
THE HOLONOMY GROUPOID OF A LOCALLY
TOPOLOGICAL GROUPOID

Mohammed A. E.-S. A.-F. Aof
Department of Mathematics

Faculty of Science
Minia University

El Minia
Egypt

Ronald Brown
School of Mathematics

University of Wales
Bangor, Gwynedd
LL57 1UT. U.K.

r.brown@bangor.ac.uk

May 10, 2005

Note:
This is a slightly edited version in LATEX of the paper with the same title published in Top. Appl., 47
(1992) 97-113. The main changes are that additional references have been inserted.

Abstract

The well known holonomy groupoid of a foliation is here generalised to the holonomy groupoid
of a locally topological groupoid. This gives an account of an important theorem of J.
Pradines (1966) on the globalisation of locally topological groupoids.

KEYWORDS: groupoid, topological groupoid, holonomy, monodromy:

1991 AMS Classification: 58H05,22A22,18F20

1



Introduction

The notion of holonomy groupoid in this paper is due to Pradines [P1]. It arose from two sources.
One source is the idea of the holonomy groupoid of a foliation, as discussed by Ehresmann and
Shih Weishu in 1956 in [Eh-We], and by Ehresmann in [Eh] (for a more recent account, see [W]).
The other source is the grand scheme, described in the sequence of notes [P1,P2], of generalising
the classical correspondence between Lie groups and Lie algebras to a correspondence between
certain Lie groupoids and Lie algebroids. For a recent account of some aspects of this, see [M].
For a general survey of the utility of groupoids, see [B2].

For groups, one key part of this Lie correspondence requires a classical and fairly simple,
though not entirely trivial, procedure for extending a topology (see, for example, [Bo]), as follows.
From a Lie algebra one obtains a group G and a topology on a subset W of G containing the
identity. Suitable conditions are obtained on W for the topology on W to be translated, by the
operations of left translation, to a topology on G. The basic reason for this success is that in a
topological group, left translation by an element maps open sets to open sets.

Such a procedure fails in the groupoid case, since in a topological groupoid, left translation
of an open set by an element usually fails to be open, because the multiplication is only partially
defined. It is this failure which, under suitable conditions, gives rise to the holonomy groupoid.
These ideas are more fully expressed as follows.

Let G be a groupoid, and suppose that there is given a topology on a subset W of the set of
arrows of G such that W contains the identities OG of G. For certain conditions on W , we call
the pair (G,W ) a locally topological groupoid. We give simple examples, due to Pradines [P3],
which show that in general there is no topology on G which restricts to that on W and which
makes G a topological groupoid. In other words, a locally topological groupoid is not in general
extendible to a topological groupoid.

Instead, there is a topological groupoid H with a morphism H → G such that H contains
W as a subspace and H is in a clear sense universal among such topological groupoids. It is this
groupoid H which is called the holonomy groupoid of the locally topological groupoid, and the
construction of H is called globalisation.

The existence of the holonomy groupoid in the smooth case is essentially the main result
of [P1], the first of the announcements in [P1,P2]. However no details of the construction have
been made generally available. Pradines told R.Brown the main ideas of his construction in the
period since 1981, and the completion of the details was the main work of the first author’s
Doctoral Thesis at Bangor. The importance of the construction clearly warrants a complete
account, with the use of each assumption clearly displayed. We have also been able to make
some simplification of the proofs in [Ao], with the result that fewer assumptions are required for
the construction than those which are given in [Ao], and which are implicit in [P1].

The structure of this paper is as follows. Section 1 contains the definition of a locally
topological groupoid and some examples of these which are not extendible. Section 2 contains
the statement of the Globalisation Theorem, which asserts that the holonomy groupoid exists,
and the construction of this as a groupoid. Section 3 constructs the topology on the holon-
omy groupoid, and section 4 verifies the universal property. Section 5 contrasts the holonomy
construction with the fact that there is an appropriate topology on each α-fibre α−1x, x ∈ G.
Section 6 proves that locally trivial locally topological groupoids are extendible. Section 7 gives
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1 Definition of a locally topological groupoid

We first establish some basic notation.
Let G be a groupoid. We write OG for the set of objects of G, and also identify OG with

the set of identities of G. An element of OG may be written as x or 1x as convenient. We write
α, β : G → OG for the source and target maps. The product hg of two elements of G is defined if
and only if αh = βg, and so the product map γ : (h, g) 7→ hg is defined on the pullback Gα×βG
of α and β. The difference map δ : G ×α G → G is given by δ(g, h) = gh−1, and is defined on
the double pullback of G by α.

The construction of the holonomy groupoid is intimately bound up with the properties of the
admissible local sections of G. We recall their definition due to Ehresmann [Eh1], but following
the notation of [M], with some modifications.

Suppose that X = OG is given the structure of a topological space.

Definition 1.1 An admissible local section of G is a function s : U → G from an open subset
U of X such that s satisfies:

(i) αsx = x for all x ∈ U ,

(ii) βs(U) is open in X, and

(iii) βs maps U homeomorphically to βs(U).

