
doi: 10.1006/jsco.1999.0294
Available online at http://www.idealibrary.com on

J. Symbolic Computation (2000) 29, 5–31

Using Rewriting Systems to Compute Left Kan
Extensions and Induced Actions of Categories

RONALD BROWN†‡ AND ANNE HEYWORTH§¶

School of Mathematics, University of Wales, Bangor, Gwynedd LL57 1UT, UK

The aim is to apply string-rewriting methods to compute left Kan extensions, or, equiva-

lently, induced actions of monoids, categories, groups or groupoids. This allows rewriting
methods to be applied to a greater range of situations and examples than before. The
data for the rewriting is called a Kan extension presentation. The paper has its origins
in earlier work by Carmody and Walters who gave an algorithm for computing left Kan

extensions based on extending the Todd–Coxeter procedure, an algorithm only applica-
ble when the induced action is finite. The current work, in contrast, gives information
even when the induced action is infinite.

c© 2000 Academic Press

1. Introduction

This paper extends the usual string-rewriting procedures for words w in a free monoid
to terms x|w where x is an element of a set and w is a word. Two kinds of rewriting
are involved here. The first is the familiar x|ulv → x|urv given by a relation (l, r). The
second derives from a given action of certain words on elements, so allowing rewriting
x|F (a)v → x · a|v (a kind of tensor product rule). Further, the elements x and x · a are
allowed to belong to different sets.

The natural setting for this rewriting is a presentation of the form kan〈Γ|∆|RelB|X|F 〉
where:

• Γ, ∆ are (directed) graphs;
• X : Γ → Sets and F : Γ → P∆ are graph morphisms to the category of sets and

the free category on ∆, respectively; and
• RelB is a set of relations on the free category P∆.

The main result defines rewriting procedures on the P∆-set

T :=
⊔

B∈Ob∆

⊔
A∈ObΓ

XA× P∆(FA,B).

†Research partially supported by INTAS Project 94-436 ext “Algebraic K-theory, groups and cate-
gories”.
‡E-mail: r.brown@bangor.ac.uk
§Supported 1995-8 by an EPSRC Earmarked Research Studentship, “Identities among relations for

monoids and categories”, and 1998–9 by a University of Wales, Bangor, Research Assistantship.
¶E-mail: map130@bangor.ac.uk

0747–7171/00/010005 + 27 $35.00/0 c© 2000 Academic Press

6 R. Brown and A. Heyworth

When such rewriting procedures complete, the associated normal form gives in effect a
computation of what we call the Kan extension defined by the presentation.

So the power of rewriting theory may now be brought to bear on a much wider range of
combinatorial enumeration problems. Traditionally, string-rewriting is used for solving
the word problem for monoids. It has also been used for coset enumeration problems
(Redfern, 1993; Holt and Hurt, 1999). It may now also be used in the specification of

• equivalence classes and equivariant equivalence classes,
• arrows of a category or groupoid,
• right congruence classes given by a relation on a monoid,
• orbits of an action of a group or monoid,
• conjugacy classes of a group,
• coequalizers, pushouts and colimits of sets,
• induced permutation representations of a group or monoid

and many others (see Section 8).
In this paper we are concerned with the description of the theory and the implemen-

tation in GAP of the procedure with respect to one ordering. It is hoped to consider
implementation of efficiency strategies and other orderings on another occasion. The
advantages of our abstraction should then become even clearer, since one efficient im-
plementation will be able to apply to a variety of situations, including some not yet
apparent.

The papers by Walters et al. (Bush et al., 1997; Carmody and Walters, 1990, 1991)
on generalized Todd–Coxeter procedures for left Kan extensions, together with the im-
plementation (Fleming et al., 1996) by Rosebrugh were very influential on the current
work. Our work generalizes Knuth–Bendix procedures and so we work with a set of rules
rather than tables which would build up a catalogue of elements. Our techniques can give
results when the induced action is infinite, and this is the main advantage of rewriting
here. Further work is needed to make a detailed comparison of efficiency between the
procedures at the group level of specialization. At this general level where the proce-
dures have yet to be implemented in the same environment it is not possible to make
a fair comparison of the implementations. However, in the special cases of groups and
monoids, it can be remarked that sometimes the Knuth–Bendix procedures are thought
more efficient and sometimes it is the Todd–Coxeter which are more efficient.

2. Kan Extensions of Actions

The general definitions of Kan extensions may be found in Mac Lane (1971). The case
which we consider is the left Kan extension where the codomain is the category of sets.
To avoid repeating the phrase “left Kan extension over Sets” endlessly, we simply refer
to the “Kan extension”. The categorical definition of this case follows.

Let A be a category. A category action X of A is a contravariant functor X : A→ Sets.
This means that for every object A there is a set XA and the arrows of A act on the
elements of the sets associated to their sources to return elements of the sets associated
to their targets. So if a1 is an arrow in A(A1, A2), then XA1 and XA2 are sets and Xa1 :
XA1 → XA2 is a function where Xa1(x) is denoted x·a1. Furthermore, if a2 ∈ A(A2, A3)
is another arrow then (x · a1) · a2 = x.(a1a2) so the action preserves the composition.
This is equivalent to the fact that Xa2(Xa1(x)) = X(a1a2)(x), i.e. X is a contravariant

Using Rewriting Systems to Compute Left Kan Extensions and Induced Actions of Categories 7

functor. The action of identity arrows is trivial, so if id is an identity arrow at A then
x · id = x for all x ∈ XA.

Given the category A and the action defined by X, let B be a second category and let
F : A → B be a covariant functor. Then an extension of the action X along F is a pair
(K, ε) where K : B → Sets is a contravariant functor and ε : X → F ◦ K is a natural
transformation. This means that K is a category action of B and ε makes sure that the
action defined is an extension with respect to F of the action already defined on A. So ε
is a collection of functions, one for each object of A, such that εsrc(a)(Xa) and K(F (a))
have the same action on elements of K(F (src(a)).

The Kan extension of the action X along F is an extension (K, ε) of the action with
the universal property that for any other extension of the action (K ′, ε′) there exists a
unique natural transformation α : K → K ′ such that ε′ = α ◦ ε. Thus K may thought of
as the universal extension of the action of A to an action of B.

An alternative and possible more concrete description of the Kan extension is to form
the disjoint union X of the sets X(A) for all A in ObA. There is then a partial action
of the category on the set X. This will be described in detail in Section 4. The functor
F : A→ B then determines what is often called an induced partial action of the category
B on a set F∗(X), which is a disjoint union of sets F∗(X)B for all B in ObB. This gives
a functor F∗ on actions of A which is left adjoint to the “composite functor” F ∗ from
actions of B to actions of A. In this way we see how Kan extensions, or induced actions,
are related to the problems and examples listed in the introduction. This will be pursued
in detail in Section 8.

3. Presentations of Kan Extensions of Actions

The problem that has been introduced is that of “computing a Kan extension”. In
order to keep the analogy with computation and rewriting for presentations of monoids
we propose a definition of a presentation of a Kan extension. This definition turns out to
be a special case of the definition of Carmody and Walters who required a more general
notion to capture the content of the Todd–Coxeter procedure.

First, we set out our notation for free categories. Let ∆ be a directed graph, that is, ∆
consists of two functions src, tgt : Arr∆→ Ob∆. Any small category P has an underlying
graph UP. The free category P∆ on ∆ consists of the objects of ∆ with an identity arrow
at each object and non-identity arrows p : B → B′ given by the sequences (d1, d2, . . . , dn)
of arrows of ∆ which are composable, i.e. tgt(di) = src(di+1), i = 1, . . . , n− 1, and such
that src(d1) = B, tgt(dn) = B′. As usual, such a word is written d1 . . . dn : B → B′,
and composition is by juxtaposition. Of course, the free functor P is left adjoint to the
forgetful functor U .

A graph of relations Rel for the free category P∆ has objects those of ∆ and arrows
B → B′ sets of pairs (l, r) such that l, r : B → B′ in ∆. Then the quotient category
P∆/Rel is defined.

A presentation cat〈∆|Rel〉 for a category B consists of a graph ∆ of generators of B
and a graph of relations for P∆ such that the natural morphism of categories P∆→ B
induces an isomorphism of categories (P∆)/Rel → B. (For an introduction to category
presentations see Mitchell (1972).)

Next, we define “Kan extension data”.

8 R. Brown and A. Heyworth

Definition 3.1. A Kan extension data (X ′, F ′) consists of small categories A, B and
functors X ′ : A→ Sets and F ′ : A→ B.

Definition 3.2. A Kan extension presentation is a quintuple P := kan〈Γ|∆|RelB|X|F 〉
where:

(1) Γ and ∆ are graphs,
(2) cat〈∆|RelB〉 is a category presentation,
(3) X : Γ→ USets is a graph morphism, and
(4) F : Γ→ UP∆ is a graph morphism.

We say P presents the Kan extension data (X ′, F ′) where X ′ : A→ Sets and F ′ : A→
B if:

(1) Γ is a generating graph for A and X : Γ→ Sets is the restriction of X ′ : A→ Sets,
(2) cat〈∆|RelB〉 is a category presentation of B, and
(3) F : Γ→ P∆ induces F ′ : A→ B.

We also say P presents the Kan extension (K, ε) of the Kan extension data (X ′, F ′). The
presentation is finite if Γ, ∆ and RelB are finite.

