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Introduction

In this paper we are led, from consideration of an automorphism structure for
crossed modules, to the notion of braided, regular crossed modules. These are
then shown to be closely related to simplicial groups: we prove that the category
of braided, regular crossed modules is equivalent to the category of simplicial
groups with Moore complex of length 2. This equivalence establishes the role of
braided, regular crossed modules as algebraic models of homotopy 3-types.

We now review our motivation from the theory of automorphisms. Associated
to the automorphism group AutG of a group G is the homomorphism
x: G— Aut G that sends x € G to the inner automorphism g+ g* =x"'gx. The
group Aut G acts on G, and  satisfies the two properties:

() x@&")=f""x)f,
(i) g™ =x""gx,
for all g, x € G and f € Aut G. We see that Aut G is naturally considered as part

of a crossed module: that is, a group homomorphism 3: M — P together with
an action of P on M satisfying

CM1: 3(m?)=p~' 3(m)p,
CM2: md™™ =m ™ 'mym,

for all my, me M and p € P.

Crossed modules were introduced by J. H. C. Whitehead [16] and among the
standard -examples are the inclusion M < P of a normal subgroup M of P, the
zero homomorphism M — P when M is a P-module, and any surjection M —»> P
with central kernel. There is also an important topological example: if F— E— B
is a fibration sequence of pointed spaces, then the induced homomorphism
m F— 7, E of fundamental groups is naturally a crossed module. .

Now groups are algebraic models of 1-types: that is, there is a classifying space
functor

B: (groups)— (CW-complexes)
such that for any group G the space BG satisfies
mBG=G and #;BG=0 forj>1,

and further any pointed, connected CW-complex X with 7;X =0 for j>1 is of
the homotopy type of B, X.
Crossed modules are algebraic models of 2-types. There is a classifying space
functor
B: (crossed modules) — (CW-complexes)

A.M.S. (1980) subject classification: 18G55, 18D1S, 55U99, 55P15.
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such that if : M — P is a crossed module then B(M — P) has

m,B(M— P)=coker 3, m,B(M— P)=kero,
and
a;B(M—P)=0 forj>2.
Further, any connected CW-complex X with ;X =0 for j > 2 is of the homotopy
type of B(M — P) for some crossed module M — P [13, 9]. Note also that for the
crossed module x: G— Aut G, the first and second homotopy groups of the
classifying space are Out G and Z(G).

We see that the automorphisms of an algebraic model of a 1-type are naturally
considered as an algebraic model of a 2-type. The original motivation for the
present work was to investigate whether, for crossed modules, an automorphism
structure could be found that could be considered as an algebraic model of a
3-type.

Our derivation of such an automorphism structure employs a procedure of
independent interest. Let C be a monoidal closed category with tensor product
— ® — and internal hom functor HOM. Thus for any objects A, B, and C of C
there is a natural isomorphism C(A ® B, C) =C(A, HOM(B, C)). Then for any
object C of C the object END(C) = HOM(C, C), together with a canonical map
END(C) ® END(C)— END(C), is a monoid in C and in many cases there is a
submonoid of END(C) which can reasonably be labelled AUT(C). It is this
object, with its monoid structure in C, which gives automorphism structures for
the category C.

In order to treat automorphism structures for crossed modules, we have to
embed the category of crossed modules in a larger category which is monoidal
closed: we regard a crossed module as a 2-truncated crossed complex. We review
the necessary facts on crossed modules and crossed complexes over groupoids in
§1 and we indicate the main results on the monoidal closed structure on the
category 6~ of crossed complexes as given in [2]. We also define the additional
structural features which identify crossed modules over groupoids that are
monoids in 6x. These are the braided and semiregular crossed modules: we
borrow the term braided from [7]. So if C is a crossed module, then END(C) is
braided and semiregular. The automorphism structure AUT(C) inherits a
braiding from END(C) and a stronger internal symmetry making it braided and
regular.

We establish the role of AUT(C) as an algebraic model of a 3-type in our main
technical result.

THEOREM. The category of braided, regular crossed modules is equivalent to the
category of simplicial groups with Moore complex of length 2.

This theorem occupies the bulk of § 2. The use of simplicial groups as algebraic
models of homotopy types is of long standing (see [S]). D. Conduché has shown
in [4] that the category of simplicial groups with Moore complex of length 2 is
also equivalent to the category of 2-crossed modules. The essence of the resulting
equivalence between braided, regular crossed modules and 2-crossed modules is
that a braided, regular crossed module contains as a canonical substructure the
Moore complex of its equivalent simplicial group. The Moore complex is a
2-crossed module, and determines the braided, regular crossed module up to
isomorphism.
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The equivalence stated in the theorem also sheds light on the algebraic models
of 3-types developed in unpublished work of A. Joyal and M. Tierney. As
mentioned in [7], Joyal and Tierney model simply-connected 3-types by braided,
categorical groups. These are equivalent to braided crossed modules of groups in
the sense of this paper. Any crossed module of groups is regular, and as a
corollary to our theorem we find that the category of braided crossed modules of
groups is equivalent to the category of reduced simplicial groups with Moore
complex of length 2. ’

In §3 we return to the investigation of automorphism structures for crossed
modules of groups. We give a detailed description of AUT(C) in this case, calling
on work of Whitehead [15] (see also [11]) and its extension by K. J. Norrie [14].
By regarding AUT(C) as a 2-crossed module, we compute the homotopy groups
of the corresponding 3-type in some special cases. Further, we see that we may
also consider the automorphism structure of a crossed module as a crossed
square, as has been independently observed by Norrie [14]. Crossed squares
arose from a study of excision in algebraic K-theory [6]. They also form algebraic
models of 3-types [9] and the fundamental crossed square functor satisfies a
generalized Van Kampen theorem [3]. Part of the interest of our study is that
2-crossed modules and crossed squares are seen to arise from algebraic
considerations.

This work forms part of a research programme on Non-abelian homotopical
and homological algebra supported by the Science and Engineering Research
Council under grant GR/D/2052.6.

