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Alexander Grothendieck
......people are accustomed to work with fundamental groups
and generators and relations for these and stick to it, even in
contexts when this is wholly inadequate, namely when you get
a clear description by generators and relations only when
working simultaneously with a whole bunch of base-points
chosen with care - or equivalently working in the algebraic
context of groupoids, rather than groups. Choosing paths for
connecting the base points natural to the situation to one
among them, and reducing the groupoid to a single group, will
then hopelessly destroy the structure and inner symmetries of
the situation, and result in a mess of generators and relations
no one dares to write down, because everyone feels they won’t
be of any use whatever, and just confuse the picture rather
than clarify it. I have known such perplexity myself a long time
ago, namely in Van Kampen type situations, whose only
understandable formulation is in terms of (amalgamated sums
of) groupoids.
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A connected union of two non connected spaces, with many
base points.
The geometry is not captured by a choice of one base point.
Much more complicated situations than this occur in
combinatorial group theory.
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Amazing fact: there is one theorem that makes the transition
from topology to algebra by giving the fundamental groupoid
of the union on an appropriate set of base points. From that,
calculation of the fundamental group of the union at some
particular base point involves choices and needs more algebra
of what is called ‘combinatorial group theory’; so in this section
we go straight for the key theorem 6.7.2, and then proceed to
do one so-called ‘retraction’ which is enough to compute the
fundamental group of the circle, in the spirit of the discussion
on p. xxi, where we gave an analogy between the following two
diagrams (which are both pushouts!)

{0, 1}

��

// {0}

��
[0, 1] // S1

spaces

{0, 1}

��

// {0}

��
I // Z

groupoids
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The point to be made about Theorem 6.7.2 is that it goes via
the case A = X , a case in which the proof is simple and
elegant, and includes most of the topology. However for
computation we want to get the set A as small as possible. For
the case X = S1 we need at least two points in A, a fact which
is relevant to the Phragmen-Brouwer Theorem discussed in
Section 9.2.
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Here we would take A to consist of 4 points, one in each point
of the intersection, and would like to reduce this to one point,
and so compute the fundamental group at that point.



Exposition of
part of

Chapter 6

Ronnie Brown

More generally, we choose a subset A′ of A ∩ X1 which is
representative in X1, so that we can choose paths from each
point of A ∩ X1 to some point of A′. This defines a retraction
r : πX1A→ πX1A

′, and hence also a retraction
r ′ : πXA→ πXA1 where A1 is the union of the points of A′ and
those of A\X1. This gives us our diagram (*) of 6.7.4.
The fact that this diagram is a pushout allows the computation
of πXA1, and in particular in the case when A1 is a single point
a it computes the fundamental group π(X , a). But notice the
description of this group is in terms of groupoids. This is surely
surprising from a traditional viewpoint.
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The next result applies 6.7.4 to compute the fundamental group
of the circle. It was the fact that the standard result in terms
of groups alone did not compute this basic example seemed to
Ronnie Brown in 1965 unaesthetic, an anomaly which needed
correction. It later seemed that all of 1-dimensional homotopy
theory could be better expressed in terms of groupoids rather
than groups. This led naturally to the question of whether, or
not, groupoids could be useful in higher homotopy theory.
Note that the circle S1 is the union of two open subsets
X1 = S1\{i},X2 = S1\{−i} whose intersection is the union of
two disjoint open arcs. Thus it is perhaps easier to draw the
more general, and also interesting, case:

Theorem
Suppose the space X is the union of two open 1-connected sets
X1,X2, whose intersection X0 has two path components. Let
x ∈ X0. Then the fundamental group π(X , x) is isomorphic to
the group Z of integers.
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Let A = {x , y} consist of one point in each path-component of
X0. Since X1 is path-connected there is a path in X1 joining y
to x and this defines a retraction r : πX1{x , y} → π(X1, x).
Since X1 is 1-connected, the latter group is trivial. Since X2 is
1-connected, πX2{x , y} is isomorphic to I. So 6.7.4 yields the
pushout diagram:

{0, 1}

��

r // {0}

��
I

r ′
// π(X , x).

The conclusion follows.
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Example

Consider the space X obtained from the union of two unit
intervals [−1, 1]× {1, 2} by identifying (t, 1) with (t, 2) for all
t ∈ [−1, 1] except for t = 0.
Let Xi be the image of [−1, 1]× {i} for i = 1, 2. Then each Xi

is homeomorphic to [−1, 1]. The space X is an analogue of
Example 1 on p. 107. It is a non Hausdorff space which looks
like the interval [−1, 1] but with two copies of 0.

The above theorem shows that the fundamental group of X at
one of the copies of 0 is isomorphic to Z.