Remark 3.3. The fact that X, F induce X ′, F ′ implies extra conditions on X, F in
relation to A and B. In practice we need only the values of X ′, F ′ on Γ. In other words,
a given Kan extension presentation always defines a Kan extension data where A is the
free category PΓ and (X ′, F ′) are induced by X,F . This is analogous to the fact that
for coset enumeration of a subgroup H of G where G has presentation grp〈∆|R〉 we need
only that H is generated by certain words in the set ∆.

4. P-sets

In this section we establish the concepts and notation used to apply rewriting proce-
dures to presentations of Kan extensions of actions. Our terminology is modelled on the
standard in rewriting theory.

Definition 4.1. Let P be a category. A P-set is a set T together with a function τ :
T → ObP and a partial action · of the arrows of P on T . The action satisfies the following
properties for all t ∈ T, p, q ∈ ArrP:

(1) if τ(t) = src(p), then t · p is defined and τ(t · p) = tgt(p);
(2) t · idτ(t) = t; and
(3) (t · p) · q = t · (pq) if the left-hand side is defined.

Note: the “stronger” notion of discrete fibration could be used here, but the above
definition is more consistent with rewriting.

Definition 4.2. A reduction relation on a P-set T is a relation → on T such that for
all t1, t2 ∈ T , t1 → t2 implies τ(t1) = τ(t2). The reduction relation → on the P -set T is
admissible if for all t1, t2 ∈ T , t1 → t2 implies t1 · p → t2 · p for all p ∈ ArrP such that
src(p) = τ(t1).

Using Rewriting Systems to Compute Left Kan Extensions and Induced Actions of Categories 9

For the rest of this paper we assume that P = kan〈Γ|∆|RelB|X|F 〉 is a presentation
of a Kan extension. The following definitions will be used throughout. Let P denote the
free category P∆. Then define

T :=
⊔

B∈Ob∆

⊔
A∈ObΓ

XA× P(FA,B). (1)

The elements of the set T will be referred to as terms, and a pair (x, p) ∈ XA×P(FA,B)
will be written x|p . The function τ : T → ObP is defined by

τ(x|p) := tgt(p) for x|p ∈ T.

Then T becomes a P-set by the action

(x|p) · q := x|pq for x|p ∈ T, q ∈ ArrP when src(q) = τ(x|p).

A rewrite system for a Kan presentation P is a pair R := (RT , RP) such that:

(1) RT is a reduction relation on the P-set T ; and
(2) RP is a set of relations on P—pairs of paths in P sharing the same source and the

same target.

The initial rewrite system that results from the presentation is the pair Rinit :=
(Rε, RK) defined as follows.

Rε : = {(x|Fa, x · a|idFA2)|x ∈ XA1, a ∈ Γ(A1, A2), A1, A2 ∈ ObΓ}.
RK : = RelB.

The first type of rule we call the “ε-rules” Rε ⊆ T × T . They are to ensure that the
action is an extension by F of the action of PΓ—this is the requirement for ε : X → KF
to be a natural transformation.

The second type we call the “K-rules” RK ⊆ ArrP×ArrP. They are to ensure that the
action preserves the relations and so gives a functor on the quotient B = (P∆)/RelB.

Remark 4.3. If the Kan extension presentation is finite, then Rinit is finite. The number
of initial rules is by definition (Σa∈ArrΓ|X(src(a))|) + |RelB|.

Definition 4.4. The reduction relation→R generated by a rewrite systemR = (RT , RP)
on the P-set T is defined as t1 →R t2 if and only if one of the following is true:

(1) There exist (s, u) ∈ RT , q ∈ ArrP such that t1 = s · q and t2 = u · q.
(2) There exist (l, r) ∈ RP , s ∈ T , q ∈ ArrP such that t1 = s · lq and t2 = s · rq.

Then we say t1 reduces to t2 by the rule (s, u) or by (l, r), respectively.

Note that →R is an admissible reduction relation on T . The relation ∗→R is defined
to be the reflexive, transitive closure of →R on T , and ∗↔R is the reflexive, symmetric,
transitive closure of →R.

Remark 4.5. Essentially, the rules of RP are two-sided and apply to any substring to

10 R. Brown and A. Heyworth

the right of the separator |. This distinguishes them from the one-sided rules of RT—
these might be called “tagged rewrite rules”, the “tag” being the part x to the left of the
separator of x|p, but in a more general sense than previous uses since the tags are being
rewritten.

Lemma 4.6. Let R be a rewrite system on a P-set T . Then ∗↔R is an admissible equiv-
alence relation on the P-set T .

The proof is straightforward.
The equivalence class of t ∈ T under ∗↔R will be denoted [t]. A suggestive notation for

the class [x|p] would also be x⊗ p.
We apply the standard terminology of reduction relations to the reduction relation

→R on T . In particular, we have a notion of →R being complete. A rewrite system
R := (RT , RP) will be called complete when →R is complete. In this case ∗↔R admits a
normal form function.

We expect that a Kan extension (K, ε) is given by a set KB for each B ∈ Ob∆ and a
function Kb : KB1 → KB2 for each b : B1 → B2 ∈ B (defining the functor K) together
with a function εA : XA → KFA for each A ∈ ObA (the natural transformation). This
information can be given in four parts:

• the set
⊔
BKB;

• a function τ :
⊔
BKB → ObB;

• a partial function (action)
⊔
BKB ×ArrP→

⊔
BKB; and

• and a function ε :
⊔
AXA→

⊔
BKB.

Here,
⊔
BKB and

⊔
AXA are the disjoint unions of the sets KB, XA over ObB, ObA,

respectively; if z ∈ KB, then τ(z) = B and if further src(p) = B for p ∈ ArrP, then z · p
is defined.

Theorem 4.7. Let P = kan〈Γ|∆|RelB|X|F 〉 be a Kan extension presentation, and let
P, T , R = (Rε, RK) be defined as above. Then the Kan extension (K, ε) presented by P
may be given by the following data:

(1) the set
⊔
BKB = T/

∗↔R,
(2) the function τ :

⊔
BKB → ObB induced by τ : T → ObP,

(3) the action of B on
⊔
BKB induced by the action of P on T , and

(4) the natural transformation ε determined by x 7→ [x|idFA] for x ∈ XA, A ∈ ObA.

Proof. We give the proof in some detail since this is helpful for the implementations
described in the next section.

Claim ∗↔ preserves the function τ .

Proof. We prove that ↔, the symmetric closure of →, preserves τ . Let t1, t2 ∈ T so
that t1 ↔ t2. From the definition of → there are two possible situations. For the first
case suppose that there exist (s1, s2) ∈ Rε such that t1 = s1 · q and t2 = s2 · q for some
q ∈ ArrP. Clearly τ(t1) = τ(t2). For the other case suppose that there exist (l, r) ∈ RK
such that t1 = s · (lq) and t2 = s · (rq) for some s ∈ T , q ∈ ArrP. Again, it is clear that
τ(t1) = τ(t2). Hence τ : T/ ∗↔R → ObP is well defined by τ [t] = τ(t). 2

Using Rewriting Systems to Compute Left Kan Extensions and Induced Actions of Categories 11

Claim T/
∗↔ is a B-set.

Proof. First we prove that B acts on the equivalence classes of T with respect to ∗↔. An
arrow of B is an equivalence class [p] of arrows of P with respect to RelB. It is required to
prove that [t]·p := [t·p] is a well-defined action of P on T/ ∗↔ such that [t]·p = [t]·q for all
p =RelB q. Let t ∈ T, p ∈ ArrP be such that τ [t] = src[p], i.e. τ(t) = src(p). Then t · p is
defined. Suppose s ∗↔ t. Then [s ·p] = [t ·p] since s ·p ∗↔ t ·p, whenever s ·p, t ·p are defined.
Suppose p =RelB q. Then [t · p] = [t · q] since t · p ∗↔RK t · q, whenever t · p, t · q are defined
and (∗↔RelB) ⊆ (∗↔). Therefore P acts on T/

∗↔. This action preserves the relations of
B and so defines an action of B on T/ ∗↔. Furthermore, τ([t] · p) = τ [t · p] = tgt(p) and if
q ∈ P such that src(q) = tgt(p), then ([t] · p) · q = [(t · p) · q] = [t · (pq)] = [t] · pq.

The Kan extension may now be defined. For B ∈ ObB define

KB := {[x|p] : τ [x|p] = B}. (2)

For b : B1 → B2 in B define

Kb : KB1 → KB2 : [t] 7→ [t · p] for [t] ∈ KB1 where p ∈ [b]. (3)

It can be verified that this definition of the action is a functor K : B→ Sets. Then define

ε : X → KF : x 7→ [x|idFA] for x ∈ XA,A ∈ ObA. (4)

It is straightforward to verify that this is a natural transformation. Therefore (K, ε) is an
extension of the action X of A. The proof of the universal property of the extension is as
follows. Let K ′ : B→ Sets be a functor and ε′ : X → K ′F be a natural transformation.
Then α : K → K ′, defined by

αB [x|p] = K ′(f)(ε′A(x)) for [x|p] ∈ KB,

is a natural transformation which satisfies ε ◦ α = ε′ and is clearly the only such. 2

5. Rewriting Procedures for Kan Extensions

In this section we will explain the completion process for the initial rewrite system. To
this end we give a convenient notation for the implementation of the data structure for
a finite presentation P of a Kan extension.