1. Crossed modules and crossed complexes

We begin with a review of the basic facts that we need on monoidal closed
categories. Let C be a monoidal closed category with tensor product — & —,
identity object I, and internal hom functor HOM (see [12]). Then for all objects
A, B, C of C there exists a natural isomorphism

6: C(A®B,C)—C(A, HOM(B, 0)), (1.1)
which, together with the associativity of the tensor product, implies the existence
in C of a natural isomorphism

©: HOM(A ® B, C)— HOM(A, HOM(B, ()). (1.2)
Further, the isomorphism
0: C(HOM(A, B)® A, B)—» C(HOM(A, B), HOM(A, B))

shows that there is a unique morphism £,: HOM(A, B) ® A — B such that 6(g,)
is the identity on HOM(A, B): ¢, is called the evaluation morphism. Then for all
objects A, B, C of C, there is a morphism

(HOM(B, C) ® HOM(A, B)) ® A —%— HOM(B, C) ® (HOM(A, B) ® A)

1®z4, yom, )@ B —2— C.

This corresponds under 8 to a morphism
Yasc: HOM(B, C) @ HOM(A, B)— HOM(A, C)

which is called composition.
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We write END(C) for HOM(C, C). There is a morphism n¢: I— END(C)
corresponding to the morphism A: /® C— C. The main result we need is the
following [8].

1.1. ProrosITION. The morphism nc and the composition
make END(C) a monoid in C.

Recall that a groupoid is a small category in which every arrow is an
isomorphism. We write a groupoid as (C;, Cy), where Cj is the set of vertices and
C, is the set of arrows. The set of arrows p— g from p to q is written C,(p, q),
and p, q are the source and target of such an arrow. The source and target maps
are written s,t: C;—> Cy. If ae Cy(p, q) and b € C\(g, r), their composite is
written a + b € C,(p, r). We write C,(p, p) as C,(p). For a survey of applications
of groupoids and an introduction to their literature, see [1].

Recall from [2] that a crossed complex

o)

c..-¢%c,-.5¢6%¢%¢c =3¢

consists of a groupoid C, with vertex set C, and families of groupoids
C,={C.(p)| p € Cy} over C, with each C,(p) abelian for n =3. We shall write
the operations in C, (n =1) additively. The groupoid C, acts on each C, so that
for x e C,(p) and a € C,(p, q) we have x“€ C,(q). Forn=2,6: C,—C,_, is a
morphism of groupoids over C, and preserves the action of C,, where C, acts on
each Ci(p) by conjugation, and for n=3, 66: C,— C,_, is the zero map.
Further, 8(C,) acts trivially on C, for n=3, whilst if x, ye Cy(p) then
y*®=—x+y+x. A morphism of crossed complexes f: C— D is a family of
morphisms of groupoids f,: C,— D, (n =1) inducing the same map f,: Co— D,
and compatible with the maps é6: C,—C,_,, D,— D,_, and the actions of C,

and D,.
The above includes the definition of
c,%c =c,

as a crossed module over the groupoid (C,, C,), or a crossed C,-module. Note in
particular that for each p € C,, C2(p)— C,(p) is a crossed module of groups.

Let U be a monoid. A biaction of U on the crossed module

ol

consists of a pair of commuting left and right actions of U on the set C, and on
the groupoids C, and C, compatible with all the structure. Specifically we have
functions U X C;— C; and C;x U—C; for i =0, 1, 2, denoted by (i, c)—u-c
and (c, u)~>c - u, such that

BA1: each function U X C;— C; determines a left action of U and each

function C; X U— C; determines a right action of U and these actions
commute;

BA2: each action of U preserves the groupoid structure of C, over C, and in
particular the source and target maps s, t: C;— C, are U-equivariant
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relative to each action;
BA3: each action of U preserves the group operations in C, and if x € C,(p)
and ue Uthenu-xe€Cy(u-p)and x - u e Cyp - u);
BA4: each action of U is compatible with the action of C; on C, so that if
x € Cy(p), ae Cy(p, q), and u € U then
u-(x)=(-x)"eCyu-q)),
(%) - u=(x-u)""eCyq - u);
BAS: the boundary homomorphism 8: C,— C, is U-equivariant relative to
each action.
The crossed module

C: CZ-Q) C1 = Co

is semiregular if the vertex set C, is a monoid and there is a biaction of Cy on C in
which C, acts on itself in its left and right regular representations. A semiregular
crossed module in which C, is a group is said to be regular. Note that every
crossed module of groups is regular.

Let

c.c,dc =c,

be a semiregular crossed module. We write the monoid C, multiplicatively with
identity element e. A braiding on C is a function C, X C,— C,, written
(a, b)— {a, b}, which satisfies the following axioms (here a,a’, b, b’ € C,, x, y €
C,, and p, q € Cy):

Bl1: {a, b} € Cy((ta)(th)), {0., b} = 0s, {a, 0.} = 0,;
B2: {a,b+b'}={a, b}*" + {a, b'};
B3: {a+a',b}={a’, b} + {a, b}*?
B4: 6{a,b}=—(ta-b)—a-sb+sa-b+a-tb,
BS: {a, 6y} =—(ta-y)+(sa-y)"?ify € Ciq);
B6: {6x, b} =—(x-sby®+x - thif x € C;(p);
B7: p-{a,b}={p-a,b},
{a,b}-p={a, b p},
{a D b} = {a,p ’ b}

ExaMmpLE. A braiding on a crossed module of groups

¢,

—

is a function { , }: C, X C,— C, satisfying the following axioms:
() {a,b+b'y={a,b}* +{a, b'},
(i) {a+a’, b} ={a’, b} +{a, b}*,
(iii) é6{a, b} =]b, a],
(iv) {a, Oy} =—y +y",
(v) {6x,b}=—x"+x,
where a,a’, b, b' e C, and x, y € C,.
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In [7] A. Joyal and R. Street have defined a notion of braiding for an arbitrary
monoidal category, and in particular have considered braided categorical groups.
These amount to braided crossed modules, with the bracket operation in [7] given
by (a, b)— {a”', b}*. This difference is merely one of notational conventions.

The axioms B1, ..., B7 are evidently closely related to the axioms given by D.
Conduché [4, Axioms 2.9] for the Peiffer lifting M X M — L in a 2-crossed module
L— M — N. We shall pursue this relationship in § 2.