The set U is called the domain of s and is written D(s). If s and t are two admissible local
sections, then their product ts is defined by

(ts) : x 7→ (tβsx)(sx)

where the right hand product is the product in G. Thus D(ts) is an open subset of D(s), and the
product ts is again an admissible local section. It is convenient to say that t and s are composable
if D(ts) = D(s). If s is an admissible local section, then we write s−1 for the admissible local
section with domain βsD(s) and which is given by βsx 7→ (sx). With this product, the set Γ(G)
of admissible local sections becomes an inverse semigroup. (Recall that an inverse semigroup S
is a semigroup such that for all s ∈ S there is a unique element t ∈ S such that s = sts, t = tst.
This element t is called the (generalised) inverse of s.)
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Let s ∈ Γ(G). Then s defines a left translation Ls on G by Lsg = (sβg)g, and a right
translation Rs by Rsg = g(sαg), g ∈ G. These are injective partial functions on G. If G is a
topological groupoid, and s is also continuous, then Ls and Rs map open sets of G to open sets.

Let W be a subset of G, and suppose that W has the structure of a topological space with X
as a subspace. We say that the triple (α, β,W ) has enough continuous admissible local sections
if for each w ∈ W there is an admissible local section s of G such that (i) sαw = w, (ii) the
values of s lie in W , and (iii) s is continuous as a function D(s) → W . We call such an s a
continuous admissible local section through w.

he holonomy groupoid will be constructed for a locally topological groupoid, a term we now
define. This definition is a modification of one due to J. Pradines in [P1] under the name “un
morceau differentiable de groupöıde”.

Definition 1.2 A locally topological groupoid is a pair (G, W ) consisting of a groupoid G and
a topological space W such that:

G1) OG ⊆ W ⊆ G;

G2) W = W−1;

G3) the set Wδ = (W ×α W ) ∩ δ−1(W ) is open in W ×α W and the restriction to W of the
difference map δ : G×α G → G, (g, h) 7→ gh−1, is continuous;

G4) the restrictions to W of the source and target maps α and β are continuous, and the triple
(α, β, W ) has enough continuous admissible local sections;

G5) W generates G as a groupoid.

Note that, in this definition, G is a groupoid but does not need to have a topology. The
locally topological groupoid (G,W ) is said to be extendible if there can be found a topology
on G making it a topological groupoid and for which W is an open subspace. We give below
examples of locally topological groupoids which are not extendible.

Remark 1.3 (i) The condition W = W−1 does not appear in Pradines definition of “un morceau
differentiable de groupoide” [P1]. It is proved in [Ao], following a suggestion of K. Mackenzie,
that if we are given a pair (G,W ) satisfying all the conditions for locally topological groupoid
except the condition W = W−1 , then a locally topological groupoid structure can be given to
(G,W ∪W−1).
(ii) Axiom (G4) is implied in the differentiable case by the condition which is assumed in [P1]
that the restrictions of α and β to W are differentiable surmersions.
(iii) In [Ao], the extra assumption is made that there is an open set V of W satisfying the
conditions X ⊆ V and V 2 ⊆ W . Such a condition is implied by the condition that the space OG

of objects of G is paracompact (as pointed out by Pradines, see the Appendix to [Ao]), and in
[P1] the assumption is made that all spaces are to be paracompact. However the analysis given
here shows that this condition may be dispensed with.
(iv) The condition (G5) does not appear in standard expositions of the group case. What does
appear is a condition that for each g ∈ G there is an open neighbourhood V of the identity 1
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such that gV g−1 ⊆ W . Pradines argues (private communication) that this is a condition on so
to speak ‘large’ elements of G, and so is unrealistic. As we shall see, the generation condition
allows us to dispense with the above conjugation condition, and so we have in effect a new result
even in the group case.
(v) The assumption is also made in [P1] and in [Ao] that (G,W ) is α-connected, i.e. that for all
x ∈ X, the space α−1(x) ∩W is connected. The present proof does not require this condition.

This is a convenient place to make some deductions from the axioms.

1.4 The inverse map ι : g 7→ g−1 is continuous as a function ιW : W → W .

Proof Since W = W−1, the values of ι do lie in W and so continuity for ιW makes sense. Let
j : W → W ×α W be the function w 7→ (αw, w). Then ιW = δj and j(W ) has image contained
in δ−1(W ). The result follows. 2

1.5 The set γ−1(W ) ∩ (Wα×β W ) is open in Wα×β W and γ is continuous on this set.

Proof This follows from (G3) and (1.4). 2

Suppose now that (G,W ) is a locally topological groupoid. Let Γc(W ) be the subset of Γ(G)
consisting of admissible local sections which have values in W and are continuous. It is useful
to think of an element of Γc(W ) as a ‘local procedure’.

Let Γc(G,W ) be the subsemigroup of Γ(G) generated by Γc(W ). Then Γc(G,W ) is again
an inverse semigroup. It is useful to think of an element of Γc(G,W ) as an ‘iteration of local
procedures’.

There are two simple results which we shall use later.

1.6 Let r, s, t ∈ Γc(W ), and suppose y ∈ D(rst) and x = βty satisfy (rs)x ∈ W and (rst)y ∈ W .
Then there are restrictions r′, s′, t′ of r, s, t respectively such that y ∈ D(r′s′t′) and r′s′t′ ∈ Γc(W ).