5.1. structure of input data

Kan presentation data is input in the form of various lists. Note that in so doing, we
are in each case choosing an arbitrary order on the elements of the list. The notation we
use is chosen to reflect our later GAP implementation:

12 R. Brown and A. Heyworth

ObA This is a list of objects of Γ.
ArrA This is a list of arrows of Γ.
ObB This is a list of objects of ∆.
ArrB This is a list of arrows of Arr∆.
RelB This is a finite list of the pairs of paths

which are the relations defining B.
FObA This is a list of the images of the objects of Γ

under the functor F—objects of ∆.
FArrA This is a list of the images of the arrows of Γ

under the functor F—arrows of P.
XObA This is a list of the images of the objects of Γ

under the functor X—sets of distinct elements.
XArrA This is a list of the images of the arrows of Γ

under the functor X—functions between pairs of sets.

All the above lists are finite since in this paper we are dealing only with finite Kan
presentation data. In Section 7 we show by example how to input this data.

5.2. lists

Elements of T are called terms and are represented by lists of generators, where the
generators may be thought of as labels. The first entry in the list must be a label for an
element of XA for some A ∈ ObΓ. The subsequent entries will be labels for composable
arrows of ∆, with the source of the first being FA. Formally, an element t ∈ T is
represented by a list

List(x|p) =

{
[x, b1, . . . , bn] if p = b1 . . . bn, n > 1,
[x, 1FA] if p = 1FA.

This also allows us to use list notation, so that if t = x|b1 . . . bn, then t[1] = x, t[i+ 1] =
bi, 1 6 i 6 n. Also, Length(t) means the number of elements in the list corresponding to
t and Position(ObA, A) returns the position of the element A in the list ObA. If t = [x|p]
we also write t[2..] for p.

5.3. initial rules procedure

Algorithm 5.1. (Initial Rules) Given the data for a Kan presentation in the form
of a record with the fields named as above, the initial rewrite system Rinit := (Rε, RK)
is determined.

(1) (Input:) ObA, ArrA, ObB, ArrB, RelB, FObA, FArrA, XObA, XArrA.
(2) (Procedure:) Set Rε := ∅, then for each arrow a ∈ ArrA, set i := Position(ArrA, a);

XA := XObA[Position(ObA, a[1])]; Xa := XArrA[i]; and set Fa := FArrA[i]. Then for
each element x in XA , set j := Position(XA, x) and add the rule [x ∗ Fa, Xa[j]] to
Rε. Set RK := RelB.

(3) (Output:) Rinit := (Rε, RK).

Using Rewriting Systems to Compute Left Kan Extensions and Induced Actions of Categories 13

5.4. orderings

To work with a rewrite system R on T we will require certain concepts of order on T .
We give properties of orderings >X on

⊔
AXA and >P on ArrP to enable us to construct

an ordering >T on T with the properties needed for the rewriting procedures.

Definition 5.2. A binary operation > on a set S is called a strict partial ordering if
it is irreflexive, antisymmetric and transitive. It is called a total ordering if also for all
x, y ∈ S either x > y or y > x or else x = y. An ordering > is well founded on S if there
is no infinite sequence x1 > x2 > · · · of elements of S. An ordering > is a well ordering
if it is well founded and a total ordering.

Definition 5.3. Let >P be a strict partial ordering on ArrP. It is called a total path
ordering if it induces a total order on P(B,B′) for all objects B,B′ ∈ P. It is called a well
ordering if it is well founded and a total path ordering. The ordering >P is admissible
on ArrP if

p >P q ⇒ upv >P uqv

for all u, v ∈ ArrP such that upv, uqv ∈ ArrP. An admissible well ordering is called a
monomial ordering.

Lemma 5.4. Let >X be a well ordering on the finite set
⊔
AXA and let >P be an ad-

missible well ordering on P. For t1, t2 ∈ T define

t1 >T t2 if t1[2..] >P t2[2..] or
t1[2..] = t2[2..] and t1[1] >X t2[1].

Then >T is an admissible well ordering on the P-set T .

Proof. It is straightforward to verify that irreflexivity, antisymmetry and transitivity of
>X and >P imply those properties for >T . The ordering >T is admissible on T because
it is made compatible with the right action (defined by composition between arrows on
P) by the admissibility of P on ArrP. The ordering is linear, since if t1, t2 ∈ T such that
neither t1 >T t2 nor t2 >T t1, it follows (by the linearity of >X and linearity of >P on
ArrP) that t1 = t2. That >T is well founded is easily verified using the fact that any
infinite sequence in terms of >T implies an infinite sequence in either >X or >P . Since
>X and >P are both well founded there are no such sequences. 2

The last result shows that there is scope for choosing different orderings on T . The
actual choice is even wider than this, and is related to efficiency, see Holt and Hurt
(1999)—there may even be completion with respect to one order and not another. We
do not discuss these matters here.

In this paper we work only with a “length-lexicographical ordering” defined in the
following way.

Definition 5.5. (Implemented Ordering) Let >X be any linear order on (the finite
set)

⊔
AXA. Let >∆ be a linear ordering on (the finite set) Arr∆. This induces an

14 R. Brown and A. Heyworth

admissible ordering >P on ArrP where

p >P q ⇔ Length(p) > Length(q)
or Length(p) = Length(q) and there exists k > 0 such that

p[i] = q[i] for all i < k and p[k] >∆ q[k].

The ordering >T is then defined as follows:

t1 >T t2 if Length(t1) > Length(t2)
or Length(t1) = Length(t2) and t1[1] >X t2[1]
or Length(t1) = Length(t2) and there exists k ∈ [1..Length(t1)]

such that t1[i] = t2[i] for all i < k, and t1[k] >∆ t2[k].

Proposition 5.6. The definitions above give an admissible, length-non-increasing well
order >T on the P-set T .

Proof. It is immediate from the definition that>T is length-non-increasing. It is straight-
forward to verify that >T is irreflexive, antisymmetric and transitive. It can also be seen
that >T is linear (suppose neither t1 >T t2 nor t2 >T t1 then t1 = t2, by the defini-
tion, and linearity of >X , >∆). It is clear from the definition that >T is admissible on
the P-set T (if t1 >T t2, then t1.p >T t2.p). To prove that >T is well founded on T ,
suppose that t1 >T t2 >T t3 > · · · is an infinite sequence. Then for each i > 0 either
Length(ti) > Length(ti+1) or if Length(ti) = Length(ti+1) and ti[1] >X ti+1[1], or if
Length(ti) = Length(ti+1) and there exists k ∈ [1..Length(ti)] such that ti[j] = ti+1[j]
for all j < k and ti[k] >∆ ti+1[k]. This implies that there is an infinite sequence
of type n1 > n2 > n3 > · · · of positive integers from some finite n1, or of type
x1 >X x2 >X x3 > · · · of elements of

⊔
AXA or else of type p1 >∆ p2 >∆ p3 >∆ · · · of

arrows of ∆, none of which is possible as >, >X , and >∆ are well founded on N,
⊔
AXA

and Arr∆, respectively. Hence >T is well founded. 2

Proposition 5.7. Let >T be the order defined above. Then p1 >P p2 ⇒ s · p1 >T s · p2.

Proof. This follows immediately from the definition of >T . 2

Remark 5.8. The proposition can also be proved for the earlier definition of >T induced
from >X and >P .

5.5. reduction

Now that we have defined an admissible well ordering on T it is possible to discuss
when a reduction relation generated by a rewrite system is compatible with this ordering.

Lemma 5.9. Let R be a rewrite system on T . Orientate the rules of R so that for all
(l, r) in R, if l, r ∈ ArrP, then l >P r and if l, r ∈ T , then l >T r. Then the reduction
relation →R generated by R is compatible with >T .

Proof. Let t1, t2 ∈ T such that t1 →R t2. There are two cases to be considered, by
Definition 4.2. For the first case let t1 = s1 · p, t2 = s2 · p for some s1, s2 ∈ T , p ∈ ArrP

Using Rewriting Systems to Compute Left Kan Extensions and Induced Actions of Categories 15

such that (s1, s2) ∈ R. Then s1 >T s2. It follows that t1 >T t2 since >T is admissible on
T . For the second case let t1 = s · p1q, t2 = s · p2q for some s ∈ T , p1, p2, q ∈ ArrP such
that (p1, p2) ∈ T . Then p1 >P p2 and so by Proposition 5.7 s ·p1 >T s ·p2. Hence t1 >T t2
by admissibility of >T on T . Therefore, in either case t1 >T t2 so→R is compatible with
>T . 2

It is a standard result that if a reduction relation is compatible with an admissible well
ordering, then it is Noetherian. The next algorithm describes the function Reduce.

Algorithm 5.10. (Reduce) Given a term t ∈ T and a rewrite system R = (RP , RP)
a term tn ∈ [t], which is irreducible with respect to →R, is determined.

Recall that all terms are represented by lists. Sucessively replace sublists li of t which
occur as the left-hand side of rules (li, ri) of R with the right-hand side ri of the rule.
Stop when no left-hand side can be found as a sublist and return the modified list t′.

5.6. critical pairs

We can now discuss what properties of R will make →R a complete (Noetherian and
confluent) reduction relation. By standard abuse of notation the rewrite system R will
be called complete when→R is complete. The following result is called Newman’s lemma
(Baader and Nipkow, 1998).