In [2] the category 6~ of crossed complexes is endowed with a tensor product
— ® — and an internal hom-functor CRS(—, —) giving 6~ a symmetric, closed,
monoidal structure. The tensor product C ® D of crossed complexes € and D is
generated as a crossed complex by elements ¢ ® d in dimension m + n for all
ceC,, and d € D,. A presentation of C® D is given in [2, Proposition 3.10]. An
important notion of [2] for the present work is that of a bimorphism 6: (A, B)— C
of crossed complexes. Here A, B, and C are crossed complexes and 6 is a
family of maps A,, X B,— C,,.,. The conditions satisfied by 6 are given as (3.4)
of [2]. The tensor product transforms bimorphisms into morphisms of crossed
complexes, so that there is a natural bijection between the set of morphisms of
crossed complexes A @ B— C and the set of bimorphisms (A, B)— C.

The crossed complex CRS(C, D) has as its vertex set CRS(C, D), the set
éx(C, D) of all morphisms of crossed complexes C—D.- For m=1,
CRS(C, D),, consists of m-fold left homotopies h: C— D over morphisms
f: C— D: that is, h is a map of degree m such that h,: C;— D,,, ., is a derivation
and h,: C,— D,,,,(r=2) is a morphism of groupoids compatible with the actions
of C, and D,. Full details of the notion of homotopy and of the crossed complex
structure of CRS(C, D) are given in [2]. :

The basic properties of the tensor product and internal hom-functor are
summarized in the following result:

1.2. TueoreM [2, Theorem 3.15]. (i) The functor — ®B is Ieft adjoint to the
functor CRS(B, —) from €x to 6x.
(ii) For crossed complexes A, B, C there are natural isomorphisms of crossed
complexes
(A®B)®C=A®(B® (),

CRS(A ® B, C) = CRS(A, CRS(B, C)).

So if C is a crossed complex, we set END(C) = CRS(C, C) and, by Proposition

1.1, this is a monoid in €x with composition map N

y: END(C) ® END(C)— END(C).

Note that for any crossed complexes A and B we have (A ® B), = A, X By and it
is easy to see that the function

Yo: €x(C, C) ® 6x(C, C)— €x(C, C)

is just composition of morphisms in €x». We can now define the automorphism
structure AUT(C) of C to be the full subcrossed complex of END(C) on the
vertex set Aut(C) of automorphisms of C in €x. We obtain by restriction the
composition map y: AUT(C) ® AUT(C)— AUT(C).

If C is an n-truncated crossed complex, so that for r >n, C, is the trivial
groupoid on C,, then maps of degree greater than n in END(C) are necessarily
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trivial and hence END(C) and also AUT(C) are n-truncated. In particular, if C is
a crossed module (that is, a 2-truncated crossed complex) then AUT(C) is again a
crossed module. However, even if C is a crossed module of groups, so that Cyis a
single point, then AUT(C) is a crossed module over a groupoid with vertex set
Aut(C), the set of automorphisms of C in the category of crossed modules. So
the theory over groupoids is indispensable.

1.3. THEOREM. A crossed module C: C,— C, =3 C, over the groupoid (C,, C,)
is a monoid in the category of crossed complexes if and only if it is braided and
semiregular.

Proof. Suppose that C is a monoid in €x. Denote by 0 the crossed complex
with one vertex * and the trivial group {0} in each dimension greater than or
equal to 1. Then we have morphisms of crossed complexes n: 0— C and
u: CQ® C— C, where u corresponds to a bimorphism consisting of a family of
maps p;: C; X C;— Cyy;

If we rewrite the defining diagrams for the monoid structure on C in terms of
the pu;, we obtain equivalent commutative diagrams

X1
1) oxgxa B o xe

1 X u,-kl lllm,‘,k

CixCow 53— Cisju
ij+k

(2) OixCI__Ml_,Ciij&lCix()i
Aij l'u'j Pij
Ci+j

Note that if />2 then C, is the trivial groupoid on the vertex set C,, so all
maps to C; (whether maps of crossed complexes or bimorphisms) are trivial but
preserve basepoints in C,.

Plainly the above diagrams with i = j = k = 0 exhibit a monoid structure on the
set Co, with associative multiplication pgy: Coy X Cyo— Co, which we write as
juxtaposition, and identity 74(*), which we write as e.

For p € Cy, a€ C,, and x € C, we set

p 'a=N01(P; a)) a-p =I410(a»P): p °x=“'02(p1 X), X-p =N20(x,P)-

It follows from appropriate choices of i, j, and k in (1) and (2) that we have left
and right monoid actions of C, on the sets C, and C,, and that these actions
commute. For example, setting (i, j, k) =(2, 0, 0) in (1) shows that x - (pq) =
(x-p)-q for all xeC, and p, q € C,, whilst setting (i, j) =(0, 1) in (1) gives
e-a=a for all a € C; in the left-hand part. Further, from (2) we find that the
identities in C; and C, are transformed amongst themselves by the actions of C,,.

It follows from the defining formulae for a bimorphism given in [2] that u does
induce a biaction of C, on the crossed module C and that C is semiregular.
Further, pu,;: C; X C;— C, does define a braiding on C. Axiom B7 is obtained
from diagram (1) by choosing precisely one of i, j, k to be 0 and the remaining
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two to be 1. The second part of Axiom Bl is obtained from diagram (2) by
choosing i=1=j. The remaining axioms for a braiding follow from the
bimorphism formulae for y,,.

Conversely, it is straightforward to check that given a semiregular crossed
module with a braiding we can reverse the procedure outlined above to obtain a
bimorphism {u;: C; X C;—C.,;} and a map of crossed complexes 7: 0—C
making (1) and (2) commute.

2. Braided, regular crossed modules and simplicial groups

Let G. be a simplical group with face maps d; and degeneracy maps s;. Recall
that the Moore complex N(G.) of G. is defined by

m-—1
N(G.)o=G, and N(G.),= (N ker(d;: Gn— G,_1)
i=0

with boundary N(G.),,— N(G.),,-, given by restricting d,,. Simplicial groups
form algebraic models of homotopy types via the functors W and geometric
realization, and the homotopy groups of the CW-complex obtained from G. are
the homology groups of the Moore complex N(G.). We refer to [S] for further
details. If the Moore complex of G. is trivial in dimensions greater than n, then
G. will model an (n + 1)-type.

