat surprising sign .�1/bn=2c is forced by the signs in
Proposition 15.4.3; it is less surprising when one notices that it is the signature of the
permutation which reverses the order of .1; 2; : : : ; n/. The symmetry map of Theo-
rem 15.4.1 now comes from the map

c ˝ d ! ��1.�d ˝ �c/ D .�1/kd ˝ c;
where k D bm=2c C bn=2c � b.m C n/=2c, which is 0 if m or n is even, and �1 if
both are odd.

Let G be an !-groupoid and C D �G. Then G Š �C and the isomorphism
� W C ! TC extends uniquely to an isomorphism � W G ! TG. This isomorphism
can be viewed as a ‘reversing automorphism’ x 7! x� of G, that is, a map of degree
0 from G to itself which preserves the operations while reversing their order (e.g.
.x Ci y/� D x� Cn�iC1 y� in dimension n). The isomorphism G ˝H ! H ˝ G
for !-groupoids is then given by

x ˝ y 7! .y� ˝ x�/�:

The element x� should be viewed as a transposeof the cube x.
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Remark 15.4.6. In the geometric case G D �.X�/, x� is induced from x by the map
.t1; : : : ; tn/ 7! .tn; : : : ; t1/ of the unit n-cube.

The operation � is preserved by morphisms of !-groupoids, because of the nat-
uralness of � W 1 ! T . It follows from the notion of density which we deal with in
Section 15.6 that the operation � can be written in terms of the !-groupoid operations
@˛i , "i , �i ,Ci , �i , but the formulae needed for this seem rather complicated.

15.5 The pointed case

We consider briefly the notions of tensor product and homotopy in the categories
!-Gpds� and Crs� of pointed !-groupoids and pointed crossed complexes. Here the
objects have a distinguished element� in dimension 0 and all morphisms are to preserve
the base points.

Definition 15.5.1. For any !-groupoid H with basepoint �, the !-groupoid PmH
has basepoint 0� D "m1 .�/, the constant cube at �. An m-fold pointed (left) homotopy
h W G ! H is a morphism h W G ! PmH preserving basepoints, that is, a homo-
topy h with h.�/ D 0�. Clearly, all such pointed homotopies form an !-subgroupoid
!- GPDS�.G;H/ of !- GPDS.G;H/ since 0� D "m1 .�/ is an identity for all the
compositions Ci .1 6 i 6 m/. This !-subgroupoid has as basepoint the trivial mor-
phism G ! H which sends each element of dimension n to 0� D "n1.�/. Thus we
have an internal hom functor !- GPDS�.G;H/ in the pointed category !-Gpds�. The
pointed morphisms from F to !- GPDS�.G;H/ are in one-one correspondence with
the pointed bimorphisms � W .F;G/! H , that is, bimorphisms � satisfying the extra
conditions ´

�.x;�/ D 0� for all x 2 F;
�.�; y/ D 0� for all y 2 G: (i)

To retain the correspondence between bimorphisms .F;G/ ! H and morphisms
F ˝ G ! H , we must therefore add corresponding relations to the definition of the
tensor product. Thus, for pointed !-groupoids F;G, we define F ˝� G to be the
!-groupoid with generators x ˝� y, .x 2 F; y 2 G/, basepoint � D � ˝� �, and
defining relations the same as in Definition 11.2.5 together with´

x ˝� � D 0� for all x 2 F;
� ˝� y D 0� for all y 2 G: (ii)

These equations are to be interpreted as x ˝� � D � ˝� y D � when x; y have
dimension 0, so that .F ˝�G/0 D F0^G0, the product F0�G0 with F0��[��G0
identified to a point.

Theorem 15.5.2. The pointed tensor product and hom functor described above define
a symmetric monoidal closed structure on the pointed category !-Gpds�.
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15.6 Dense subcategories

The notion of dense subcategory is very useful in many categories of algebraic objects;
it allows properties of a category C to be deduced from properties of the dense subcat-
egory. In our case, we will use this for the category of !-groupoids, deducing some
properties from those of the full subcategory on the objects In, which denote the free
!-groupoids on a generator of dimension n. We know by results of Section 14.6 that
In is isomorphic to �In and to �I n� 245.

Our aim in this section is to explain and prove the theorem:

Theorem 15.6.1. The full subcategory yI of !-Gpds on the objects In is dense in !-
Gpds.

We recall the definition of a dense subcategory. First, in any category C, a morphism
f W C ! D induces a natural transformation f� W C.�; C / ! C.�;D/ of functors
Cop ! Set. Conversely, any such natural transformation is induced in this way by a
(unique) morphism C ! D (see Appendix A.2).

If J is a subcategory of C, then each object C of C gives a functor

CjJ.�; C / W Jop ! Set

and a morphism f W C ! D of C induces a natural transformation of functors

f� W CjJ.�; C /) CjJ.�;D/:
The subcategory J is said to be dense in C if every such natural transformation arises
from a morphism. More precisely, there is a functor 	 W C! CAT.Jop;Set/ defined in
the above way, and J is dense in C if 	 is full and faithful.

Example 15.6.2. Consider the Yoneda embedding

‡ W C! Cop-Set D CAT.Cop;Set/

where C is a small category. Then each object K 2 Cop-Set is a colimit of objects in
the image of‡ and this is conveniently expressed in terms of coends as that the natural
morphism Z c

.Cop-Set.‡c;K/ � ‡c/ ! K

is an isomorphism. Thus the Yoneda image of C is dense in Cop-Set.

Example 15.6.3. Let Z be the cyclic group of integers. Then fZg is a generating set for
the category Ab of abelian groups, but the full subcategory of Ab on this set is not dense
in Ab. In order for a natural transformation to specify not just a function f W A ! B

but a morphism in Ab, we have to enlarge this subcategory to the full subcategory also
including Z˚Z. As an exercise, you should try finding dense subcategories of other
categories of general algebraic interest, such as groups, rings, groupoids, : : : .
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Example 15.6.4. Consider the Yoneda embedding

‡ W C! Cop-Set D Cat.Cop;Set/

where C is a small category. Then each object K 2 Cop-Set is a colimit of objects in
the image of‡ and this is conveniently expressed in terms of coends as that the natural
morphism 
 Z c

.Cop-Set.‡c;K/ � ‡c/
�
! K

is an isomorphism. Thus the Yoneda image of C is dense in Cop-Set.

Proof of Theorem 15.6.1. Let G, H be !-groupoids and let

f W !-Gpds�.�; G/! !-Gpds�.�;H/
be a natural transformation. We define f W G ! H as follows.

Let x 2 Gn. Then x defines Ox W In ! G. We set f .x/ D f. Ox/.cn/ 2 Hn. We have
to prove f preserves all the structure.

For example, we prove that f .@i̇ x/ D @i̇ f .x/. Let N@i̇ W In�1 ! In be given
by having value @i̇ c

n on cn�1. The natural transformation condition implies that
f.N@i̇ /� D .N@i̇ /�f. On evaluating this on Ox we obtain f .@i̇ x/ D @i̇ f .x/ as required.
In a similar way, we prove that f preserves the operations "i ; �i .

Now suppose that t 2 Gn is thin in G. We prove that f .t/ is thin in H .
Consider the morphism of !-groupoids Ot W In ! G. Let B be the box consisting

of all faces but one of cn. Then B has a unique thin filler bt . Now Ot .B/ consists of all
faces but one of t , and so is filled by t . Since Ot preserves thin elements, we must have
Ot .bt / D t . Let Nb W In ! In be the unique morphism such that Nb.cn/ D bt . Then the
natural transformation condition implies f .t/ D f.Ot /.cn/ D f.Ot /.bt /. Since bt is thin,
it follows that f .t/is thin. Thus f preserves the thin structure.

Now Proposition 13.7.8 implies that the operations Ci are preserved by f . This
completes the proof of Theorem 15.6.1.

We can now conveniently represent each !-groupoid as a coend.

Corollary 15.6.5. The subcategory yI of !-Gpds is dense and for each object G of
!-Gpds the natural morphismZ n

!-Gpds.In; G/ � In ! G

is an isomorphism.

Proof. This is a standard consequence of the property of yI being dense.

Corollary 15.6.6. The full subcategory of Crs generated by the objects …I n� is dense
in Crs.
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Proof. This follows from Theorem 14.4.1, which gives the fact that the equivalence
� W !-Gpds ! Crs takes In to …I n� .

Remark 15.6.7. It is easy to find a generating set of objects for the category Crs, namely
the free crossed complexes on single elements, given in fact by…En� , where En� is the
usual cell decomposition of the unit ball, with one cell for n D 0 and otherwise three
cells. It is not so obvious how to construct directly from this generating set a dense
subcategory, and then a dense subcategory closed under tensor products, of Crs.246

15.7 Fibrations and coverings of !-groupoids

The definitions of covering morphism and of fibration of crossed complexes were
given in Sections 10.1 and 12.1 respectively. We now give corresponding conditions
for !-groupoids.247

Theorem 15.7.1. Let p W G ! H be a morphism of !-Gpdss. Then the morphism
of crossed complexes �.p/ W �.G/! �.H/ is a fibration (covering morphism) if and
only if p W G ! H is a Kan fibration (covering map) of cubical sets.

Proof. As regards fibrations this is the result of Proposition 12.1.13. The restriction to
covering morphisms follows in a similar way.

Corollary 15.7.2. Let p W K ! L be a morphism of !-groupoids such that the under-
lying map of cubical sets is a fibration. Then the pullback functor

f� W !-Gpds=L! !-Gpds=K

has a right adjoint and so preserves colimits.

Proof. This is immediate from Theorem 15.7.1 and results of Howie stated as Theo-
rem 10.1.12.

Remark 15.7.3. It seems likely that a covering !-groupoid of a free !-groupoid is
also free.

15.8 Application to the tensor product of covering morphisms

Our aim is to prove the following:

Theorem 15.8.1. The tensor product of two covering morphisms of crossed complexes
is a covering morphism.
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Remark 15.8.2. The reason why we have to give an indirect proof of this result is that
the definition of covering morphism involves elements of crossed complexes; but it is
difficult to specify exactly the elements of a tensor product whose definition is perforce
by generators and relations.

It is sufficient to assume that all the crossed complexes involved are connected. We
will also work in the category of !-groupoids, and prove the following:

Theorem 15.8.3. Let G, H be connected !-groupoids with base points x, y respec-
tively, and let p W zG ! G be the covering morphism determined by the subgroupM of
�1.G; x/. Let  W C ! G˝H be the covering morphism determined by the subgroup
M � �1.H; y/ of

�1.G ˝H; .x; y// Š �1.G; x/ � �1.H; y/:
Then there is an isomorphism  W C ! zG ˝ H such that .p ˝ 1H / D , and,
consequently,

p ˝ 1H W zG ˝H ! G ˝H
is a covering morphism.

Proof. 248 First we know from Corollary 15.1.15 that the tensor product in !-Gpds
satisfies

Im ˝ In Š ImCn:
It follows that the tensor product G ˝H of !-groupoids G;H satisfies

G ˝H Š
Z m;n

!-Gpds.Im; G/ � !-Gpds.In;H/ � .Im ˝ In/: (15.8.1)

We suppose G;H are reduced, i.e. that G0;H0 are singletons. Let .x; y/ 2 G0 �
H0. Now let  W C ! G ˝H be a covering morphism determined by the subgroup
M � �1.H; y/ of

�1.G; x/ � �1.H; y/ Š �1.G ˝H; .x; y//:
Let p W zG ! G be the covering morphism determined by the subgroupM . By Coroll-
ary 15.7.2, pullback � by  preserves colimits. Hence

C Š �

 Z m;n

!-Gpds.Im; G/ � !-Gpds.In;H/ � .Im ˝ In/
�

Š
Z m;n

�.!-Gpds.Im; G/ � !-Gpds.In;H// � .Im ˝ In/

and so because of the construction of C by the specified subgroup:

Š
Z m;n

!-Gpds.Im; zG/ � !-Gpds.Im;H/ � .Im ˝ In/

Š zG ˝H: �
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Corollary 15.8.4. The tensor product of covering morphisms of !-groupoids is again
a covering morphism.

Proof. Because tensor product commutes with disjoint union, it is sufficient to restrict
to the connected case. Since the composition of covering morphisms is again a cov-
ering morphisms, it is sufficient to restrict to the case of p ˝ 1 for a single covering
morphism p. But this case is given by Theorem 15.8.3.

The proof of Theorem 15.8.1 follows immediately.
This finally enables us to prove Theorem 10.2.16.249

Corollary 15.8.5. The tensor product of free, aspherical crossed complexes is also free
and aspherical.

Proof. Let F , F 0 be free aspherical crossed complexes. It is sufficient to assume they
are connected. Since F , F 0 are aspherical, their universal covers zF , zF 0 are acyclic.
Since they are also free, they are contractible, by a Whitehead type theorem, B.8.1.
But the tensor product of free crossed complexes is free, by Theorem 9.6.1. Therefore
zF ˝ zF 0 is contractible, and hence acyclic. Therefore F ˝ F 0 is aspherical.

Notes

240 p. 513 A background to these results was the work on the homotopy type of
function spaces in [Bro62], [Bro64a], [Bro64c], in which the Dold–Kan Theorem
relating chain complexes and simplicial abelian groups was a central tool, as was
the monoidal closed structure on chain complexes and on various other categories
needed for that work, though the words ‘monoidal closed’ were hardly used at the
time. This is a reason for emphasising in Section 14.8 the relations between that
theorem and the work on the equivalence of various algebraic categories with that
of crossed complexes.

The results of the first five sections of this chapter are taken from [BH87], except
for Section 15.3 on the Eilenberg–Zilber transformation � for crossed complexes
which comes from [BH91]. The results of the last three sections come from [BS10].

241 p. 514 These methods are used in [AABS02] to give a monoidal closed struc-
ture for cubical !-categories with connections and hence, because of the equiv-
alence proved in that paper, to obtain a monoidal closed structure for globular
!-categories. These ideas are related to what is also called the Gray tensor prod-
uct of 1- and 2-categories, see for example [Cra99] and the references there.

242 p. 515 This follows from general theorems of Freyd [Fre72], Bastiani–Ehresmann
[BE72] and Coates [Coa74]. G. Janelidze has pointed out that these types of
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results should be seen in the general context of the equivalent terms of ‘locally
finitely presentable’ and ‘essentially algebraic’ categories, and that there is a wide
and recent literature on these topics, giving results on completeness and cocom-
pleteness. Note that in the case of colimits of crossed complexes we have earlier
given reference to [Law04], [Man76]. Further background to algebraic theories is
in Volume 2 of [Joh02].

243 p. 521 The coherence laws should be taken into account when making constructions
such as ‘free internal monoids with respect to tensor’, as discussed for crossed
complexes in [BB93]. A discussion of free monoids is in [Lac10], but is concerned
with the case where the monoidal category is not closed, and tensoring does not
distribute over coproducts, so that the usual geometric series does not apply.

244 p. 532 The more general result is proved in [BB93] that � is an isomorphism
if X�; Y� are connected and cofibred, where the latter means that all inclusions
Xn ! XnC1, n > 0, are closed cofibrations, and similarly for Y�. A good example
of such a filtration is .BC/�, the classifying space of a crossed complex filtered by
the skeleta of C . The application in loc. cit. is to what is called the tensor algebra
of a pointed crossed complex, generalising previous work in [BC92] on the tensor
algebra of a finite group.

245 p. 537 The results of these last two sections are taken from [BS10]. For more on
dense subcategories see [ML71] and many other books on category theory; for a
discussion of the relation between dense subcategories and theYoneda Lemma see
[Pra09]. Essentially, the notion of density is especially required for categories of
algebraic structures, while the Yoneda Lemma seems adequate for categories of
geometric structures, such as simplicial or cubical sets.

246 p. 539The paper [BH81b] gives an equivalence between the category Crs of crossed
complexes and the category there called1-groupoids and now commonly called
globular !-groupoids. Thus the above corollary yields also a dense subcategory,
based on models of cubes, in the latter category. Compare this to the approach to
the Gray tensor product of 2-categories in [Str88], and of globular1-categories
in [Cra99]; compare also [AABS02], Section 10.

247 p. 539 The paper [AM11] relates the notion of fibration for crossed complexes also
to that for globular !-categories and groupoids.

248 p. 540 The PhD thesis [Day70] of Brian Day addressed the problem of extending
a promonoidal structure on a category A along a dense functor J W A ! X into
a suitably complete category X to obtain a closed monoidal structure on X. The
two published papers [Day70a], [Day72] are only part of the thesis and represent
components towards the density result. The formulae in, and the spirit of, Day’s
work suggested the approach to the present results in the paper [BS10]. However,
here the category A is actually small (consisting of cubes) and monoidal, and so
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is an easy case of Day’s general setting. The same simplification occurs in the
approach to the Gray tensor product of 2-categories in [Str88], and of globular
1-categories in [Cra99], Proposition 4.1.

249 p. 541 Tonks proved in [Ton94], Theorem 3.1.5, that the tensor product of free
crossed resolutions of a group is a free crossed resolution: his proof used the
crossed complex Eilenberg–Zilber–Tonks Theorem 10.4.14.



Chapter 16

Future directions?

Yet all experience is an arch wherethro’
Gleams that untravelled world, whose margin fades

Forever and forever when I move.

from ‘Ulysses’, by Alfred Lord Tennyson

We have now come to the end of our description of this intricate structure. We hope to
have shown how it fits together and allows a new approach to algebraic topology, based
on filtered spaces and homotopically defined functors on such structured spaces, and in
which some nonabelian information in dimension 2 and the actions of the fundamental
groupoid are successfully taken into account. We also wanted to convey how a key to
the success of the theory has been the good modelling of the geometry by the algebra,
and the way the algebra gives power and reality to some basic intuitions, revealing
underlying processes.

We have presented the material in a way which we hope will convince you that the
intricacy of the justification of the theory does not detract from the fact that crossed
complexes theory are usable as a tool even without knowing exactly why they work.
That is, we have given a pedagogical order rather than a logical and structural order.
It should be emphasised that the order of discovery followed the logical order! The
conjectures were made and verified in terms of !-groupoids, and we were amazed that
the theory of crossed complexes, which was in essence already available, fitted with
this so nicely.

It is also surprising that this corpus of work followed from a simple aesthetic ques-
tion posed in 1964–65, to find a determination of the fundamental group of the circle
which avoided the detour of setting up covering space theory. This led to nonabelian
cohomology, [Bro65a], and then to groupoids, [Bro67]. The latter suggested the pro-
gramme of seeing how much could be done of a rewriting of homotopy theory replacing
the word ‘group’ by ‘groupoid’, and if so whether the result was an improvement! This
naive question raised some new prospects.

There is much more to do, and we explain some potential areas of work in the next
section. It is not expected that these questions and problems are of equal interest or
solvability!

Some of these matters discussed are speculative; it seems right to quote here from
a letter of Alexander Grothendieck dated 14/06/83:

Of course, no creative mathematician can afford not to “speculate”, namely
to do more or less daring guesswork as an indispensable source of inspira-
tion. The trouble is that, in obedience to a stern tradition, almost nothing of



16.1 Problems and questions 545

this appears in writing, and preciously little even in oral communication.
The point is that the disrepute of “speculation” or “dream” is such, that
even as a strictly private (not to say secret!) activity, it has a tendency to
vegetate – much like the desire and drive of love and sex, in too repressive
an environment.

Any new idea has to be caught as it flashes across the mind, or it might vanish;
talking about ideas can help to make them real, though it can also raise some funny
looks from superior persons!

16.1 Problems and questions

There are a number of standard methods and results in algebraic topology to which
the techniques of crossed complexes given here have not been applied, or applied only
partially. So we leave these open for work to be done, and for you to decide how the
uses in these areas of crossed complexes and related structures can advance the subjects
of algebraic topology and homological algebra. We expect you to use texts and the
internet for additional references and sources for further details, with the usual cautions
about not relying totally on all that is there. Also you must do your own assessment of
the possible value of these questions.

Problem 16.1.1. There has been surprisingly little general use in low-dimensional
topology and geometric group theory of the HHSvKT for crossed modules, Theo-
rem 2.3.1: this theorem is not even mentioned in [HAMS93], though some con-
sequences are given. We mention again the important work of Papakyriakopoulos
on relations between group theory and the Poincaré conjecture, [Pap63], which uses
Whitehead’s theorem on free crossed modules which, as shown in Theorem 5.4.8, is
but one application of the 2-dimensional SvKT. Of course the Poincaré Conjecture has
been resolved by different, and differential, rather than combinatorial or group theo-
retic, means. Recent uses of the 2-dimensional Seifert–van Kampen Theorem are by
[KFM08], [FM09]. Perhaps even more surprising uses could be made of the triadic
results in [BL87], [BL87a], relating to surgery problems, and borrowing methods from
[Ell93]? See also [FM11].

Problem 16.1.2. Investigate applications of the enrichment of the category FTop over
the monoidal closed category Crs in the spirit of the work on 2-groupoids in [KP02].
In fact, as an exercise, translate the work of the last paper into the language of crossed
complexes and their internal homs.

Problem 16.1.3. Investigate and apply Mayer–Vietoris type exact sequences for a
pullback of a fibration of crossed complexes, analogous to that given for a pullback
of a covering morphism of groupoids in [Bro06], Section 10.7. See also [HK81],
[BHK83].
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Problem 16.1.4. Can one use crossed complexes to give a finer form of Poincaré
Duality? For an account of this duality, see for example Chapter 16 in [tD08]. This
might require developing cup and cap products, which should be no problem, and
also coefficients in an object with an analogue of a ‘ring structure’. These could be
the crossed differential algebras (i.e. monoid objects in the monoidal category Crs)
considered in [BT97], and the braided regular crossed modules of [BG89a], further
developed in [AU07]. See also the paper [Bro10b]. One would like to relate these
ideas to older intuitions for Poincaré duality as explained in for example [ST80].

Problem 16.1.5. Another standard area in algebraic topology is fixed point theory,
which includes the Lefschetz theory, involving homology, and also Nielsen theory,
involving the fundamental group. Can these be combined? Perhaps one needs abstract
notions for the Lefschetz number analogous to those found for the Euler characteris-
tic, and with values in some ring generalising the integers? Relevant papers on this
are perhaps [Hea05], [Pon09], [PS09]. Note that the last two papers use symmetric
monoidal categories, and all use groupoid techniques.

Problem 16.1.6. Are there possible results on the fundamental crossed complex of
an orbit space of a filtered space analogous to those for the fundamental groupoid of
an orbit space given in [Bro06], Chapter 11? Some related work is in [HT82]. But
in Chapter 11 of [Bro06] a key result is on path lifting. Can one get some homotopy
lifting using subdivisions of a square and the retraction arguments used in the proof of
Proposition 14.2.8?

Problem 16.1.7. Are there applications of crossed complexes to the nonabelian co-
homology of fibre spaces? Could the well developed acyclic model theory and fibre
spaces of [GM57] be suitably modified and used? The spectral sequence of filtered
crossed complexes has been developed by Baues in [Bau89], but surely more work
needs to be done. Note also that while the theory of simplicial fibre bundles is well
developed, the cubical theory has problems because the categorical product of cubical
sets has poor homotopical properties. This might be solved by using cubical sets with
connections: the paper [Mal09] on the geometric realisation of such structures is surely
relevant, as is [FMP11].

Problem 16.1.8. The category Gpds of groupoids does not satisfy some properties
analogous to those of the category of groups, for example is not semi-abelian in the
sense of [JMT02]. However it seems that each fibre of the functor Ob W Gpds ! Set
is semi-abelian. Is it reasonable to investigate for purposes of homological algebra the
general situation of fibrations of categories such that each fibre is semi-abelian, and
can such a generalised theory be helpfully applied to crossed complexes?

Problem 16.1.9. Can one apply to the cubical collapses of Section 11.3.i the methods of
finite topological spaces as applied to collapses of simplicial complexes in [BM09]?

Problem 16.1.10. Is there a nonabelian homological perturbation theory for construct-
ing nonabelian twisted tensor products from fibrations? As a start in the literature, see



16.1 Problems and questions 547

[BL91]. Or for constructing small free crossed resolutions of groups? References for
the standard theory, and the important relation to twisted tensor products, may be found
by a web search.

Problem 16.1.11. The standard theory of chain complexes makes much use of dou-
ble chain complexes. Double crossed complexes have been defined in [Ton94] but
presumably there is much more to be done here.

Problem 16.1.12. The theory of equivariant crossed complexes has already been de-
veloped in [BGPT97], [BGPT01]. However notions such as fibrations of crossed
complexes have not been applied in that area.

Problem 16.1.13. Can one make progress with nonabelian cohomology operations?
The tensor product of crossed complexes is symmetric, as proved in Section 15.4. So if
K is a simplicial set, then we can consider the noncommutativity of the diagonal map
� W �jKj ! �jKj ˝ jKj. If T is the twisting map A˝ B ! B ˝ A, then there is a
natural homotopy T� ' �, by the usual acyclic models argument. This look like the
beginnings of a theory of nonabelian Steenrod cohomology operations. Does such a
theory exist and does it hold any surprises? By contrast, [Bau89] gives an obstruction
to the existence of a Pontrjagin square with local coefficients.