Lemma 5.11. A Noetherian reduction relation on a set is confluent if it is locally con-
fluent.

Hence, if R is compatible with an admissible well ordering on T and →R is locally
confluent, then →R is complete. By orienting the pairs of R with respect to the chosen
ordering >T on T , R is made to be Noetherian. The problem remaining is testing for local
confluence of →R and changing R in order to obtain an equivalent confluent reduction
relation.

We will now explain the notion of critical pair for a rewrite system for T , extending
the traditional notion to our situation. In particular, the overlaps involve either just RT ,
or just RP or an interaction between RT and RP .

Definition 5.12. A term crit ∈ T is called critical if it may be reduced by two or more
different rules, i.e. crit →R crit1, crit →R crit2 and crit1 6= crit2. A pair (crit1, crit2)
of distinct terms resulting from two single-step reductions of the same term is called a
critical pair. A critical pair for a reduction relation →R is said to resolve if there exists
a (common) term res such that both crit1 and crit2 reduce to a res, i.e. crit1 ∗→R res,
crit2 ∗→R res.

We now define overlaps of rules for our type of rewrite system, and show how each
kind results in a critical pair of the reduction relation.

If t = x|b1 · · · bn, then a part of t is either a term x|b1 · · · bi for some 1 6 i 6 n or a
word bibi+1 · · · bj for some 1 6 i 6 j 6 n.

Definition 5.13. Let (rule1, rule2) be a pair of rules of the rewrite systemR = (RT , RP)
where RT ⊆ T × T and RP ⊆ ArrP × ArrP. If rule1 and rule2 may both be applied to

16 R. Brown and A. Heyworth

the same term crit in such a way there is a part of the term crit that is affected by both
the rules then we say that an overlap occurs.

There are five types of overlap for this kind of rewrite system, as shown in the following
table:

rule1 in rule2 in overlap critical pair

(i) (s1, u1) RT (s2, u2) RT s2 = s1 · q for some q ∈ ArrP (u1 · q, u2)

(ii) (l1, r1) RP (l2, r2) RP l1 = pl2q for some p, q ∈ ArrP (r1, pr2q)

(iii) l1q = pl2 for some p, q ∈ ArrP (r1q, pr2)

(iv) (s1, u1) RT (l1, r1) RP s1 · q = s · l1 for some s ∈ T, q ∈ ArrP (u1 · q, s · r1)

(v) s1 = s · (l1q) for some s ∈ T, q ∈ ArrP (u1, s · r1q)

Overlap table

A pair of rules may overlap in more than one way, giving more than one critical pair. For
example the rules (x|a2ba, y|ba) and (a2, b) overlap with critical term x|a2ba and critical
pair (y|ba, x|b2a) and also with critical term x|a2ba2 and critical pair (y|ba2, x|a2b2).

Lemma 5.14. Let R be a finite rewrite system on the P-set T . Consider applications
of rules rule1 and rule2 affecting part c of term t ∈ T , resulting in a critical pair
(c1, c2) from c and (t1, t2) from t. If there is no overlap, then (t1, t2) resolves immediately.
Otherwise (t1, t2) resolves providing (c1, c2) does.

Proof. Let (t1, t2) be a critical pair. Then there exists a critical term t and two rules
rule1, rule2 such that t reduces to t1 with respect to rule1 and to t2 with respect to
rule2.

We first give the two non-overlap cases.
Suppose rule1 := (l1, r1), rule2 := (l2, r2) ∈ RP . Then there exist s ∈ T , p, q ∈ ArrP

such that t = s · l1pl2q as shown:

s

s

p

p

q

q

r1

l1

l2

r2

The pair (t1, t2) immediately resolves to s · r1pr2q by applying rule2 to t1 and rule1 to
t2.

Suppose that rule1 := (s1, u1) ∈ RT and rule2 := (l1, r1) ∈ RP and the rules do not
overlap. Then there exist p, q ∈ ArrP such that t = s1 · pl1q and then t1 = u1 · pl1q and
t2 = s1 · pr1q as shown:

u1
l1

r1

s1

p

p

q

q

The pair (t1, t2) immediately resolves to u1 · pr1q by applying rule2 to t1 and rule1 to
t2.

Using Rewriting Systems to Compute Left Kan Extensions and Induced Actions of Categories 17

We now give the overlap cases in the order given in the table.
(i) Suppose rule1 := (s1, u1), rule2 := (s2, u2) ∈ RT . Then there exist v, q ∈ ArrP such

that c = s1 · q = s2, t = c · v and then t1 = u1 · qv and t2 = u2 · v as shown:

u1

u2

q v
v

The critical pair here is (u1 · q, u2) and if this resolves to r, then (t1, t2) resolves to r · v.
Suppose rule1 := (l1, r1), rule2 := (l2, r2) ∈ RP . There are two possible overlap cases.
(ii) In the first case there exist s ∈ T , p, q, v ∈ ArrP such that c = l1 = pl2q and

t = s · cv and then t1 = s · r1v and t2 = s · pr2qv.

s
r1

l2
s

v

vp q

The critical pair here is (r1, pr2q) and if this resolves to r, then (t1, t2) resolves to s · rv.
(iii) In the second case there exist s ∈ T , p, q, v ∈ ArrP such that c = l1q = pl2 and

t = s · cv and then t1 = s · r1qv and t2 = s · pr2v.

s

s

v

vp

q
r1

r2

The critical pair is (r1q, pr2) and if this resolves to r, then (t1, t2) resolves to s · rv.
Suppose finally that rule1 := (s1, u1) ∈ RT and rule2 := (l1, r1) ∈ RP . Then there are

two possible overlap cases.
(iv) In the first case there exist s ∈ T , q, v ∈ ArrP such that c = s1 = s · l1q and

t = c · v and then t1 = u1v and t2 = sr1qv.

s q v

v

u1

r1

The critical pair is (u1, s · r1q) and if this resolves to r, then (t1, t2) resolves to r · v.
(v) In the second case there exist s ∈ T , q, v ∈ ArrP such that c = s1 · q = s · l1 and

t = c · v and then t1 = u1 · qv and t2 = s · r1v.

s

u1

r1

q v

v

The critical pair is (s1 · q, s · r1) and if this resolves to r, then (t1, t2) resolves to r · v.
Thus we have considered all possible ways in which a term may be reduced by two

18 R. Brown and A. Heyworth

different rules, and shown that resolution of the critical pair (when not immediate) de-
pends upon the resolution of the critical pair resulting from a particular overlap of the
rules. 2

Corollary 5.15. If all the overlaps between rules of a rewrite system R on T resolve,
then all the critical pairs for the reduction relation →R resolve, and so →R is confluent.

Proof. This is immediate from Lemma 5.14. 2

Lemma 5.16. All overlaps of a pair of rules of R can be found by looking for two types
of overlap between the lists representing the left-hand sides of rules.

Proof. Let rule1 = (l1, r1) and rule2 = (l2, r2) be a pair of rules. Recall that List(t)
is the representation of a term t ∈ T as a list. The first type of list overlap occurs when
List(l2) is a sublist of List(l1) (or vice versa). This happens in cases (i), (ii) and (v).
The second type of list overlap occurs when the end of List(l1) matches the beginning
of List(l2) (or vice versa). This happens in cases (iii) and (iv). 2

The program for finding overlaps and the resulting critical pairs is outlined in the
algorithm below.

Algorithm 5.17. (Critical Pairs) Given a rewrite system R all critical pairs are
determined.

Recall that terms are represented by lists. Take pairs of rules (l1, r1) and (l2, r2)from
R. Test (a) whether List(l2) is a sublist of List(l1). If it is then find u and v such that
u · l2v = l1. Add the critical pair (u · r2v, r1) to a list CRIT . Now test (b) whether for
i = 1, 2 . . . the sublist of length i at the right of List(l1) is equal to the sublist of length
i on the left of List(l2). For each i where this occurs, set u to be the part of List(l1)
not in the overlap, and v to be the part of List(l2) not in the overlap. Add the critical
pair (r1 · v, u · r2) to CRIT . Repeat the procedure until all (ordered) pairs of rules have
been examined for overlaps. Then CRIT is an exhaustive list of critical pairs from R.

It has now been proved that all the critical pairs of a finite rewrite system R on T
can be listed. To test whether a critical pair resolves, each side of it is reduced using the
function Reduce. If Reduce returns the same term for each side, then the pair resolves.

5.7. completion procedure

We have shown: (i) how to find overlaps between rules of R; (ii) how to test whether
the resulting critical pairs resolve; and (iii) that if all the critical pairs resolve, then this
implies →R is confluent. We now show that critical pairs which do not resolve may be
added to R without affecting the equivalence relation R defines on T .

Lemma 5.18. Any critical pair (t1, t2) of a rewrite system R may be added to the rewrite
system without changing the equivalence relation ∗↔R.

Proof. By definition, (t1, t2) is the result of two different single-step reductions being
applied to a critical term t. Therefore t →R t1 and t →R t2. It is immediate that

Using Rewriting Systems to Compute Left Kan Extensions and Induced Actions of Categories 19

t1
∗↔R t

∗↔R t2, and so adding (t1, t2) to R does not add anything to the equivalence
relation ∗↔R. 2

We have now set up and proved everything necessary for a variant of the Knuth–Bendix
procedure, which will add rules to a rewrite system R resulting from a presentation of a
Kan extension, to attempt to find an equivalent complete rewrite system RC . The benefit
of such a system is that →RC then acts as a normal form function for ∗↔RC on T .