Proof Let z = βsx ∈ D(r). By assumption, (rz, sx) lies in the open subset γ−1(W )∩(Wα×βW )
of Wα×β W . The existence of the restrictions r′, s′ now follows from continuity considerations.
A similar argument applies to obtain t′, possibly further restricting r′ and s′. 2

1.7 Suppose s, t ∈ Γc(W ), x0 ∈ X and sx0 = tx0. Then there is a neighbourhood U of x0 such
that the restriction of st−1 to U lies in Γc(W ).

Proof Note that st−1 is the composition of the partial maps

X
(βt)−1

// X
(s,t) // G×G

δ // G

Since s and t are continuous as maps into W and Wδ = (W ×α W )∩δ−1(W ) is open in W ×α W ,
there is an open neighbourhood U ′ of x0 such that (s, t)(U ′) is contained in Wδ. Hence δ(s, t)(U ′)
is contained in W . So st−1 is continuous on βt(U ′). 2
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Let J = J(G) be the sheaf of germs of admissible local sections of G. Thus the elements of
J are equivalence classes of pairs (x, s) such that s ∈ Γ(G), x ∈ D(s), and (x, s) is equivalent to
(y, t) if and only if x = y and s and t agree on a neighbourhood of x. The equivalence class, i.e.
the germ, of (x, s) is written [s]x. The product structure on Γ(G) induces a groupoid structure
on J with X as the set of objects, and source and target maps [s]x 7→ x, [s]x 7→ βsx. Let
Jc(G) be the subsheaf of J of germs of elements of Γc(G,W ). Then Jc(G) is generated as a
subgroupoid of J by the sheaf Jc(W ) of germs of elements of Γc(W ). Thus an element of Jc(G)
is of the form

[s]x = [sn]xn . . . [s1]x1

where s = sn . . . s1, with [si]xi ∈ Jc(W ), xi+1 = βsixi, i = 1, . . . , n and x1 = x ∈ D(s).
The inverse semigroup Γc(G,W ) and its associated groupoid of germs Jc(G, W ) are impor-

tant because of their rôle in codifying the iteration of local procedures and their germs, namely
those determined by Γc(W ) and Jc(W ).

It is easiest to picture locally topological groupoids (G,W ) for groupoids G such that α =
β, so that G is just a bundle of groups. Examination of this special case is also useful for
understanding the proof of the main Theorem 2.1 below. Here is a specific such example of a
locally topological groupoid which is not extendible. The holonomy groupoid of this example
will be discussed later.

Example 1.8 (Pradines [P3]) Let F be the bundle of groups α1 : R× R → R where α1 is the
first projection. The usual topology on R × R gives F the structure of topological groupoid in
which each α−1

1 (x) is isomorphic as additive group to R by (x, y) 7→ y. Let N be the subbundle
of F given by the union of the sets {(x, 0)} if x < 0 and {x}×Z if x > 0. Let G be the quotient
bundle F/N and let p : F → G be the quotient morphism. Then the source map α : G → R has
α−1(x) isomorphic to R for x < 0 and to R/Z for x > 0. Let W ′ be the subset R× (−1/4, 1/4)
of F . (see Fig.1)

−1

}W ′

1

0

Figure 1

5



Then p maps W ′ bijectively to W = p(W ′); let W have the topology in which this map is a
homeomorphism. It is easily checked that (G,W ) is a locally topological groupoid. Suppose
this locally topological groupoid is extended to a topological groupoid structure on G. Let s′

be the section of α1 in which x 7→ (x, 1/8), and let s = ps′. Then s is an admissible section of
α, as is t = 9s. However t(0) = p(0, 1/8). Let U be an open neighbourhood of (1/8, 0) in R2

such that U is contained in W ′. Then p(U) is contained in W and is a neighbourhood of t(0).
But t−1p(U) is contained in [0, 8), so that t is not continuous. This gives a contradiction, and
shows that the locally topological groupoid (G, W ) is not extendible. By contrast, if we proceed
as before but replace N by N1 which is the union of the sets {(x, 0)} for x 6 0 and {x} × Z for
x > 0, then the resulting locally topological groupoid (G1,W1) is extendible.

Example 1.9 There is a variant of the last example in which F is as before, but this time N
is the union of the groups {x} × (1 + |x|)Z for all x ∈ R. If one takes W ′ as before, and W is
the image of W ′ in G = F/N , then the locally topological groupoid (G,W ) can be extended to
give a topological groupoid structure on G. However, now consider W as a differential manifold.
The differential structure cannot be extended to make G a differential groupoid with W as
submanifold. The reason is analogous to that given in the previous example, namely that such a
differential structure would entail the existence of a local differentiable admissible section whose
sum with itself is not differentiable, thus giving a contradiction.

Other examples of locally topological and differential groupoids, particularly that defined by
a foliation, will be discussed in Section 7. See also [3].