D. Conduché [4] gave necessary and sufficient conditions for a simplicial group
to be determined by a truncated simplicial group.

2.1. THEOREM [4, Theorem 1.5]. Let G! be an n-truncated simplicial group.
There exists a simplicial group G. with G; = G| for 0<j<n and with N(G.),, =0
for m > n if and only if G,, satisfies the following condition:

(*) for every partition of {0, ...,n} into non-empty subsets I and J, the
subgroups (e ker d; and (¢, ker d; commute elementwise. Further, such a G. is
unique up to isomorphism.

In what follows we shall construct functors which are naturally defined on, or
take values in, the category of 2-truncated simplicial groups. Conduché’s theorem
tells us that these functors extend to, or restrict from, the category of simplicial
groups, provided Condition (*) holds where appropriate.

We now state the main theorem of this section.

2.2. THEOREM. The category BREM of braided, regular crossed modules is
equivalent to the category $4® of simplicial groups with Moore complex of
length 2. '

The proof of this theorem will occupy us for some time, and we shall approach
it through a series of subsidiary results. We begin with a simplicial group G. and
define the structural components of a braided, regular crossed module; these
components are seen to satisfy the axioms B1, ..., B7 if the 2-truncation of G.

satisfies Conduché’s condition (*).

- Let G. be a simplicial group as above. Then G, is the semidirect product
ker dy X 50Gp- An element g € G, can be written g = g(sodog ")(sodog) where
g(sodog™") ekerd, and sodog €5,G,. Let us write § (or (g)” if g is a lengthy
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expression) for the element g(sodog™'): then we observe the following two
results.

2.3. LemMA. The set G, admits a groupoid structure with vertex set G,

source and target maps d, and d respectively, and composition g + h = gh defined
if dog = d,h.

2.4. LemMa. The group G, acts on the set G, via the degeneracy s,: for p € G,
and g € G, we set

p-g=(sop)s, &P =g(sop)

Then (p-g) = (sop)é(sop)™", (g -p) =g, and these actions, together with the

left and right regular actions of G, on itself, give an action of G, on the groupoid
(Glr GO)'

If x € G,, we write ¥ for x(sodox)~". We set
C, = (kerdyNkerd,) X s¢50Go < G;:
then C, is partitioned into parts C,(p) where p € G, and
Cyp) ={x € G| dox =sop =d,x}.

2.5. LEMMA. The set C,(p) becomes a group if we define x +y =Xy with
identity element sosop and with —x = £~ '(sodox). Furthermore, G, acts on the left
and on the right of the groupoid (C,, Gy) where q - x = (S¢50q)x and x -q =
x(5050q), so that if x € Cy(p) then q - x € C5(qp) and x - q = C,(pq).

2.6. ProrosiTION. Let g € Gi(p, q) and let x € Cy(p). Set
x8 = dog - ((518)”'%(518))-

Then (x, g)—>x% is an action of G, on C, and C, is a regular, precrossed
G,-module with boundary homomorphism d,|C, and biaction of G, given by
Lemma 2.5.

Proof. 1t is easy to check that d, maps C,(p) into G,(p) and is a homomorph-
ism of groupoids and, further, that dy(xf) = soq = d,(x¥) so that x8 € C,(q). We
now verify that we do have an action of G, on C,. So if x,ye Cy(p),
g € Gi(p, q), and h € Gy(q, r), we have

X8+ y& =dog - ((518) T'%(518)) + dog - ((518)7'9(518))
=dog + ((518)'%(518) + (518)'7(5:8))
=dog - (((5:8)7'%(5:18))(5:8) " '¥(s:8))
=dog - ((518) ™' (%(518)) (5:18)(518) '(5:8) ™ '¥(5:8))
=dog - ((518) ' %(5:8) XX (5:8)(518) ' (5:8) ' (5:8)(5:8) 'V (518))
=dog - ((518)7'(x +y)(518))
=(x +y)5
Similarly, we check that x#*"=(x#)". It is then straightforward to verify the
remaining assertions of the proposition.
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2.7. ProposITION. The precrossed Gy,-module d,: C,— G, is a crossed module
if and only if ' '

[kerdyNkerd,, (kerd,Nkerd,)s;G, Nkerd,] =1
in Gz.

Proof. Letx, y € Cy(p). Calculation shows that —x +y + x = p - (x"'yx) where-
as y“* = p - (s,d,x"'ys,d,x). So we have a crossed module if and only if, for each
p €G, and for all x,y € Cy(p), [xs:dx7", ] =1. Now xs,d,x~' = %s,d,%%, so
equivalently, we have a crossed module if and only if [£s,d,%7", ] = 1. Observe -
that

{il y € Cy(p)} =kerdyNkerd,

and that the set {&s;d,#!| x € C(p)} consists of those elements of kerd,
occurring in expressions of elements of ker dy N ker d, relative to the semidirect
product decomposition of G, as ker d, X4 5,G;. It follows that

{%s,1d,%7"| x € Co(p)} = (ker dy Nker dy)s; G, Nker d,.

2.8. ProrosiTioN. For g, h € G,, denote by {g, h} the element
dog - [51h, 5087 '518] - doh
of G,. Then the function (g, h)— {g, h} satisfies Axioms B1, B2, B4, and B7.

Proof. For B1, observe that dy{g, h} = s¢(dogdoh) = d,{g, h} since d, kills the
first term of the commutator in {g, h} and d; kills the second term. So
{g, h} € Cy(dogdyh) and plainly {1, h} =s¢sedoh and {g, 1} = sosodog.

We shall verify B2, leaving B4 and B7 to the reader. Let g, h, k € G, with
doh = d, k. Then
{g, h +k} = {g, hk}

= dog - [s1hs1k, 5087 "518] - do(h + k)

=dog - (5:k7[51h, 508 '518]51k[s51K, 5087 "518]) - dok

= dog * (s:k7"[s1h, sog "'518)51K + [5:1k, 5087 '518]) - dok

=dog - (51’;—1[31’;: 508—1318131’2) ~dok + {g, k}

=dog - (s:k™"(dog™" - {g, h} - doh™")s,k) - dok + {g, k}

=dog - (51K 'so50dog ({8, h} - doh™" - dog~")soSodogs k) - dok + {g, k}
= dog - (s1(dog k)" {g, h} 51(dog + k)) - dok + {g, k}

=dog - (§1(dog - k) 7' ({8, h} - dok™')"s1(dog - k)) - dok + {g, k}
= ({8, h} - dok™')"¢*) - dok + (g, k)

=({g, h} - dok ™" - dok )™ K4k 4 (g k)

={g, h}™“ + {g, k},

which completes the verification of B2.