Problem 16.1.14. One use of chain complexes is in defining Kolmogorov–Steenrod
homology. One takes the usual net of polyhedra defined as the nerves of open covers
of a space X , with maps between them induced by choices of refinements. The result
is a homotopy coherent diagram of polyhedra. This is also related to Čech homology
theory. It is shown in [Cor87] that a strong homology theory results by taking the chain
complexes of this net, and forming the chain complex which is the homotopy inverse
limit. What sort of strong homology theory results from using the fundamental crossed
complexes of the nerves instead of the chain complexes? Is there a kind of ‘strong
fundamental groupoid’, and could this be related to defining universal covers of spaces
which are not locally ‘nice’?

Problem 16.1.15. There are a number of areas of algebraic topology where chain
complexes with a group of operators are used, for example [Coh73], [RW90]. Is it
helpful to reformulate this work in terms of crossed complexes? Note that Section 17
of [Whi50b] is given in terms of crossed complexes, but the exposition there is sparse;
we have earlier related this work to that of Baues in [Bau89], p. 357. A related work on
simple homotopy theory is [Bro92], which is also related to generalisations of Tietze
equivalences of presentations. Standard expositions of simple homotopy theory, for
example [Coh73], are in terms of chain complexes with operators. It may be worth
going back to the paper which introduced many of these ideas, namely [Whi41b]. Note
that simple homotopy theory is applied to manifolds using filtrations defined by a Morse
function in [Maz65].

Problem 16.1.16. Another example for the last problem of replacing chain complexes
by crossed complexes is the work of Dyer and Vasquez in [DV73] on CW-models for
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one-relator groups. Can that work be helpfully reworked in terms of crossed complexes
and the techniques of Chapter 10? The paper [Lod00] gives some problems on identities
among relations.

Problem 16.1.17. Can the use of crossed complexes in Morse theory explained by
Sharko in [Sha93] be further developed? He writes at the beginning of Chapter VII:

The need to make use of homotopy systems [i.e. free crossed complexes] in
order to study Morse functions on non-simply connected closed manifolds
or on manifolds with one boundary component arises from the failure of the
chain complexes constructed from the Morse functions and gradient-like
vector fields to capture completely the geometric aspects of the problem.
This relates to application of the Whitney lemma to the reduction of the
number of points of intersection of manifolds of complementary dimen-
sions.

Problem 16.1.18. Baues and Tonks in [BT97] use crossed complexes to study the
cobar construction. But the original work on the cobar construction in [AH56] was
cubical. Can one do better by using many base points instead of just loop spaces, and
also using !-groupoids instead of crossed complexes?

Problem 16.1.19. Find applications of these nonabelian constructions to configuration
space theory and mapping space theory, particularly the theory of spaces of rational
maps. More generally, one can look at areas where the standard tools are simplicial
abelian groups, classifying spaces, and some notion of freeness.

Problem 16.1.20. A further aim is to use these methods in the theory of stacks and
gerbes, and more generally in differential topology and geometry. The ideas of Sec-
tion 12.5.i are hopefully a start on this. The paper [FMP11] uses directly methods of
our!-groupoids, and for similar reasons to ours, but in the context of smooth manifolds
rather than filtered spaces.

Problem 16.1.21. Investigate the relation between the cocycle approach to Postnikov
invariants and that given using triple cohomology and crossed complexes in [BFGM05].

Problem 16.1.22. One starting intuition for the proof of the HHSvKT was the wish to
algebraicise the proof of the cellular approximation theorem due to Frank Adams, and
given in [Bro68], [Bro06]. Now a subtle proof of an excision connectivity theorem of
Blakers and Massey is given in [tD08], Section 6.9. Can one use methods of crossed
squares or catn-groups to algebraicise this proof?

Problem 16.1.23. It would be good to have another proof of the main result of [BB93],
using cubical !-groupoids. Perhaps one needs also some of the methods of [tD08],
Section 6.9?
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Problem 16.1.24. There are many problems associated with generalisation of the
HHSvKT to n-cubes of spaces as given in [BL87], [BL87a]. For a survey, and refer-
ences to related literature, see [Bro92]. Recent works in this area are [EM10], [MW10].
It is not clear what should be the appropriate generalisation to a many base point ap-
proach of the work on the fundamental catn-group of an n-cube of spaces explained in
[BL87], [Gil87]. Note the idea of a fundamental double groupoid of a map of spaces
in [BJ04]. Can this be generalised to n-cubes of spaces? Grothendieck remarked in
1985 to Brown that the idea that (strict) n-fold groupoids model homotopy n-types was
‘absolutely beautiful!’. Some relation of catn-groups to other models is developed in
[Pao09].

Problem 16.1.25. The term 1-groupoid has been used for the simplicial singular
complex S�X of a space X and this has also been written …X . See for example
[Ber02], [Lur09], [JT07]. However the axiomatic properties of the cubical singular
complex S�X , with its multiple compositions which we use greatly in this book, have
not been much investigated. We mention [Ste06] as an approach to using Kan fillers
in a categorical situation.

Problem 16.1.26. The area of homological algebra has been invigorated by the notion
of triangulated category and related areas, see for example [Nee01], [Kün07]. These
are related to chain complexes, also called differential graded objects. However the
work of Fröhlich and of Lue, for which see references in [Lue71], shows the relevance
of general notions of crossed modules. Crossed modules and triangulated categories
are also used in [MTW10]. Again work of Tabuada [Tab09], [Tab10] relates Postnikov
invariants and monoidal closed categories. But this is done for dg-objects without the
crossed module environment.

Problem 16.1.27. One intention of the work of Mosa, [Mos87], was to start on working
out the homological algebra of algebroids (rings with several objects) by defining
crossed resolutions of algebroids and obtaining a monoidal closed structure on crossed
complexes of algebroids. However even the conjectured equivalence between crossed
complexes of algebroids and higher dimensional cubical algebroids is unsolved. The
difficulty is shown by the complexity of the arguments in [AABS02] compared with
those of Chapter 13 of this book.

Problem 16.1.28. A programme set by Grothendieck in ‘Pursuing Stacks’ is related
to the previous problem. We quoted on p. xiv his aim to understand noncommutative
cohomology of topoi. Earlier in the same letter he writes:

For the last three weeks I haven’t gone on writing the notes, as what was
going to follow next is presumably so smooth that I went out for some
scratchwork on getting an idea about things more obscure still, particularly
about understanding the basic structure of ‘(possibly non-commutative)
“derived categories”, and the internal homotopy-flavoured properties of the
“basic modelizer” (Cat), namely of functors between “small” categories,
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modelled largely on work done long time ago about étale cohomology
properties of maps of schemes. I am not quite through yet but hope to
resume work on the notes next week.

For work of Grothendieck on ‘Modelizers’ and ‘Derivateurs’, see [Gro89], [MaltDer].

Problem 16.1.29. The last problem is possibly related to the problem of relating the
methods of this book to those of the modern theory of sheaves, as discussed in [Ive86],
with applications to generalised Poincaré duality, known as Verdier duality. A re-
lated area is that of stratified spaces, on which a recent paper using higher order cate-
gories is [Woo10]. Stratifications are referred to in [Gro97], Section 5, while in 1983
Grothendieck wrote to Brown, see [GroPS2]:

It seems to me, in any case, that this lim! -operation [“higher order van

Kampen theorem”] in the context of homotopy types is of a very funda-
mental character, with wide range of theoretical applications. To give just
one example, relying on the existence of such a formalism, it is possible to
give a very simple explicit algebraic description of the full homotopy types
of the Mumford–Deligne compactifications of the modular topoi for com-
plex curves of given genus g, say, with � “marked” points, in terms essen-
tial1y of such a (finite) direct limit ofK.�; 1/-spaces, where � ranges over
certain “elementary” Teichmüller groups (those, roughly, corresponding
to modular dimension 6 2), and to give analogous descriptions, too, of all
those subtopoi of the previous one, deducible from its canonical “stratifica-
tion” at infinity by taking unions of strata. In fact, such descriptions should
apply to any kind of “stratified” space or topos, as it can be expressed (in an
essentially canonical way, which apparently was never made explicit yet
in this literature) as a (usually finite) direct limit of simpler spaces, namely
the “strata”, and “tubes” around strata, and “junctions” of tubes, etc. Such
a formalism was alluded to in one of my letters to Larry, in connection
with so-called “tame topology” – a framework which has yet to be worked
out – and I was more or less compelled lately to work it out heuristically
in some detail, in order to get precise clues for working out a description
of the fundamental groupoids of Mumford–Deligne–Teichmüller modular
topoi (namely, essentially, of the standard Teichmüller groups), suitable
for the arithmetic aspects I had in mind (namely, for a grasp of the action
of the Galois group Gal NQ=Q on the profinite completion).

However the methods of this book have not yet been applied in this area, and much
work on ‘tame topology’ has been done since 1983. Relations between the ‘crossed’
techniques of this book and profinite theory are developed in the monograph [Por12].



16.1 Problems and questions 551

Problem 16.1.30. A work on monoidal categories, Hopf algebras, species and related
areas, and which strongly uses the Eilenberg–Zilber Theorem for chain complexes, is
[AM10]. There are possibilities of relating their work to that done here, or bringing in
crossed complexes into the areas studied in that book.

Problem 16.1.31. Can this area of crossed complexes be helpfully related to that of
complexes of groups, which generalises graphs of groups, as initiated by Haefliger in
[Hae92]?

Problem 16.1.32. There is an extensive theory of quantum groups and of quantum
groupoids. Can this be extended to ‘quantum crossed complexes’ using the methods
of [Chi11], and related papers referenced there?

Other problems in crossed complexes and related areas are given in [Bro90].
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Appendix A

A resumé of some category theory

Introduction

A categorical approach is basic to this book, and we use freely notions of category,
functor, natural transformation, pushout, product category covered in the book [Bro06].

The classic paper, [EML45a], of Eilenberg and Mac Lane initiated the development
of category theory. This theory gradually became in one role a great unifying theme
for mathematics, giving an abstract basis for analogy and comparison across different
fields and also for simplification. The benefits of abstraction are as usual: (i) covering
many known examples at the same time; (ii) getting to the essence of an argument;
(iii) allowing easy application to new examples. We see all of these in for example our
Section B.1 on fibrations of categories.250

Some of our key proofs, for example of the HHSvKT, follow the pattern of: we
verify the universal property. One importance of this is that we prove in this way
that for example a particular fundamental groupoid �1.X;X0/ is given as a pushout
of groupoids; but the proof makes no claim as to the general existence of pushouts of
groupoids, nor does it show how to construct pushouts of groupoids in general. So the
theorem raises questions as to how to prove existence of pushouts of groupoids, and
how to construct them in practical ways.

In addition to the above topics, we need at various stages limits and colimits,
equalisers and coequalisers, adjoint functors, ends and coends, cartesian closed cate-
gories, monoidal closed categories.

The other role of category theory has been to allow new algebraic structures. This is
partly because a category is in the first instance a set with a partial algebraic structure,
in which the domain of a composition is specified by a geometric condition. This
allows for a definition of higher dimensional algebra as concerning algebraic structures
with operations whose domains are specified by geometric conditions; such powerful
structures can combine intuitions from algebra and geometry, and so are able to model
complex underlying processes, and hence aid our understanding.

We find it difficult to give an adequate and complete coverage of what we need
here, since that would be too large a task. Further, there is a considerable amount of
information freely available online, including downloadable texts, or partial texts, and
also web encyclopedia. Therefore the aim of this appendix is to indicate the necessary
background and to supply more detail only when we can present or highlight a particular
viewpoint or the material is not so accessible in the format we need. So this appendix
should be supplemented with texts and downloadable material, for example Mac Lane,
[ML71], and our presentation is intended to be in line with the title of that book,
Adamek–Herrlich–Strecker, [AHS06] (downloadable), and many others. There is also
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the encyclopaedic Handbook of Categorical Algebra in 3 volumes, of which volume I
is [Bor94]. Readers will also profit from accounts of these topics on Wikipedia, Planet
Math, and the ncatlab.

A.1 Notation for categories

Recall that a category C has a class of objects Ob C whose elements are denoted x,
y, z, a class of morphisms Mor C whose elements are denoted f , g, h, two maps
s; t W Mor C! Ob C called source and target that divide the class of morphisms into
disjoint sets C.x; y/ and a partial composition C.x; y/�C.y; z/! C.x; z/ satisfying
associativity and existence of unit.251 These units give another map 1 W Ob C! Mor C
where 1.x/ D 1x is the identity on the object x.

An important point which has to be noticed is that the composition may be rep-
resented using either of two conventions, i.e. if f 2 C.x; y/ and g 2 C.y; z/ the
composite may be represented either gf or fg. The first notation is taken from the
composition of maps and the second one is more algebraic. The fact is that we have
used both in the book! We use the first convention whenever we are working in a
general setting, but we stick to the second one when working in particular groupoids.

Thus if C is a category and f 2 C.x; y/, for each z 2 Ob C using the composition
of morphisms we may define f� W C.z; x/ ! C.z; y/ post-composing with f and
f � W C.y; z/! C.x; z/ pre-composing with f .

The second element of interest is a functor F W C ! D between categories. It is
given by two maps F0 W Ob C! Ob D and F1 W Mor C! Mor D. We denote functors
by capital letters such as F;G;H; : : : .

Example A.1.1. It is also important to have in mind a collection of categories and
functors as examples.

1. In the definition we have stated that both objects and morphisms are classes of
elements. If they are both sets, the category is called small. The category of small
categories and functors is written Cat. If S is a small category and C is any category,
then we write Cat.S;C/ for the class of functors S! C and CAT.S;C/ for the category
of functors S! C and natural transformations between them.

2. The category of sets and maps is written Set.

3. The category of compactly generated topological spaces and continuous maps
is written Top.

4. The category of groups and homomorphisms is written Groups.

5. A groupoid G is a small category where all morphisms are invertible.

6. The category of groupoids and morphisms of groupoids is written Gpds.

7. The category of directed graphs is written Grphs.
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The final element we are assuming is that of natural transformation between two
functors F;G W C ! D. A natural transformation ˛ W F ) G is given by a map
˛ W Ob C ! Mor D such that for every x 2 Ob C, ˛.x/ 2 D.F x;Gx/ and for each
f 2 C.x; y/ the diagram

Fx

˛x

��

Ff �� Fy

˛y

��
Gx

Gf
�� Gy

commutes. The class of natural transformations between two functors is written
CAT.F;G/ for reasons that will become clear in Appendix C.

The natural transformation ˛ is called a natural equivalence if ˛.x/ is an isomor-
phism for each x 2 Ob C.

A.2 Representable functors

We now give an introduction to the notion of representable functor: this is simple but
the main result includes a pattern of argument which may not be so familiar to those
not used to category theory.

Let C be a category. Then for each y 2 Ob C there is a functor C.y/ W Cop !
Set given by C.y/.x/ D C.x; y/ for each x 2 Ob C and C.y/.x/ D f� for each
f 2 C.y; y0/ (we mention that this is a specialised notation for our purposes). An
important property of such functors is the following. If h W y ! z is a morphism in C
then h induces a natural transformation

C..h// W C.y/ ! C.z/;

given by C..h//.x/ D h�. Thus if f W x ! x0 in C, we need to verify the commutativity
of the diagram

C.x; y/
h� �� C.x; z/

C.x0; y/

f �

--

h�

�� C.x0; z/:

f �

--

Indeed for any g W x ! y the evaluation of both ways round the diagram yields hgf ,
so that the proof of naturality follows from associativity of the composition in C.

The converse of this result is easy to prove but turns out to be significant.252

Proposition A.2.1. If y; z 2 C then there is a natural bijection

CAT.C.y/;C.z//! C.y; z/:
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Proof. Suppose˛ W C.y/ ! C.z/ is a natural transformation, yielding for eachx 2 Ob C
a function ˛.x/ W C.x; y/ ! C.x; z/. The naturality condition states that for each
f W x ! x0 in C the first of the following diagrams is commutative:

C.x; y/
˛x �� C.x; z/

C.x0; y/

f �

--

˛0
x

�� C.x0; z/

f �

-- C.x; y/
˛x �� C.x; z/

C.y; y/

f �

--

˛y

�� C.y; z/

f �

--

(A.2.1)

Now choose x0 to be y, and set g D ˛y.1y/ W y ! z. In order to evaluate ˛x.f /where
f W x ! y we use the second commutative diagram. Then ˛x.f �.1y// D ˛x.f /,
while f �˛y.1y/ D f �.g/ D gf .

The idea can be extended.

Definition A.2.2. A functor T W Cop ! Set is called representable if it is naturally
equivalent to a functor C.x/ for some object x of C . Then x is called a representing
object for T , or we say T is represented by x.

Proposition A.2.3. If functors T;U W Cop ! Set are represented by objects x; y of C,
then there is a bijection

CAT.T; U / Š C.x; y/:

In particular, a natural equivalence T Š U is determined completely by an isomor-
phism x Š y.

The proof is easy from Proposition A.2.1.

A.3 Slice and comma categories

In this section we define some categories associated to a given category C.

Let C be a category, and let x 2 Ob C.

Definition A.3.1. The slice category C=x or category of objects over x is defined as
follows: its objects are morphisms f W y ! x of C, i.e. elements of C.y; x/ for all
y 2 ObC , and the elements of C=c.f; f 0/ are commutative diagrams

y

f ��[[[[[[[[
g �� y0

f 0

���������

x

with the composition induced from that of C.
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This concept is in some sense behind the discussion of free crossed modules.
Let F W C! B be a functor of small categories. Let y 2 Ob B.

Definition A.3.2. The comma category C=y is the category whose objects are pairs
.x; s/ where x 2 Ob C and s W F.x/! y in B. A morphism .x; s/! .x0; s0/ in C=y
is a morphism f W x ! x0 in C such that s D s0F.f /.

Another category associated to a category C is the morphism category used in the
derived module Section 7.4.ii.

Definition A.3.3. For any category C we define the category C2, sometimes called
the morphism category of C, to have objects the morphisms of C and morphisms
.u; v/ W f ! g to be the commutative squares in C

x
u ��

f

��

y

g

��
z

v
�� w

with composition of such morphisms the obvious horizontal one.

A.4 Colimits and limits

We concentrate first on the notion of colimit since this is a general concept closely
related to the formulation of local-to-global properties. The idea is to give a general
formulation of ‘gluing’, of putting together, a complex object using smaller pieces and
rules for the gluing, to give what is called a colimit.

The ‘input data’ for a colimit is a diagramD, that is a collection of some objects in
a category C and some morphisms between them, together with some ‘relations’, i.e.
a specification that some parts of the diagram, for example the triangle � below, are to
be commutative:

D D

.
�

DDaaaaaaaa �� .

77^̂
^̂

^̂
^̂

.

ZẐ
^̂

^̂
^̂

^

DDaaaaaaaa . ��

77^̂
^̂

^̂
^̂

:

GGaaaaaaaa

.
To describe the colimit output and its properties we need the following notion. A
cocone with the diagramD as base and with vertex x consists of morphisms in C from
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all the objects of the diagram to the vertex x, for example as in

x

. ��

LLbbbbbbbbbbbbbbbbbbb
CCC

::CCCCCC
.

�����������

\\ccccccccccccccccccc

.

++���������

WWddddddddddddddddddddddddddddd

::========= . ��

�����������

--

.

<<=========

HHeeeeeeeeeeeeeeeeeeeeeeeeeeeee

.

]]�������������������������������

(A)

satisfying the ‘commutativity’ condition:

(c) any paths from a given object in D to x compose to give, subject also to the
commutativity given in D, the same composite morphism.

In particular the colimit of the diagramD is an objectL D colimD in C with a cocone
with vertex L, called the colimiting cocone, shown in dotted arrows in the following
diagram, with the universal property that any cocone with vertex x say factors through
the colimiting cocone:

x

L

�

++�
�

�
�

�
�

�
�

�
�

�

.

^^

__RRRRRRRRRRRRRRRRRRRRR

::========= �� .

``

����������� ==

::======

aaXXXXXXXXXXXXXXXXXXXXX

.

--

++DDDDDDDDD

bbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

::CCCCCCCCC .

cc

�����������

--

�� .

<<=========

^^

ddZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

.

]]OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

\\
(B)
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Thus any morphism  W L! x as in

x

L

�

++�
�

�
�

�
�

�
�

�
�

�

.

^^

�� .

``

�����������

.

--

++DDDDDDDDD

::CCCCCCCCC .

cc

======

<<==

��

�����������
.

<<=========

^^

.

\\
(C)

is entirely determined by the cocone to x as in diagram (A).

Intuitions. Thus the morphism  operates in a ‘distributed’ fashion, analogously to
the way an email starting in L has to be split up into packets which are sent separately
via the cocone to x, and then recombined at the destination x.

Example A.4.1. The lcm of two positive integers a, b can be seen as the colimit of the
diagram

a b

gcd.a; b/

ccfffffff

ee�������

in which an arrow x ! y means simply that x, y are positive integers such that x
divides y. The gcd, from a lower level of the hierarchy, ‘measures’ the interaction of
a and b.

Some have viewed biological organs as colimits of the diagrams of interacting cells
within them.253

Remark A.4.2. Warning. Often colimits do not exist in a given category C for some
diagrams. However, one can add colimits in a completion process, i.e. freely for a class
of diagrams, and then compare these ‘virtual colimits’ with any that happen to exist.

It is important to note that a colimit has more structure than merely the disjoint
union of its individual parts, since it depends on the arrows of the diagramD as well as
the objects. Thus the specification for a colimit object of the morphisms which define
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it can be thought of as a ‘subdivision’ of the colimit object. That is why the notion is
of importance in local-to-global questions.

We now give a more formal definition. First note that it is convenient to consider
not a diagramD but a small category, say D. This category can be obtained fromD as
the free category on the graph D factored out by relations given by the commutative
cells of D. So we consider a colimit in C as defined by a functor T W D ! C. The
colimit of T , if it exists, is an object of C, say L, but it is convenient to think of this
as a constant functor NL W D ! C; the relation between T and NL is defined to be a
natural transformation ˛ W T ) NL, called the cocone. The condition of being a natural
transformation encompasses the commutativity condition (c) above: thus ˛ gives for
each morphism f W x ! y of D a commutative diagram

T x

˛x ::=========
Tf �� Ty

˛y�����������

NLx D NLy D L:
Now we give our definition, in which we drop the bar on NL:

Definition A.4.3. Let D be a small category and let T W D ! C be a functor to a
category C. A colimit colim T of T is a natural transformation ˛ W T ) L to a
constant functor, which is universal for natural transformations to constant functors:
that is, if � W T ) L0 is a natural transformation to a constant functor L0, then there is
a unique natural transformation  W L) L0 such that  B ˛ D � . (Note that a natural
transformation between constant functors to C reduces to a morphism of C between
their values.) If a colimit of T exists then it is unique up to natural equivalence, and is
written colim T ; it is thought of either as a constant functor to C or as an object of C
and it always comes with its universal cocone T ) colim T . Sometimes the colimit
is written as colimx T .x/ where x ranges over the objects of D; this is useful but is an
abuse of language since the morphisms of D are crucial to the definition.

Example A.4.4. (i) A special case is the coproduct. In this case, D is the discrete
category on a set of objects.

(ii) Another example is the pushout: here the diagram D has three objects, say 0,
1 and 2, and two arrows from 0, namely 0! 1, 0! 2.

(iii) Another example is the coequaliser: here the diagramD has two objects say 1
and 2 and two arrows 1 � 2.

Definition A.4.5. A category C is said to be cocomplete, or admits colimits, if the
colimit exists for any small category D and any functor T W D ! C . Coproducts
(coequalisers) are special cases of colimits, and if these exist we say that C admits
coproducts (resp. coequalisers).

The next proposition states that colimits may be constructed from coproducts and
coequalisers.
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Proposition A.4.6. The category C is cocomplete if and only if it admits coproducts
and coequalisers.

Proof. We refer the reader to one of [Hig71], [ML71], [AHS06], or to web pages on
limits and colimits in category theory.

In a similar spirit, we define limits of a functor.

Definition A.4.7. Let D be a small category, and T W D! C a functor. A limit of T is
a constant functor L W D! C and a natural transformation " W L) T (called the cone
on T ) with the universal property: for any natural transformation � W L0 ) T from a
constant functorL0 to T , there exists a unique natural transformation  W L0 ) L such
that " B  D �. Then L is also written L D lim T D limx T .x/.

A.5 Generating objects and dense subcategories

In the category of groups the infinite cyclic group C1 plays a key role. This suggests
the following definition.

Definition A.5.1. A set S of objects in a category C is said to be generating C if for
all pairs of morphisms f; g W x ! y on objects of C, f D g if and only if f h D gh

for all z 2 S and morphisms h W z ! x in C.

ExampleA.5.2. In the category Set of sets, any singleton is a generator. In the category
Groups of groups the infinite cyclic group C1 is a generator. In the category Gpds
of groupoids the unit interval groupoid � is a generator. Note that in these examples
the generator identifies the elements of a group (or a groupoid in the second case), but
gives no further structural information. This leads to our next definition.