Theorem 5.19. Let P = 〈Γ|∆|RelB|X|F 〉 be a finite presentation of a Kan extension
(K, ε). Let P := P∆, T :=

⊔
Ob∆

⊔
ObΓXA× P(FA,B), and let R be the initial rewrite

system for P on T . Let >T be an admissible well ordering on T . Then there exists a
procedure which, if it terminates, will return a rewrite system RC which is complete with
respect to the ordering >T and such that the equivalence relations ∗↔R, ∗↔RC coincide.

Proof. The procedure finds all critical pairs resulting from overlaps of rules of R. It
attempts to resolve them. When they do not resolve it adds them to the system as new
rules. Critical pairs of the new system are then examined. When all the critical pairs of
a system resolve, then the procedure terminates, the final rewrite system RC obtained is
complete. This procedure has been verified in the preceding results of this section. 2

Algorithm 5.20. (Completion) Given the presentation of a Kan extension and the
ordering >T , a complete rewrite system with respect to >T is determined—if the algo-
rithm terminates.

(1) (Input:) A rewrite system R on T and an ordering >T on T .
(2) (Initialize:) Set NewRules := R and OldRules := ∅.
(3) (Loop:) While NewRules 6= OldRules, set OldRules := NewRules. Use the algo-

rithm Critical Pairs to determine all the critical pairs of NewRules. Remove each
critical pair in turn from the list, and reduce both sides of the pair with respect
to NewRules using the algorithm Reduce. If the left entry is greater than the
right (with respect to >T), then add the reduced critical pair to NewRules. If the
right entry is greater than the left, then add the reversed, reduced critical pair to
NewRules. Repeat this loop until all critical pairs resolve and no rules are added.

(4) (Output:) A complete rewrite system NewRules on T .

Supposing that the completion procedure outlined above terminates, we will now briefly
discuss how to interpret the complete rewrite system on T .

6. Interpreting the Output

6.1. finite enumeration of the Kan extension

When every set KB is finite we may catalogue the elements of all of the sets
⊔
BKB

in stages.
The first stage catalogues the elements x|idFA where x ∈ XA for some A ∈ ObΓ. These

elements are considered to have length one. The next stage builds on the set of irreducible
elements from the last block to construct elements of the form x|b where b : FA→ B for
some B ∈ Ob∆. This is effectively acting on the sets with the generating arrows to define

20 R. Brown and A. Heyworth

new (irreducible) elements of length two. The next stage builds on the irreducibles from
the last block by acting with the generators again. When all the elements of a block of
elements of the same length are reducible, then the enumeration terminates (any longer
term will contain one of these terms and therefore be reducible). The set of irreducibles
is a set of normal forms for

⊔
BKB. The subsets KB of

⊔
BKB are determined by the

function τ , i.e. if x|b1 · · · bn is a normal form in
⊔
BKB and τ(x|b1 · · · bn) := tgt(bn) = Bn,

then x|b1 · · · bn is a normal form in KBn. Of course if one of the sets KB is infinite, then
this may prevent the enumeration of other finite sets KBi. The same problem would
obviously prevent a Todd–Coxeter completion. This cataloguing method only applies to
finite Kan extensions. It has been implemented in the function kan.

6.2. regular expression for the Kan extension

Let R be a finite complete rewrite system on T for the Kan extension (K, ε). Then
the theory of languages and regular expressions may be applied. The set of irreducibles
in T is found after the construction of an automaton from the rewrite system and the
derivation of a language from this automaton. Details of this method may be found in
Chapter four of Heyworth (1998).

6.3. iterated Kan extensions

One of the pleasant features of this procedure is that the input and output are of
similar form. The consequence of this is that if the extended action K has been defined
on ∆ then given a second functor G′ : B → C and a presentation cat〈Λ|RelC〉 for C it
is straightforward to consider a presentation for the Kan extension data (K ′, G′). This
new extension is in fact the Kan extension with data (X ′, G′ ◦ F ′)

Lemma 6.1. Let kan〈Γ|∆|RelB|X|F 〉 be a presentation for a Kan extension (K, ε). Let
cat〈Λ|RelC〉 present a category C and let G′ : B → C be a functor. Then the Kan
extension presented by kan〈Γ|Λ|RelC|X|G ◦ F |〉 is equal to the Kan extension presented
by kan〈∆|Λ|RelC|K|G〉.

Proof. Let kan〈Γ|∆|RelB|X|F 〉 present the Kan extension data (X ′, F ′) for the Kan
extension (K, ε). Let C be a category finitely presented by cat〈Λ|RelC〉 and let G′ :
B→ C. Then kan〈∆|Λ|RelC|K|G〉 presents the Kan extension data (K ′, G′) for the Kan
extension (L, η).

We require to prove that (L, η◦ε) is the Kan extension presented by kan〈Γ|Λ|RelC|X|
G ◦ F 〉 having data (X ′, G′ ◦ F ′). It is clear that (L, η ◦ ε) defines an extension of the
action X along G ◦ F because L defines an action of C and η ◦ ε : X → L ◦ G ◦ F is a
natural transformation.

For the universal property, let (M,ν) be another extension of the action X along F ◦G.
Then consider the pair (M ◦G, ν), it is an extension of X along F . Therefore there exists
a unique natural transformation α : X →M ◦G ◦ F such that α ◦ ε = ν by universality
of (K, ε). Now consider the pair (M,α), it is an extension of K along G. Therefore there
exists a unique natural transformation β : L→M such that β ◦ η = α by universality of
(L, η). Therefore β is the unique natural transformation such that β ◦ η ◦ ε = ν, which
proves the universality of the extension (L, η ◦ ε). 2

Using Rewriting Systems to Compute Left Kan Extensions and Induced Actions of Categories 21

7. Example of a GAP Session on the Rewriting Procedure

Here we give an example to show the use of the implementation. Let A and B be the
categories generated by the graphs below, where B has the relation b1b2b3 = b4.

A1 A2 B1 B2

B3

a1

a2

b4

b1

b3
b2b5

Let X : A→ Sets be defined by XA1 = {x1, x2, x3}, XA2 = {y1, y2} with Xa1 : XA1 →
XA2 : x1 7→ y1, x2 7→ y2, x3 7→ y1, Xa2 : XA1 → XA2 : y1 7→ x1, y2 7→ x2, and let
F : A → B be defined by FA1 = B1, FA2 = B2, Fa1 = b1 and Fa2 = b3b2. The input
to the computer program takes the following form. First read in the program and set up
the variables:

gap> RequirePackage("kan");
gap> F:=FreeGroup("b1","b2","b3","b4","b5","x1","x2","x3","y1",

"y2");;
gap> b1:=F.1;;b2:=F.2;;b3:=F.3;;b4:=F.4;;b5:=F.5;;
gap> x1:=F.6;;x2:=F.7;;x3:=F.8;;y1:=F.9;;y2:=F.10;;

Then we input the data (choice of names is unimportant):

gap> OBJa:=[1,2];;
gap> ARRa:=[[1,2],[2,1]];;
gap> OBJb:=[1,2,3];;
gap> ARRb:=[[b1,1,2],[b2,2,3],[b3,3,1],[b4,1,1],[b5,1,3]];;
gap> RELb:=[[b1*b2*b3,b4]];;
gap> fOBa:=[1,2];;
gap> fARRa:=[b1,b2*b3];;
gap> xOBa:=[[x1,x2,x3],[y1,y2]];;
gap> xARRa:=[[y1,y2,y1],[x1,x2]];;

To combine all this data in one record (the field names are important):

gap> KAN:=rec(ObA:=OBJa, ArrA:=ARRa, ObB:=OBJb, ArrB:=ARRb,
RelB:=RELb,

FObA:=fOBa, FArrA:=fARRa, XObA:=xOBa,
XArrA:=xARRa);;

To calculate the initial rules do:

gap> InitialRules(KAN);

22 R. Brown and A. Heyworth

The output will be:

i= 1, XA= [x1, x2, x3], Ax= x1, rule= [x1*b1, y1]
i= 1, XA= [x1, x2, x3], Ax= x2, rule= [x2*b1, y2]
i= 1, XA= [x1, x2, x3], Ax= x3, rule= [x3*b1, y1]
i= 2, XA= [y1, y2], Ax= y1, rule= [y1*b2*b3, x1]
i= 2, XA= [y1, y2], Ax= y2, rule= [y2*b2*b3, x2]
[[b1*b2*b3, b4], [x1*b1, y1], [x2*b1, y2], [x3*b1, y1],
[y1*b2*b3, x1], [y2*b2*b3, x2]]

This means that there are five initial ε-rules:

(x1|Fa1, x1.a1|idFA2), (x2|Fa1, x2.a1|idFA2), (x3|Fa1, x3.a1|idFA2),
(y1|Fa2, y1.a1|idFA1), (y2|Fa2, y2.a1|idFA1), i.e. x1|b1 → y1|idB2 ,

x2|b1 → y2|idB2 , x3|b1 → y1|idB2 , y1|b2b3 → x1|idB1 , y2|b2b3 → x2|idB1

and one initial K-rule: b1b2b3 → b4.
To attempt to complete the Kan extension presentation do:

gap> KB(InitialRules(KAN));

The output is:

[[x1*b1, y1], [x1*b4, x1], [x2*b1, y2], [x2*b4, x2],
[x3*b1, y1], [x3*b4, x1], [b1*b2*b3, b4],
[y1*b2*b3, x1], [y2*b2*b3, x2]]

In other words, to complete the system we have to add the rules

x1|b4 → x1, x2|b4 → x2, and x3|b4 → x1.