2 Construction of the holonomy groupoid

In this section we state our main Globalisation Theorem, which shows how a locally topolog-
ical groupoid gives rise to its holonomy groupoid, which is a topological groupoid satisfying a
universal property. We also start the proof of the theorem, which then occupies this and the
next two sections. As explained earlier, this theorem is the essence of the topological version
of Theorem 1 of [P1], which is stated in terms of categories of microdifferential groupoids, i.e.
germs of locally differential groupoids. We hope that the current approach will make it easier
to relate the theorem to classical work on topological groups, and to understand the beautiful
construction.

Theorem 2.1 (Globalisation Theorem) Let (G,W ) be a locally topological groupoid. Then there
is a topological groupoid H, a morphism φ : H → G of groupoids, and an embedding i : W → H
of W to an open neighbourhood of Ob(H), such that:
i) φ is the identity on objects, φi = idW , φ−1(W ) is open in H, and the restriction φW :
φ−1(W ) → W of φ is continuous;
ii) (universal property) if A is a topological groupoid and ζ : A → G is a morphism of groupoids
such that:

a) ζ is the identity on objects;

b) the restriction ζW : ζ(W ) → W of ζ is continuous and ζ−1(W ) is open in A and generates
A;
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c) the triple (αA, βA, A) has enough continuous admissible local sections,

then there is a unique morphism ζ ′ : A → H of topological groupoids such that φqζ ′ = ζ and
ζ ′a = iζa for a ∈ ζ−1(W ).

The groupoid H is called the holonomy groupoid Hol(G,W ) of the locally topological
groupoid (G,W ); its essential uniqueness follows from the condition (ii) above.

Here is an outline of the construction of H. We first form the inverse semigroup Γ(G) and
its subsemigroup Γc(G,W ) generated by Γc(W ) as in section 1. The groupoid J(G) of germs of
Γ(G) has the subgroupoid Jc(G) of germs of Γc(G,W ), and is generated as a groupoid by the
set Jc(W ) of germs of Γc(W ). Let ψ : J(G) → G be the final map defined by ψ([s]x) = s(x),
where s is an admissible local section. Then ψ(Jc(G)) = G, by axioms (G4) and (G5).

Let J0 = Jc(W ) ∩ Ker ψ. We will prove next that J0 is a normal subgroupoid of Jc(G).
Hence we can define H to be the quotient groupoid Jc(G)/J0; in Section 3 we give H a suitable
topology, to make it a topological groupoid.

Lemma 2.2 The set J0 is a normal subgroupoid of the groupoid Jc(G).

Proof We write Jc for Jc(G). That J0 is a subgroupoid of Jc follows easily from (1.4) and
(1.6).

Let [f ]x ∈ J0(x, x) and [t]x ∈ Jc(x, y) for some x, y ∈ X. Then we may assume that f, t
are admissible local sections with y = βtx and αfx = βfx = αtx = x. By the definition of J0,
fx = 1x, and we may assume that the image of f is contained in W and f is continuous.

Since Jc is generated by Jc(W ) = Jc(W )−1, then

[t]x = [tn]xn . . . [t1]x1 ,

where ti ∈ Γc(W ), x1 = x and xi+1 = βtixi, i = 1, . . . , n. Hence

[t]x[f ]x([t]x)−1 = [tn]xn . . . [t1]x[f ]x([t1]x)−1 . . . ([tn]xn)−1.

Therefore it is sufficient to prove that if [f ]x ∈ J0(x, x) and [t]x ∈ Jc(W )(x, y), then

[t]x[f ]x([t]x)−1 = [tft−1]y ∈ J0(y, y).

But this follows easily from (1.6). 2

We now define the holonomy groupoid H = Hol(G,W ) to be the quotient groupoid

Jc(G)/J0. Let p : Jc(G) → H be the quotient morphism, and write 〈s〉x for p[s]x. Then
the final map ψ : Jc → G induces a surjective morphism φ : H → G such that φ〈s〉x = sx.

The following lemma will be used later.

Lemma 2.3 Let w ∈ W , and let s and t be continuous admissible local sections through w. Let
x = αw. Then 〈s〉x = 〈t〉x in H.

Proof By assumption sx = tx = w. Let y = βw. Without loss of generality, we may assume
that s and t have the same domain U and have image contained in W . By (1.7), st−1 ∈ Γc(W ).
So [st−1]y ∈ J0. Hence in H

〈t〉x = 〈st〉y〈t〉x = 〈s〉x.

2
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3 Topological groupoid structure on H

The aim of this section is to construct a topology on the holonomy groupoid H such that H
with this topology is a topological groupoid. In the next section we verify that the universal
property of Theorem 2.1 holds. The intuition is that first of all W embeds in H (Lemma 3.1),
and second that H has enough local sections for it to obtain a topology by translation of the
topology of W .

Let s ∈ Γc(G,W ). We define a partial function σs : W → H. The domain of σs is the set
of w ∈ W such that βw ∈ D(s). The value σsw is obtained as follows. Choose a continuous
admissible local section f through w. Then we set

σsw = 〈s〉βw〈f〉αw = 〈sf〉αw.

By Lemma 2.3, σsw is independent of the choice of the local section f .

Lemma 3.1 σs is injective.