Definition A.5.3. An inclusion K W D ! C of a subcategory of a category is called
dense in C if D is small and for all objects x; y of C the canonical function

CAT.C.K.�/; x/;C.K.�/; y/! C.x; y/ (A.5.1)

is a bijection.

Remark A.5.4. The meaning of this is that we can recover the morphisms x ! y in
C from information on the way the dense subcategory maps to x and y. Note that a
universal property is defined by relating to all objects of a category: the advantage of
a dense subcategory is that in principle, and for some purposes, we need look only at
the objects of that dense subcategory.254

Example A.5.5. The full subcategory of Groups on the object F fx; yg, the free group
on the elements x, y, is dense in the category of groups. The essential part of the
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argument is to show that if G, H are groups, then a function h W G ! H is a mor-
phism of groups if and only if hg W F fx; yg ! H is a morphism for every morphism
g W F fx; yg ! G of groups. The proof of this is a nice little exercise, as is working
out the analogous example for groupoids.

A.6 Adjoint functors

The notion of a pair of adjoint functors has proved a common and fruitful concept, both
for its relation to universal properties, and also for its relation to preservation of limits
and colimits.255

Definition A.6.1. To define this concept we consider two categories C and D and two
functors F W C ! D and G W D ! C. We say that F is left adjoint of G, which is
sometimes written F a G, (or that G is right adjoint of F ) if there is an adjunction
between them, i.e. a natural equivalence

 W D.F.�/;�/ Š C.�; G.�//: �
Note that D.F.�/;�/ is a functor of two variables, contravariant in the first and

covariant in the second. We clarify exactly what naturality means for .
Thus we require that  gives a map

 W Ob C � Ob D! Set

such that for any x 2 Ob C and y 2 Ob D, the map

.x; y/ W D.F.x/; y/! C.x;G.y//

is a bijection which is natural in both x and y, i.e. for any f 2 C.x; x0/ the diagram

D.F.x/; y/
�.x;y/ �� C.x;G.y//

D.F.x0/; y/
�.x0;y/

��

F.f /�

--

C.x0; G.y//

f �

--

commutes, and for any g 2 D.y; y0/ the diagram

D.F.x/; y/
�.x;y/ ��

g�

��

C.x;G.y//

G.g/�

��
D.F.x/; y0/

�.x;y0/

�� C.x;G.y0//

(�)

also commutes.
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Example A.6.2. There are many examples of adjoint pairs coming from algebra and
topology:256

(i) Free constructions, such as free group, free R-module, free groupoid over a
directed graph, etc, are usually left adjoint of the corresponding forgetful functors
(but we have offended against this by the abuse of language in referring to a free
crossed complex in Section 7.3);

(ii) The functor Ob W Gpds ! Set has a left adjoint the discrete groupoid on a set,
and a right adjoint the indiscrete (or tree) groupoid on the set.

(iii) the field of quotients of an integral domain is left adjoint to the inclusion of the
category of fields in that of integral domains;

(iv) the completion of a metric space is left adjoint to the inclusion of the category
of complete metric spaces in that of metric spaces;

(v) the abelianisation of a group is left adjoint to the inclusion of the category of
abelian groups in that of groups.

(vi) there are two possible generalisations for the abelianisation of groupoids (see
Section A.8) and both are left adjoints to the inclusion of a category in Gpds.

(vii) Another important class of examples comes from exponential laws (see App-
endix C). Thus for a crossed complex C the functor �˝ C is left adjoint to the
functor CRS.C;�/ (see Equation (9.3.1)).

We now consider some functors that are associated to any adjunction and, under
some conditions, determine it. The first construction is the unit of the adjunction, a
natural transformation

	 W 1C ) GF

defined by: for any x 2 Ob C, 	.x/ W x ! GF.x/ is .1F.x//. It is easy to prove
naturality. Moreover the unit is universal in the following sense:

Proposition A.6.3. For any x 2 Ob C, 	.x/ is universal with respect to G, i.e. for
any morphism h W x ! G.y/ there is a unique morphism h0 W F.x/! y such that the
diagram

x
�.x/ ��

h

��

GF.x/

G.h0/

UULLLLLLLLLLLL

G.y/

commutes.
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Proof. We consider the following special case of the naturality diagram .�/, with
k W F.x/! y:

D.F.x/; F.x//
�.x;F .x// ��

k�

��

C.x;GF.x//

G.k/�

��
D.F.x/; y/

�.x;y/
�� C.x;G.y//.

Since  is an isomorphism, and .1F.x// D 	.x/, we deduce that k	.x/ D h if and
only if .k/ D h.

It is easy to see that we can recover the adjunction  from its unit 	 since, for any
x 2 Ob C, y 2 Ob D, a 2 D.F.x/; y/, �1.x; y/.a/ is 	.x/G.a/.

There is an analogous dual result. The counit of the adjoint pair is a natural trans-
formation

" W FG ) 1D

For any y 2 Ob D, ".y/ W FG.y/ ! y is 1G.y/. It is easy to prove naturality.
Moreover the counit is universal in the following sense:

Proposition A.6.4. For any y 2 Ob D, ".y/ is universal with respect to F , i.e. for
any morphism h W F.x/ ! y there is a unique morphism h0 W G.y/ ! x so that the
diagram

FG.y/
F.h0/ ��

".y/

��

F.x/

h

UULLLLLLLLLLLLL

y

commutes.

It is easy to see that we can recover the adjunction  from its counit " since
.x; y/.f / is ".y/F.f / for any x 2 Ob C, y 2 Ob D and f 2 C.x;G.y//.

A.7 Adjoint functors, limits and colimits

One of the most useful results about adjoint functors in this section is Theorem A.7.5
on preservation of limits and colimits. The result is especially important for this book
because of our emphasis on the use of colimits for some calculations of homotopy
invariants.

In order to obtain this main result on adjoint functors, we need a preliminary Propo-
sition A.7.3 for which the understanding of the language is helped by simple examples,
which you should verify for yourself.
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Example A.7.1. Let i1 W x1 ! y, i2 W x2 ! y be morphisms in a category C. Then
these determine y as the coproduct in C of x1, x2 if and only if for all objects z of C
the map

C.y; z/ Š C.x1; z/ � C.x2; z/

given by f 7! .f i1; f i2/ is a bijection.

Example A.7.2. Let
x0 ��

��

x1

��
x2 �� y

be a commutative square of morphisms in a category C. Then this diagram is a pushout
if and only if for all objects z of C the induced square

C.y; z/ ��

��

C.x1; z/

��
C.x2; z/ �� C.x0; z/

is a pullback of sets.

The following proposition in essence gives a restatement of the universal property
for limits and colimits, and you should prove it yourself.

Proposition A.7.3. Let A, C be categories such that A is small, and let T W A! C be
a functor.

(i) A natural transformation � W T ! X where X is a constant functor A ! C
makes X Š colim T if and only if for all x 2 C the induced natural transformation

�� W C.X; x/! C.T .�/; x/
makes

C.X; x/ Š lim C.T .�/; x/:
(ii) A natural transformation � W X ! T where X is a constant functor A ! C

makes X Š lim T if and only if for all x 2 C the induced natural transformation

�� W C.x; T .�//! C.x;X/

makes
C.x;X/ Š lim C.x; T .�//:

Remark A.7.4. This proposition is often stated simply as giving natural bijections

C.colim T; x/ Š lim C.T; x/; C.x; lim T / Š lim C.x; T /: �
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Theorem A.7.5. Let  W D.F.�/;�/ Š C.�; G.�// be an adjunction between the
functors F W C! D, G W D! C. Then F preserves colimits, and G preserves limits.

Proof. We first prove F preserves colimits. Let X be a small category and T W X! C
a functor. We use the following set of natural equivalences for y 2 D:

D.F colim T; y/ Š C.colim T;Gy/ by adjointness

Š lim C.T;Gy/ by Proposition A.7.3 (i)

Š lim D.F T; y/ by adjointness

Š D.colimF T; y/ by Proposition A.7.3 (i):

By the representability Proposition A.2.3, there is a natural isomorphism F colim T Š
colimF T .

A similar argument, using D.y; lim S/ Š lim D.y; S/, proves that G preserves
limits.

Remark A.7.6. This result is very useful in quite basic constructions in topology and
algebra. For example, it is standard that the forgetful functor U W Top ! Set giving
the underlying set of a topological space has left and right adjoints, given respectively
by the discrete, and the indiscrete topologies on a set. Hence the underlying set of
the product of topological spaces is the product of the underlying sets. The property
we want of the product of spaces is the universal property, since this enables one to
construct continuous functions into the product. Thus the categorical approach is not
a luxury but a practical tool.

Again, when we have an hierarchical mathematical structure, we can often use
Theorem A.7.5 to calculate limits and colimits at a given level in terms of those of
lower levels, provided the relevant adjoint functors exist.

A.8 Abelianisations of groupoids

We use at several points the well-known abelianisation of a group. This construction
gives a functor

ab W Groups! Ab

which is left adjoint to the inclusion of categories

Ab! Groups:

This fits with the following definition.

Definition A.8.1. A subcategory D of a category C is a reflexive subcategory (or re-
flective subcategory) if the inclusion D! C has a left adjoint.
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We define a groupoid G to be abelian if all its vertex groups are abelian groups.
The abelianisation of a groupoid G, which we write Gab, is obtained by quotienting
G with the normal subgroupoid generated by the commutators of all vertex groups.

This left adjoint to the inclusion of abelian groupoids into groupoids is applied
at several places in the book, from Chapter 7 onwards: in Chapter 7 it is used in
Proposition 7.1.8 and the definition of modulisation of a crossed module of groupoids;
in Definition 7.1.13 and the restriction functor in dimension 2 and many places in
Section 7.4 where we explain the construction of the derived chain complex rC of a
crossed complex C .

Nonetheless, once in this same Section 7.4, in Exercise 7.4.26, and later on in
Section 14.7, we use another kind of abelianisation that associates to each groupoid
not an abelian groupoid but an abelian group and a morphism � W G ! G

totab
which is

universal for morphisms to abelian groups. We call G totab the universal abelianisation
of the groupoid G.

Let Ab, Groups, Gpds denote respectively the categories of abelian groups, groups,
and groupoids. Each of the inclusions

Ab! Groups! Gpds (A.8.1)

has a left adjoint. That from groupoids to groups is called the universal group UG
of a groupoid G and is described in detail in [Hig71]and [Bro06], Section 8.1. In
particular, the universal group of a groupoid G is the free product of the universal
groups of the transitive components of G. Any transitive groupoid G may be written
in a non-canonical way as the free product G.a0/ � T of a vertex group G.a0/ and an
indiscrete or tree groupoid T .257 Then

UG Š G.a0/ � UT
and UT is the free group on the elements x W a0 ! a in T for all a 2 Ob.T /, a ¤ a0.

It follows that the universal abelianisationG totab is isomorphic to the usual abelian-
isation of the group UG and also that it is isomorphic to the direct sum of the G totab

i

over all components Gi of G. So for a transitive groupoid G with a0 2 ObG

G totab Š G.a0/ab ˚ F
where F is the free abelian group on the elements x W a0 ! a in T for all a 2 Ob.T /,
a ¤ a0, for T a wide tree subgroupoid of G.

A.9 Coends and ends

For this account we need the following notion, in which we assume C is a small
category.258
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DefinitionA.9.1. Let S; T W Cop�C! A be two functors. A dinatural transformation
from S to T , written ˛ W S ::�! T , is a function which to every object x of C associates
an morphism ˛.x/ W S.x; x/! T .x; x/ of A with the property that for every morphism
f W x ! y of C the following diagram commutes:

S.x; x/
˛x �� T .x; x/

T.1;f /

�����������

S.y; x/

S.f;1/
KKDDDDDDDDD

S.1;f /

��CCCCCCCCC
T .x; y/

S.y; y/
˛y

�� T .y; y/

T.f;1/

KKIIIIIIIII

(A.9.1)

Definition A.9.2. Let S W Cop � C ! A be a functor, and let a 2 Ob A. A dicocone
from S to a is a dinatural transformation ˛ W S ::�! Na where Na W Cop � C ! A is the
constant functor with value a.

Definition A.9.3. Let S W Cop � C! A be a functor, and let a 2 Ob A. We say a is a
coend of S and write

a D
Z C;x

S.x; x/

if there is a couniversal dicocone u W S ::�! Na. This means that if v W S ::�! Nb is any other
dicocone, then there is a unique morphism f W a! b in A such that Nf u D v.

The following proposition is easy to prove.

Proposition A.9.4. If a is a coend of S , and A admits coproducts then a is isomorphic
to the coequaliser of the diagramG

x;y2Ob C

S.x; y/
i

�
j

G
x2Ob C

S.x; x/

where i; j are induced by

S.f; 1x/ W S.y; x/! S.x; x/; S.1y ; f / W S.y; x/! S.y; y/

respectively for f 2 C.x; y/.

Dually we have the notion of end.

Definition A.9.5. Let S W Cop �C! A be a functor, and let a 2 Ob A. We say a is an
end of S and write

a D
Z

C;x
S.x; x/

if there is a universal dicone u W Na ::�! S . This means that is if v W Nb ::�! S is any other
dicone, then there is a unique morphism h W b ! a in A such that u Nh D v.
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The following proposition is easy to prove.

Proposition A.9.6. If b is an end of S , and A admits products then b is isomorphic to
the equaliser of the diagramY

x2Ob C

S.x; x/
i

�
j

Y
x;y2Ob C

S.x; y/

where i; j are induced by

S.f; 1x/ W S.y; y/! S.x; y/; S.1x; f / W S.x; x/! S.x; y/

respectively for f 2 C.x; y/.

Example A.9.7. Let F;G W C ! A be functors. Then the set CAT.F;G/ of natural
transformations F ) G can be described as the endZ

C;x
C.F.x/;G.x//:

Example A.9.8. Both the geometric realisation of a cubical set K studied in Sec-
tion 11.1.iii and the two geometric realisations of simplicial sets described in the next
section are nice examples of coends.

Remark A.9.9. The interplay between ends, coends and morphism sets is well shown
in the proof of Proposition 11.4.9 on the adjointness of the functors… and N between
Cub and Crs.

A.10 Simplicial objects

The notion of simplicial object is fundamental in homology theory and in algebraic
topology. Here we state some standard definitions, partly to fix the notation, and refer
the reader to other texts and downloadable material for more information.

Definition A.10.1. A simplicial object in a category C is a family K D fKngn>0 of
objects of C together with face operations @i W Kn ! Kn�1 for n > 1 and degeneracy
operations "i W Kn ! KnC1 for i D 0; : : : ; n and n > 0, satisfying the usual simplicial
relations.

@i@j D @j�1@i if i < j;

"i"j D "jC1"i if i 6 j;

@i"j D

8̂<̂
:
"j�1@i if i < j;

1 if i D j; j C 1;
"j @i�1 if i > j C 1:
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It is standard to consider K also as a functor K W �op ! C, where � is the category
called the simplicial site: its objects are the sets

Œn� D f0; 1; : : : ; ng
for all n > 0 and the morphisms Œm�! Œn� are the nondecreasing maps. The category
of simplicial sets, i.e. when C D Set, is written Simp.259

Example A.10.2. The standard example is the singular simplicial set S�X of a topo-
logical space X , which in dimension n is the set of continuous maps �n ! X .

We shall also need the notion of simplicial set without degeneracies, namely a
functor U W ‡op ! Set where ‡ is the wide subcategory of � consisting of injective,
and so strictly increasing, maps. Clearly any simplicial set K determines by means of
the inclusion i W ‡op ! �op a simplicial set without degeneracies, K B i , which we
shall call a presimplicial set.260 The category of presimplicial sets is written ‡ -Set.

A cosimplicial object in a category C is a functor � ! C. As an example, the
Yoneda Lemma implies that the functor� W �! Simp whose value on Œn� is the functor
�Œn� D �.�; Œn�/ gives a full embedding such that any object of Simp is a colimit of
objects from the image of �. The standard geometric simplex may be realized as the
set of points .x1; : : : ; xnC1/ in RnC1 satisfying

xi > 0; and x1 C � � � C xnC1 D 1;
or alternatively, as is convenient for some purposes, such as products, as the set of
points .x1; : : : ; xn/ in Rn such that

0 6 x1 6 x2 6 � � � 6 xn 6 1:

This may be given as a cosimplicial space � W �! Top.
There is a geometric realisation functor on simplicial sets

j j W Simp! Top

given as a coend

jKj D
Z �;n

Kn ��n:
This is a CW-complex with one cell for each nondegenerate element ofK. In particular,
we note that j�Œn�j D �n. It follows that j�Œn�j is contractible.

A very convenient feature of simplicial sets is that the geometric realisation functor
behaves well with respect to products: if K, L are simplicial sets, there is a natural
homeomorphism

jK � Lj Š jKj � jLj;
where � denotes the categorical product in their respective categories.
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There is also a geometric realisation functor on presimplicial sets

k kW ‡ -Set! Top

given as a coend

kU k D
Z ‡;n

Un ��n;
which is a CW-complex with one cell for each element of U . Hence a simplicial setK
has also thick geometric realisation, namely kK B ik, which is also written kKk, and
which is the geometric realisation of the corresponding presimplicial set.

One of the problems with presimplicial sets is that while there is an n-simplex
presimplicial set which we write ‡Œn� D ‡.�; Œn�/, the presimplicial set U � ‡Œ1�
using the cartesian product does not give a useful model for homotopies.261 However
let f and g be two morphisms U ! V of ‡ -Set, and suppose there exists, for every
p and every i 6 p, functions ki W Up ! VpC1 verifying the following equalities:

@ikj D
´
kj�1@i if i < j;

kj @i�1 if i > j C 1;
@iC1kiC1 D @iC1ki ;

@0k0 D gp;
@pC1kp D fp:

These equalities ensure that the ki for all i , p fit together as if they were a subdivision
of a cylinder.

Lemma A.10.3. The two maps kf k and kgkW kU k ! kV k are homotopic.

Proof. The proof is by induction on the skeleta and passing to the colimit.

We apply the lemma to the following situation. Let U D V D ‡Œn�, and if
 W Œp�! Œq� is an element of ‡Œn�p we put

ki ./.j / D
´
0 if j 6 i;

.j � 1/ if j > i:

Then ki ./ 2 ‡Œn�pC1 and it is easy to show that the aforesaid relations hold if one
takes g D id and f being defined by f ./.j / D 0 for all j . By the lemma, this
shows that k�Œn� k and k�Œ0� k have the same homotopy type. To show that k�Œn� k
is contractible it suffices therefore to prove the case n D 0.

Now ‡Œ0� contains only one simplex in each degree and its geometric realisation
is a CW-complex V with only one cell in each dimension. One sees easily that the
skeleta of V are V0 D �, a point, V1 D S1, V2 ' � since the attaching maps of the
2-cell is homotopic to the identity id W S1 ! S1. Then one convinces oneself that the
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even skeleta have the homotopy type of a point, and the odd skeleta the homotopy type
of a sphere, more precisely, V2pC1 ' S2pC1. So V is contractible. One can also give
explicitly a homotopy which shows directly that k‡Œ0� k retracts by deformation to a
point.

Simplicial sets also play an important role in the theory of model categories for
homotopy theory, see for example [Hir03], [Mal05].

A.10.i Crossed complexes, !-groupoids and simplicial sets

A simplicial version of !-groupoids was developed by Keith Dakin, [Dak77], and
Nick Ashley, [Ash88], in their Bangor doctoral theses, using the notion of simplicial
T -complex. However an explicit description of the tensor product of simplicial T -
complexes, equivalent to that for crossed complexes, is unknown, and simplicial sets
have not had formulated notions of multiple compositions, analogous to those we have
given for cubical sets.

Nonetheless, simplicial sets play an important role in discussing nerves of categories
and in formulating notions of weak !-categories, see for example [Ver08b], [JT07].

The geometric realisations of simplicial or presimplicial sets are CW-complexes and
so have skeletal filtrations. In particular the skeletal filtration of jKj for a simplicial
set K is written jKj�. So the fundamental crossed complex functor defines a functor
Simp! Crs, also written…. We have evaluated….�n�/ as a crossed complex a�n in
Theorem 9.9.4, which gives the Homotopy Addition Lemma for a simplex. Thus for
a simplicial set K the crossed complex …K is freely generated by the nondegenerate
simplices of K with boundary given by the Homotopy Addition Lemma.

Notes

250 p. 555 The greatest contributions to the advance of category theory, and indeed
of mathematics in the 20th century, have been made by Alexander Grothendieck.
Although he apparently retired from mathematical contacts in 1970, he continued to
write and advance his thoughts, and in the period 1982–1991 made these thoughts
available to a number of people who have distributed and developed them, see for
example [GroPS1], [GroPS2], [Gro89]. As an example of his attitude we give the
following quotation from a letter to Ronnie Brown dated 12/04/1983:

The question you raise “how can such a formulation lead to computations”
doesn’t bother me in the least! Throughout my whole life as a mathemati-
cian, the possibility of making explicit, elegant computations has always
come out by itself, as a byproduct of a thorough conceptual understanding
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of what was going on. Thus I never bothered about whether what would
come out would be suitable for this or that, but just tried to understand –
and it always turned out that understanding was all that mattered.

For an elementary discussion of the role of category theory, see [BP06].

251 p. 556 The reader should turn to other sources such as books or the web for a
discussion of the distinction between classes and sets.

252 p. 557 J. H. C. Whitehead once remarked in a seminar in response to a statement
that ‘The proof is trivial.’: ‘It is the snobbery of the young to suppose that a
theorem is trivial because the proof is trivial!’

253 p. 561 Such an account of colimits in system theory is developed in [EV08]. See
also [BP03]; our account of colimits is a modification of that in this paper.

254 p. 563 For more discussion on this notion and relation to the Yoneda embedding,
see [Pra09].

255 p. 564 This concept was defined by Kan in [Kan58a] and has proved a central
concept of category theory and its applications. In particular, it gave further
background to the notion of universal property, and has even allowed a strong
generalisation of Galois Theory, see [BJ01].

256 p. 565 For examples of adjoint functors, in fact exponential laws, in analysis see
[KM97].

257 p. 569 This classification of transitive groupoids has been used to suggest that
‘groupoids reduce to groups’; but this is analogous to suggesting that vector spaces
reduce to numbers!

258 p. 569 This brief introduction could be supplemented by accounts in [ML71] and
other category theory books, and include the discussion on the ncatlab.

259 p. 572 There is a large literature on simplicial objects and simplicial sets: see for
example [ML63], [May67], [GZ67], [ML71], [GJ99], [Ina97]. There is also much
downloadable material. Simplicial sets also play an important role in the theory
of model categories for homotopy theory, see for example [Hir03], [Mal05].

260 p. 572 The term�-set is used in [RS71] for what we call an presimplicial set. The
problem is that the symbol � is overused.

261 p. 573 The following argument is due to M. Zisman (private communication, 2009),
and we are grateful for this information. There is further discussion of a different
monoidal structure for their �-sets (our presimplicial sets) in [RS71]. They also
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discuss the relation between the normalised and unnormalised realisations, but state
only that the natural map induces isomorphisms of homology and of fundamental
groups. The normalisation theorem was also proved directly in [BS07], following
an analogue of the proof for chain complexes in [ML63]. Our presimplicial sets
have also been called presimplicial sets.
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Fibred and cofibred categories

B.1 Fibrations of categories

The notion of fibration of categories is intended to give a general background to con-
structions analogous to pullback by a morphism. It seems to be a very useful notion for
dealing with hierarchical structures. A functor which forgets the top level of structure
is often usefully seen as a fibration or cofibration of categories.

Definition B.1.1. Let ˆ W C! B be a functor. A morphism  W Y ! X in C is called
cartesian over u D ˆ./, or simply cartesian, if and only if for all v W K ! J in B and
� W Z ! X with ˆ.�/ D uv there is a unique morphism  W Z ! Y with ˆ. / D v
and � D  .262

This is illustrated by the following diagram:

Z
 

��

�

::
Y

�
�� X

ˆ

��
K v

��

uv

::
J u

�� I

It is straightforward to check that cartesian morphisms are closed under composi-
tion, and that  is an isomorphism if and only if  is a cartesian morphism over an
isomorphism.

A morphism ˛ W Z ! Y is called vertical (with respect to ˆ) if and only if ˆ.˛/
is an identity morphism in B. We use a special notation here and for I 2 Ob B write
CI , called the fibre over I , for the subcategory of C consisting of those morphisms ˛
with ˆ.˛/ D 1I . Thus X 2 Ob CI if and only if ˆ.X/ D I .

Definition B.1.2. The functorˆ W C! B is a fibration or category fibred over B if and
only if for all u W J ! I in B andX 2 Ob CI there is a cartesian morphism  W Y ! X

over u: such a  is called a cartesian lifting of X along u.