The result of attempting to compute the sets by doing:

gap> Kan(KAN);

is a long list and then:

enumeration limit exceeded: complete rewrite system is:
[[x1*b1, y1], [x1*b4, x1], [x2*b1, y2], [x2*b4, x2],

[x3*b1, y1], [x3*b4, x1], [b1*b2*b3, b4],
[y1*b2*b3, x1], [y2*b2*b3, x2]]

This means that the sets KB for B in B are too large. The limit set in the program
is 1000. (To change this the user should type EnumerationLimit:= 5000—or whatever,

Using Rewriting Systems to Compute Left Kan Extensions and Induced Actions of Categories 23

after reading in the program.) In fact the above example is infinite. The complete rewrite
system is output instead of the sets. We can in fact use this to obtain regular expressions
for the sets. In this case the regular expressions are:

KB1 := (x1 + x2 + x3)|(b5(b3b4∗b5)∗b3b4∗ + idB1).
KB2 := (x1 + x2 + x3)|b5(b3b4∗b5)∗b3b4∗(b1) + (y1 + y2)|idB2 .
KB3 := (x1 + x2 + x3)|b5(b3b4∗b5)∗(b3b4∗b1b2 + idB3) + (y1 + y2)|b2.

The actions of the arrows are defined by concatenation followed by reduction. For exam-
ple, x1|b5b3b4b4b5 is an element of KB3, so b3 acts on it to give x1|b5b3b4b4b5b3 which is
irreducible, and an element of KB1.

The general method of obtaining regular expressions for these computations will be
given in a separate paper (see Chapter 4 of Heyworth, 1998).

8. Special Cases of the Kan Rewriting Procedure

Mac Lane wrote in Section 10.7 of Mac Lane (1971) (entitled “All Concepts are Kan
Extensions”) that “the notion of Kan extensions subsumes all the other fundamental
concepts of category theory”. We now illustrate his statement by showing how some
familiar problems can be expressed in the terms of a left Kan extension over the category
of sets and will see how our computational methods apply to these problems. Most of
these examples are also familiar from Carmody and Walters (1990) and Fleming et al.
(1996). Throughout these examples we use the same notation as the definition, so the
pair (K, ε) is the Kan extension of the action X of A along the functor F to B. By a
monoid (or group) “considered as a category” we mean the one object category with
arrows corresponding to the monoid elements and composition defined by composition
in the monoid.

8.1. groups and monoids

ORIGINAL PROBLEM: given a monoid presentation mon〈Σ|Rel〉, find a set of normal
forms for the monoid presented.

KAN INPUT DATA: let Γ be the graph with one object 0 and no arrows, so A is
the singleton category. Let X0 be a one point set on which A acts trivially. Let B be
generated by the graph ∆ with one object and arrows labelled by Σ, it has relations RelB
given by the monoid relations. The functor F maps the object of Γ to the object of ∆.

KAN EXTENSION: the Kan extension presented by kan〈Γ|∆|RelB|X|F 〉 is such that
K0 is a set of normal forms for the elements of the monoid, the arrows of B (elements
of PX) act on the right of B by right multiplication. The natural transformation ε maps
the unique element 0 of X0 to the element K0 representing the monoid identity. This
ensures that the identity of B acts trivially and helps to define the normal form function
which is w 7→ ε0(1) · (w) := Kw(ε0(1)).

In this case the method of completion is the standard Knuth–Bendix procedure used
for many years for working with monoid presentations of groups and monoids. This type
of calculation is well documented.

8.2. groupoids and categories

ORIGINAL PROBLEM: to specify a set of normal forms for the elements of a groupoid
or category given by a finite category presentation cat〈Λ|Rel〉.

24 R. Brown and A. Heyworth

KAN INPUT DATA: let Γ be the discrete graph with no arrows and object set equal
to ObΛ. Let XA be a distinct one object set for each A ∈ ObΓ. Let B be the category
generated by ∆ := Λ with relations RelB := Rel. Let F be defined by the identity map
on the objects.

KAN EXTENSION: then the Kan extension presented by kan〈Γ|∆|RelB|X|F 〉 is such
that KB is a set of normal forms for the arrows of the category with target B, the
arrows of B (elements of PΓ) act on the right of B by right multiplication. The natural
transformation ε maps the unique element of a set XA to the identity arrow for the
object FA of ∆. This makes sure that the identities of B act trivially and helps to define
the normal form function which is w 7→ εA · (w) := Kw(εA).

Example 8.1. Consider the group S3 presented by 〈x, y|x3, y2, xyxy〉. The elements are
{id, x, y, x2, xy, yx}. The covering groupoid is generated by the Cayley graph.

id

y xy

b3

b1

a4

a3 a6a5

b6

b5

b2

b4

a2

a1

x2

yx

x

The 12 generating arrows of the groupoid are G×X:

{[id, x], [x, x], [y, x], . . . , [yx, x], [id, y], [x, y], . . . , [yx, y]}.

To make calculations clearer, we relabel them {a1, a2, a3, . . . , a6, b1, b2, . . . , b6}. The group-
oid has 18 relators (the boundaries of irreducible cycles of the graph)G×R, the cycles may
be written [id, x3] and the corresponding boundary is [id, x][x, x][x2, x], i.e. a1a2a4. For
the category presentation of the group we could add in the inverses {A1, A2, . . . , A6, B1,
B2, . . . , B6} with the relators A1a1 and a1A1, etc. and end up with a category presenta-
tion with 24 generators and the 42 relations. In this case, however, the groupoid is finite
and so there is no need to do this. For example, there would be no need for A2 because
(a2)−1 = a4a1.

Now suppose the left-hand sides of two rules overlap (for example (a1a2a4, id) and
(a4b1a3b6, id)) in one of the two possible ways previously described. Then we have a
critical pair (b1a3b6, a1a2). The following is GAP output of the completion of the rewrite
system for the covering groupoid of our example:

gap> Rel; ##Input rewrite system:
[[a1*a2*a4, IdWord], [a2*a4*a1, IdWord],

[a4*a1*a2, IdWord],
[a3*a6*a5, IdWord],

Using Rewriting Systems to Compute Left Kan Extensions and Induced Actions of Categories 25

[a6*a5*a3, IdWord], [a5*a3*a6, IdWord],
[b1*b3, IdWord], [b3*b1, IdWord], [b2*b5, IdWord],
[b5*b2, IdWord], [b4*b6, IdWord], [b6*b4, IdWord],
[a1*b2*a5*b3, IdWord], [a2*b4*a6*b5, IdWord],
[a3*b6*a4*b1, IdWord], [a4*b1*a3*b6, IdWord],
[a5*b3*a1*b2, IdWord], [a6*b5*a2*b4, IdWord]]

gap> KB(Rel); ##Completed rewrite
system:
[[b1*b3, IdWord], [b2*b5, IdWord], [b3*b1, IdWord],

[b4*b6, IdWord], [b5*b2, IdWord], [b6*b4, IdWord],
[a1*a2*a4, IdWord], [a1*a2*b4, b1*a3], [a1*b2*a5, b1],
[a2*a4*a1, IdWord], [a2*a4*b1, b2*a5], [a2*b4*a6, b2],
[a3*a6*a5, IdWord], [a3*a6*b5, b3*a1], [a3*b6*a4, b3],
[a4*a1*a2, IdWord], [a4*a1*b2, b4*a6], [a4*b1*a3, b4],
[a5*a3*a6, IdWord], [a5*a3*b6, b5*a2], [a5*b3*a1, b5],
[a6*a5*a3, IdWord], [a6*a5*b3, b6*a4], [a6*b5*a2, b6],
[b1*a3*a6, a1*b2], [b1*a3*b6, a1*a2], [b2*a5*a3, a2*b4],
[b2*a5*b3, a2*a4], [b3*a1*a2, a3*b6], [b3*a1*b2, a3*a6],
[b4*a6*a5, a4*b1], [b4*a6*b5, a4*a1], [b5*a2*a4, a5*b3],
[b5*a2*b4, a5*a3], [b6*a4*a1, a6*b5], [b6*a4*b1, a6*a5]]

It is possible from this to enumerate elements of the category. One method is to start
with all the shortest arrows (a1, a2, . . . , b6) and see which ones reduce and build induc-
tively on the irreducible ones: firstly we have the six identity arrows idid, idx, idy, idx2 ,
idxy, idyx. Then the generators a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6 are all irre-
ducible. Now consider paths of length 2: a1a2, a1b2, a2a4, a2b4, a3a6, a3b6, a4a1, a4b1,
a5a3, a5b3, a6a5, a6b5, b1a3, b1b3 → idid, b2a5, b2b5 → idx, b3a1, b3b1 → idy, b4a6,
b4b6 → idx2 , b5a2, b5b2 → idxy, b6a4, b6b4 → idyx. Building on the irreducible paths
we obtain the paths of length 3: a1a2a4 → idid, a1a2b4 → b1a3, a1b2a5 → b1, a1b2b5 →
a1, a2a4a1 → idx, All of them are reducible, and so we cannot build any longer
paths; the covering groupoid has 30 morphisms and six identity arrows and is the tree
groupoid with six objects.