We now determine the additional assumptions on G. that will ensure that the
function (g, h)— {g, h} is a braiding. Let K, < G, be the subgroup of kerd,
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generated by all elements sog ~'s,g where g € G,, and let K, = G, be the subgroup
of ker d, generated by all elements sog~'s,5,d;g where g € G,.

2.9. ProrosiTION. If in G, we have
[Ky, kerdyNkerd,]=1 and [kerd,Nkerd,, K,]=1
then the function (g, h)— {g, h} satisfies Axiom BS. If
[si(ker dy), kerd; Nkerd,] =1
in G, then the function (g, h) — {g, h) satisfies Axiom B6.

Proof. Note that kerd,Nkerd, consists of elements zs,d,z~' where z €
kerdyNkerd,: then if g € G, and y € Cx(q),
{8, day} = dog - [s1d2y, 5087 '518] - dodzy
=dog - [51d25, 5087 '518] - q
=dog - [§, 5087 's18] - q
= sosodogy"‘slg'lsogysog“lslgsosuq
= 5050dog8Y " '518 '5150d18V5150d18 151850509
= 5050408 (—Y) S0S0dog ~'5050d085050951509 518 7' (d18 * ¥) 51850509
= (dog - (—¥))(dog - 4 - (51(8 - @) 7' (d18 - ) 51(8 - 9)))
= —(dog - y) +(d1g - y)*?,
and this is Axiom BS.
The verification of Axiom B6 under the condition
[si(ker dy), kerd, Nkerd,] =1

proceeds similarly, and so we omit the details.

2.10. ProposrTiON. If
[so(ker d,), [si(ker do), K4]] =1= [5'1(1(?r do), [so(ker dy), K,]]
in G,, then the function (g, h)— {g, h} satisfies Axiom B3.

Proof. Let g, h, k € G, with dog = d,h. Then
{g +h, k}={gh, k}
=do(gh) - [51’;, so(g'h)—lsl(gh)] - dok
=doh - [s1k, soh ™ 'sog "s1850hsoh ™ s, k] - dok
=doh - ([s1k, soh™'s1h]s 1k 'soh[s1k, soh ™ sof 's1850h]soh s, h) - dok
=doh - ([s,k, Soh™'s1h] + s1h " soh[s1k, soh ™ sog " 51850h)soh " !s,h) - dok
= {h, k} + doh - (s;h " 'soh[s1k, soh™'s08 ™ 51850h)soh s, h) - dok.
Now consider the commutator in the second term:
[s:k, soh'lsog"lslgsoh]
= [51’2, Soh—lsosodogsog—ls183150d08-150h]
= [5,k, Soh ™ soSod 1 hsog " 5185050d 1A soh]
= [s:1k, [s0Sod1h™"soh, 518 7 "s08]508 " '518]
[slk So8 slg]slg Sog[slk [s0Sod1h ™ 'soh, 518 "sog]ls08 ™ Slg
=[s:k, 508 7 's18],
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since
[5:k, [soSod1h™"soh, 5187 s0g]] € [s1(ker dy), [so(ker d,), K,]).
Thus
{g +h, k} = {h, k} +doh - (s;hsoh[s\k, sogs18)s0h " 's1h) - dok
= {h, k} +doh - (s,h " "soSodyh[s,k, 508 "518)50S0d1h 51 h) - dok,
since [sq(ker d,), [s,(ker dy), K;]] = 1. But since dog = d;h, we have
{g +h, k} ={h, k} +doh - (s,h " "so50dog[51k, 508~ 's18)5050dog ~'s1h) - dok
={h, k} + doh - (soSodoksosodok ~'s1h ™ (dog - [s1k, s0g ~'518]
“dok - dok ™! - dog™")s 1hsgsodok)
= {h, k} + (dohdok) - (s,(h - dok)~'({g, k} - dok ™" - dog™")s1(h - dyk))
= {h, k} + (dohdok) - (si(h - dok)™*{g, k}s,(h - dok))
= {h, k} + {g, kY,

which is Axiom B3.

We have now described a functor @: 4 — BREM (by virtue of Theorem
2.1). We shall now go on to explain the construction of a functor A: BREM—
%% and then prove that © and A give an equivalence of categories.

Let C: (C,— C,=3C,) be a braided, regular crossed module. Then C, 3 C, is
a 1-truncated simplicial group with degeneracy s,: Co— C, taking p—0, and
group structure on C,; given by ab=a -sb +ta - b.

We set

G,={(w;a, b,c)| weC,,a,b,ceC,, dw=a+b—c,sa=sc}.
Face maps G,— C, are defined by dy(w;a, b,c)=b, di(w;a, b, c)=c, and

dy(w ;a, b, c) = a, with degeneracies sog = (0, ; 0y, 8, g) and 5,8 = (0, ; g, 0, 8).
We picture an element of G, as

[]0——()'——0 r
>\W/4
q

where sa = p =sc, ta=q =sb, and tb =r = tc. A multiplication on G, is given by

(w;a, b, c)(w ;a',b',c')=(W";aa’, bb', cc'),
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where w" is essentially defined by the diagram

, c-p' rp r
PP o > . —_—
w-p' r
a pl b_pr r al

qp'e {b,a'}
q-a b-q

.l

qq9

More precisely, we require that éw” is the boundary of the diagram, and this
condition is satisfied when we take

W" =w _pl + {b, av}—(c‘p'+r‘a') + (r . wr)—c~p'.
It is clear that (0,;0,,0,,0,) is an identity, and that (w;a, b, c)™'=
(w;a™', b7, ¢c") where w is determined by
0,=w-p~t+{b,a ) P Hre D g (r. )P,