Proof Suppose σsv = σsw. Then αv = αw = x, say, and βsβv = βsβw. By admissibility
of s, βv = βw = y, say. Let g be a local section through w. Then we now obtain from
σsv = σsw that 〈s〉y〈f〉x = 〈s〉y〈g〉x, and hence, since H is a groupoid, that 〈f〉x = 〈g〉x. Hence
v = fx = gx = w. 2

So we have an injective function σs from an open subset of W to H. By definition of H,
every element of H is in the image of σs for some s. These σs will form a set of charts and so
induce a topology on H. The compatibility of these charts results from the following lemma,
which is essential to ensure that W retains its topology in H and is open in H.

Lemma 3.2 Let s, t ∈ Γc(G,W ). Then (σt)−1(σs) coincides with Lh, left translation by the
local section h = t−1s, and Lh maps an open set of W homeomorphically to an open set of W .

Proof Suppose v, w ∈ W and σsv = σtw. Choose continuous admissible local sections f and g
of α through v and w respectively such that the images of f and g are contained in W . Since
σsv = σtw, then αv = αw = x say. Let βv = y, βw = z.

Since σsv = σtw, we have
〈sf〉x = 〈tg〉x.

Hence there exists a continuous admissible local section r of α with x ∈ D(r) such that [r]x ∈ J
and

[sf ]x = [tg]x[r]x.

Let h = t−1s. Then in the semigroup Γc(G,W ) we have from the above that hf = gr locally
near x. So w = (gr)x = (hf)x = (hy)v. This shows that (σt)−1(σs) = Lh, left translation by
the element h ∈ Γ(G).

However, we also have h = grf−1 near βv. Hence Lh = LgLrLf−1 near v. Now Lf−1

maps v to 1x, Lr maps 1x to 1x, and Lg maps 1x to w. So these left translations are defined
and continuous on open neighbourhoods of v, 1x and 1x respectively. Hence Lh is defined and
continuous on an open neighborhood of v. 2
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We now impose on H the initial topology with respect to the charts σs for all s ∈ Γc(G,W ).
In this topology each element q of H has an open neighbourhood homeomorphic to an open
neighbourhood of 1αq in W .

Lemma 3.3 With the above topology, H is a topological groupoid.

Proof Notice that for w ∈ W , αHσsw = αw, βHσsw = βsβw. It follows that αH and βH are
continuous.

Next we prove continuity of δ : H ×αH H → H. Let 〈s〉x, 〈t〉x ∈ H. Then σs(1x) = 〈s〉x,
σt(1x) = 〈t〉x, and if h = st−1, then σh(1y) = 〈st−1〉y, where y = βtx. Let v ∈ D(σs), w ∈ D(st),
with αv = αw = a, say, and let f and g be elements of Γc(W ) through v and w respectively.
Let b = β(tg)a. Then

(σh)−1δ(σs × σt)(v, w) = (σh)−1δ(〈sf〉a, 〈tg〉a)
= (σh)〈sfg−1t−1〉b
= (Lh)−1(sfg−1t−1)b

= (tβv)vw−1(tβw)−1

= θ(v, w),

say. The continuity of this map θ at (1x, 1x) is now easily shown by writing t = tn . . . t1 where
ti ∈ Γc(W ) and using induction and an argument similar to that for (1.6). 2

Note that H is a topological groupoid in which αH has enough continuous admissible local
sections, since if q = 〈s〉x ∈ H, then y 7→ 〈s〉y is a continuous admissible local section through q.

Note also that if 1 is the identity section x 7→ 1x, then i = σ1 is an embedding W → H such
that φi is the identity on W . We consider H as a globalisation of W to a topological groupoid.

Example 3.4 We can now continue Example 1.8. Let N1 be the subgroupoid of F given by

N1(x) =

{
{(x, 0)} if x 6 0,

{x} × Z if x > 0.

Let W ′ be as before and let G1 = F/N1. The image W1 of W ′ in G1 gives a locally topological
groupoid (G1,W1) which is extendible to a (non-Hausdorff) topological groupoid structure on
G1, and the projection G1 → G is isomorphic to the projection of the holonomy groupoid. Thus
the kernel of ψ : H → G is the bundle of groups over R which is 0 for x 6= 0 and is Z for x = 0.
The reason is that the element f of Γc(G) given by

t 7→
{

(t, 1) if t < 0,

(0, 0) if t > 0,

yields a generator 〈f〉0 of Ker ψ.
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Example 3.5 We now continue Example 1.9. In this case we can construct a differential holon-
omy groupoid Hd by following the previous construction but replacing the word ‘continuous’ by
‘differentiable’ and ‘homeomorphism’ by ‘diffeomorphism’. Applying this to Example 1.9, one
finds that the kernel of ψg : Hd → G is generated by the class of the germ at 0 of the continuous
but not differentiable section t 7→ (t, |t|); this kernel is isomorphic as groupoid to the kernel of
ψ as in the previous example. Pradines has pointed out in [P3] that this kind of example may
be varied by quotienting the bundle of groups α1 : R × R → R by subbundles generated by
sections with one or another continuity or differentiability properties, and then constructing the
holonomy groupoid using only sections with stronger properties.