Example 8.2. This is a basic example to show how it is possible to specify the arrows
in an infinite small category with a finite complete presentation. Let C be the category
generated by the following graph Γ

A CB

b

a c

d

with the relations b2c = c, ab2 = a. This rewrite system is complete, and so we can
determine whether two arrows in the free category PΓ are equivalent in C. An automaton
can be drawn (see Chapter 3 of Heyworth, 1998), and from this we can specify the

26 R. Brown and A. Heyworth

language which is the set of normal forms. It is in fact

a(cd(acd)∗ab+ bcd(acd)∗ab) + b∗b+ cd(acd)∗ab+ d(acd)∗ab

(and the three identity arrows) where (acd)∗ is used to denote the set of elements of
{acd}∗, so d(acd)∗ denotes the set {d, dacd, dacdacd, dacdacdacd, . . . }, + denotes the
union and − the difference of sets. This is the standard notation for languages and
regular expressions.

8.3. coset systems and congruences

Let B be a group considered as a category with one object 0, and let F : A → B be
the inclusion of the subgroup A. Let X map the object of A to a one point set. The set
K0 represents the (right) cosets of A in B, with the right action of any group element b
of B taking the representative of the coset Ag to the representative of the coset Agb. The
natural transformation ε picks out the representative for the subgroup A.

ORIGINAL PROBLEM: given a finitely presented group G and a finitely generated
subgroupH find a set of normal forms for the coset representatives ofG with respect toH.

KAN INPUT DATA: let Γ be the one object graph Γ with arrows labelled by the
subgroup generators. Let X0 be a one point set on which the arrows of Γ act trivially.
Let B be the category generated by the one object graph ∆ with arrows labelled by
the group generators, with the relations RelB of B being the group relations. Let F be
defined on Γ by inclusion of the subgroup elements to the group.

KAN EXTENSION: the Kan extension presented by kan〈Γ|∆|RelB|X|F 〉 is such that
the set K0 is a set of representatives for the (right) cosets, Kb defines the (right) action
of the group on the cosets Hg 7→ Hgb and ε0 picks out the subgroup from the cosets by
mapping the single element of X0 to the representative for H in K0.

The left cosets can be similarly represented, defining the right action K by a left action
on the cosets.

Alternatively, let B be a monoid considered as a category with one object 0 and let A
be generated by arrows which map under F to a set of generators for a right congruence.
Then the set K0 represents the congruence classes, the action of any arrow b of B (monoid
elements) taking the representative (in K0) of the class [m] to the representative of the
class [mb]. The natural transformation picks out the representative for the class [id]. (As
above, left congruence classes may also be expressed in terms of a Kan extension.)

In the monoid case, F is the inclusion of the submonoid A of the monoid B, and the
action is trivial as before. The Kan extension of this action gives the quotient of B by the
right congruence generated by A, namely the equivalence relation generated by ab ∼ b
for all a ∈ A, b ∈ B, with the induced right action of B.

It is appropriate to give a calculated example here. The example is infinite so standard
Todd–Coxeter methods will not terminate, but the Kan extension/rewriting procedures
enable the complete specification of the coset system.

Example 8.3. Let B be the infinite group presented by

grp〈a, b, c | a2b = ba, a2c = ca, c3b = abc, caca = b〉

and let A be the subgroup generated by {c2}. We obtain one initial ε-rule (because A has
one generating arrow), i.e. H|c2 → H|id. We also have four initial K-rules corresponding

Using Rewriting Systems to Compute Left Kan Extensions and Induced Actions of Categories 27

to the relations for B:

a2b→ ba, a2c→ ca, c3b→ abc, caca→ b.

Note: on completion of this rewrite system for the group, we find 24 rules and for all
n ∈ N both an and cn are irreducibles with respect to this system (one way to prove the
well-known fact that this the group is infinite).

The five rules are combined and an infinite complete system for the Kan extension of
the action is easily found (using Knuth–Bendix with the length-lex order). The following
is the GAP output of the set of 32 rules:

[[H*b, H*a], [H*a^2, H*a], [H*a*b, H*a], [H*c*a, H*a*c],
[H*c*b, H*a*c], [H*c^2, H], [a^2*b, b*a], [a^2*c, c*a],
[a*b^2, b^2], [a*b*c, c*b], [a*c*b, c*b], [b*a^2, b*a],
[b*a*b, b^2], [b*a*c, c*b], [b^2*a, b^2], [b*c*a, c*b],
[b*c*b, b^2*c], [c*a*b, c*b], [c*b*a, c*b],
[c*b^2, b^2*c], [c*b*c, b^2], [c^2*b, b^2],
[H*a*c*a, H*a*c], [H*a*c^2, H*a], [b^4, b^2],
[b^3*c, c*b], [b^2*c^2, b^3], [b*c^2*a, b^2],
[c*a*c*a, b], [c^2*a^2, b*a], [c^3*a, c*b],
[c*a*c^2*a, c*b]]

(Note that the rules without H (i.e. the two-sided rules) constitute a complete rewrite
system for the group.)

The set KB (recall that there is only one object B of B) is infinite. It is the set of
(right) cosets of the subgroup in the group. Examples of these cosets include:

H,Ha,Hc,Ha2,Hac,Ha3, Ha4, Ha5,

A regular expression for the coset representatives is:

a∗ + c+ ac.

Alternatively, consider the subgroup generated by b. Add the rule Hb → H and the
complete system below is obtained:

[[H*a, H], [H*b, H], [H*c*a, H*c], [H*c*b, H*c],
[H*c^2, H], [a^2*b, b*a], [a^2*c, c*a], [a*b^2, b^2],
[a*b*c, c*b], [a*c*b, c*b], [b*a^2, b*a], [b*a*b, b^2],
[b*a*c, c*b], [b^2*a, b^2], [b*c*a, c*b],
[b*c*b, b^2*c], [c*a*b, c*b], [c*b*a, c*b],
[c*b^2, b^2*c], [c*b*c, b^2], [c^2*b, b^2],
[b^4, b^2], [b^3*c, c*b], [b^2*c^2, b^3],
[b*c^2*a, b^2], [c*a*c*a, b], [c^2*a^2, b*a],
[c^3*a, c*b], [c*a*c^2*a, c*b]]

(Again, the two-sided rules are the rewrite system for the group.)
This time the subgroup has index 2, and the coset representatives are id and c.

28 R. Brown and A. Heyworth

8.4. equivalence relations and equivariant equivalence relations

ORIGINAL PROBLEM: given a set Ω and a relation Rel on Ω, find a set of represen-
tatives for the equivalence classes of the set Ω under the equivalence relation generated
by Rel.

KAN INPUT DATA: let Γ be the graph with object set Ω and generating arrows
a : A1 → A2 if (A1, A2) ∈ Rel. Let XA := {A} for all A ∈ Ω. The arrows of Γ act
according to the relation, so src(a) · a = tgt(a). Let ∆ be the graph with one object and
no arrows so that B is the trivial category with no relations. Let F be the null functor.

KAN EXTENSION: the Kan extension presented by kan〈Γ|∆|RelB|X|F 〉 is such that
K0 := Ω/ ∗↔Rel a set of representatives for the equivalence classes of the set Ω under the
equivalence relation generated by Rel.

Alternatively, let Ω be a set with a group or monoid M acting on it. Let Rel be a
relation on Ω. Define Γ to have object set Ω and generating arrows a : A1 → A2 if
(A1, A2) ∈ Rel or if A1 ·m = A2 Again, XA := {A} for A ∈ ObΓ and the arrows act
as in the case above. Let ∆ be the one object graph with arrows labelled by generators
of M and for B let RelB be the set of monoid relations. Let F be the null functor.
The Kan extension gives the action of M on the quotient of X by the M -equivariant
equivalence relation generated by Rel. This example illustrates the advantage of working
in categories, since this is a coproduct of categories which is a fairly simple construction.

8.5. orbits of actions

ORIGINAL PROBLEM: given a group G which acts on a set Ω, find a set KB of
representatives for the orbits of the action of A on Ω.

KAN INPUT DATA: let Γ be the one object graph with arrows labelled by the gen-
erators of the group, then A is G thought of as a category. Let X0 := Ω. Let ∆ be the
one object, zero arrow graph generating the trivial category B with RelB empty. Let F
be the null functor.

KAN EXTENSION: the Kan extension presented by kan〈Γ|∆|RelB|X|F 〉 is such that
K0 is a set of representatives for the distinct orbits of the action of the group G on Ω.
The action of B on K0 is trivial. The natural transformation ε maps each element of the
set X0 to its orbit representative in K0.

We present a short example to demonstrate the procedure in this case.

Example 8.4. Let A be the symmetric group on three letters with presentation
mon〈a, b|a3, b2, abab〉 and let X be the set {v, w, x, y, z}. Let A act on X by giving a
the effect of the permutation (v w x) and b the effect of (v w)(y z).

In this calculation we have a number of ε-rules and no K-rules. The ε-rules just list
the action, namely (trivial actions omitted):

v → w,w → x, x→ v, v → w,w → v, y → z, z → y.