It is not immediately apparent that the multiplication just defined is associative.
Let x; = (w; ; a;, b;, ¢;) € G, where i =0, 1, 2. Then

xo(x1x5) = (u ; apayas, bob,b,, cocicy),

(xox1)x2= (v ; @pa1a,, bob1 by, coc1Cy),

where
U=Wwy-pip+ {bO, a,-p>+q,- a2}”(00'P1P2+'b‘a1‘l’2+'b¢lraz)
+ ("o - Wy .pz)_“o‘Plpz + {’o . bl: az}—(Co‘P1P2+’0'01'P2+"0¢1|'02)
+ (rOrl . WZ)_(CO'P1P2+’0'CI'P2)
and

U=wop1p2+ {bo, ay - po} TCOPPTNNTD 4 (1 - wy - pr) TP
+{bo-q.+15° by, az}—(CO'P|P2+’0'C|'P2+W|'02)
+ (rorl . wz)-(co'Plpz*"o'Cl‘Pz).
Expanding the { , }-terms using B2 and B3, we find that u = v if and only if
(ro* Wy - p2)~ P2+ {ry - by, az}—(Co‘P|P2+’h'C|'P2+'b’1'a2)
+ {bO “q1, az}’b'bl‘QZ_(CO'plp2+'l)'Cl'P2+’b’l‘az)
= {bO “q1, az}“(Co'P1P2+"0'01'Pz+'b'raz)
+ (rO -w, .pz)—co‘mpz + {ro - by, az}‘(CO‘P1P2+’0'C|‘P2+'M'az)_
Write y for the sum of the first two terms on the left-hand side and
g=—(copr1p2+ro-c1-pa+ror - ay). Then u=v if and only if
y+{bo" g1, @z} E = {by- qs, ax}* +,
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that is, if and only if

{bo" q1, 82} "8 =~y + {by - q1, az}* +y = {bo - q1, a}**?.
It is now a trivial matter to check, using CM1 and B4, that r,-b,-q,+g =
g+ oy.

This completes the definition of a 2-truncated simplicial group from a braided,
regular crossed module. It remains to check the commutator conditions of
Theorem 2.1. Let x, y € G,: there are three cases to consider:

Case 1. dox = Oe, dly = Oe = dzy.

Case 2. dix=0,,dyy=0,=d,y.

Case 3. dyx=0,,dyy=0.=d,y.

We give the details for Case 1. So x=(w;a,0,,c), y=(w';0,, b, 0,), and
xy = yx if and only if

wH+w =w'-p+{b,a}™ +w.
Now éw =a — ¢ and éw’ = b and using B6 and CM2 we see that

'

wf=—w+w+w
=—w+w - -p+(—(w' -p)+w)+w
=-w+w'-p+{b,a}™+w,

and the desired conclusion follows.

Proof of Theorem 2.2. We shall show that the functors ©: $4®— BREM
and A: BREM— $4P give an equivalence of categories. Let

C: (Cg—) Cl =3 Co)

be a braided, regular crossed module. Then A(C) is a simplicial group with
Moore complex of length 2: we write A(C) = G. and ©(G.) as B: (B,— B, =3 By).
From the definitions of ® and A we see at once that Co=B,, C,= B, and
that the source and target maps in B are the same as those in C. Now G, =C,
with group operation ab = a - sb + ta - b and the groupoid operation in B is

a +b=asydy(a)~'b
= aO,,,-nb
=(a-ta”")b
=a-ta”'-sb+t(a-ta”t)-b
=a+b,
where + on the right-hand side denotes the groupoid operation in C. Hence the
groupoids (C,, C,) and (B,, B,) are identical. Now
G,={(w;a,b,c)l weC,,a,b,ceCy, Sw=a+b—c, sa=sc}
and so
Bx(p)={(w;a,0,0,) weC,,aeC,, 6w=a,sa=p=ta}
= {w € C,| s6(w)=p =1t5(w)}
={w e C,| bs(w)=p =dt(w)}
= {we G| s(w)=p =t(w)}
= Cy(p).
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The isomorphism here is a priori a bijection of sets, but is readily seen to be an
isomorphism of groups: we shall show that it is an isomorphism of crossed
modules over (C,, C;). We consider 6: C,— B, where 6|C,(p) maps w to
(w; éw, 0,,0,). The boundary of B is B: (w;a, b, ¢)~>a so that B6 = 4. Recall
that in G,,

(wia, b, c)(w ;a’,b',c')y=(W";aa', bb', cc'),

where w'=w-p'+{b,a’} P4 (r-w') ", Let xeCyp) and ac

Ci(p, q)- Then

0(x)* = ta - (s1(a)™'(6(x) - t6(x)")s1(a)).
Now t6(x) = p and s¢sop = (0, ;0,, 0,, 0,) so that

O(x)-t6(x)'=(x-p~'; 6x-p7, 0, 0,):
further, s,(a) = (0, ; a, 0,, a) and s,(a)™" = (0,-1;a7", 0,-1, a~*). It follows that

s1(@)"W(8(x) - t8(x) )si(a)=(g™" - x* 597" - (—a + dx +a), 0, 0.)

and thus that 6(x)*=(x";—a+ d6x+a,0,0,)=0(x"), whence 0 is an iso-
morphism of crossed modules. It is an easy matter to verify that 8 preserves the
actions of Cy= B, and so is an isomorphism of regular crossed modules. Finally,
we check that @ preserves the braiding, that is, 6{a, b} = {6(a), 8(b)}s (where
{, }c and {, }p are the braidinggs on C and B). Now {q,b}yz=

ta - [s,(b - tb™"), sea"'s,a] - tb, where the commutator is evaluated in the group
G,. We find that

sy (b-th™) = (0 ;b 67, 0,, b - tb™Y),

$y(b - th™1) "' = (0p-1; —b - 5671, 0,, b -sb™Y),
'.a,a7 ' ta, 0,),
-sa,ta”'-a,0,),

soas;a”'=({a" ", a} ;sa”

s1as0a” = (0, ;a™!

and that
[s1(b - tb7"), soa”'s;a)=({ta™ ' -a,b-tb™'} ;b -tb™'—ta”'-a-sb-tb™!