Notice that cartesian liftings of X 2 CI along u W J ! I are unique up to vertical
isomorphism: if  W Y ! X and 0 W Y 0 ! X are cartesian over u, then there exist
vertical morphisms ˛ W Y 0 ! Y and ˇ W Y ! Y 0 with ˛ D 0 and 0ˇ D 

respectively, from which it follows by cartesianness of  and 0 that ˛ˇ D 1Y and
ˇ˛ D 1Z as 0ˇ˛ D ˛ D 0 D  1Y and similarly ˇ˛ D 1Y .
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Example B.1.3. The forgetful functor, Ob W Gpds! Set, from the category of group-
oids to the category of sets is a fibration. We can for a groupoidG over I and function
u W J ! I define the cartesian lifting  W H ! G as follows: for j; j 0 2 J set

H.j; j 0/ D f.j; g; j 0/ j g 2 G.uj; uj 0/g
with composition

.j1; g1; j
0
1/.j; g; j

0/ D .j1; g1g; j 0/;

with  given by .j; g; j 0/ D g. The universal property is easily verified. The
groupoid H is usually called the pullback of G by u and denoted u�G. This is a
well-known construction (see for example [Mac05], §2.3, where the pullback by u is
written u##/.

Definition B.1.4. Ifˆ W C! B is a fibration, then using the axiom of choice for classes
we may select for every u W J ! I in B and X 2 CI a cartesian lifting of X along u

uX W u�X ! X:

Such a choice of cartesian liftings is called a cleavage or splitting of ˆ.263

If we fix the morphism u W J ! I in B, the splitting gives a so-called reindexing
functor

u� W CI ! CJ

defined on objects by X 7! u�X and the image of a morphism ˛ W X ! Y is u�˛ the
unique vertical morphism commuting the diagram:

u�X uX
��

u�˛

��H
H
H
H X

˛

��
u�Y

uY

�� Y

We can use this reindexing functor to get an adjoint situation for each u W J ! I

in B.

Proposition B.1.5. Suppose ˆ W C ! B is a fibration of categories, u W J ! I in B,
and a reindexing functor u� W CI ! CJ is chosen. Then there is a bijection

CJ .Y; u
�X/ Š Cu.Y;X/

natural in Y 2 CJ ,X 2 CI where Cu.Y;X/ consists of those morphisms ˛ 2 C.Y;X/
with ˆ.˛/ D u.

Proof. This is just a restatement of the universal properties concerned.
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In general for composable maps u W J ! I and v W K ! J in B it does not hold
that

v�u� D .uv/�
as may be seen with the fibration of Example B.1.3. Nevertheless there is a natural
equivalence cu;v W v�u� ' .uv/� as shown in the following diagram in which the full
arrows are cartesian and where .cu;v/X is the unique vertical morphism making the
diagram commute:

v�u�X

.cu;v/X Š
��H
H
H
H

vu�X
�� u�X

uX

��
.uv/�X

.uv/X
�� X .

Let us consider this phenomenon for our main examples:

Example B.1.6. 1. Typically, for ˆB D @1 W B2 ! B, the fundamental fibration for a
category with pullbacks, we do not know how to choose pullbacks in a functorial way.

2. In considering the functor Ob W Gpds! Set form groupoids to sets as a fibration,
ifu W J ! I is a map, we have a reindexing functor, the pullbacku� W GpdsI ! GpdsJ
of Example B.1.3. We notice that v�u�G is naturally isomorphic to, but not identical
to, .uv/�G.

A result which aids understanding of our calculation of pushouts and some other
colimits of groupoids, modules, crossed complexes and higher categories is the foll-
owing. Recall that a category C is connected if for any c; c0 2 ObC there is a sequence
of objects c0 D c, c1; : : : ; cn�1; cn D c0 such that for each i D 0; : : : ; n � 1 there is a
morphism ci ! ciC1 or ciC1 ! ci in C. The sequence of morphisms arising in this
way is called a zig-zag from c to c0 of length n.

Theorem B.1.7. Let ˆ W C ! B be a fibration and let J 2 Ob B. Then the inclusion
iJ W CJ ! C preserves colimits of connected diagrams.

Proof. This result is proved in the paper [BS09]. We include here a short proof due
to G. Janelidze in the case of most interest to us, when ˆ has a right adjoint and C is
cocomplete.

Let j W CJ ! C be the inclusion. Let T be a functor from a small connected
category S to CJ . Then ĵT is the constant functor with value fJ; 1J g. Since S is
connected this implies that colim ĵT D J . Since C is cocomplete, colim jT exists.
Sinceˆ has a right adjoint, it preserves colimits; and soˆ.colim jT / D colimˆT D
J . So colim jT is also in CJ and therefore is colim T .

Remark B.1.8. The connectedness assumption is essential in the theorem. Any small
category C is the disjoint union of its connected components. If T W S! C is a functor,
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and C has colimits, then colim T is the coproduct (in C) of the colim Ti where Ti is
the restriction of T to a component Si . But given two objects in the same fibre of
ˆ W C ! B, their coproduct in that fibre is in general not the same as their coproduct
in X. For example, the coproduct of two groups in the category of groups is the free
product of groups, while their coproduct as groupoids is their disjoint union.

Remark B.1.9. A common application of the theorem is that the inclusion CJ ! C
preserves pushouts. This is relevant to our applications of pushouts in Section B.3.
Pushouts are relevant to coproducts of crossed P -modules, see Proposition 4.3.1, are
used to construct free crossed modules as a special case of induced crossed modules,
as explained in Section 5.2, and to construct free crossed complexes as explained in
Section 7.3.

Exercise B.1.10. Letˆ W C! B be a fibration and let u W I ! J in B. Let morphisms
a� W X� ! X; � 2 ƒ in CI determine X as the coproduct in CI of the X�. Prove the
universal property: if f� W X� ! Y is a family of morphisms of C over u, then there is
a unique morphism f W X ! Y over u such that fa� D f� for all �. Extend this result
to colimits in CI rather then just coproducts. Discuss the application of this property
to coproducts of crossed P -modules.

Exercise B.1.11. Let ˆ W C ! B be a fibration and let u W I ! J be an morphism
of B. Let D be a small category and T W D ! C a functor with image in CI and let
	 W T ) X be a cocone in C such that:

(i) ˆ.	d/ D u for all d 2 Ob D;
(ii) 	 is couniversal for this property, i.e. if 	0 W T ) X 0 is any cocone in C such that

ˆ.	0d/ D u for all d 2 Ob D, then there is a unique morphism f W X ! X 0 in
CJ such that f 	 D 	0.

Prove that the following property holds: if further v W J ! K in B, and � W T ) Y is a
cocone in C such that ˆ.	d/ D vu for all d 2 Ob D, then there is a unique morphism
g W X ! Y over v such that g	 D � . Discuss the application of this property to
induced crossed modules.

B.2 Cofibrations of categories

We now give the duals of the above results.

Definition B.2.1. Let ˆ W C ! B be a functor. A morphism  W Z ! Y in C over
v W D ˆ. / is called cocartesian if and only if for all u W J ! I in B and � W Z ! X

withˆ.�/ D uv there is a unique morphism  W Y ! X withˆ./ D u and � D  .
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This is illustrated by the following diagram:

Z
 

��

�

::
Y

�
�� X

ˆ

��
K v

��

uv

::
J u

�� I

It is straightforward to check that cocartesian morphisms are closed under composi-
tion, and that W Z ! Y is an isomorphism if and only if is a cocartesian morphism
over an isomorphism.

Definition B.2.2. The functor ˆ W C ! B is a cofibration or category cofibred over
B if and only if for all v W K ! J in B and Z 2 CK there is a cocartesian morphism
 W Z ! Z0 over v: such a  is called a cocartesian lifting of Z along v.

The cocartesian liftings ofZ 2 CK along v W K ! J are also unique up to vertical
isomorphism.

Remark B.2.3. As in Definition B.1.4, if ˆ W C ! B is a cofibration, then using the
axiom of choice for classes we may select for every v W K ! J in B and Z 2 CK a
cocartesian lifting of Z along v

vZ W Z ! v�Z:

Under these conditions, the functor v� is commonly said to give the objects induced
by v. Examples of induced crossed modules of groups are developed in Chapter 5.

We now have the dual of Proposition B.1.5.

Proposition B.2.4. For a cofibration ˆ W C ! B, a choice of cocartesian liftings of
v W K ! J in B yields a functor v� W CK ! CJ , and an adjointness

CJ .v�Z; Y / Š Cv.Z; Y /

for all Y 2 CJ ; Z 2 CK .

We now state the dual of Theorem B.1.7.

Theorem B.2.5. Let ˆ W C! B be a category cofibred over B. Then the inclusion of
each fibre of ˆ into C preserves limits of connected diagrams.

Many of the examples we are interested in are both fibred and cofibred. For them
we have an adjoint situation.
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Proposition B.2.6. For a functorˆ W C! B which is both a fibration and cofibration,
and a morphism u W J ! I in B, a choice of cartesian and cocartesian liftings of u
gives an adjointness

CJ .Y; u
�X/ Š CI .u�Y;X/

for Y 2 CJ ; X 2 CI .

Remark B.2.7. There are interesting circumstances where u� has a right adjoint: this
is discussed in the case of the forgetful functor Top ! Set in [BB78], Section 5, and
is related to the ‘fundamental theorem of topos theory’, [Joh02], A2.3.

It is interesting to get a characterisation of the cofibration property for a functor
that already is a fibration. The following is a useful weakening of the condition for
cocartesian in the case of a fibration of categories.

Proposition B.2.8. Let ˆ W C ! B be a fibration of categories. Then  W Z ! Y in
C over v W K ! J in B is cocartesian if only if for all � 0 W Z ! X 0 over v there is a
unique morphism  0 W Y ! X 0 in CJ with � 0 D  0 .

Proof. The ‘only if’ part is trivial. So to prove ‘if’ we have to prove that for any
u W J ! I and � W Z ! X such that ˆ.�/ D uv, there exists a unique  W Y ! X

over u completing the diagram

Z
 

��

�

::
Y

�
�� X

ˆ

��
K v

�� J u
�� I .

Since ˆ is a fibration there is a cartesian morphism � W X 0 ! X over u. By the
cartesian property, there is a unique morphism � 0 W Z ! X 0 over v such that �� 0 D � ,
as in the diagram

Z
� 0

������

�

��
X 0

�
�� X .

Now, suppose  W Y ! X over u W J ! I satisfies  D � , as in the diagram

Z

� 0

��[
[

[
[

[  
��

�

��
Y

�
�� X

X 0.

�
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By the given property of  there is a unique morphism  0 W Y ! X 0 in CJ such
that  0 D � 0. By the cartesian property of �, there is a unique morphism 0 in CJ
such that �0 D . Then

� 0 D �� 0 D � D  D �0 :

By the cartesian property of �, and since  0 , 0 are over uv, we have  0 D 0 .
By the given property of , and since 0, 0 are in CJ , we have 0 D  0. So  D � 0,
and this proves uniqueness.

But we have already checked that � 0 D � , so we are done.

Corollary B.2.9. Let ˆ W C ! B be a fibration of categories and suppose that for
every morphism v W K ! J in B there is chosen a reindexing functor v� W CJ ! CK
and that each v� has a left adjoint. Then ˆ is a cofibration.

Proof. Proposition B.2.8 applies to show that the adjointness gives the lifting required
for the cocartesian property.

Remark B.2.10. Let ˆ W C ! B be fibred and cofibred, and let I be an object of B.
In general it is not true that the inclusion CI ! C preserves coproducts, as we have
already said. However if u W I ! J in B then u� W CI ! CJ has a right adjoint and so
preserves colimits and in particular preserves coproducts.

To end this section, we give a useful result on compositions.

Proposition B.2.11. The composition of fibrations (cofibrations), is also a fibration
(cofibration).

Proof. We leave this as an exercise.

B.3 Pushouts and cocartesian morphisms

Here is a small result which we use in Section 7.2.iii and Section B.4, as it applies
to many examples, such as the fibration Ob W Gpds ! Set. The functor D in the
following is thought of as ‘discrete’.

Proposition B.3.1. Let ˆ W C ! B be a functor that has a left adjoint D. Then for
eachK 2 Ob B,D.K/ is initial in CK . In fact if u W K ! J in B, then for anyX 2 CJ
there is a unique morphism "K W DK ! X over u.

Proof. This follows immediately from the adjoint relation Cu.DK;X/ Š B.K;ˆX/
for all X 2 Ob CJ .

Special cases of cocartesian morphisms are used in [Bro06], [Hig71], and in Chap-
ter 5 and Chapter 8, Section 8.3.iii. A construction which arises naturally from an
application of the Higher Homotopy Seifert–van Kampen, see Theorem 8.3.7, is given
a general setting as follows:
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Theorem B.3.2. Letˆ W C! B be a fibration of categories which has a left adjointD.
Suppose that C admits pushouts. Let v W K ! J be a morphism in B, and letZ 2 CK .
Then a cocartesian lifting  W Z ! Y of v is given precisely by the pushout in C:

D.K/

"K

��

D.v/ �� D.J /

"J

��
Z

 
�� Y

(�)

Proof. Suppose first that diagram .�/ is a pushout in C. Let u W J ! I in B and let
� W Z ! X satisfy ˆ.�/ D uv, so that ˆ.X/ D I . Let f W D.J /! X be the adjoint
of u W J ! ˆ.X/.

D.K/

"K

��

D.v/ �� D.J /

"J

��
f

���
��������������

Z

�
..+++++++++++++++++++

 �� Y
�

��
X

K v
�� J u

�� I

(��)

Then ˆ.fD.v// D uv D ˆ.�"K/ and so by Proposition B.3.1, fD.v/ D �"K .
The pushout property implies there is a unique  W Y ! X such that  D � and
"J D f . This last condition gives ˆ./ D u since u D ˆ.f / D ˆ."J / D
ˆ./1J D ˆ./.

For the converse, we suppose given f W D.J / ! X and � W Z ! X such that
�"K D fD.v/. Then ˆ.�/ D uv and so there is a cocartesian lifting  W Y ! X of
u. The additional condition "J D f is immediate by Proposition B.3.1.

Corollary B.3.3. Let ˆ W C ! B be a fibration which has a left adjoint and suppose
that C admits pushouts. Then ˆ is also a cofibration.

In view of the construction of hierarchical homotopical invariants as colimits from
the HHSvKT in Chapter 8, the following is worth recording, as a consequence of
Theorem B.1.7.264

Theorem B.3.4. Let ˆ W C! B be fibred and cofibred. Assume B;C and all fibres CI
are cocomplete. Let T W S ! C be a functor from a small connected category. Then
colim T may be calculated as follows:

(i) First calculate I D colim .ˆT /, with cocone � W ˆT ) I ;
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(ii) for eachX 2 Ob S choose cocartesian morphisms � 0.X/ W T .X/! F.X/, over
�.X/ where F.X/ 2 CI ;

(iii) make X 7! F.X/ into a functor F W S ! CI , so that � 0 becomes a natural
transformation � 0 W T ) F ;

(iv) form Y D colimF 2 CI with cocone � W F ) Y .

Then Y with �� 0 W T ) Y is colim T .

Proof. We first explain how to makeF into a functor by building in stages the following
diagram:

T .X/

�

..

T.f / ��&&&&&&&&&&
� 0.X/ �� F.X/

F.f /

��H
H
H

�.X/ �� Y

1

��

�
�� Z

ˆ

��

T .X 0/
� 0.X 0/

�� F.X 0/
�.X 0/

�� Y
� 0

�� Z

K
ˆT.f /

�� J
�.X 0/

�� I
1

�� I w
�� H

(B.3.1)

Let f W X ! X 0 be a morphism in S, K D ˆT.X/, J D ˆT.X 0/. By cocartesian-
ness of � 0.X/, there is a unique vertical morphism F.f / W F.X/ ! F.X 0/ such that
F.f /� 0.X/ D � 0.X 0/T .f /. It is easy to check, again using cocartesianness, that if
further g W X 0 ! X 00, then F.gf / D F.g/F.f /, and F.1/ D 1. So F is a functor
and the above diagram shows that � 0 becomes a natural transformation T ) F .

Let 	 W T ) Z be a natural transformation to a constant functorZ, and letˆ.Z/ D
H . Since I D colim .ˆT /, there is a unique morphism w W I ! H such that w� D
ˆ.	/.

By the cocartesian property of � 0, there is a natural transformation 	0 W F ) Z

such that 	0� 0 D 	.
Since Y is also a colimit in C of F , we obtain a morphism � W Y ! Z in C such

that �� D 	0. Then ��� 0 D 	0� 0 D 	.
Let � 0 W Y ! Z be another morphism such that � 0�� 0 D 	. Thenˆ.�/ D ˆ.� 0/ D

w, since I is a colimit. Again by cocartesianness, � 0� D ��. By the colimit property
of Y , � D � 0.

This with Theorem B.3.4 shows how to compute colimits of connected diagrams
in the examples we discuss in Sections B.4 to B.5, and in all of which a Seifert–van
Kampen type theorem is available giving colimits of algebraic data for some glued
topological data.

Corollary B.3.5. Let ˆ W C ! B be a functor satisfying the assumptions of Theo-
rem B.3.4. Then C is connected cocomplete, i.e. admits colimits of all connected
diagrams.
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B.4 Crossed squares and triad homotopy groups

In this section we give a brief sketch of the theory of triad homotopy groups, including
the exact sequence relating them to homotopical excision, and show that the third triad
group forms part of a crossed square which, as an algebraic structure with links over
several dimensions, in this case dimensions 1, 2, 3, fits our criteria for a HHSvKT.
Further, crossed squares model pointed weak homotopy 3-types. Finally we indicate
a bifibration from crossed squares, so leading to the notion of induced crossed square,
which is relevant to a triadic Hurewicz theorem in dimension 3.

A triad of spaces .X W A;BI x/ consists of a pointed space .X; x/ and two pointed
subspaces .A; x/; .B; x/. Then �n.X W A;BI x/ is defined for n > 2 as the set of
homotopy classes of maps

.I n W @�
1 I

n; @�
2 I

nIJ n�1
1;2 /! .X W A;BI x/

where J n�1
1;2 denotes the union of the faces of I n other than @�

1 I
n; @�

2 I
n. For n > 3

this set obtains a group structure, using the direction 3, say, and this group structure is
abelian for n > 4. Further there is an exact sequence

� � � ! �nC1.X W A;BI x/! �n.A; C; x/
"�! �n.X;B; x/! �n.X W A;BI x/! � � �

(B.4.1)
whereC D A\B , and " is the excision map. The main interest of these sets and groups
was that they measure the failure of excision. However they do not shed full light on
the Homotopical Excision Theorem 8.3.7: exact sequences contain less information
than colimits.265

The third triad homotopy group fits into a diagram of possibly nonabelian groups

….X IA;B; x/ W D
�3.X IA;B; x/

��

�� �2.B; C; x/

��
�2.A; C; x/ �� �1.C; x/

(B.4.2)

in which �1.C; x/ operates on the other groups and there is also a function

�2.A; C; x/ � �2.B; C; x/! �3.X W A;BI x/

known as the generalised Whitehead product.
This diagram has structure and properties which are known as those of a crossed

square, [GWL81], [Lod82], explained below, and so this gives a homotopical functor

… W .based triads/! .crossed squares/: (B.4.3)
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A crossed square is a commutative diagram of morphisms of groups

L

�0

��

� �� M

�

��
N 


�� P

(B.4.4)

together with right actions ofP onL,M ,N and a function h W M�N ! L satisfying a
number of axioms which we do not give in full here. Suffice it to say that the morphisms
in the square preserve the action of P , which acts on itself by conjugation; M , N act
on each other and on L via P ; �, �0, �, � and �� are crossed modules; and h satisfies
axioms reminiscent of commutator rules, summarised by saying it is a biderivation.
Morphisms of crossed squares are defined in the obvious way, giving a category XSq
of crossed squares.

Let XMod2 be the category of pairs of crossed modules � W M ! P , � W N !
P (with P and �; � variable), and with the obvious notion of morphism. There is
a forgetful functor ˆ W XSq ! XMod2. This functor has a right adjoint F which
completes the pair � W M ! P; � W N ! P with L D M �P N and �, �0 given by
the projections and h W M �N ! L given by

h.m; n/ D .m�1mn; .n�1/mn/; m 2M; n 2 N
More interestingly, it has a left adjoint which to the above pair of crossed P -modules
yields the ‘universal crossed square’

M ˝N

��

�� N




��
M �

�� P

(B.4.5)

whereM ˝N , is the nonabelian tensor product of groups which act on each other (on
the right).266 This is the group generated by elementsm˝n,m 2M , n 2 N with the
relations

mm0 ˝ n D .m˝ n/m0

.m0 ˝ n/;
m˝ nn0 D .m˝ n0/.m˝ n/n0

for all m;m0 2M , n; n0 2 N , which may be expanded to

mm0 ˝ n D .m0�1mm0 ˝ nm0

/.m0 ˝ n/;
m˝ nn0 D .m˝ n0/.mn0 ˝ n0�1nn0/:

Thenˆ is a fibration of categories and also a cofibration. Thus we have a notion of
induced crossed square, which according to Proposition B.3.2 is given by a pushout



588 B Fibred and cofibred categories

of the form 

M ˝N N

M P

�
�
u 1
1 1

�
��

�
˛˝ˇ ˇ
˛ �

�
��


R˝ S S

R Q

�
�
v 1
1 1

�
��


L N

M P

�
�
ı ˇ
˛ �

� ��


T S

R Q

�
in the category of crossed squares, given morphisms

.˛; �/ W .M ! P /! .R! Q/; .ˇ; �/ W .N ! P /! .S ! Q/

of crossed modules.267

B.5 Groupoids bifibred over sets

We have already seen in Example B.1.3 that the functor Ob W Gpds! Set is a fibration.
It also has a left adjoint F assigning to a set I the discrete groupoid on I , and a right
adjoint assigning to a set I the indiscrete groupoid on I .

It follows from general theorems on algebraic theories that the category Gpds is
cocomplete, and in particular admits pushouts, and so it follows from previous results
that Ob W Gpds ! Set is also a cofibration. A construction of the cocartesian liftings
of u W I ! J for G a groupoid over I is given in terms of words, generalising the
construction of free groups and free products of groups, in [Hig71], [Bro06]. In these
references the cocartesian lifting ofu toG is called a universal morphism, and is written
u� W G ! Uu.G/. This construction is of interest as it yields a normal form for the
elements of Uu.G/, and hence u� is injective on the set of non-identity elements ofG.

A homotopical application of this cocartesian lifting is the following theorem on
the fundamental groupoid. It shows how identification of points of a discrete subset of
a space can lead to ‘identifications of the objects’ of the fundamental groupoid:

Theorem B.5.1. Let .X;A/ be a pair of spaces such thatA is discrete and the inclusion
A ! X is a closed cofibration. Let f W A ! B be a function to a discrete space B .
Then the induced morphism

�1.X;A/! �1.B [f X;B/
is the cocartesian lifting of f .

This theorem immediately gives the fundamental group of the circle S1 as the
infinite cyclic group C1, sinceS1 is obtained from the unit interval Œ0; 1� by identifying
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0 and 1. The theorem is a translation of [Bro06], 9.2.1, where the words ‘universal
morphism’ are used instead of ‘cocartesian lifting’. Section 8.2 of [Bro06] shows how
free groupoids on directed graphs are obtained by a generalisation of this example.

The calculation of colimits in a fibre GpdsI is similar to that in the category of
groups, since both categories are protomodular, [BB04]. Thus a colimit is calculated
as a quotient of a coproduct, where quotients are themselves obtained by factoring by
a normal subgroupoid. Quotients are discussed in [Hig71], [Bro06].

Theorem B.3.4 now shows how to compute general colimits of groupoids.
We refer again to [Hig71], [Bro06] for further developments and applications of

the algebra of groupoids. We generalise some aspects of the above to modules, crossed
modules and crossed complexes in Chapter 7.

The following sections cover some aspects of groupoid theory needed earlier.

B.6 Free groupoids

We explain the notion of free groupoid on a graph – this is used implicitly in com-
binatorial group theory, for example in paths in a Cayley graph, and is required for
combinatorial groupoid theory.268 We will exploit free groupoids in a later chapter,
when calculating crossed resolutions.

Definition B.6.1. By a graph � D .E.�/; V .�/; s; t/ we mean a set E.�/ of edges,
a set V.�/ of vertices and two functions s; t W E.�/ ! V.�/ called the source and
target maps.

A morphism f W � ! � 0 of graphs is a pair of functions

E.f / W E.�/! E.� 0/; V .f / W V.�/! V.� 0/

which commute with the source and target maps. This gives the category Grphs of
graphs.

Remark B.6.2. This is commonly called a directed graph, but we shall use only these.
Also we shall, in keeping with the terminology for categories and groupoids, use also
the term objects of the graph instead of vertices. As for groupoids, we write a W x ! y

if a is an edge and sa D x, ta D y, say a is from x to y, and we write �.x; y/ for the
set of edges from x to y in � .

Proposition B.6.3. The forgetful functor U W Gpds! Grphs which forgets about the
composition has a left adjoint, whose morphisms can be seen as paths in the graph.