The system of rules is complete and reduces to {w → v, x → v, z → y}. Enumeration is
simple: v, w → v, x → v, y, z → y so there are two orbits of Ω represented by v and
y. This is a small example. With large examples the idea of having a minimal element
(normal form) in each orbit to act as an anchor or point of comparison makes a lot of
sense. This situation serves as another illustration of rewriting in the framework of a Kan

Using Rewriting Systems to Compute Left Kan Extensions and Induced Actions of Categories 29

extension, showing not only that rewriting gives a result, but that it is the procedure one
uses naturally to do the calculation.

One variation of this is if Ω is the set of elements of the group and the action is
conjugation: xa := a−1xa. Then the orbits are the conjugacy classes of the group.

Example 8.5. Consider the quarternion group, presented by

〈a, b | a4, b4, abab−1, a2b2〉,

and Ω = {id, a, b, a2, ab, ba, a3, a2b} (we can enumerate the elements using the variation
of the Kan extensions method described in Example 3). Construct the Kan extension as
above, where the actions of a and b are by conjugation on elements of A. There are 16 ε-
rules which reduce to {a3 → a, a2b→ b, ba→ ab}. The conjugacy classes are enumerated
by applying these rules to the elements of A. The irreducibles are {id, a, b, a2, ab}, and
these are representatives of the five conjugacy classes.

8.6. colimits of diagrams of Sets

Let X : A → Sets be any functor on the small category A and let F : A → B be the
null functor to the trivial category. Then the Kan extension corresponds to the colimit of
(the diagram) X : A→ Sets; K0 is the colimit object, and ε defines the colimit functions
from each set XA to K0. Examples of this are: (i) when A has two objects A1 and A2,
and two non-identity arrows a1, a2 : A1 → A2; the colimit is then the coequalizer of the
functions Xa1 and Xa2 in Sets; (ii) when A has three objects A1, A2 and A3 and two
arrows a1 : A1 → A2 and a2 : A1 → A3; the colimit is then the pushout of the functions
Xa1 and Xa2 in Sets.

ORIGINAL PROBLEM: given a presentation of a category action act〈Γ|X〉 find the
colimit of the diagram in Sets on which the category action is defined.

KAN INPUT DATA: let Γ and X be those given by the action presentation. Let ∆
be the graph with one object and no arrows that generates the trivial category B with
RelB empty. Let F be the null functor.

KAN EXTENSION: the Kan extension presented by kan〈Γ|∆|RelB|X|F 〉 is such that
K0 is the colimit object, with a trivial action of B, and ε defines the colimit functions
from each set XA to K0.

Particular examples of this are when A has two objects A1 and A2, and two non-
identity arrows a1 and a2 from A1 to A2, and Xa1 and Xa2 are functions from the set
XA1 to the set XA2 (coequalizer of a1 and a2 in Sets); A has three objects A1, A2 and A3

and two non-identity arrows a1 : A1 → A2 and a2 : A1 → A3. XA1, XA2 and XA2 are
sets, and Xa1 and Xa2 are functions between these sets (pushout of a1 and a2 in Sets).
The following example is included not as an illustration of the power of rewriting but to
show another situation where presentations of Kan extensions can be used to express a
problem in rewriting terms.

Example 8.6. Suppose we have two sets {x1, x2, x3} and {y1, y2, y3, y4}, with two func-
tions from the first to the second given by (x1 7→ y1, x2 7→ y2, x3 7→ y3) and (x1 7→
y1, x2 7→ y1, x3 7→ y3). Then we can calculate the coequalizer. We have a number of
ε-rules y1|id0 → x1|id0, y2|id0 → x2|id0, y3|id0 → x3|id0, y1|id0 → x1|id0, y2|id0 →
x1|id0, y3|id0 → x3|id0. There is just one overlap, between (y2|id0 → x1|id0) and (y2|id0 →

30 R. Brown and A. Heyworth

x2|id0): to resolve the critical pair we add the rule x2|id0 → x1|id0, and the system is
complete:

{y1|id0 → x1id0|, y2|id0 → x1|id0, y3|id0 → x3|id0, x2|id0 → x1|id0}.

The elements of the set K0 are easily enumerated:

x1|id0, x2|id0 → x1|id0, x3|id0, y1|id0 → x1|id0, y2|id0 → x1|id0,
y3|id0 → x3|id0, y4|id0.

So the colimit object is the set

K0 = {x1|id0, x3|id0, y4|id0},

and the coequalizer function to it from XA2 is given by yi 7→ yi|id0 for i = 1, . . . , 4
followed by reduction defined by → to an element of K0.

8.7. induced permutation representations

Let A and B be groups and let F : A → B be a morphism of groups. Let A act
on the set X. The Kan extension of this action along F is known as the action of B
induced from that of A by F , and is written F∗(X). It can be constructed simply as the
set X × B factored by the equivalence relation generated by (xa, b) ∼ (x, F (a)b) for all
x ∈ X, a ∈ A, b ∈ B. The natural transformation ε is given by x 7→ [x, 1], where [x, b]
denotes the equivalence class of (x, b) under the equivalence relation ∼. The morphism
F can be factored as an epimorphism followed by a monomorphism, and there are other
descriptions of F∗(X) in these cases, as follows.

Suppose first that F is an epimorphism with kernel N . Then we can take as a repre-
sentative of F∗(X) the orbit set X/N with the induced action of B.

Suppose next that F is a monomorphism, which we suppose is an inclusion. Choose a
set T of representatives of the right cosets of A in B, so that 1 ∈ T . Then the induced
representation can be taken to be X ×T with ε given by x 7→ (x, 1) and the action given
by (x, t)b = (xa, u) where t, u ∈ T, b ∈ B, a ∈ A and tb = au.

On the other hand, in practical cases, this factorization of F may not be a convenient
way of determining the induced representation.

In the case A,B are monoids, so that X is a transformation representation of A on
the set X, we have in general no convenient description of the induced transformation
representation except by one form or another of the construction of the Kan extension.
This yields a quotient of the free product of the monoids {x}×B, x ∈ X by the equivalence
relation generated by (x, F (a)b) ∼ (x · a, b), a ∈ A, b ∈ B.

Acknowledgements

We would like to acknowledge the help given by Larry Lambe in computational and
mathematical advice since the early 1990s. He further suggested in 1995 that data struc-
tures of free categories implemented by Brown and Dreckmann could be relevant to
work of Carmody and Walters on computations of Kan extensions. In visits in 1996
and 1997 under an EPSRC Visiting Fellowship he gave further crucial direction to the
work, including suggestions on the connections with Gröbner bases which are developed
elsewhere.

Using Rewriting Systems to Compute Left Kan Extensions and Induced Actions of Categories 31

References

Baader, F., Nipkow, T. (1998). Term Rewriting and All That, New York, Cambridge University Press.
Book, R. V., Otto, F. (1993). String-Rewriting Systems, New York, Springer.
Bush, M. R., Leeming, M., Walters, R. F. C. (1997). Computing left Kan extensions. J. Symb. Comput.,

11, 11–20.
Carmody, S., Walters, R. F. C. (1990). The Todd–Coxeter procedure and left Kan extensions. In Research

Reports of the School of Mathematics andStatistics, The University of Sydney 90–19, with M. Leeming
(1995). J. Symb. Comput., 19,459–488.

Carmody, S., Walters, R. F. C. (1991). Computing quotients of actions on a free category. In Category
Theory, Proceedings of the International Conference, Como, Italy, 22–28 July 1990, LNM 1488,
Carboni, A., Pedicchio, M. C., Rosolini, G. eds., Springer.

Epstein, D. B. A., Cannon, J. W. et al. (1992). Word Processing in Groups, Boston, Jones and Bartlett
Publishers.

Fleming, M., Gunther, R., Rosebrugh, R. User Guide for the Categories Database and Manual, anony-
mous ftp://sun1.mta.ca/pub/papers/rosebrugh/catdsalg.dvi,tex and /catuser.dvi,tex (1996).

Heyworth, A. (1998). Applications of rewriting systems and Gröbner bases to computing Kan exten-
sions and identities among relations, Ph.D. Thesis, Bangor, http://xxx.soton.ac.uk/abs/math.CT/
9812097

Holt, D. F. (1996). Knuth–Bendix in Monoids and Automatic Groups, Mathematics Institute, University
of Warwick.

Holt, D. F., Hurt, D. F. (1999). Computing automatic coset systems and subgroup presentations. J.
Symb. Comput., 27, 1–19.

Hopcroft, J., Ullman, J. (1979). Introduction to Automata Theory, Languages and Computation, Read-
ing, MA, Addison-Wesley.

Mac Lane, S. (1971). Categories for the Working Mathematician, New York, Springer-Verlag.
Mitchell, B. (1972). Rings with several objects. Adv. Math., 8, 1–161.
Mora, T. (1987). Gröbner Bases and the Word Problem, University of Genova (manuscript).
Redfern, I. D. (1993). Automatic coset systems, Ph.D. Thesis, University of Warwick.

Originally Received 15 February 1999
Accepted 20 September 1999

http://xxx.soton.ac.uk/abs/math.CT/9812097
http://xxx.soton.ac.uk/abs/math.CT/9812097

	Introduction
	Kan Extensions of Actions
	Presentations of Kan Extensions of Actions
	${P}$-sets
	Rewriting Procedures for Kan Extensions
	Interpreting the Output
	Example of a GAP Session on the Rewriting Procedure
	Special Cases of the Kan Rewriting Procedure
	References