Remark 3.6 We emphasise, as explained in Remark 1.3(iv), that Theorem 2.1 is a new result
even in the case G is a group, although of course the proof would become much simpler if
restricted to that case.

4 The universal property

In this section we prove the universal property of the morphism φ : H → G, namely property
(ii) of Theorem 2.1. Suppose then that A and ζ are as in that theorem.

It is clear that X ⊆ ζ−1(W ) ⊆ A. Let a ∈ A(x, y). The aim is to define ζ ′a ∈ H.
Since ζ−1(W ) generates A, we can write a = an . . . a1, where ζai ∈ W and i = 1, . . . , n.
Since A has enough continuous admissible local sections, we can choose continuous admissible

local sections fi of αA through ai, i = 1, . . . , n, such that they are composable and their images
are contained in ζ−1(W ).

By condition (b), the continuity of ζ on ζ−1(W ) implies that ζfi is a continuous admissible
local section of α through ζai ∈ W whose image is contained in W . Therefore ζf ∈ Γc(G,W ).
Hence we can set

ζ ′a = 〈ζf〉αa ∈ H.

We now prove that ζ ′ is well defined.

Lemma 4.1 ζ ′a is independent of the choices which have been made.

Proof Let a = bm . . . b1, where ζbj ∈ W and j = 1, . . . ,m. Choose a set of continuous
admissible local sections gj of αA through bj such that the gj ’s are composable and their images
are contained in ζ−1(W ).

Let g = gm . . . g1. Then ζg ∈ Γc(G,W ), and so 〈ζg〉x ∈ H.
Since, by assumption, fx = gx = a ∈ A, then (fx, gx) ∈ A ×α A and δA(fx, gx) =

(fx)(gx)−1 = 1x. Hence (fx, gx) ∈ δ−1
A ζ−1(W ) because 1x ∈ ζ−1(W ).

Because A is a topological groupoid, the groupoid difference map δA : A × A → A is
continuous. Since ζ−1(W ) is open in A, by condition (b), then δ−1ζ−1(W ) is open in A×α A.

But, by the continuity of f and g, the induced map (f, g) : (Df) ∩ (Dg) → A ×α A is
continuous. Hence there exists an open neighbourhood N of x in X such that (f, g)(N) ⊆
δ−1ζ−1(W ) which implies that (fg−1)(βgN) ⊆ ζ−1(W ), and so, after suitably restricting f and
g, which we may suppose done without change of notation, we have that fg−1 is a continuous
admissible local section of αA through 1y ∈ A and its image is contained in ζ−1(W ). So ζ(fg−1)
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is a continuous admissible local section of α through 1y ∈ W , and its image is contained in W .
Therefore [ζ(fg−1)]y ∈ Jc(W ).

Since fx = gx, then ψ[ζf ]x = ψ[ζg]x. But ψ and ζ are morphisms of groupoids; hence
ψ[ζ(fg−1)]y = 1y, and so [ζ(fg−1)]y ∈ Ker ψ.

Therefore [ζ(fg−1)]y ∈ Jc(W ) ∩ Ker ψ = J0. Since ζ is a morphism of groupoids, we have
[ζ(fg−1)]y ∈ Jc. Hence 〈ζ(fg−1)〉y = 1y ∈ H, and so 〈ζg〉x = 〈ζ(fg)〉y〈ζg〉x = 〈ζf〉x which
shows that ζ ′a is independent of the choices made. 2

Lemma 4.2 ζ ′ is a morphism of groupoids.

Proof Let c = ab be an element of A such that a = an . . . a1andb = bm . . . b1, where ai, bj ∈
ζ−1(W ), i = 1, . . . , n and j = 1, . . . , m. Then c = an . . . a1bm . . . b1.

Let fi, gj be continuous admissible local sections of αA through ai and bj respectively such
that they are composable and their images are contained in ζ−1(W ). Let f = fn . . . f1, g =
gm . . . g1, s = fg. Then s is a continuous admissible local section of αA through c ∈ A, and
ζf, ζg, ζs ∈ Γc(G, W ), and ζs = (ζf)(ζg), since ζ is a morphism of groupoids.

Let x = αa, y = αb. Then 〈ζs〉y = 〈ζf〉x〈ζg〉y, and so ζ ′ is a morphism. 2

Lemma 4.3 The morphism ζ ′ is continuous, and is the only morphism of groupoids such that
φζ ′ = ζ and ζ ′a = iζa for all a ∈ ζ−1(W ).

Proof Since αA has enough continuous admissible local sections, it is enough to prove that ζ ′

is continuous at 1x for any x ∈ X. Let 1 denote the section x 7→ 1x of the source map of a
groupoid.

Let x ∈ X. If b ∈ ζ−1(W ) and s is a continuous admissible local section through b, then
ζ ′b = 〈ζs〉 = sζb. Since ζ is continuous, it follows that ζ ′ is continuous.

The uniqueness of ζ ′ follows from the fact that ζ ′ is determined on ζ−1(W ) and that this set
generates A. 2

This completes the proof of our main result, Theorem 2.1.