Proof. We outline a proof and leave the details as an exercise.
Let 2 denote the graph with two vertices 0; 1 and one edge � W 0! 1. A given graph

� can be regarded as obtained from a disjoint union of copies of the graph 2 by an
appropriate identification of the vertices. The same identification for a similar disjoint
union of copies of the groupoid � gives the free groupoid F.�/ on � .
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Then F.�/.x; y/ can be seen as made up of classes of ‘paths’ from x to y in � ,
where such a path is a sequence of edges or a formal inverse of an edge, which are
composable, and which starts at x and ends at y. (See also Section 8.2 in [Bro06].)

Exercise B.6.4. Use various universal morphisms to construct and verify the properties
of a free groupoid on a directed graph. In particular give the universal property, and
show that the graph morphism � ! F.�/ is injective on vertices and on edges.

Exercise B.6.5. Formulate and discuss the notion of generating graph for a groupoid.

Problem B.6.6. A well-known result for a free group F on a finite set of n generators
is that if a subset B of F with n elements generates F , then it generates F freely. This
is a consequence of Grushko’s theorem. Could there be an analogous result for free
groupoids?

B.7 Covering morphisms of groupoids

For the convenience of readers, and to fix the notation, we recall here the basic facts
on covering morphisms of groupoids. Proofs can be found in the books [Bro06],
[Hig71].269 However we find it convenient to adopt different conventions, focussing
on costars rather than stars, which ensure that some of our formulae in Section 10.3.ii
work out in a nice way, see Equation (B.7.4).

Let G be a groupoid. For each object a0 of G the Costar of a0 in G, denoted by
CostG a0, is the union of the sets G.a; a0/ for all objects a of G, i.e.

CostG a0 D fg 2 G j tg D a0g:
A morphism p W zG ! G of groupoids is a covering morphism if for each object Qa of
zG the restriction of p

Cost zG Qa! CostG p Qa (B.7.1)

is bijective. In this case zG is called a covering groupoid of G. More generallyp is called
a fibration of groupoids if the restrictions of p to the Costars as in Equation (B.7.1) is
surjective.

A basic result for covering groupoids is unique path lifting. That is, let p W zG !
G be a covering morphism of groupoids, and let .g1; g2; : : : ; gn/ be a sequence of
composable elements of G. Let Qa 2 Ob. zG/ be such that p Qa is the target of gn. Then
there is a unique composable sequence . Qg1; Qg2; : : : ; Qgn/ of elements of zG such that Qgn
ends at Qa and p Qgi D gi ; i D 1; : : : ; n.

IfG is a groupoid, the slice category GpdsCov=G of coverings ofG has as objects
the covering morphisms p W H ! G and has as morphisms the commutative diagrams
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of morphisms of groupoids, where p and q are covering morphisms,

H
f ��

p
DDaaaaaaaa K

q
77^̂

^̂
^̂

^

K .

By a standard result on compositions and covering morphisms ([Bro06], 10.2.3),
f also is a covering morphism. It is convenient to write such a diagram as a triple
.f; p; q/. The composition in GpdsCov=G is then given as usual by

.g; q; r/.f; p; q/ D .gf; p; r/:
It is a standard result (see for example [Hig71] or [Bro70]) that the category

GpdsCov=G is equivalent to the category of operations of the groupoid G on sets.
We give the definitions and notations which we will use for this equivalence.

Recall we are writing composition of g W p ! q and h W q ! r in a groupoid as
gh W p ! r . This is the opposite of the notation for functions in the category Set;
the composite of a function f W X ! Y and g W Y ! Z is gf W X ! Z with value
.gf /.x/ D g.f .x//.270 Because of this ‘opposite’ nature of our conventions we have
to make the following definition.

Definition B.7.1. A left operation of a groupoidG on sets is a functorX W Gop ! Set.
If p 2 Ob.G/, g W p ! q in G, and x 2 X.p/, then X.g/.x/ 2 X.q/ may also be
written gx.

Thus if X W Gop ! Set is a functor, then zG D G Ë X has object set the disjoint
union of the setsX.p// forp 2 Ob.G/ and morphisms x ! y the pairs .g; x/ such that
x 2 X.tg/ and y D X.g/x; in operator notation: .g; x/ W gx ! x. The composition
is .g0; gx/.g; x/ D .g0g; x/. The projection morphism G ËX ! G, .g; x/ 7! g, is a
covering morphism.

This ‘semidirect product’ or ‘Grothendieck construction’ is fundamental for con-
structing covering morphisms to the groupoid G.271 For example, if a0 is an object
of the transitive groupoid G, and A is a subgroup of the object group G.a0/ then the
groupoid G operates on the family of cosets fgA j g 2 CostG a0g, by g0.gA/ D g0gA
whenever g0g is defined, and the associated covering morphism zG ! G defines the
covering groupoid zG of the groupoid G determined by the subgroup A. When A is
trivial this gives the universal cover at a0 of the groupoid G. In particular, this gives
the universal covering groupoid of a group, whose objects are the elements of G and
morphisms are pairs .g; h/ W gh ! h for all g; h 2 G. Then G operates on the right
of the universal cover by .g; h/k D .g; hk/. This operation preserves the map p and
is called a covering transformation.

Example B.7.2. Here is a simple example: the universal covering groupoid zK of the
Klein 4-groupK D C2 �C2 with elements say 1, a, b, ab. The group is generated by
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a, b with the relations a2, b2, aba�1b�1, which we write respectively r , s, t . Then zK
has the elements of K as vertices and a morphism .g; x/ W gx ! x for each g; x 2 K.
The covering morphism p W zK ! K is .g; x/ 7! g. In terms of the generators a, b we
obtain a diagram of zK as the left-hand diagram in the following picture:

b

.b;1/

//

(
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ff
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(
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.b;ba/

]]
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,
i
H j
(
O

.a;1/

``
==

g
H

"

SS

��

k

H

l
11 a

Note that for example .a; ab/ W b ! ab because a2 D 1. The right-hand diagram
illustrates a lift of the path b�1a�1ba in K to a path starting and ending at a in the
diagram of zK. You should draw the similar loops starting in turn at 1, b, ab. We show
in Section 10.3.ii that in the context of covering morphisms of crossed complexes these
four loops form boundaries of four ‘lifts’ of the relation t .

Example B.7.3. Given a morphism  W F ! G of groups, let q W yF ! F be the
pullback by  of the universal covering morphism p W zG ! G giving a commutative
diagram

yF
q

��

N� �� zG
p

��
F

�
�� G.

(B.7.2)

Note that a morphism in yF is a pair .u; .u; g// W .u/g ! g, u 2 F , g 2 G. Since
u determines u, we can write a morphism of yF as .u; g/ W .u/g ! g. Again, G
operates on the right of yF by .u; g/k D .u; gk/, k 2 G.

If X is a set of generators of the group G, we have an epimorphism  W F ! G

where F is the free group on the set X . Let yX be the graph q�1.X/ in yF . This is
called the Cayley graph of the set of generators X of G. Its vertices are the elements
ofG and the morphisms are pairs .x; g/ W .x/g ! g. For our particular example with
generators of the Klein group K this Cayley graph is often drawn in an abbreviated
form as

b

b

��

ab
a��

b

��
1 a.

a
��

(B.7.3)
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Exercise B.7.4. Carry out a similar analysis to the above for the universal cover of the
symmetric group S3, whose Cayley graph is drawn in Example 3.1.6.

The following is a key result.

Proposition B.7.5. Given the epimorphism  W F ! G where F D F.X/ is the free
group on the set X of generators of G, then yF is the free groupoid on the graph yX ,
whose morphisms can be written .x; g/ W .x/g ! g.

Proof. This is 10.8.1, Corollary 1, in [Bro06]. See also [Hig71], Theorem 8, p. 112.
The proofs use the solution of the word problem.

This construction is used in Section 10.3.ii for computing resolutions, and is also
relevant to Section 8.4, Exercise 7.4.26.

Remark B.7.6. The main reason for our choice of conventions on covering morphisms
is the following. Let G be a group and p W zG ! G its universal covering morphism.
Then G operates on the right of the groupoid zG by .g; h/k D .g; hk/, .g; h/ 2 zG,
k 2 G. Let e W G ! zG be the function g 7! .g; 1/ W g ! 1. Then one easily checks
that

e.gh/ D e.g/h e.h/:
Thus e is a (nonabelian) derivation.

Exercise B.7.7. In the circumstances of the last remark, prove that the composition

G
e�! zG ! zG totab

is isomorphic to the universal derivation G ! IG.

Exercise B.7.8. Also if  W F ! G is a morphism of groups and q W yF ! F is the
pullback of p W zG ! G by , thenG again operates on the groupoid yF and d W F ! yF
given by u 7! .u; 1/ satisfies

d.uv/ D d.u/�v d.v/; (B.7.4)

i.e. d is a (nonabelian) -derivation.

Remark B.7.9. It is also useful to note that in the situation of the last remark, if

.x1; g1/; .x2; g2/; : : : ; .xn; gn/

is a sequence of composable morphisms of yF , so that .xi /gi D gi�1; 1 < i 6 n, and
each xi or its inverse belongs to X , then their composite is .x1x2 : : : xn; gn/.
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B.8 Model categories for homotopy theory

The purpose of this section is to direct attention of the reader to the literature on
model categories, though we do not have the space here to expand on the homotopy
aspects of crossed complexes given in Chapters 9 and 11. We mention also the thesis
[Sau03], although we feel this has a gap in the proof that the model category of crossed
complexes is proper in the sense that a pushout of weak equivalences by a cofibration
is necessarily a weak equivalence. The article [BG89b] gives an account of a model
category structure for crossed complexes, and some of our account in Chapter 11 is
taken from this paper and from [BH91]. See also [AM11] for a relation of this structure
with a known structure on strict globular1-categories.

The general notion of model category for homotopy theory was necessitated by the
variety of situations in which the notion of homotopy arose, and so the need to obtain
one theory instead of several, as well as to be able to adapt homotopical methods to
new situations.

The initial reference for model categories was Quillen’s [Qui67]. Later references
are [Bau89], [Hov99], [DS95], [Hir03], [KP97]. The last reference is appropriate for
this book because of: its emphasis on starting with cylinder objects; it also relates
the subject to extension properties on cubical sets; it uses crossed complexes as an
example, and treats them in detail. The approach through cylinder objects also should
seem familiar if the notion of cofibration of topological spaces has been learned from
[Bro06]. A new approach to this area has developed ideas of Grothendieck in [Mal05],
[Cis06]. The article [Mal09] develops the theory for cubical sets with connections.

Books on model categories for homotopy such as Hovey’s deal with the model
category of chain complexes over a fixed ring say R. However the crossed complex
category is more analogous to the category of chain complexes of modules over variable
rings, and this case seems not to be well studied.

For our purposes the easy starting point is the notion of a category with a cylinder
object, of which specific examples are given earlier in terms of: topological spaces,
with cylinder I � X ; filtered spaces with cylinder I� ˝ X�; groupoids with cylinder
��G; crossed complexes with cylinder �˝C ; cubical sets with cylinder I˝K. It is
possible to develop homotopy theory in terms of a cofibration category with a cylinder
object, and from this to deduce notions of cofibration, fibration, and weak equivalence.
One then ends up with what is called a model category, which can be proved to satisfy
the following.

A ’model structure’ on a category C consists of three distinguished classes of mor-
phisms (equivalently subcategories): weak equivalences, fibrations, and cofibrations,
and two functorial factorisations .˛; ˇ/ and .�; ı/ subject to the following axioms. Note
that a fibration that is also a weak equivalence is called an acyclic (or trivial) fibration
and a cofibration that is also a weak equivalence is called an acyclic (or trivial) cofibra-
tion (or sometimes called an anodyne morphism). (Some authors find the term ‘trivial’
ambiguous and so prefer to use ‘acyclic’, and this is the modern trend.)
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Axioms

1. Retracts: each of the distinguished classes is closed under retracts.
2. 2 of 3: if f and g are maps in C such that f , g, and gf are defined and any two

of these are weak equivalences then so is the third.
3. Lifting: acyclic cofibrations have the left lifting property with respect to fi-

brations and cofibrations have the left lifting property with respect to acyclic
fibrations.

4. Factorization: for every morphism f in C, ˛.f / is a cofibration, ˇ.f / is an
acyclic fibration, �.f / is an acyclic cofibration, and ı.f / is a fibration.

A model category is a category that has a model structure and all (small) limits
and colimits, i.e. a complete and cocomplete category with a model structure. This
structure is not unique; in general there can be many model category structures on a
given category.

Examples. The category of topological spaces, Top, admits a standard model category
structure with the usual (Serre) fibrations and cofibrations and with weak equivalences
as weak homotopy equivalences. For the category of topological spaces, another such
structure is given by Hurewicz fibrations and cofibrations. Recall from [Bro06] that
a continuous map f W X ! Y of topological spaces has a factorisation through the
mapping cylinder M.f / of f ,

X
i�!M.f /

p�! Y;

and i is a cofibration, p is a homotopy equivalence. More work is needed to get a
factorisation of the type required by the axioms for a model category, and we do not
do that here.

Some constructions. Every closed model category has a terminal object by com-
pleteness and an initial object by cocompleteness, since these objects are the limit and
colimit, respectively, of the empty diagram. Given an object X in the model category,
if the unique map from the initial object to X is a cofibration, then X is said to be
cofibrant. Analogously, if the unique map from X to the terminal object is a fibration
then X is said to be fibrant.

If Z and X are objects of a model category such that Z is cofibrant and there is
a weak equivalence from Z to X then Z is said to be a cofibrant replacement for X .
Similarly, ifZ is fibrant and there is a weak equivalence fromX toZ thenZ is said to be
a fibrant replacement for X . In general, not all objects are fibrant or cofibrant, though
this is sometimes the case. For example, all objects are cofibrant in the standard model
category of simplicial sets and all objects are fibrant for the standard model category
structure given above for topological spaces.

Left homotopy is defined with respect to cylinder objects and right homotopy is
defined with respect to path objects. These notions of homotopy coincide when the
domain is cofibrant and the codomain is fibrant. In that case, homotopy defines an
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equivalence relation on the hom sets of the model category giving rise to homotopy
classes.

As an example of theorems which can be proved in a general model category we
mention:

Proposition B.8.1 (Whitehead’s theorem on homotopy equivalences). If a morphism
of cofibrant objects is a weak equivalence, then it is also a homotopy equivalence.

Remark B.8.2. Another good example is the abstract version of the gluing theorem
for homotopy equivalences, which was published first in [Bro68] in the case of spaces,
and is in [Bro06], (7.5.7). Several uses of this lemma are in [Koz08].

For further information, look also for model categories on the following web source:
the ncatlab http://ncatlab.org/nlab/show/HomePage.

Note also that the papers [BGPT97], [BGPT01] find that the theory of model cate-
gories is not a strong enough abstract homotopy theory for describing the equivariant
analogues of the results of Chapter 11 on spaces of maps to a classifying space. Instead
the basis needed in those papers is that of simplicially enriched categories and of ho-
motopy coherence, [CP97]. The reason for this is that the aim of model category theory
is to give a general basis for homotopy categories and their relationships, whereas in
many situations one wants also to study higher homotopies, i.e. homotopies, homo-
topies of homotopies, and so on, and for this one does not want to pass to the homotopy
category. The background here is that of higher dimensional algebra. See for example
[Lur09]. See also [Shu09] for a discussion of enriched categories and homotopy limits
and colimits.

Notes

262 p. 577 This notion of fibration was defined in [Gro68]. Further development was
in [Gir64], [Gra66]. This exposition is based on [Str99], which was strongly
influenced by notes of J. Benabou.

263 p. 578 Some writers define a fibration of categories so as to include a splitting, and
others, for example J. Benabou, have argued strongly against this.

264 p. 584 Some uses of colimit calculations in homotopy theory other than those in
this book are shown in [BL87], [BL87a], [ES87], [KFM08], [FM09], [EM10].

265 p. 586 The notion of 3-fold groupoid arises in this triadic situation as follows. Let
S be the space of maps f W I 2 ! X such that f maps the faces of I 2 in direction
1 in to A and those in direction 2 into B , and the vertices of I 2 to the base point
of X . Then the usual composition of squares gives S two compositions C1, C2.

http://ncatlab.org/nlab/show/HomePage
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However these compositions are not in general inherited by homotopy classes of
these maps. Let s0 be the constant map in S . Then of course G D �1.S; s0/ has
the structure of group. The remarkable fact is that the compositions C1, C2 are
inherited byG to give it the structure of 2-fold groupoid in the category of groups.
You are invited to prove this directly. The proof is given in [BL87], [Gil87] for
the n-fold case. These methods led to a triadic Hurewicz theorem, see [BL87a],
[Bro89]. For the use of crossed squares in some specific homotopy calculations
up to level 3 see [Bro92], [Ell93].

266 p. 587 This was defined in [BL87] (for left actions). A bibliography on the non-
abelian tensor product contains to date 114 items, see

http://www.bangor.ac.uk/r.brown/nonabtens.html

267 p. 588 The functor … is exploited in [BL87] for an HHSvKT implying some
calculations of the nonabelian group �3.X W A;BI x/. Earlier results had used ho-
mological methods to obtain some abelian values. The applications are developed
in [BL87a] for a triadic Hurewicz Theorem, and for the notion of free crossed
square, both based on ‘induced crossed squares’. Free crossed squares are ex-
ploited in [Ell93] for homotopy type calculations; see also [AU06]. In fact the
HHSvKT works in all dimensions and in the more general setting of n-cubes of
spaces, although not in a ‘many base point’ situation. For a recent application, see
[EM10]. Crossed squares also occur in considering the notion of homotopy 3-type,
and of automorphisms of crossed modules, see [BG89a], and the references there.

268 p. 589 For more details on free groupoids see [Hig71], [Bro06]. For a discussion on
categories of graphs, and the distinction between directed and undirected graphs,
see [BMSW08], and the references there.

269 p. 590 The earliest definition of covering morphism of groupoids seems to be
in [Smi51a], [Smi51b], where such a morphism is called a ‘regular’ morphism.
Generalisation of covering morphisms from groupoids to categories are seen in
[BN00], in terms of a unique factorisation lifting functor.

270 p. 591 It is possible to resolve this confusion by writing functions on the right of
their argument as .x/f . This ‘algebraist’s’ convention is followed successfully in
[Hig71], and contrasts with the usual ‘analyst’s’ convention.

271 p. 591 This so called ‘Grothendieck construction’ has also been developed by
C. Ehresmann in [Ehr57], in which he defines both an action of a category and
the associated ‘category of hypermorphisms’, and also what in the case of local
groupoids he calls the complete enlargement of a species of structures.



Appendix C

Closed categories

In Section 9.1 we have given an account of various exponential laws. Here we give a
sketch of some of the underlying categorical ideas.

In specialising to the category of groupoids, we get some indication of possible
notions of ‘higher order symmetry’.

C.1 Products of categories and coherence

Let Cat be the category of all small categories with morphisms being the functors.
This category is known to be complete and cocomplete. The product of categories is
constructed in for example [Bro06], Section 6.4, and has the universal property of a
product in a category.

Let C, D be categories. The product C�D is defined to have objects all pairs .x; y/
for x 2 Ob C, y 2 Ob D and to have as morphisms the pairs .f; g/, for f 2 C, g 2 D
– thus the set C � D is just the cartesian product of the two sets. Also, if f W x ! x0
in C, g W y ! y0 in D, then we take in C � D

.f; g/ W .x; y/! .x0; y0/:

The composition is defined as one would expect by

.f 0; g0/.f; g/ D .f 0f; g0g/

whenever f 0f , g0g are defined. It is very easy to show that C � D is a category.
Notice also that if f , g have inverses f �1, g�1 then .f; g/ has inverse .f �1; g�1/.

It follows that if C;D are both groupoids then so also is C � D.
Let p1 W C � D ! C, p2 W C � D ! D be the obvious projection functors. Then

we have the universal property: if F W E ! C, G W E ! D are functors then there is
a unique functor .F;G/ W E! C � D such that p1.F;G/ D F , p2.F;G/ D G. The
proof is easy and is left to the reader. As usual, this property characterises the product
up to isomorphism.

Note that this is how product is defined in elementary category theory. So, in an
interesting kind of self reference, we use category theory to discuss category theory
itself. This is partly because of the dual role of categories and groupoids in mathematics
– on the one hand for metamathematical considerations, and on the other as algebraic
objects in their own right.

LetF W C�D! E be a functor, where C, D, E are categories. If 1x is the identity at
x in C, then let us write F.x; g/ for F.1x; g/where g is any morphism in D. Similarly,
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let us write F.f; y/ for F.f; 1y/ for any object y of D and any morphism f of C.
Then, as is easily verified, F.x;
/ is a functor D ! E (called the x-section of F )
and F.
; y/ is a functor C ! E (called the y-section of F ). These two families of
functors determine F . If f W x ! x0, g W y ! y0 are morphisms in C, D respectively
then we have a commutative diagram

F.x; y/
F.f;y/ ��

F.x;g/

��

F.f;g/
CCCCCC

::CCCCCC

F.x0; y/

F.x0;g/

��
F.x; y0/

F.f;y0/

�� F.x0; y0/

(C.1.1)

since F.1x0f; g1y/ D F.f; g/ D F.f 1x; 1y0g/.

Proposition C.1.1. Suppose for each x in Ob C and y in Ob D we are given functors

F.x;
/ W D! E; F .
; y/ W C! E

such that F.x; y/ is a unique object of E. Suppose for each f W x ! x0 in C and
g W y ! y0 in D the outer square of (C.1.1) commutes. Then the diagonal composite
F.f; g/ makes F a functor C � D! E. All functors C � D! E arise in this way.

Proof. The verification of the preservation of the identity for F is easy since

F.1x; 1y/ D F.1x; y/F.x; 1y/
D 1F.x;y/1F.x;y/
D 1F.x;y/:

The verification of the composition rule involves four commutative squares:

F.x; y/
F.f;y/ ��

F.x;g/

��

F.f;g/
CCCCCCC

::CCCCCCC

F.x0; y/ F.f 0;y/ ��

F.x0;g/

��

F.x00; y/

F.x00;g/

��
F.x; y0/

F.f;y0/

��

F.x;g0/

��

F.x0; y0/ F.f 0;y0/ ��

F.x0;g0/

��

F.f 0;g0/
CCCCCCC

��CCCCCCC

F.x00; y0/

F.x00;g0/

��
F.x; y00/

F.f;y00/

�� F.x0; y00/
F.f 0;y00/

�� F.x00; y00/ .

The last statement of the proposition is clear from the discussion preceding its statement.
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C.2 Cartesian closed categories

We have already given in Section 9.1 some background to the fundamental notion of
an ‘exponential law’. Here we will sketch the ideas for one aspect of that, and how the
category Cat of small categories comes into this framework with an exponential law
of the form of a natural bijection

Cat.C � D;E/ Š Cat.C;CAT.D;E// (C.2.1)

for all small categories C, D, E. The small category CAT.D;E/ has objects the functors
D! E and morphisms the natural transformations.

We will not give a proof of this, but sketch some of the ideas in a way related to
previous work.

In Section 6.1 we have defined the notion of double category and given the example
of the double category E of commuting squares in a category E. This double cate-
gory has two compositions which were there written C1, C2 and here we will write
B1, B2. This gives rise to two categories 1 E, 2 E in which the morphisms are the
commutative squares in E but in which the compositions are respectively B1, B2.

Proposition C.2.1. The natural transformations of functors D! E are bijective with
the elements of Cat.D; 2 E/.

That is, instead of saying that a natural transformation  W F ! G assigns to each
object d of D a morphism .d/ W F.d/ ! G.d/ in E such that for every morphism
f W d ! d 0 in D a certain square diagram in E commutes, we say that a natural
transformation is a functor D! 2 E, and the composition of natural transformations
is determined by the composition B1 in E.272

C.3 The internal hom for categories and groupoids

Let us prove that the category of small categories (and that of groupoids) is closed.
Thus, for any couple of small categories (groupoids) C;D, we need to construct the
small category (groupoid) of internal morphisms from C to D that we are going to
denote as CAT.C;D/ (GPDS.C;D/).

The objects of CAT.C;D/ are Cat.C;D/, all functors (morphisms) between the given
categories.

Its morphisms are all the natural transformations between such functors.
The source, target and identity of CAT.C;D/ are the obvious one. For any two

natural transformations  W F ) F 0 and 0 W F 0 ) F 00, we define the composition
0 by 0.x/ D 0..x//. It is clear that this composition completes the structure of
category over CAT.C;D/.



C.3 The internal hom for categories and groupoids 601

It is immediate to see that when C and D are groupoids, any natural transformation
 W F ) F 0 has inverse �1 defined by �1.x/ D ..x//�1. Thus CAT.C;D/ is a
groupoid that we denote by GPDS.C;D/.

The construction of internal morphisms CAT.C;D/ is natural in C and D. Let us
check that it is the adjoint of the cartesian product using essentially the same procedure
as in Set.

Theorem C.3.1. If C, D, E are small categories, there is a natural bijection of sets

� W Cat.C � D;E/ Š Cat.C;CAT.D;E//:

Proof. To define � , let us start with any functor F W C � D ! E and we are going to
construct the functor �.F / D yF W C! CAT.D;E/.