+ta'-sa-b-th™'+ta'-q0,0,),
whence

{a,b}g=({a,b}c;—ta-b—a-sb+sa-b+a-th, 0y, 0,s) = 0({a, b}c).

We now have an isomorphism 8: C— ©A(C) in BREAM, differing from the
identity only on C, and there defined using only the boundary of C, so naturality
is immediate.

Now let G. be a simplicial group with Moore complex of length 2. We write
O(G.)=(C,~> C,3Cy) and ABG(G.)=H.. It is easy to check that G,=H,,
G, = H,, and that the simplicial group structures of the 1-truncations of G. and
H. are identical. We now define a function G,— H,. This will ‘fold’ an element
x € G, into the group C,(d,d,x): the folding of x, together with the faces of x,
then gives an element of H,.

Let x € G,. We define

(P(X) = stdox—1S1d0x51d1x~13050d1d1x.
Then dop(x) = sod d1x = d ¢(x) and
d,p(x) = drxsododax " doxd x sodidix = dox + dox — dyx € Gl..
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Now we define ®: G,— H, by ®(x) = (¢(x) ; d,x, dox, d,x) and we claim that ¢
is a homomorphism of groups. Take x € G, as above: we write g = d,x, h = dx,
k=dx, p=d,g=d,k, q=d,h=dyg, and r =d,k = dyh. Similarly, for x' € G,
we have g', h', k', p’, q', and r'. Then
D(x)P(x') = (P(x) ; dox, dox, dix)(p(x') ; dox’, dox’, d1x")
= (x"; dy(xx'), do(xx"), di(xx")),
where
X'=¢(x)-p'+{h g}y P E 4 (r- p(x") T
= ¢(x)-p'+{h, g}y WP 4 (r- px))y T
=¢(x) - p'+pp’ - (s1(so(pp')'kg'so(rq') )({h, 8'} - (rg')™")
-51(50(rq")g" "'k "so(pP")) + SoSorsosor 'seso(pp’)
-s,(s(,(pp')'lk)x'soh"lslh'slk'"sl(k'lso(pp'))
= @(x) - p' +51ks18'5150q" ~ 51807 ™ (S0S0751(850q' 1) !
+51h7"sohs (850" " )soh T s1h)s080q 518"~ 51k 's,180(pp")
+s1kx'soh' s h's k' s ks 50(pp”)
= ¢(x) - p' +5.ksih ™ sohsy(g's0q" " )soh s 1hs (8" "s0q' )51k ") - pp’
+ (s1kx'soh' ~'s,h's k' 's:k7Y) - pp’
= ((xsoh ™ 's1hs k™")(s1ks 1h™"sohs1(8'50q" " )soh "5 1k
-51(g's0q' ™) 51k (s1kx'soh' T is ks k' s, k7)) - pp!
= (x51(8s0q" " ")soh T's1hs1(8's0q' ~!) x"soh' s h's k' Is, k") - pp”.

Now s5,(g'soq’ " )x'soh’ ~' € ker dy N ker d,, whilst soh™'s,h € ker d,, so that the
right-hand side becomes

(xx'soh' " 'soh~'s\hs h's k' "5 k) - pp' = P(xx').

So @ is a homomorphism, and since x is determined by ¢(x), dox, and d,x, then
@ is injective. Now explicitly H, is the set

H2 = {(W 5 a, b, C)‘ W E Gz, a, b, ce Gl, dow =Sod1a = dlw, dla = dIC,
doa = d,b, dob = dyc, d,w = asodoa™"bc ™ 'sqd, c}

and it is easy to check that (w ;a, b, ¢) = ®(wsosod ¢ 's,cs,b " sob) so that @ is
surjective and therefore an isomorphism.

It is immediate that ® is compatible with the faces and degeneracies of the
2-truncations of G. and H. and thus we have determined an isomorphism
G.— H. of simplicial groups. Furthermore, naturality is clear since ® is defined
using only the face and degeneracy maps of G.

We have now shown the existence of natural isomorphisms of functors ®A =id
and A® =id, so that A and © do give an equivalence of categories.

Recall from [4] that a 2-crossed module consists, in the first instance, of a
complex of N-groups

LSS M3 N

and N-equivariant homomorphisms, where the group N acts on itself by
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conjugation, such that

LS M
is a crossed module. Thus M acts on L and we require that for all le L, me M,
and n e N that (I)" = (I")™". Further, there is a function { , ): M XM—L,
called a Peiffer lifting, which satisfies the following axioms:

PL1: 8{my, my) = mgy'mi'mom3™,

PL2: (8L, m) =1"}",

PL3: {(m, al) =1""1°",

PL4: (mg, mym,) = (mg, my)(my, m,

PLS: (momy, my) = (mq, my)™(m;, mi™),

PL6: (mo, my)" = (mg, m7).

Let 2-64 denote the category of 2-crossed modules. Then the equivalence of
Theorem 2.2, together with Conduché’s equivalence [4] between the categories
2-6M and 92, yields a composite equivalence between 2-64 and BREM. We
shall indicate how to pass back and forth between 2-€4# and BR€M, leaving the
interested reader to supply the details.

Let C: (C,— C,=3C,) be a regular crossed module. The 2-crossed module
associated to C is the Moore complex of the simplicial group A(C). Denote by K

the costar in C, at the vertex e € C,, that is, K = {a e C,| ta=e}. Then K is the
subgroup ker dy of A(C), with group operation given for any a, b € K by

ab=(a-sb)+b.

The source map s: K— C, is a homomorphism of groups and is Cy-equivariant
relative to the biaction of C, on C,. Note that the new composition extends the
group structure on the vertex group C,(e) so that C,(e) is a subgroup of K: it is
plainly the kernel of s. Further, C, acts diagonally on K: for alla € K and p € C,
we set a” =p~'-a - p. (There should be no confusion with the given action of C,
on C, which we denote in a similar way.) Then the homomorphism s: K— C, is
Co-equivariant relative to the diagonal action on K and the conjugation action of
the group C, on itself. Now C; also acts diagonally on the vertex group C,(e) and
so we have a complex of groups

Cile) 2 Kk 5 ¢,

Y,

in which é and s are Cy-equivariant. We know that 8: C,(e)— C,(e) is a crossed
module: we claim that K acts on C,(e), extending the action of C,(e) c K, so that
6: Cy(e)— K is a crossed module.