5 α-structured locally topological groupoids

The projection φ : H → G of the holonomy groupoid of (G,W ) to G maps iW homeomorphically
to W . We can also obtain a useful relation between the topology of H and the topology of suitable
translates of the topology of W around G. This is done by giving a topology to each α-fibre
α−1x, x ∈ G0, of G. Of course this does not in general give a topological groupoid structure on
G. What can be said is as follows. (These results are in Section 1 of [P1].)

Definition 5.1 A locally α-topological groupoid is a pair (G,W ) consisting of a groupoid G
and a topological space W such that:
(i) OG ⊆ W ⊆ G;
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(ii) W generates G as a groupoid;
(iii) W is the topological sum of the subspaces Wx = W ∩ α−1x, x ∈ OG;
(iv) if g ∈ G, then the sets R−1

g W = {w ∈ W : wg ∈ W} and W ∩Wg are open in W and the
right translation Rg : R−1

g W → W ∩Wg, w 7→ wg, is a homeomorphism.

In particular, an α-topological groupoid is a locally α-topological groupoid (G,G). Note
that an α-topological group is not necessarily a topological group.

The following simple proposition shows that any locally α-topological groupoid is extendible
to an α-topological groupoid. This is essentially Proposition 1 of section 1 of [P1]. It makes a
useful contrast to the Globalisation Theorem of Section 2.

Proposition 5.2 (α-extendibility) Let (G,W ) be a locally α-topological groupoid. Then (G,G)
may be given the structure of α-topological groupoid such that for all x ∈ OG, Wx is an open
subset of Gx.

Proof We define charts for G to be the right translations

Rg : Wx → Wyg

for g ∈ G(x, y) and x, y ∈ OG. Suppose that h, g ∈ Gx and Wyg meets Wzh. Then there are
elements u ∈ Wy and v ∈ Wz such that ug = vh. So R−1

h Rg maps the open neighbourhood
R−1

u−1v
W of u in Wy to the open neighbourhood W ∩Wu−1v of v in Wz. So these charts define

a topology as required. 2

We now apply this result to the case of a locally topological groupoid.

Proposition 5.3 Let (G,W ) be a locally topological groupoid. Let φ : H → G be the projection
of the holonomy groupoid of (G,W ). Then there is a topology on each α-fibre Gx = α−1

G x, x ∈
OG, such that the restriction of φ to Hx → Gx is étale.

Proof First of all, by redefining the topology on W to make it the topological sum W ′ of the
Wx, we obtain a locally α-topological groupoid (G,W ′), and so, by Proposition 5.2, a topology
on each Gx. A direct check against the topology defined on H now gives the result. 2

6 The locally trivial case

Let G be a groupoid and let W be a subset of G such that OG ⊆ W , and W also has the
structure of topological space. Then (G,W ) is said to be locally trivial if for all x ∈ OG there
is a neighbourhood U of x and a continuous section s : U → W of β such that αsy = x for all
y ∈ U . This is equivalent to saying that the anchor map AW : W → OG × OG, w 7→ (αw, βw),
is a surmersion, i.e. for each w ∈ W there is a local section of AW through w. This definition
goes back to Ehresmann. For more information, see [M]. The main result of this section is the
following, which is also given in [P1]. We are grateful for J. Pradines for supplying the proof
(private communication) as an improvement to his original (unpublished) proof.
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Proposition 6.1 Locally trivial locally topological groupoids are extendible.

Proof Let (G, W ) be a locally trivial locally topological groupoid. Set X = OG. We use the
local triviality to define an inverse θ to the projection H → G from the holonomy groupoid H
of (G,W ).

For each x ∈ X, choose a section sx as in the definition of local triviality. We may and do
assume that sx(x) = 1x.

Let g ∈ G have source x and target y. Choose a local homeomorphism h of X with hx = y.
This is possible by the existence of enough continuous admissible local sections and the fact that
W generates G. Define an admissible local section t through g by

t(z) = sy(hz).g.(sx(z))−1

for suitable z ∈ W . Let θ(g) denote the class mod J0 of the germ [t]x in J(G).
Then we find the following:

(i) θ(g) does not depend on the choice of h, so that θ is a well defined function from G to H.
Indeed, if u is a local section through g defined in a similar way by a local homeomorphism k,
then the local section v = ut−1 satisfies

v(z) = sy(kz)sy(hz)−1,

so that v(x) = 1y and for z sufficiently near to x, v(z) ∈ W . Hence [v]x ∈ J0, and so [t]x ≡ [u]x
mod J0.

The next results are now easy to check.
(ii) θ is a morphism of groupoids.
(iii) The restriction of θ to W coincides with the canonical embedding i : W → H ⊆ J(G)/J0(G).
(iv) Therefore θ induces an isomorphism of G onto H, inverse to φ. 2

7 Historical remarks

The concept of holonomy groupoid was introduced by C.Ehresmann and Weishu Shih in 1956
[Eh-We] and C.Ehresmann in 1961 [Eh3], for a locally simple topological foliation on a topological
space X (this means that X has two comparable topologies, and with respect to the finer
topology on X, a cover by open sets, in each of which the two topologies coincide). Such a
holonomy groupoid is considered as a topological groupoid H on X. It is constructed as a
groupoid of local germs of the groupoid H ′ of holonomy isomorphisms between the transverse
spaces Ui of simple open subsets Ui of X such that (Ui, Ui+1) is a ‘pure chain’. The holonomy
group at x ∈ X is the vertex group H(x) of H. This holonomy group is isomorphic to the
holonomy group H(y) for each y on the same leaf of the foliation as x.