For an x 2 Ob C, its image is the functor yF .x/ W D! E given by the x-section of
F , i.e. yF .x/ D F.x;
/

Now, let f W x ! x0 be a morphism in C. The natural transformation

yF .f / W F.x;
/) F.x0;
/
is defined by assigning to each object y in D a morphism yF .f /.y/ D F.f; y/. It is
clear that for any morphism g W y ! y0 in D the following square commutes:

F.x; y/
F.f;y/ ��

F.x;d/

��

F.x0; y/

F.x0;d/

��
F.x; y0/

F.f;y0/

�� F.x0; y0/.

To prove bijectivity, we construct  D ��1. Thus, for any functor G W C !
CAT.D;E/ we define a functor .G/ D yG W C � D ! E using Proposition C.1.1
by giving its sections yG.x;
/ W D ! E, and yG.
; y/ W C ! E, and verifying the
commutativity of the appropriate diagram.

For any x object in C, we define the x-section yG.x;
/ D G.x/ W D ! E. Then,
on objects yG.x; y/ D F.x/.y/.

For any y object in D, the functor yG.
; y/ is clear on objects. Let f W x ! x0
be an morphism of C. The natural transformation G.f / W G.x/ ) G.y/ is given by
G.f /.y/ W G.x; y/! G.x0; y/. We take yG.f; y/ D G.f /.y/.

These sections give a functor C! E because the commutativity of the square is a
direct consequence of naturality.

Corollary C.3.2. There is a natural isomorphism of categories

‚ W CAT.C � D;E/ Š CAT.C;CAT.D;E//

that on objects is � .
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Our interest lies not so much in general small categories but mainly in groupoids.
We have seen that ifG andH are groupoids, the category CAT.G;H/ is also a groupoid
that we represent by GPDS.G;H/. The same bijection above proves that this internal
morphisms make Gpds a cartesian closed category.

Corollary C.3.3. If G, H , K are groupoids, there is a natural bijection of sets

Gpds.G �H;K/ Š Gpds.G;GPDS.H;K//

and hence a natural isomorphism of groupoids

GPDS.G �H;K/ Š GPDS.G;GPDS.H;K//:

The reader will have noticed that since groups are special cases of groupoids, this
corollary applies to the case when G;H;K are all groups and then yields a bijection
of sets

Groups.G �H;K/ Š Gpds.G;GPDS.H;K//

natural with respect to morphisms ofG,H ,K. Thus to obtain an adjoint to the cartesian
product of groups, we have to go outside the category of groups since GPDS.H;K/
has, in general, more than one object. We shall come back to this case in Section C.6.

The applications of this exponential law confirm again that the sensible approach
is to study the algebraic objects which arise in a given geometric situation, and to
examine their uses in order to see how their algebraic properties match up to the formal
requirements of the geometric situation. An important aspect of the properties of the
algebraic objects is the properties of the category of these objects. As we see above,
the category of groups has limitations, in that it is not cartesian closed. On the other
hand, the category of groupoids is cartesian closed. We will obtain an application of
this in the next section.273

In order to use the preceding results we have to make some deductions from them
and get familiar with the deductions of some standard operations. Some of these
arguments work in a general cartesian closed category, but it is important to become
familiar with a particular example other than the standard category of sets, in which it
is possible to proceed in an ad hoc basis.

C.4 The monoid of endomorphisms in the case of groupoids

It is well known that in the case of a cartesian closed category C, for any object E the
internal endomorphisms EE may be given a monoid structure. We are going to study
the case of the category of groupoids. For the general case see [Kel82].

As we have seen for any groupoids, G, H , and K there are natural bijections

Gpds.G �H;K/ Š Gpds.G;GPDS.H;K//:
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In particular, for any groupoids G and H there is a bijection

� W Gpds.GPDS.G;H/ �G;H/! Gpds.GPDS.G;H/;GPDS.G;H//

with inverse .
We are going to study the evaluation morphism,

"GH D .1GPDS.G;H// W GPDS.G;H/ �G ! H

i.e. the functor corresponding to the identity 1GPDS.G;H/ under the above bijection.

Remark C.4.1. Let us see the action of the evaluation morphism recalling the definition
of . So, to define "GH , we give its sections.

For any functor f W G ! H , the section "GH .f;
/ W G ! H is defined to be f .
Then, on objects, we have "GH .f; x/ D f .x/, for any functor f W G ! H and object
x 2 G.

For any object x in G, the section "GH .
; x/ W GPDS.G;H/! H is defined on
objects as before, and for any natural transformation  W f ) f 0, "GH .
; x/./ D
.x/.

Then, for any natural transformation  W f ) f 0 and morphism a W x ! y,
"GH .; a/ is the common composition of the commutative square

f .x/
f .a/ ��

�.x/

��
�.a/
mmmm

::mmm

f .x0/

�.x0/

��
f 0.x/

f 0.a/

�� f 0.x0/

which we write .a/. Notice that for a D 1x , we have .1x/ D .x/.
Using the evaluation maps "GH we can define the map

˛ W GPDS.H;K/ � GPDS.G;H/ �G 1�"GH�����! GPDS.H;K/ �H "HK���! K:

Now, using the bijection above, we get a functor

� D �.˛/ W GPDS.H;K/ � GPDS.G;H/! GPDS.G;K/

which we call the composition of internal morphisms.

Remark C.4.2. To study the composition functor, it is better to have a more explicit
description of ˛. On objects, for any two morphisms of groupoids g W H ! K,
f W G ! H and an object x in G, we have ˛.g; f; x/ D g.f .x//. On morphisms,
given two natural transformations  W g ) g0,  W f ) f 0 and a morphism a W x !
x0, we have

˛. ; ; a/ D  .a/:
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Now, we construct�.˛/ followingTheorem C.3.1. Thus on objects�.˛/ is .g; f / 7!
gf and on morphisms, for any two natural transformations  W g ) g0 and  W f )
f 0,  �  W gf ) g0f 0 is the natural transformation given by

 � .x/ D ˛.. ; /; 1x/ D  .1x/ D  .x/;
i.e. the common composition of the arrows of the diagram

gf .x/
g�.x/ ��

 f.x/

��

gf 0.x/

 f 0.x/

��
g0f .x/

g0�.x/

�� g0f 0.x/.

Notice that  �  may be seen as the common composition . f 0/.g/ D .g0/. f /.
It is easy to see that the composition is natural.

Thus, for any groupoid G, the set of morphisms of the groupoid END.G/ D
GPDS.G;G/ is a monoid with respect to the composition just defined:

�W END.G/ � END.G/! END.G/:

Moreover, the source, target and identity are homomorphisms between END.G/ and
End.G/. To check that those compositions make END.G/ a monoid on the category
of groupoids it remains to prove the following:

Proposition C.4.3. The composition of morphisms in END.G/,

END.G/ �End.G/ END.G/! END.G/;

is a homomorphism with respect to the composition �, i.e. we have

. 0 / � .0/ D . 0 � 0/. � /
for any natural transformations W f ) f 0,0 W f 0 ) f 00, W g) g0 and 0 W g0 )
g00.

Proof. This is direct from the definition and the commutative diagram

g0f 0
 0��0

11666666666666666666666

 0f 0
�����������

gf  f ��

 ��
��nnnnnnnnnnnnnnnnnnnnn

 0 f
11///////////////////// g0f

 0f

::CCCCCCCCC

g0�

++DDDDDDDDD
g00f 0 g00�0 �� g00f 00

g00f
g00�0�

��																					

g00�
KKIIIIIIIII

since the composition of the two morphisms on the bottom is . 0 / � .0/.
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C.5 The symmetry groupoid and the actor of a groupoid

It is a reasonable expectation that the symmetry of an object of type T should in some
sense be a ‘group object’ of type T , and so some kind of higher order structure than T
itself.

When looking for a structure reflecting the symmetries of a groupoidG, it is logical
to consider all invertible elements of END.G/. Let us write as usual Aut.G/ for the
subgroup of End.G/ consisting of all automorphisms of the groupoid G and AUT.G/
the full subcategory of END.G/ having Aut.G/ as objects. Clearly AUT.G/ is a
submonoid and a subgroupoid. Let us check that it is also a group with respect to �.
The group-groupoid AUT.G/ is called the symmetry groupoid of the groupoid G.

Proposition C.5.1. The category AUT.G/ is a group internal to groupoids.

Proof. Let  W f ) f 0 be natural transformation from f to f 0, both being automor-
phisms of the groupoid G. Then the natural transformation f 0�1�1f �1 W f �1 )
f 0�1 is the inverse of  with respect to �.

Now, we are going to define an equivalent structure. Let us consider the source
map

s W AUT.G/! Aut.G/:

It is a homomorphism and the identity homomorphism is a right inverse. Thus the short
exact sequence of groups and homomorphisms

1! Ker s ! AUT.G/! Aut.G/! 1

splits, i.e. there is a bijection

AUT.G/ Š Aut.G/ � Ker s

that maps any natural transformation of automorphisms  W f ) f 0 to the pair
.f; 1f �1 � / where the latter is a natural transformation 1 ! f �1f 0, i.e. an ele-
ment in Ker s.

This bijection is an isomorphism when we endow the cartesian product with appro-
priate structure. This is the semidirect product with respect to the action of Aut.G/ on
Ker s on the right given by the identity and conjugation, i.e.

AUT.G/ Š Aut.G/ Ë Ker s

where the semidirect product G ËM of a group G and a G-group M is the cartesian
product with the product given by .g;m/.g0; m0/ D .gg0; mg0

m0/.
Thus, given Ker s and the action of Aut.G/ on it, the source homomorphism is

recovered directly since it is the identity on Aut.G/ and the constant map on Ker s and
the target homomorphism is determined once we know its restriction

t j W Ker s ! Aut.G/
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since it is also the identity on Aut.G/. This morphism t j is called the actor of the
groupoid. We shall see that it is an example of crossed module and that it is equivalent
to the group-groupoid AUT.G/. Thus these ideas are related to the notions of cat1-group
in Section 2.5.

Let us now consider yet another group that is equivalent to the actor. For any
groupoid G, we define M.G/ to be the set of sections 
 W ObG ! G of the target
map t W G ! ObG, i.e. such sections 
 which assign to each object x 2 ObG an
morphism 
.x/ W s.
.x//! x. Then there is a map

� W M.G/! END.G/

such that to any section
 W ObG!Gmaps the natural transformation�.
/ W ı.
/! 1

where ı.
/ is the functor defined on objects by ı.
/.x/ D s
.x/ and on morphisms
by ı.
/.g/ D 
.t.g//�1g
.s.g//. The natural transformation �.
/ is then given
by 
.x/.

It is clear from the definition that � is a bijection onto Ker t . It is an isomorphism
once we give the appropriate definition to the product of sections. For any two sections

 , � their product � � 
 is defined as the section that for any x 2 ObG, � � 
.x/ is the
composition

s�.s
.x//
�s	.x/����! s
.x/

	.x/���! x:

It is not difficult to prove that� is a homomorphism with this product. Let us consider
the restriction to the group of units M�.G/.
Proposition C.5.2. For any section 
 2M.G/, the following are equivalent:

(i) 
 is a unit;

(ii) �.
/ is bijective on objects;

(iii) �.
/ is bijective on morphisms;

(iv) �.
/ is an automorphism.

Proof. We leave the proof to the reader.

Thus the restriction gives an isomorphism � W M�.G/ Š Ker t � AUT.G/. Using
this isomorphism, the map s becomes ı W M�.G/! Aut.G/ and the action of Aut.G/
on AUT.G/ induces an action on M�.G/ given by 
f .x/ D f �1
f .x/. This provides
another possible interpretation of the actor of a groupoid.274

C.6 The case of a group

As we have seen, a group G may be regarded as a category, also written G, with one
object �G and G as set of morphisms. The composition of morphisms is given by the
product in G. This gives a full embedding of categories

Groups ,! Cat
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which also preserves products.
Thus a potential internal hom structure for the category Groups of groups should

correspond to that of CAT, i.e. the internal hom between two groups G;H should be

CAT.G;H/ D GPDS.G;H/:

We know that this is a groupoid and we shall see that, in general, this groupoid has
more than one object.

The set of objects of GPDS.G;H/ is Gpds.G;H/ D Hom.G;H/, i.e. the set
of homomorphisms between the two groups. Clearly this set has many elements in
general, thus GPDS.G;H/ lies outside the category of groups and the category of
groups is not a closed category, as is well known.

Let us see a characterisation of the morphisms of GPDS.G;H/. Recall than an
morphism of Groups is just a group homomorphism f W G ! H . A natural transfor-
mation  W f ) f 0 is given by a unique morphism .�G/ D y 2 H corresponding
to the object �G , such that for any x 2 G satisfies the naturality condition, i.e. the
diagram

�H f.x/ ��

y

��

�H
y

���H
f 0.x//

�� �H

commutes, giving f 0.x/y D yf .x/ for all x 2 G. Thus f 0 may be recovered from f

and y since f 0.x/ D yf .x/y�1 for all x 2 G. We write y W f ) f 0. Thus a natural
transformation f ) f 0 is just conjugation by an element y 2 H .

We can also compute the evaluation and composition maps in this case.
Following the Remark C.4.1 the evaluation map "GH W GPDS.G;H/ � G ! H

may be easily described in the case of groups. Since both G and H have a unique
object, the functor "GH is trivial on objects. To describe the action on morphisms,
we use the above characterisation of the elements of GPDS.G;H/ as elements of H .
Thus for any y W f ) f 0 W G ! H and any x 2 G, we define "GH .y; x/ 2 H by

"GH .y; x/ D yf .x/ D f 0.x/y:

Following the Remark C.4.2, the composition

c W GPDS.H;K/ � GPDS.G;H/! GPDS.G;K/

for groups G, H , K can be easily described. It is clear that on objects c is just
the composition of homomorphisms. Let us study the morphisms using the same
characterisation as before. Let us consider y W f ) f 0 W G ! H and z W g )
g0 W H ! K, its composite z � y W gf ) g0f 0 W G ! K is the common value of the
product z � y D zg.y/ D g0.y/z.

Thus END.G/ D GPDS.G;G/ is a monoid with the product just described.
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Let us study the symmetry groupoid of the group G. As before, AUT.G/ is the full
subcategory of END.G/ having as set of objects Aut.G/ the group of all automorphisms
of the group G. Its elements are x W f ) f 0 where x 2 G, f; f 0 2 Aut.G/ and
f 0.x0/ D xf .x0/x�1 for all x0 2 G, i.e. f 0 is the ’left conjugate of f by x’. As seen,
it is a groupoid and a group with respect to �. In this case the inverse with respect to �
of an element x W f ) f 0 may be easily computed to be f 0�1.x´�1/ W f �1) f 0�1.

Now, let us consider Ker s, the kernel of the source map. Its elements arex W 1) f ,
where f is left conjugation by x, i.e. f .x0/ D xxx�1 for all x0 2 G. The � product
in this subgroup is x � x0 D xx0, thus Ker s is naturally isomorphic to G.

The action of Aut.G/ on Ker s by the identity and conjugation, in this case is
xf

0 D f 0�1.x/ for any natural transformation x W 1 ) f and automorphism f 0.
Notice that xf

0 W 1) f 0�1ff 0. With this action

AUT.G/ Š Aut.G/ Ë Ker s Š Aut.G/ ËG:

Remark C.6.1. There is the beginnings of a rough analogy between symmetry objects
and homotopy types. Thus discrete sets model homotopy 0-types. The automorphisms
of a set form a group, and groups model pointed homotopy 1-types. The automorphisms
of a group may be formed into a crossed module, and these model pointed homotopy
2-types. The next stage involves crossed squares, which model pointed homotopy 3-
types, see [Nor90], [BG89a], [AW10]. It is not known how to continue this process!

C.7 Monoidal and monoidal closed categories

The aim of this section, which is joint work of R. Brown and S.V. Soloviev, is to give
definitions and pointers to the literature on this important area.

A monoidal category is a category which has roughly speaking the structure of a
monoid with respect to the usual product of categories.275 Specifically, a monoidal
structure on a category C consists of:

(i) a bifunctor ˝W C � C ! C, where the images of object .A;B/ and morphism
.f; g/ are written A˝ B and f ˝ g respectively,

(ii) an associativity isomorphism aABC W .A˝B/˝C Š A˝.B˝C/, for arbitrary
objects A;B;C in C, such that aABC is natural in A;B and C . In other words,

• a�BC W .� ˝ B/ ˝ C ) � ˝ .B ˝ C/ is a natural transformation for
arbitrary objects B , C in C,

• aA�C W .A ˝ �/ ˝ C ) A ˝ .� ˝ C/ is a natural transformation for
arbitrary objects A, C in C,

• aAB� W .A ˝ B/ ˝ � ) A ˝ .B ˝ �/ is a natural transformation for
arbitrary objects A, B in C,
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(iii) there is given an object I in C called the unit object (or simply the unit) together
with for any object A in C natural isomorphisms:

lA W I ˝ A Š A and rA W A˝ I Š AI
that is, both l W I ˝�) � and r W � ˝I ) � are natural transformations.

The axioms are that the following diagrams commute:

• unit coherence law

.A˝ I /˝ B aAIB ��

rA˝1B ��ooooooooooo
A˝ .I ˝ B/

1A˝rB��MMMMMMMMMMM

A˝ B

• associativity coherence law

..A˝ B/˝ C/˝D aA˝B;C;D ��

aABC ˝1D

��

.A˝ B/˝ .C ˝D/

aA;B;C ˝D

��

.A˝ .B ˝ C//˝D
aA;B˝C;D

��
A˝ ..B ˝ C/˝D/

1A˝aBCD

�� A˝ .B ˝ .C ˝D//

The bifunctor �˝ � is called the tensor product on C, and the natural isomorphisms
a, l , r are called the associativity isomorphism, the left unit isomorphism, and the right
unit isomorphism respectively.

The unit I defines a functor

U D C.I;�/ W C! Set:

The important consequence of these axioms is the coherence theorem, which
roughly speaking asserts the commutativity of all diagrams built up from the iso-
morphisms ˛; l; r given in the definition. For a precise statement we refer to [ML71].

It is also possible to add structure involving symmetry, which involve a natural
equivalence of functors, called a braiding, �AB W A˝ B ! B ˝ A, with appropriate
relations to the previous structure. Then C is called a braided monoidal category. If
�BA D ��1

AB , then � is called a symmetry, and the monoidal category is called symmetric.
A monoidal category .C;˝; ˛; l; r/ is called closed if for all objects B the functor

� ˝ B W C ! C has a right adjoint, written HOM.B;�/, and sometimes B �,- �, so
that we have an adjunction

C.A˝ B;C / Š C.A;HOM.B; C // (C.7.1)
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with unit and counit (the latter called evaluation) say

	AB W A! HOM.B;A˝ B/; "BC W HOM.B; C /˝ B ! C:

Example C.7.1. In the monoidal closed category of vector spaces 	AB maps a 2 A to
the linear mapping which sends b 7! a˝ b, and "BC sends f ˝ b 7! f .b/.

Putting B D I in (C.7.1) and using the natural isomorphism r W A ˝ I Š A we
deduce a natural isomorphism

i W C Š HOM.I; C /: (C.7.2)

Again, applications of associativity give natural bijections for any objects A;B;C;D

C.D;HOM.A˝ B;C // Š C.D;HOM.A;HOM.B; C ///

from which is obtained, either by putting D D I and using Equation (C.7.2), or by
representability, the natural isomorphism:

HOM.A˝ B;C / Š HOM.A;HOM.B; C //: (C.7.3)

Notice also that the unit and counit satisfy some generalised naturality conditions
which can be illustrated by the diagrams:

HOM.B 0; C /˝ B HOM.f;1/˝1 ��

HOM.1;1/˝f
��

HOM.B; C /˝ B
"BC

��
HOM.B 0; C /˝ B 0

"B0C

�� C ,

C
�CB ��

�CB0

��

HOM.B; C ˝ B/
HOM.1;1˝f /
��

HOM.B 0; C ˝ B 0/
HOM.f;1˝1/

�� HOM.B; C ˝ B 0/

with f W B ! B 0. The theory of these kinds of naturality has been developed in
[EK66].

The coherence problem for monoidal closed categories is of course more com-
plicated than that for monoidal categories, and some important results are found in
[KML71], [Sol97]. The general framework to present these results is as follows, in
which we abbreviate ‘symmetric monoidal closed category’ to ‘SMCC’:

1) What is a free SMCC Fsmcc.A/ should be defined (or at least explained).
2) It is necessary to explain that the morphisms in Fsmcc.A/ can be always inter-

preted as natural transformations (in generalized sense) over any SMCC K (if
the variables are interpreted as identity functors). Let us call this the canonic
interpretation.
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3) If a diagram is commutative inFsmcc.A/, then all its interpretations in any SMCC
K will be commutative.

4) (Mac Lane Conjecture) Then the diagram inFsmcc.A/ is commutative if and only
if its canonic interpretation in the category of functors and natural transformations
over the category of vector spaces is commutative.

The last statement is the main theorem of Soloviev in [Sol97]. This work contains the
first proof of the theorem, though the theorem was used without proof or with a very
incomplete proof, and was mentioned – and even used – earlier.276

It is also possible to define a natural composition

cABC W HOM.B; C /˝ HOM.A;B/! HOM.A; C /

as the adjoint of the composition

HOM.B; C /˝ HOM.A;B/˝ A 1˝"AB�����! HOM.B; C /˝ B "BC���! C

(where we slur over associativity), and then verify that this composition c is coherently
associative, and has, up to natural isomorphisms, left and right identities.

The above definition of natural composition can be justified by reference to the
paper [KML71]. A particular case of the main theorem of that paper is that there
exists at most one natural transformation F ! G in a free SMCC if F ! G does
not contain the tensor unit I and is balanced, i.e. HOM.F;G/ contains each variable
exactly twice with opposite variances. Because the adjoint to the composition cABC
exits, the morphism cABC is unique and may be called the natural composition.

Another interesting aspect of this area, though perhaps tangential to the matters
of this book, is as follows. Let A� denote the ‘dual object’ HOM.A; I /. There is a
classical natural morphism dA W A ! A�� defined as the composition, in which we
abbreviate HOM to H:

A
�AA����! H.A�; A˝ A�/

H.1A� ;�AA� /��������! H.A�; A� ˝ A/ H.1;"A�A/�������! H.A�; I / D A��:

Readers of the classical paper defining categories [EML45a] will recognise this as a
key example of a natural morphism for the example of vector spaces. In that example,
dA W A! A�� is an isomorphism if and only if A is finite dimensional.

A classical example of noncommutative diagram is the ‘triple dual diagram’:

A��� 1 ��

d�
A ��33333333 A���

A�
dA�

;;<<<<<<<<
(�)

It is commutative if and only if d�
A and dA� are mutually inverse isomorphisms.

This diagram does not satisfy the conditions of the Kelly–Mac Lane coherence the-
orem. Its noncommutativity can be verified e.g. in the category of infinite dimensional
vector spaces. There is an unsolved conjecture:
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Conjecture. For a given SMCC, all balanced diagrams commute if and only if for
all A, d�

A W A��� ! A� and dA� W A� ! A��� are mutually inverse isomorphisms.

There is more on this conjecture in [Sol90], [BS90]. Note that these ideas are not
relevant to the category of crossed complexes, where the ‘unit object’ for the monoidal
structure is the terminal object, the trivial crossed complex on a point. On other hand,
an interesting monoidal closed category is that of modules .M;G/ over groupoids in
which G is finite and M is a family of finitely generated abelian groups. The unit for
the monoidal structure is the module .Z; 1/ where 1 here denotes the trivial groupoid
on a point. In this category, the triple dual diagram is commutative.

The monoidal closed category C is said to be biclosed if it is closed and for every
objectA the functorA˝� has a right adjoint, say b HOM.A;�/. When C is symmetric
monoidal, then C is closed if and only if it is biclosed and then HOM D b HOM. Cubical
sets give an example of a biclosed monoidal category which is not symmetric, as we
have observed in Chapter 10.

The necessity for coherence considerations when dealing with a notion of ‘monoidal
functor’ leads to much work on ‘weak n-categories, of which we just give the sample
[Bén67], [CG07]. Such studies are mostly on ‘globular’ notions, and there is at present
little work on weak cubical n-categories, nor on axiomatisations of the structure held
by the cubical singular complex.

Remark C.7.2. In a cartesian closed category C we can identify a ‘symmetry object’
of an object C of C as AUT.C /, which is a subgroup object of END.C /. In a monoidal
closed category, by contrast, we cannot define a group object, and therefore no subgroup
object, as the tensor product has no diagonal comparable to that for the cartesian
product. Nonetheless, some progress can be made in some cases, see for example
[BG89a], [Bro10b]. Thus for a crossed complex C with a strict monoid structure
C ˝C ! C , it should be of interest to examine those cases where the induced monoid
structure onC0 is that of a group. The background to such studies is of course the wide
importance of symmetry in mathematics and science, and the possibilities of ‘higher
order symmetry’.

C.8 Crossed modules and quotients of groups

We start with some very basic facts on group theory.
Let N be the kernel of a homomorphism f W G ! H of groups. Then N is a

normal subgroup of G. This is equivalent to saying that the group G acts on the group
N by conjugation in G. This is why a normal subgroup is a special case of a crossed
module. We can put the emphasis slightly differently by saying that the kernel of a
homomorphism of groups is a group with action, and in fact a special case of a crossed
module.
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Now a normal subgroup is closely associated with the notion of quotient group.
The notion of quotient structure is very important in mathematics and science since it
is closely associated with the idea of classification. In looking at an insect in a rain
forest, say, we do not try to list all insects, but we do try to list as many species as
we can find. Similarly, in mathematics, we often want to consider sets of elements as
objects in themselves, for example lines are considered as sets of points in a plane. The
basic tool for this is the standard notion of equivalence relation R on a set X and the
associated set X=R of equivalence classes.

In order to fit the notion of equivalence relation into the notion of quotient groups, it
is convenient to use the fact that a subgroupN of a groupG determines an equivalence
relation 
N on G by the rule g 
N g0 if and only if Ng D Ng0, for .g; g0/ 2 G �G.
In general this subset 
N of G � G is not a subgroup of G � G, where the latter has
its usual group structure (for example, considered as a product of categories).

Proposition C.8.1. The equivalence relation 
N is a subgroup of G � G if and only
if the subgroup N is normal in G.

We omit the proof since this is exactly the kind of result you have to verify for
yourself.

It is usual to call an equivalence relation on G which is a subgroup of G � G a
congruence on the group G.

It was quite early observed that an equivalence relationR on a setX is a special case
of a groupoid with object setX , in which the set of morphisms isR andR.x; y/ consists
of the set f.y; x/gwith multiplication .z; y/.y; x/ D .z; x/. That is, in thinking about a
groupoidH , we realise thatH defines an equivalence relation on ObH whose classes
are the connected components of H . For this equivalence relation the elements of
H.x; y/ could be thought of ‘reasons why’x is equivalent to y, or as ‘proofs that’x is
equivalent to y. This analogy leads naturally to the consideration of higher dimensional
theories, such as ‘proofs of proofs’, and so on. The relations of this idea with homotopy
theory is steadily becoming more apparent. From this basic approach, the utility of
notions of higher dimensional groupoids also becomes clear.

Thus it is natural to consider the generalisation of a congruence on a group G to
some kind of groupoid on the set G. Part of the reason is that the notion of ‘free
equivalence relation’, and hence of presentation, of an equivalence relation is not well
defined. However the notion of presentation of a groupoid (and more generally of
a group-groupoid) is well defined, and so to use analogues of combinatorial group
theory for equivalence relations it is convenient to widen the scope of combinatorial
group theory to combinatorial groupoid theory. This also allows the discussion of
presentations of group actions, by considering the corresponding covering groupoids.

We refer also to page 49 for a discussion of the relation of kernels of morphisms of
crossed modules to crossed squares, and so to homotopy 3-types.

These ideas should also be related to those of ‘internal crossed modules’, see
[Jan03].
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Another question is the relation of these ideas to those of universal algebra, and a
relevant paper here is [JMT02]. In particular, it is there asserted that the category Crs
of crossed complexes is a semi-abelian category.

Notes

272 p. 600 This approach, given initially in [BE69], was followed in [BN79] where it
has the advantage of applying to the topological case.

273 p. 602 These results on cartesian closure are special cases of the result that the
category of categories or of groupoids internal to a cartesian closed category is
also cartesian closed, [BE69]. See also [BN79] for the topological case.

274 p. 606 These ideas have been developed to consider the actor of a crossed module.
The first work on this was by Whitehead in [Whi48]. Later work was by Lue
[Lue79], and Norrie, [Nor90]. This was examined from the point of view of the
monoidal closed category of crossed modules in [BG89a]. A further development
of these ideas to crossed modules over groupoids is in [Bİ03a], but essentially
directly modelling Whitehead’s work. See also [AW10] for both the groupoid
and crossed module case. For an analysis of automorphism structures for various
cartesian closed categories of graphs, see [BMSW08].

275 p. 608 For more information on this topic, see [ML71]. Possibly the earliest dis-
cussion of such extra structure on a category is in [Bén63], [Bén64]. Monoidal
categories are also called tensor categories, see [JS91]. For recent discussions see
[GM10], [AM10], and the references there. The monograph [Kel82] (download-
able) on enriched categories deals with the subject of V -categories, which are a
notion analogous to that of a category but in which the hom-sets are now objects
of a monoidal, or monoidal closed, category V , which could for example be one of
the monoidal categories discussed in this book. An early work on such structures
is [Bén65].

Any monoidal closed category may be seen as enriched over itself, and the category
FTop of filtered spaces may be enriched over the category Crs using the functor
….

276 p. 611 Szabo in [Sza78] claimed that he had a proof (but never published) and Chu
used it with reference to Szabo in his appendix to [Bar79] where he introduced the
“Chu construction”. The account in [Sza78] is analysed in [Sol97], p. 304.
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Glossary of symbols

We begin with a list of symbols for category theory, since some of them are used
throughout the book.

Category theory

C a category 556
Ob C objects in a category (also C0) 556
Mor C morphisms in a category (also C1) 556
t W Mor C! Ob C target of a morphism (also @C) 556
s W Mor C! Ob C source of a morphism (also @�) 556
C.x; y/ morphisms in C from x to y 556
1 W Ob C! Mor C identity map (also ") 556
1.x/ D 1x the identity on the object x 556
f� W C.z; x/! C.z; y/ map got by post-composing with f 2 C.x; y/ 556
f � W C.y; z/!C.x; z/ map got by pre-composing with f 2 C.x; y/ 556
F W C! D functor between categories 556
˛ W F ) G natural transformation between functors 557
Set the category of sets and maps 556
Groups the category of groups and homomorphisms 556
Cat category of small categories and functors 556
CAT.F;G/ internal hom in Cat 557
C.y/ functor C! Set determined by y 2 Ob C 557
C..h// natural transformation C.y/ ! C.z/ determined

by h W y ! z 2 C
557

C=x slice category or category of objects over 558
x 2 Ob C

C=y comma category over an y 2 Ob B and an 559
F W C! B

C2 morphism category of C 559
colim T colimit of a functor T W D! C 562
lim T limit of a functor T W D! C 563
F a G adjoints: D.F x; y/ Š C.x;Gy/ 564
	 W 1C ) GF unit of an adjunction F W C � D W G 565
" W FG ) 1D counit of an adjunction F W C � D W G 566
˛ W S ::�! Na a dicone from S to a 570
a D R C;x

S.x; x/ a is a coend of S W Cop � C! A 570
a D R

C;x S.x; x/ a is an end of S W Cop � C! A 570
ˆ W C! B a fibration between categories 577
CI fibre of ˆ W C! B over I 2 Ob B 577
u�X pullback of X along u W J ! ˆ.X/ 578
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ˆ W C! B a cofibration between categories 581
u�Z object induced from Z along u W ˆ.Z/! J 581

Groups

P a group 9
BP the classifying space of the group P 9
CS centraliser of a set S in a group P 39
ZP center of a group P 39
Œm; n� commutator of two elements m; n 2 P 40
ŒP; P � commutator subgroup of the group P 40
P ab abelianisation of the group P 40
Cn cyclic group of order n 41
D8 dihedral group of order 8 67
F.X/ free group on the set X 68
P D hX j Ri presentation of a group P , R � F.X/ 69
gp P group defined by a presentation P 69
h!RiP normal closure of R in the group P 69
c 2 h!RiP consequence of R in P 69
S3 symmetric group on three letters 70
P D hX j !i presentation of a group P , ! W R! F.X/ 74
Q8 quaternion group of order 8 71
M �T copower of the group M 120
M˚T cosum of the abelian group M 122
D2n dihedral group of order 2n 123
Q D G o C2 wreath product of G and C2 132
Cn cyclic group of order n 137
ZG group ring of a group G 240
IG augmentation ideal of a group ring 240

Groupoids

G a generic groupoid 12
Gpds the category of groupoids and their morphisms 12
G0 or ObG objects of the groupoid G 25
G.a/ object group of the groupoid G at a 2 G0 25
G.a; b/ elements of G from a to b 25
I.S/ indiscrete groupoid on the set S 26
� unit interval groupoid 26
Inn.G/ totally disconnected groupoid formed by the 223

object groups of G
GPDS.G;H/ Internal hom in Gpds 283
Gab abelianisation of the groupoid G 569
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UG universal group of the groupoid G 569
F.�/ free groupoid on a graph � 589
G totab universal abelianisation of the groupoid G 569
CostG a0 Costar of the groupoid G at a0 590
p W zG ! G covering morphism of groupoids 590
GpdsCov=G category of covering morphisms of the 590

groupoid G
u�G groupoid induced by a function u W ObG ! X 588

Topological spaces

X a generic topological space 8
�0.X/ set of path components of the space X 9
Hn.X/ n-dimensional homology group of the space X 9
I unit interval 19
@I boundary of the unit interval 19
S1 unit circle 27
E1C top semicircle 27
E2C top hemisphere of the 2-sphere S2 119
Sn n-sphere 259
En n-cell 270
I n n-dimensional cube 33
@I n boundary of the n-dimensional cube 33
A [ fe2i gi2I space with 2-cells attached 31
f ' g homotopy between f and g 33
Œf � homotopy class of a map f 33
ŒX; Y � set of homotopy classes 33
F a fibration 52
p W zX.v/! X universal cover of X at v 274
Top the category of compactly generated topological

spaces
211

TOP.Y;Z/ the internal hom in Top 281
TopCov category of coverings of topological spaces 362

Topological based spaces

x a point in a topological space 8
.X; x/ a based topological space 8
Top� the category of based topological spaces 8
˛ path (or loop) in some space X 19
Œ˛� homotopy class of the path ˛ 19
ŒX; Y �� set of based homotopy classes 33
�1.X; x/ fundamental group of the based space .X; x/ 8
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�1.X;A/ fundamental groupoid on a set of base points
A � X

13

�n.X; x/ n-dimensional homotopy group of .X; x/ 33
�n.X;A; x/ n-th relative homotopy group of the based pair

.X;A; x/

35

�n.X W A;BI x/ n-th triadic homotopy group of the based triad 586
A _ B wedge, union with base points identified 259

Crossed modules and modules

M a P -group 38
M D .� W M ! P / crossed module over a group P or crossed 38

P -module
BM classifying space of a crossed module 47
P ËM semidirect product of groups 50
Cat1- Groups category of cat1-groups 50
FP .R/ free P -group on the set R 74
M precrossed module over a groupP or precrossed 75

P -module
ŒŒm;m0�� Peiffer commutator of m, m0 76
ŒŒM;M�� Peiffer subgroup of a precrossed module 76
Mcr crossed module associated to a precrossed one 77
FX.!/ free crossed P -module on the function 78

! W R! P

�t2T Mt coproduct of precrossed P -modules 88
(free product)

	t2T Mt coproduct of crossed P -modules 88
M Ë N semidirect product of precrossed P -modules 90
fM;N g Peiffer subgroup of M Ë N 91
n�1nm pseudo-commutators 98
ŒN;M� displacement subgroup 98
NM trivialisation of N 98
f �N D .f �N ! P / pullback of a crossed module by f W P ! Q 108
f�M D .f�M ! Q/ crossed module induced by f W P ! Q 109
MBT copower of a crossed module 127
M D .� W M ! P / crossed module over a groupoid P 152
XMod category of crossed modules over groupoids 153
�G crossed module associated to the double 154

groupoid G
.M;G/ module over a groupoid G 213
Mod category of modules over groupoids 214
ˆM W Mod! Gpds forgetful functor 230
.F.!/;Q/ free Q-module on ! W B ! Q0 233
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ˆ1 W XMod! Gpds forgetful functor 231
@ W FX.!/! P free crossed P -module on ! W B ! P0 235
PCat1�Groups category of pre-cat1-groups 81
MOD..M;G/; .N;H// internal hom in Mod 284
.M ˝N;G �H/ tensor product in Mod 286
ÆZG adjoint module of a groupoid G 241
ÆZ trivial G-module 241
" W ÆZG ! ÆZ augmentation map for a groupoid G 241
EIG augmentation module of a groupoid G 241
G ËM semidirect product of a groupoid and a module 242
P W Mod! Gpds pull back groupoid of a module 243
�.M;G/ conjugate to the inclusion EIG ! ÆZG 243
D� derived module of a morphism  W H ! G 245

Double categories and groupoids

D D .D2;D1;D0/ a double category 145
D2 squares in a double category 145
@�
1 ; @

C
1 ; "1 vertical structure maps in a double category 146

C1 vertical composition in a double category 146
@�
2 ; @

C
2 ; "2 horizontal structure maps in a double category 146

C2 horizontal composition in a double category 146
0x zero element in a double category 147
DCat category of double categories 148
.uij / composable array in a double category 149
Œuij � composite of composable array 149

0 C double category of squares in a category C 150
C double category of commutative squares in C 150

DCatG category of double categories where all three
category structures are groupoids

151

‚ thin structure on a double category 163
��; �C connection pair on a double category 171
�M double groupoid associated to a crossed 177

module
ˆ folding map on a double groupoid 179

(Based) pairs of topological spaces

.X;A; x/ based topological pair 35
f ' g rel A homotopy between f and g relative to A � X 33
ŒX; Y �A set of homotopy classes relative to A � X 33
ŒX; Y Iu� set of homotopy classes relative to A � X 33

restricting to a given u W A! Y
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�n.X;A; x/ n-dimensional homotopy group of the based 35
pair .X;A; x/

Œ˛�Œ!� action of �1.A; x/ on �n.X;A; x/ 37
…2.X;A; x/ fundamental crossed module of the based pair

.X;A; x/

41

…2.F / fundamental crossed module of the fibration F 52
…2.X;A; C / fundamental crossed module of the triple 153

.X;A; C /

� thin homotopy between maps of triples 158
hh˛ii thin homotopy class of a map of triples 158
�.X;A;C / fundamental double groupoid of a triple 158

of spaces

Filtered spaces

X� filtered space 211
f W X� ! Y� filtration preserving map 211
FTop category of filtered spaces 211
FTOP.X�; Y�/ internal hom in FTop 312
X� ˝ Y� tensor product of filtered spaces 211
En� the filtered space of the n-ball 212
Sn�1 the filtered space of the .n � 1/-sphere 212
En.X;A/ a filtration associated to a based pair .X;A/ 266
yX�.v/ filtered covering universal space of X� 274
I n� tensor product of n unit intervals 312
….X�/ the fundamental crossed complex of X� 220
� Eilenberg–Zilber morphism 313

…X� ˝…Y� ! ….X� ˝ Y�/
RnX� filtered n-cubes in a filtered space X� 445
RX� filtered singular cubical set of a filtered 445

space X�
˛ � ˇ thin homotopy between ˛; ˇ 2 RnX� 482
hh˛ii thin homotopy class of ˛ 2 RnX� 482
�nX�, set of thin homotopy classes of ˛ 2 RnX� 482
hh˛ii Ci hhˇii composition of thin classes in direction i 484
�X� fundamental !-groupoid of a filtered space 486
	 Eilenberg–Zilber morphism 533

�X� ˝ �Y� ! �.X� ˝ Y�/

Crossed complexes

C crossed complex over a groupoid 214
Crs category of crossed complexes over groupoids 216
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Crsred category of reduced crossed complexes 216
CrsG category of crossed complexes over a 216

groupoid G
Kn.M IG/ crossed complex for a G-module M 216
K.G; 1/ D K1.0IG/ crossed complex for groupoid G 216
K.M; n/ D Kn.M; 1/ crossed complex for an abelian group M 216
Fn.M;G/ aspherical crossed complex for a G-module M 217
F .M; n/ D Fn.M; 1/ crossed complex with 1 W M !M forn ton�1 217
F .n/ D F .Z; n/ free crossed complex on one generator of 217

dimension n > 0

S.n � 1/ subcrossed complex of F .n/ 216
�0.C / set of components of the crossed complex C 218
�1.C / fundamental groupoid of the crossed 215

complex C
Hn.C; x/ homology groups of a crossed complex C 219
Crsn the category of n-truncated crossed complexes 221
trn W Crs! Crsn n-truncation functor 221
skn W Crsn ! Crs n-skeleton functor 222
Skn W Crs! Crs n-Skeleton functor 222
coskn W Crsn ! Crs n-coskeleton functor 223
Coskn W Crs! Crs n-Coskeleton functor 223
cotrn W Crs! Crsn n-cotruncation functor 223
resn W Crs! Mod restriction to dimension n functor 217
res0

n W Crs! Mod another restriction to dimension n functor 218
A [ fxn

�
g�2ƒ, attaching to a crossed complex 237

A chain complex over a groupoid 240
Chn the category of chain complexes over groupoids 240
ChnG category of chain complexes over a groupoidG 240
Chnred category of reduced chain complexes 240
r W Crs! Chn ‘semiabelianisation’ functor 240
rC derived chain complex of a crossed complex C 247
‚ W Chn! Crs right adjoint of r 250
CX� fundamental chain complex of the filtered 274

space X�
C W FTop! Chn fundamental chain complex functor 274
CRS.C;D/ internal hom in Crs 290
ŒC;D� homotopy classes of morphisms of crossed 291

complexes
� W .C;D/! E bimorphism of crossed complexes 294
C ˝D tensor product of crossed complexes 295
A˝ B tensor product of chain complexes 306
C.Z; 0/ unit chain complex 306
CHN.�;�/ internal hom in Chn 306
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Cyl .C / cylinder on a crossed complex 315
Cone .C / cone on a crossed complex 316
.C; / augmented crossed complex over G 330
.C; / crossed resolution of G 330
F.Cq/ small crossed resolution of a cyclic group Cq 330
F st� .G/ standard free crossed resolution of a 331

groupoid G
F.K/ free crossed resolution of the Klein bottle 340

group K
p W zC ! C covering morphism of crossed complexes 324
CrsCov=C category of covering morphisms of C 326
fbj gj2Jn ; n > 0 base for a functor F W C! Crs 354
P W C! Crs projective functor 354
Q W C! Crs acyclic functor 355

Cubical sets

� the box category 369
ı˛i W I n ! I nC1 inclusions in the box category 369

i W I nC1 ! I n projections in the box category 369
Cub the category of cubical sets 370
K W � op ! Set, a cubical set 370
@˛i W Kn ! Kn�1 faces of a cubical set 370
"i W Kn�1 ! Kn degeneracies of a cubical set 370
In n-cube cubical set 370
S�X , KX singular cubical set of a topological space X 370

445
jKj realisation of a cubical set 371
K ˝ L tensor product of cubical sets 373
f W .K;L/!M bicubical map 374
PK left path complex 376
P nK n-fold left path complex 376
CUB.K;L/ internal hom in Cub 377
T W Cub! Cub transposition functor for cubical sets 378
B &e C elementary collapse 380
B & C collapse 380
x 
 y homotopic n-cubes 385
f 
 g homotopic cubical maps 385
ŒL;M� homotopy classes of cubical maps 385
ŒL;M Iu� homotopy classes of cubical maps rel a map u 386
�1M fundamental groupoid of a cubical set 386
…K fundamental crossed complex of a cubical 389

set K
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NC cubical nerve of a crossed complex 389
„ cubical site without degeneracies 358
K W „op ! Set a precubical set 358
…„K the unnormalised crossed complex of a cubical

set K
359

�i connections in a cubical set K 446
Ci partial compositions in a cubical set 447
.xpq/ composable array of n-cubes 449
Œxpq� composite of a composable array 449
.x.p// composable multiple array 449
Œx.p/� composite of composable multiple array 449
x D .x˛i / n-shell in a cubical set K 463
�0Kn set of n-shells in a cubical set K 463
@y total boundary of an element y 2 KnC1 463
C�.X/ the normalised cubical singular chain complex

of X
502

C�.X rel0A/ a subcomplex of C�.X/ 504

Simplicial sets

� the simplicial site 572
K W �op ! Set simplicial set 571
@i W Kn ! Kn�1 face operations of a simplicial set 571
"i W Kn ! KnC1 degeneracy operations of a simplicial set 571
Simp the category of simplicial sets 572
N�G simplicial nerve of a groupoid 319
‡ ‡ -set site 572
K W ‡op ! Set presimplicial set 572
‡ -Set the category of presimplicial sets 572
…K fundamental crossed complex of a simplicial 357

set K
…‡K the unnormalised crossed complex of a 357

simplicial set K
a, b Eilenberg–Zilber–Tonks morphisms for Simp 361
S�.X;U/ simplicial set of simplices contained in the 362

covering U

!-groupoids

G D fGngn>0 !-groupoid 450
!-Gpds category of !-groupoids 451
!-Gpdsn category of n-tuple groupoids 452
�G crossed complex associated to an !-groupoid 454
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ĵ W Gm ! Gm folding map in the i -th direction on an 455
!-groupoid

ˆ folding map on an !-groupoid 458
ˇx base point of x 2 Gn in an !-groupoid 458
uix edges of x terminating at the base point ˇx 460
trn n-truncation functor !-Gpds! !-Gpdsn 463
coskn n-coskeleton functor !-Gpdsn ! !-Gpds 465
Coskn n-Coskeleton functor !-Gpds! !-Gpds 465
skn n-skeleton functor !-Gpdsn ! !-Gpds 467
Skn n-Skeleton functor !-Gpds! !-Gpds 468
�C !-groupoid associated to a crossed complex 469
†x D @�

1ˆx only nontrivial face of the folding of a shell 472
�1G fundamental groupoid of an !-groupoid 476
�n.G; p/; p 2 G0 homotopy groups of an !-groupoid 476
G� skeletal filtration of an !-groupoid 499
�K the free !-groupoid on a cubical set 500
!- GPDS.G;H/ internal hom for !-groupoids 515
F ˝G tensor product of !-groupoids 516
In free !-groupoid on a generator of dim n 537
yI full subcategory of !-Gpds on the previous 537

elements for n > 0
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abelian groupoid, 569
abelianisation, 132

of a crossed module, 214
of a group, 40
of a groupoid (universal), 569
of groupoid, 246, 569

abstract kernel, 408
action

of a category, 597
of a group on a group, 38

acyclic
cofibration, 398
crossed complex, 329
fibration of crossed complexes, 397
functor to crossed complexes, 355

Acyclic Model Theorem, 355
adjoint functors, 564

counit of, 566
limits and colimits, 568
unit of, 565

adjoint module of a groupoid, 241
adjointness between the nerve of a crossed

complex and fundamental crossed
complex of a cubical set, 390

Alexander module, 257
Alexandrov, P. S., 10, 12
anodyne extension

cubical, 381
simplicial, 361

anomaly, 15, 61
array in an !-groupoid

composable, 449
composite, 449
of n-cubes, 449

Ashley theorem, 479
aspherical

crossed complex, 329
standard crossed resolution, 321

augmentation
ideal, 132
map, 241
module, 241

augmented crossed complex, 330
automorphism crossed module, 39

Baer sum, 428
ball, n-

as filtered space, 211
base points, set of

homotopy groups, 213
based pair, 35, 266
n-connected, 266
connected, 43
filtration associated to a, 266

biclosed category, 612
bicubical map, 374
biderivation, 587
bimorphisms

of crossed complexes, 294
of pointed !-groupoids, 536
of pointed crossed complexes, 392
of !-groupoids, 516

Bourbaki, composition law, 13
box category, 369
box, partial, 380
Brandt, H., 13
Brouwer Degree Theorem, 269

cartesian
lifting, 577
morphism, 577

cartesian subgroupoid, 302
cat1-group, 50

category of, 50
equivalence to crossed modules

over groups, 50
homomorphism, 50
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of a fibration, 53
of a map, 54

category
admits colimits, 562
biclosed, 612
box, 369
cartesian closed, 281
cocomplete, 562
cofibration of, 581

functor induced v�, 581
comma, 559
connected, 579
double, 146
enriched, 614
fibration of, 577

cleavage, 578
reindexing u�, 578
splitting, 578

internal to groups, 57
monoidal, 608
monoidal closed, 609
of crossed complexes, 216
of morphisms of a category, 559
semiabelian, 614
slice, 558
small, 556
symmetric monoidal, 610
triangulated, 363