J. Pradines in 1966 [P1] considered this holonomy groupoid H, in a wider context, with
its differential structure. He took the point of view that a foliation determines an equivalence
relation R by xRy if and only if x and y are on the same leaf of the foliation, and that this
equivalence relation should be regarded as a groupoid in the standard way, with multiplication
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(x, y)(y, z) = (x, z) for (x, y), (y, z) ∈ R. This groupoid is also written R. In the paracompact
case, the locally differential structure which gives the foliation determines a differential structure,
not on R itself, but ‘locally’ on R, that is, on a subset W of R containing the diagonal ∆X of
X. That is, the foliation determines a locally topological groupoid. The full details of this are
given in [3].

This led Pradines to a definition of “un morceau differentiable de groupoide” G , for which
[M], p.161, uses the term “locally differential groupoid”. Pradines’ note [P1] asserts essentially
that such a (G,W ) determines a differential groupoid Q0(G,W ) and a homomorphism P :
Q0(G,W ) → G such that the “germ” of W extends to a differential structure on G if and only
if P is an isomorphism. However his statement of results assumes that the base X = OG is
paracompact and that (G,W ) is α-connected, i.e. α−1(x) ∩ W is connected for each x ∈ X.
These assumptions seem to be necessary to extend the Globalisation Theorem 2.1 to the case of
germs.

The groupoid Q0(G,W ) is called by Pradines the holonomy groupoid of (G,W ).
One of the key motivations for the construction of the holonomy groupoid in [P1] is the

construction of the monodromy groupoid MG of a differential groupoid G, in which the stars
α−1

MG
(x) of MG are the universal covers of the stars α−1

G (x) of G. See also [M], p.68, for a specific
construction of this kind in the locally trivial case. A related work is [D-L], which gives some
results for the cases of a group, and of a bundle of groups. An outline of Pradines’ construction
is given in [B1], and the full details have been given in [Mu] and [2]. This paper also makes clear
the monodromy principle available in this general situation.

The monodromy topological groupoid of a foliation is also considered in [Ph] and in [K-M].
The latter paper also develops work of [R1,2].

A construction of the holonomy groupoid in the differential case is attempted by Almeida
in [Al], using properties of integration of vector fields. However this construction has not been
published elsewhere, and of course does not extend to the topological case.

Following Ehresmann’s work, there has long been interest in the holonomy group of a leaf
of a smooth foliation, see for example [L1,2]. For the locally differential groupoid corresponding
to a smooth foliation, the vertex groups of the Ehresmann-Pradines holonomy groupoid are the
holonomy groups in the standard sense.

The holonomy groupoid H of a smooth foliation on a manifold X was rediscovered (using
a different, but equivalent, description) by Winkelnkemper [W], as the “graph of the foliation”.
This was defined as the set S of all triples (x, y, [γ]), where x, y ∈ X are on the same leaf L of the
foliation, γ is a continuous path on L and [γ] is the equivalence class of γ under the equivalence
relation ∼ which is given by: for the two paths γ1, γ2 in L starting at x and ending at y, γ1 ∼ γ2

if and only if the holonomy of L at x along γ−1
1 γ2 is zero. As pointed out above, these ideas are

a special case of the general construction considered here. The way in which the holonomy and
monodromy are related in the general case is discussed in [2].

Connes [Co] has considered this differential holonomy groupoid H of the foliation and applied
to it his general theory of integration based on transverse measures on a measurable groupoid.
More recently, in [4], he has applied this and other groupoids in the theory of non commutative
C∗-algebras.

Pradines in [P1] also defines what he calls a germ of a locally differential groupoid, by saying
two locally differential groupoids (G,W ) and (G,W ′) are equivalent if there is a third locally
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differential groupoid (G,W ′′) such that W ′′ is an open submanifold of both W and W ′. Such a
germ is called a microdifferential groupoid. His aim is then to define the holonomy groupoid as a
functor on the category of such microdifferential groupoids. One of the problems of this theory
is that if (G,W ) and (G,W ′) are locally differential groupoids, then W ∩ W ′ may no longer
generate G. This difficulty does not occur if the locally differential groupoids are α-connected,
since in this case if W generates G then so also does any open subset of W containing OG. Thus
there is still work to be done in investigating examples of these constructions and the relations
between and consequences of various possible definitions.

Three principal examples of groupoids are bundles of groups, equivalence relations, symme-
try groupoids, and action groupoids associated with an action of a group (or more generally
groupoid) on a set (see for example [B2]). At present, it seems that only the holonomy of an
equivalence relation has been extensively studied, namely in the form of the holonomy groups and
holonomy groupoid of a smooth foliation (but see also [R1,2], [K-M], [1]). There is presumably
considerable potential value in the other cases.
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au-dessus d’un groupöıde’, ibid, 266 (1968) 1194-1196; ‘Troisième théoreme de Lie pour les
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