Cayley graph, 342, 344, 592
of the symmetric group S3, 70

Čech
cohomology, 421
homotopy groups, 10
nonabelian cohomology, 421

cells
attaching, 212
characteristic maps, 212
of X relative to A, 212

central subset, 39
centraliser

of a group element, 411
of a subset, 39

centre of a group, 39

chain complex, 240
category of, 240
closed category structure

internal hom, 306
derived from a crossed complex, 247
monoidal closed category structure

exponential law, 307
tensor product, 306

morphism of, 240
of a cubical set, 502
of a filtered space, 274
over a fixed groupoid G, 240
reduced, 240

circle, fundamental group of, 27
classifying space

of a crossed complex, 368
cubical, 391
simplicial, 395

of a crossed module over a group, 47
of a group, 46

cleavage, 578
closed category

cartesian, 281
exponential law

for numbers, 280
for sets, 280

internal hom, 281
monoidal, 282
of chain complexes

internal hom, 307
m-fold homotopies, 307

of crossed complexes
bimorphism, 295
internal hom, 292
m-fold homotopies, 291
(1-fold) homotopies, 291

of filtered spaces
internal hom, 312

of modules over a ring, 281
tensor product, 282

of modules over groupoids
bilinear maps, 285
internal hom, 285
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tensor product, 286
of topological spaces, 281

cobar construction, 548
cocartesian

lifting, 581
morphism, 580

Cockcroft complex, 104
cocomplete category, 562
cocone on a diagram, 559
coend, 570

geometric realisation as example, 371
coequaliser, 562

topological spaces, 192
cofibrant crossed complex, 398
cofibration

of categories, 581
of crossed complexes, 398
of topological spaces, closed, 44

cofibred filtered space, 323, 542
cogluing theorem, 55, 161, 487
coherence, 322

in monoidal structures, 517
laws, 520

colimit, 559, 562
email analogy, 561
homotopy, 364

collapse, 380
elementary, 380
free face, 380

comma category, 559
commutative
n-shell, 467
3-shell

in a double category
(composition), 186

in a double category
(degenerate case), 189

in a double groupoid, 186
2-shell in a category, 150

commutator
of two elements, 40
Peiffer, 75
pseudo-, 98

subgroup of a group, 40
compactly generated space, 281
completion, regular, 382
complicial set, 479
composable array

in a double category, 149
in an !-groupoid, 449

composable sequence, 320
composition

in a cubical set, 447
in categories and groupoids: notation,

145
matrix notation, 148
of n-cubes, 450
of an array in a double category, 149

concentrated at a point, 452
cone on a diagram, 563
configuration space theory, 548
congruence subgroup, 56
conjugation crossed module, 39
connected

based pair, 43
category, 579
filtered space, 260
n-, for based pair, 266
triple of spaces, 192

connection
in a cubical set, 446

transport laws, 448
in a double category, 171

associated to a thin structure, 172
transport laws, 171

Connes, A., 14
consequence

formal, 74
of relations, 69

contracting homotopy, 226
home for, 342

copower
of crossed modules over groups, 88
of groups, 120

coproduct
of crossed modules over groups, 88
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case of two modules, 89
of groups (free product), 87
of precrossed modules, 88

cosimplicial object, 572
coskeleton

of a crossed complex, 223
of an !-groupoid, 463, 465

cotruncation of crossed complexes, 223
counit of an adjunction, 566
covering

homotopy property, 399
morphism of crossed complexes, 324
morphism of groupoids, 590
presentation, 345
transformation, 591

crossed
chain complex, 256
n-fold extension, 427
resolution, 330
sequence, 428
square, 49, 587

induced, 587
universal, 587

crossed complex, xxvi, 214
acyclic, 329
acyclic functor, 355
aspherical, 329
associated !-groupoid, 469
associated to a chain complex, 250
augmented, 330
bimorphism, 294
category, 216
classifying space of, 391
cofibrant, 398
cofibration, 398
component of, 218
cone, 316
coskeleton, 223
cotruncation, 223
cubical nerve, 389, 532
cylinder, 315
derived chain complex, 247
exponential law, 299

fibration, 397
acyclic, 397

free, 236
free on one generator, 237
free type, 236
fundamental

of a cubical set, 389
of a filtered space, 220

fundamental groupoid of, 215
homology groups of, 219
homotopy equivalence, 226
homotopy pushout, 338
internal hom, 290
left lifting property (LLP), 398
morphisms, 215

homotopy, 224
n-aspherical, 406
nerve

simplicial, 390
of a simplex, 315
of an !-groupoid, 452
over a given groupoid G, 216
Postnikov decomposition, 416
reduced, 216
regular, 249
restriction functor, 217
right lifting property (RLP), 399
skeleton, 222
tensor product, 296
tree, 227
truncated, 221
truncation, 221
weak equivalence, 219

crossed module over groupoids, 152
abelianisation, 214
associated to double groupoids, 156

action, 154
category, 153
free, 235
fundamental, of a triple, 153
modulisation, 214
morphism, 153
reduced, 153
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regular, 249
crossed module over groups, 38

associated to an automorphism, 126
associated to precrossed module, 77
automorphism crossed module, 39
category over a fixed group, 39
category over all groups, 39
central extension, 39
classifying space, 47
conjugation crossed module, 39
copower, 88
coproduct, 88

case of two modules, 89
dihedral, 123, 429
free, 80

as induced by a homomorphism,
110

existence, 80
fundamental, of a based pair, 41
induced, 113

as a pushout, 111
by a monomorphism, 120
by a subgroup, 120
by an epimorphism, 117

morphisms, 39
normal sub-, 62
of a based pair, fundamental, 55
P -module, 39
pullback along a homomorphism, 108
semidirect product, 89

crossed sequence, 428
cube, see 3-shell
cube, n-

as filtered space, 211
base point of, 458
total boundary, 463

cubical
chain complex, 502
face operator, 370
homology groups, 502
homotopy, 385
Homotopy Addition Lemma, 388
homotopy groupoid, 486

n-groupoid, 451
!-groupoid, 450
T -complex, 476

cubical set, 369
fibrant, 382
fundamental crossed complex, 389
internal hom, 377
Kan, 382
n-shell, 463

filler, 463
path complex, 376
singular, 370, 445
tensor product, 373

relation to realisation, 374
transposition functor, 378
tricubical map, 375
with connections, 446
with connections and compositions, 447

interchange laws, 448
transport laws, 448

CW-complex, 213
filtration, 212
relative, 212

cyclic group, resolution, 330
cylinder crossed complex, 288

deficient
filtered map

on a cell, 488
deformation retraction

groupoids, 26
Deformation Theorem, 489
�-set, 575
dense subcategory, 537, 563
derivation, 242

nonabelian, 593
right, 226

derivative, Fox, 247
derived

chain complex, 247
module of a morphism, 245

exact sequence, 248
dicocone, 570
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dicone, 570
dihedral

crossed module, 123, 429
group, 123

dinatural transformation, 570
discrete groupoid, 565
displacement subgroup, 98
Dold–Kan Theorem, 479, 508

cubical version, 395
simplicial, 322, 541

double category, 146
as 2-truncated cubical sets, 148
composable array, 149

refinement, 149
composite of an array, 149
connection pair, 171
degeneracies, 147
elements represented as squares, 146
horizontal structure, 146
identities, 146
interchange laws, 148
matrix notation for composition, 148
of 2-shells in a category, 150
of commutative 2-shells, 150
subdivision of an element, 149
thin structure, 163
vertical structure, 146
where all structures are groupoids, 151

double groupoid, 166
associated to crossed module, 156
category of, 166
connection pair, 171
folding in, 179
morphism of, 166
thin structure, 163

double mapping cylinder, 337
duality

Poincaré, 546

Eckmann–Hilton argument, 10
Ehresmann, C., 6
Eilenberg–Zilber Theorem

for !-groupoids, 532

for crossed complexes, 395
Eilenberg–Zilber–Tonks Theorem, 360
end, 570
enriched category, 596, 614
enrichment, 322, 545
Erlangen Programme, 6
evaluation morphism in groupoids, 603
exact sequence

of a derived module, 248
of a fibration of crossed complexes, 403
of a fibration of spaces, 9
of the homotopy groups of a pair, 35
Whitehead’s, 506

excision
homological, 362
homotopical

dimension 2, 105, 114
dimension n, 267

exponential law, 280
for !-groupoids, 517
for chain complexes, 307
for crossed complexes, 287, 299
for cubical sets, 372
for filtered spaces, 312
for modules, 287
for numbers, 280
for sets, 280
for spaces, 281

extension
as crossed module, central, 39
by a product, 426
central, as crossed module, 39
crossed n-fold, 427
of groups, 419, 422

face
free, 380
oppposite, 380

face operator
cubical, 370

factor set, 332, 419
fibrant

cubical nerve, 390
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cubical set, 382
fibration

fundamental cat1-group, 53
of categories, 577
of crossed complexes, 397

acyclic, 434
exact sequence, 403
trivial, 434

of cubical sets, 383
of groupoids, 434, 590
of topological spaces, 52

associated to a map, 54
associated to a pair of spaces, 55
fundamental crossed module, 52

fibre of a functor, 577
filler

of an n-shell, 463
unique, 466

filter homotopy
homotopy rel vertices, 482

filtered maps
deficient on a cell, 488
Deformation Theorem, 489
fibration theorem, 490
into a triple, 156
singular cubical set RX�, 445
thin-double-homotopy, 483

filtered space, 211
category, 211
cofibred, 323, 542
connected, 260
filtered map, 211
fundamental !-groupoid, 486

compositions, 484
elements in dimension n, 482

fundamental crossed complex, 220
as associated to the fundamental

!-groupoid, 496
internal hom, 312
Jn-condition, 507
reduced, 263
tensor product, 211, 311

filtration of an !-groupoid, skeletal, 499

finite cyclic group, resolution, 330
finite induced crossed module, 124
fixed point theory, 546
folding

in !-groupoids, 458
in a double groupoid, 179

behaviour with compositions, 180
characterisation of thin elements,

182
formal consequences of relations, 74
Fox

derivative, 247
free differential calculus, 257

Fox, R. H., 13
free

crossed P -module on a P -set, 80
crossed complex, 236

relative free, 238
relative free of pure dimension n,

237
with one generator, 237

crossed modules over groupoids, 235
crossed resolution, 330
differential calculus, 257
group, 68
groupoid, 83, 590
loop space, 322
module, 233
!-groupoid on a cubical set, 500
precrossed P -module on a P -set, 80
product of groups (coproduct), 87
resolution, 65
type, crossed complex of, 236

free face, 380
free loop space, 293, 392
free product of groups (coproduct), 87
functor

adjoint, 564
Kan extension of, 245
representable, 558
representative, 498

fundamental
chain complex



660 Index

of a filtered space, 274
crossed complex

of a cubical set, 389
of a filtered space, 220
of a simplicial set, 319

crossed module
of a based pair, Whitehead work,

41
of a triple, 153

double groupoid
of a triple, 158
of a triple, Seifert–van Kampen

Theorem, 193
of a triple, thin structure, 165

group
of a based space, 8
of a based space, Seifert–van Kampen

Theorem, 9, 14
of the circle, 27

groupoid
of a crossed complex, 215
of a cubical set, 386
of a pair, Seifert–van Kampen

Theorem, 14
set of base points, 13

Galois theory, generalised, 63
GAP, 82
Gauss, C. F., 13
generating set of objects in a category, 563
geometric realisation

of a cubical set, 371
of a simplicial set, 9

graph, 589
category of, 589
Cayley, 342, 344, 592
directed, 589

connected, 26
forest, 26
tree, 26

edge of, 589
of groups, 364

free crossed resolution, 339

fundamental groupoid, 339
vertex of, 589

Gray tensor product, 541
Grothendieck construction, 597
Grothendieck, A., 16
group

abelianisation of, 40
augmentation ideal, 132
category of, 556
central subset, 39
centraliser of a subset, 39
centre, 39
classifying space, 46
commutator of two elements, 40
commutator subgroup, 40
copower, 120
coproduct (free product), 87

normal form of an element, 87
dihedral, 40, 123
free, 68
HNN extension, 339
Klein 4-group, 591
Klein bottle, 340
nerve of, 9
normal closure of a subset, 69
polycyclic, 137
presentation, see presentation of a group
pullback, 107
quaternion, 40
right transversal, 120
trefoil, 338
wreath product, 132

groupoid, 12
abelian, 569
abelianisation, 569

universal, 569
augmentation map, 241
category of, 556
connected, 25
connected component, 25
covering morphism, 590
deformation retraction, 26
discrete, 565
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fibration, 590
free, 83, 590
fundamental

of crossed complex, 215
higher order, 28
indiscrete, 25, 565

generated by a set I.S/, 26
n-, 451
object group at a point G.a/, 25
1-connected, 25
pullback, 578
pushout, 17
simply connected, 25
3-fold, 596
tree, 26, 227
trefoil, 338
unit interval, 26
universal covering, 591
universal group of, 569

groups with an action
displacement subgroup, 98
pseudo-commutator of two elements, 98

HAL, 389
handlebody decomposition, 396
Heisenberg, W., 14
HHSvKT

for the fundamental !-groupoid, 492
for the fundamental crossed complex,

496
higher dimensional algebra, xxi, 201, 555
higher order groupoids, 28
HNN extension, 339
holomorph, 139
homological perturbation theory, 367
homology

cubical, 502
Kolmogorov–Steenrod, 547

homotopic
cubical maps, 385
map, 33
maps relative to a subset, 33

homotopical excision in dimension n, 267

homotopy
colimit, 364
contracting, 226
crossed complex morphisms, 224
cubical sets, 385
left cubical

n-fold, 377
1-fold, 376

limits and colimits, 596
maps of filtered spaces, 312
maps of spaces, 33
m-fold: for crossed complexes, 291
morphisms of crossed complexes, 291
1-type, 47
pushout

crossed complexes, 338
spaces, 337

thin, 158, 472, 482
thin double, 483
3-type, 49, 597
2-type, 48, 116

Homotopy Addition Lemma
cubical, 318, 388
folding in !-groupoid, 472
simplicial, 317

homotopy classes
of morphisms C ! D, 291

homotopy classification
of equivariant maps, 395

Homotopy Classification Theorem, 391
homotopy commutativity lemma

for a triple, 189
homotopy equivalence

crossed complexes, 226
weak

crossed complexes, 219
spaces, 372

homotopy groups
action of the fundamental group, 36
boundary map of a pair, 35
Čech, 10
homomorphism

associated to a continuous map, 34
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associated to a map of pairs, 35
homotopy exact sequence of a pair, 35
Hurewicz, 11
module over fundamental groupoid, 213
of a based pair, 35
of a based space, 33
of an r-cube of spaces, 38
of based r-ads, 38
relative, 35
triadic, 586

homotopy pushout
of classifying spaces of groups, 115

Hopf
formula, 65
formula in dimension 2, 119
generalisation of formula, 141
theorem for n > 2, 273

Hopf, H., 10
Hurewicz

Absolute Theorem, 273, 502, 506
homotopy groups, 11
morphism, 273

in an exact sequence, 507
Relative Theorem

in dimension n, 272
in dimension 1, 505
in dimension 2, 118

triadic Theorem, 597
Hurewicz, W., 12
hypermorphism, 597

identities among relations, 66, 69
computation, 343
S3, 70

indiscrete groupoid, 565
induced

crossed module, 113
as a pushout, 111
by a monomorphism, 120
by a subgroup, 120
by an epimorphism, 117
finiteness, 124
free crossed module as induced, 110

crossed square, 587
module, 112
object, 581
precrossed module, 109, 113

interchange laws, 11, 178, 448
caution, 149
double category, 148

internal hom
of chain complexes, 306
of crossed complexes, 290
of cubical sets, 377
of filtered spaces, 312
of pointed !-groupoids, 536
of pointed crossed complexes, 392
of !-groupoids, 515

internal to groups
category, 57
equivalence to a cat1-group, 58
functor, 57

invariant
k-invariant, 428
Postnikov, 428

Jn-condition, 507

Kan
cubical set, 382
extension condition, 382
extension of a functor, 245

k-invariant, 410
killing kernels, 330, 341, 342
Klein 4-group, 591
Klein bottle group, 340
K-theory, 56
Kurosch Subgroup Theorem, 84

left lifting property (LLP)
of crossed complexes, 398

limit, 563
homotopy inverse, 547

local
coefficients, 418
system, 415
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Loday, J.-L., 29
logged rewriting, 365
loop space, free, 392

Mackey, G. W., 16
Main Diagram, xxxii, 48
map

homotopic, 33
source, 556
target, 556

mapping cylinder, double, 337
matrix notation for composition

in a double category, 148
in an !-groupoid, 449

Mayer–Vietoris sequence, 434
module

adjoint, of a groupoid, 241
Alexander, 257
as crossed module, 39
augmentation module, 241
free, 233
induced, 112
morphism, 214
over a groupoid, 213
precrossed, 75
semidirect product, 242
trivial, 241

modulisation of a crossed module, 214
monoidal category, 608
monoidal closed category, 282

of chain complexes
internal hom, 306
tensor product, 306

of crossed complexes
internal hom, 292, 530
tensor product, 298, 529

of cubical sets
internal hom, 378
tensor product, 373

of filtered spaces
internal hom, 312
tensor product, 311

of modules

tensor product, 286
!-groupoids

internal hom, 515
tensor product, 516

morphism category, 559
of groupoids, 245

morphisms
of crossed complexes, 215
of crossed modules, 39
of modules, 214
of !-groupoids, 451
of precat1-groups, 81

Morse theory, 548

n-box in !-groupoid
unique thin filler, 475

n-groupoid
category, 452
for n D 2 is a double groupoid, 452
n-coskeleton, 465
n-truncation, 463
skeleton, 467

n-aspherical
crossed complex, 406

n-cube
array, 449

composable, 449
composite, 450

concentrated at p, 452
edges at the base point, 460

nerve
of a crossed complex

and homotopies, 391
and tensor product, 390
as T -complex, 476
cubical, 389, 532
is T -complex, 390
is fibrant, 390
right adjoint of fundamental

crossed complex, 390
of a group, 9
of a groupoid

simplicial, 319
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simplicial
crossed complex, 390

net of polyhedra, 547
nondegenerate base point, 263
normal

sub crossed module, 62
normal closure, 69
normal form, 346

graph of groups, 364
normalised cubical chains, 502

Obstruction Class Theorem, 407
!-groupoid, 450

associated crossed complex, 452
action, 453
another description of the action,

454
composition, 452
functor, 454

associated to a crossed complex, 469
category of , 451
closed category

bimorphisms, 516
exponential law, 517
internal hom, 515
n-fold (left) homotopies, 515
n-fold (left) path !-groupoid, 514
tensor product, 516, 518

Eilenberg–Zilber Theorem, 532
folding, 458

characterisation of elements of the
associated crossed complex, 459

characterisation of thin, 462
Homotopy Addition Lemma, 472
in the j -th direction, 455

free, 500
fundamental of a filtered space, 482, 486

compositions, 484
HHSvKTheorem, 492
thin = deficient representative, 491

morphism, 451
!-subgroupoid, 451
skeletal filtration, 499

thin elements, 462
characterisation using folding, 462
cubical T -complex, 476
unique thin filler of an n-box, 475

transpose, 535

partial box, 380
chain of, 381

path complex
left, 376
n-fold, 376

PcGroup, 137
Peiffer

commutators
in a groupoid, 232
in a precrossed module, 76

product of groups, 103
subgroup, 76

in coproduct construction, 91
P -group, 60
Poincaré, H., 8
pointed crossed complexes, internal hom,

392
poly-T -complex, 512
polycyclic group, 137
Postnikov

decomposition of a crossed complex, 416
invariant, 61, 408, 428, 432

computation, 430
of a space, 410

precat1-group, 81
associated cat1-group, 82
category of, 81
equivalence to precrossed modules, 81
morphism between, 81

precrossed module, 75
associated crossed module, 77
coproduct over P , 88
induced, 109, 113
morphism between, 75
Peiffer commutator, 76
Peiffer subgroup, 76

precubical set, 358
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presentation of a group
consequences, 69
formal consequences, 74
identity among relations, 75
one relator, 331, 426
Peiffer elements, 75
power-conjugate, 137
van Kampen diagrams, 71

generalised, 74
shelling, 72

via a relation map, 74
via a relation subset, 69

presimplicial set, 357, 572, 576
projective

functor to crossed complexes, 366
resolution, 65

proper model category, 594
proper power, 70
P -set

free crossed P -module on a, 80
the category of sets over P , 79

P -sets
free precrossed P -module on a, 80

pullback
crossed P -module, 95
groupoid, 578

pushout
homotopy

crossed complexes, 338
spaces, 337

of groupoids, 17

reduced
crossed module, 153
filtered space, 263

refinement, 421
composable array, 149

reflexive subcategory, 568
regular

completion, 382
crossed complex, 249
crossed module, 249

reindexing functor, 578

relator
proper power, 70, 331
root of, 70

representable functor, 558
representative functor, 498
resolution

finite cyclic group, 330
free, 65
standard free crossed, 321

restriction functor in crossed complexes,
217

rewriting, 149, 167, 202, 346
logged, 365

right lifting property (RLP)
of crossed complexes, 399

root of a relator, 70
rotations

in !-groupoids, 477
in a double groupoid, 166

Schreier
extension theory, 437
Subgroup Theorem, 41
transversal, 346

Seifert–van Kampen Theorem
Higher Homotopy

consequences: Brouwer Degree
Theorem, 269

consequences: Homotopical
Excision Theorem, 267

consequences: Hopf’s theorem,
273

consequences: Relative Hurewicz
Theorem, 272

consequences: Suspension
Theorem, 269

for crossed complexes, 262
pushout version1, 263, 264

in dimension 1
for the fundamental group, 9, 14
for the fundamental groupoid, 14
for the fundamental groupoid:

proof, 17
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in dimension 2, 42
Excision Theorem, 114
for crossed modules, 42
for the double groupoid, 193

in dimension 2
consequences, Relative Hurewicz

Theorem, 118
semidirect product

of a module over a groupoid, 242
shell

commutative n-shell
in an !-groupoid, 467

dimension 2, 150
dimension 3, 184
in a cubical set, 463

filler, 463
in an !-groupoid

unique filler, 466
3-, commutative, see commutative
3-shells
3-, in a double category, 184
2-, commutative, 150
2-, in a category, 150

shellable, 84
shelling, 84
shelling of a van Kampen diagram, 72
simplex, n-, 211
simplex, transpose, 318
simplicial
T -complex, 512
T -groupoid, 512

simplicial set, 571
fundamental crossed complex, 319
nerve of a groupoid, 319
without degeneracies, 357, 572

simplicial site, 572
singular n-cube

array
composition, 450
composition in direction j , 450
composition in directions j ¤ k,

450
subdivision of type .m/, 450

singular cubical set, 370
of a filtered space, 445

skeletal filtration
CW-complex, 212
!-groupoid, 499

skeleton
functor

on n-groupoids, 467
of an !-groupoid, 463
of crossed complex, 222

Skeleton, n
of an !-groupoid, 468

skeleton, n-
CW-complex

relative, 213
slice category, 558

covering morphisms, 590
Spencer, C. B., 28
sphere, n-

as filtered space, 211
Stallings, J., 141
standard free crossed resolution, 321
Steinberg group, 56
stratified space, xxv, 396, 550
strong homology theory, 547
subcategory

dense, 537, 563
reflexive, 568

subdivision, 490
subdivision in a double category, 149
Subgroup Theorem

Kurosch, 84
Schreier, 41

Suspension Theorem, 269
symmetric group S3, identities among

relations, 70
symmetry

higher order, 598
of tensor product in crossed complexes,

298
syzygy, 64

chains of, 65, 341
homological dimension of rings, 65
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homotopical, 83

T -complex
cubical, 476
simplicial, 322

tensor algebra of crossed complex, 542
tensor product

Gray, 541
nonabelian, 587
of chain complexes, 306
of crossed complexes, 296

pointed, 392
symmetry, 298

of cubical sets, 373
symmetry, 378

of filtered spaces, 211, 311
of free crossed complexes, 310
of modules over a ring, 282
of modules over groupoids, 286
!-groupoids, 516, 518

pointed, 536
symmetry

crossed complexes, 534
thin

double-homotopy, 483
homotopy rel vertices

class of a map hh˛ii, 482
thin element

deficient representatives, 491
determined by faces, 466
in an !-groupoid, 462
T -complex, 476
unique filler, 475

thin homotopy
in a filtered space, 482

extension property, 488
in the i -th direction, 483

in a triple, 158
class of a map, 158

thin structure
associated to a connection, 173
implies compositions, 477
on a double category, 163

axioms, 163
on a double groupoid

rotation maps, 166
on the fundamental double groupoid,

165
transport laws, 164

3-type, 49, 586
Tietze transformations, 136
topological space

compactly generated, 281
filtration of, 211

transport laws for connections, 448
transpose

for simplices, 436
in !-groupoids, 535
of cube, 535
simplex, 318

transposition functor
in cubical sets, 378

tree
crossed complex, 227
groupoid, 26, 227

trefoil
group, 338, 426
groupoid, 338

triad
homotopy group, 586
of spaces, 586

triangulated
category, 363

tricubical map, 375
triple of spaces

connected, 192
Homotopy Commutativity Lemma, 189

trivial
fibration of crossed complexes, 434
G-module, 241

truncated crossed complex, 221
truncation

of a crossed complex, 221
of an !-groupoid, 463

twisting cochains, 367
2-group, 436
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unit interval groupoid, 26
unit of an adjunction, 565
universal

abelianisation of a groupoid, 569
covering morphism

groupoid, 591
crossed square, 587

van der Waerden’s trick, 301
van Kampen diagram, 71
vertical morphism, 577

weak equivalence
of crossed complexes, 219

of spaces, 372
wedge, 259
Whitehead

axiom for crossed module, 60
exact sequence, 506
theorem on free crossed modules, 116
theorem on homotopy equivalences, 596

Yoneda embedding, 370, 538
Yoneda Lemma, 542, 572

zig-zag, 579
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