We define an action (x,a)—xta by x{a=(x-sa)® where x € C,(e) and
a € K. This is indeed a group action and ¢ is K-equivariant. Moreover, the
actions of C,(e) on itself via K and by conjugation coincide, for 6: C,(e)— C,(e)
is a crossed module and so for all x, y € C,(e),

x18y=(x-s(8y)?=(x-e)¥=x¥=~-y+x+y.

Therefore the map 6: C,(e)— K is a crossed module. Further, the action of C,
on C,(e) is compatible with that of K.

The final structural component of a 2-crossed module that we need is the
Peiffer lifting, which is provided by the braiding. For suppose that C has a
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braiding { , }: C, X C,— C,. Then the map K X K— C,(e) given by (a, b)—
{a™', b} 1 a=(a, b) is a Peiffer lifting. Therefore we have the 2-crossed module

Cy(e)— K—C,,

which is indeed the Moore complex of A(C).

We now show how the construction of the 2-crossed module just described can

be reversed, up to natural isomorphism. So we begin with a 2-crossed module
L%cSp

and construct from it, in a functorial way, a regular, braided crossed module

P,— P, 3P,

The group of vertices of P is just the group P. The underlying set of elements
of P, is G X P with source and target maps s(g, p) = 3(g)p and t(g, p) =p. The
groupoid composition in P, is given by (g,, p1) + (g2, P2) = (8182, p2) if p,=
d(g2)p>- The underlying set of elements of P, is L X P with composition
(L1, p) + (I3, p) = (lil, p). The boundary map 6: P,— P, is given by 8(/, p) =
(81, p) and the action of P, on P, is given by (I, p)&? = (I%, q) if p = 3(g)gq. This
does define a crossed module over (P,, Fy) and a biaction of P, on P,— P,=3 P is
obtained if we define

p-(gq)= (g‘_’l", pa), (8. 4)-p=(g qp),

p-La)=" ,pq), (q) -p=0qp)
where (g, q) € P, (I, q) € P, and p € Py= P and therefore P,— P, =3 P, is regular.
The braiding on P is given by {(g1, p1), (82, P2)} = ({g1", 85")%', p1p2) where
(, ): GX G- L is the Peiffer lifting.

This concludes the description of the functor 2-€M— BREM and it is
straightforward to complete the verification of the equivalence between the
categories 2-€M and BREM implied by Theorem 2.2.

We thus have a commutative diagram of equivalences of categories,

BREM ——> PGP

N\

2-6M

The equivalence $9®— 2-6M was established by Conduché in [4], and so the
equivalence BREM— F4 could have been established by using Conduché’s
result and proving the equivalence BRE.M—2-6M. We have preferred to
emphasise the equivalence BREM— FY? for two reasons. Firstly, we wished
directly to relate braided, regular crossed modules to a category whose use is well
established; this rdle is fulfilled by simplicial groups, whereas 2-crossed modules
are less familiar. Secondly, the functor BREM— FG> has a clear geometric
meaning, whilst Conduché’s functor 2-6M— F4@ is geometrically more
obscure.

3. Automorphism structures for crossed modules

We now come to the motivating example for the ideas developed in § 2. Let
3: M— P be a crossed module of groups, regarded as a 2-truncated crossed
complex with one vertex * (though we shall write M and P multiplicatively).
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Form the crossed complex CRS((M, P, 3), (M, P, 3)): this is again 2-truncated
and we denote it by E: E,— E, 3 E,,.

An explicit description of E may be extracted from [2]. The vertex set Ej is just
éx((M, P, 3), (M, P, 3)) =End(M, P, 3), the set of endomorphisms of the
crossed module (M, P, 3). We shall usually denote elements of E, by a single
letter and use this same letter for either of its components, that is, for the
endomorphism of M or of P.

Now E; consists of all 1-fold homotopies (M, P, 3)— (M, P, 3). Since
(M, P, 9) is trivial in dimensions greater than 2, a 1-fold homotopy is completely
specified by a triple (u, h,f) where ueP, feE), and h: P> M is an
f-derivation, so that for all v, v' € P, h(v'v)=h(v') ®h(v). The source and
target maps are given by s(u, h, f) =f° and t(u, h, f) = f where f° is defined by

fOv) = uf (v)dh(v)u™", fo(m)=(f(m)hd(m))*" |
for all ve P and m € M. It is straightforward to check that f°e E, as required.
The groupoid structure on E, is given by
(41, hy, fo) + (U2, ha, f) = Uiy, hy + hy, f),

where, for v € P, (hy + hy)(v) = hy(v)h,(v)“.

An element of E, is a 2-fold homotopy (M, P, 3)— (M, P, 3). Each consists of
a pair (m,f) where meM and feE, The groupoid structure on E, is
(my, f) + (my, f)=(mym,, f). The boundary map 4: E,—E, is (m, f)—
(8(m), h,n, f) where h,(v)=m7®m. It is easy to check that h, is an
f-derivation. Finally, the action of E, on E, is

(m, £ = (m*, )

and this makes 6: E,— E; a crossed E;-module.

3.1. ProrosITION. The composition map y: E® E— E together with the map
n: 0—>E adjoint to A: 0@ (M, P, 3)— (M, P, 3) make E a monoid in the
category of crossed complexes.

Proof. This is merely a special case of Proposition 1.1.

So by Theorem 3.2, E is semiregular and braided. To determine the biaction of
E, and the braiding we have to understand the composition map y explicitly. A
direct calculation leads to the following non-trivial components for the bimorph-
ism determining y:

E¢X Eo— Eo: (fi, R)—fifes

EyX E\— Ey: (fi, (4, b, f)) = (fi(w), fih, fif),

E\ X Eo— Ey: ((u, h, f), )= (u, hfz, ff2),

E\X E\—= E3: ((, b, f), (w1, by, 1)) = (h(uy), f1r),
Eo X E,— Ey: (fi, (m, f)) = (fi(m), fif),

E; X Eq— Ey: ((m, f), o) (m, ff2).

These maps give a biaction of E, on E and a braiding E, X E,— E,. The monoid
structure on E| is the usual composition of maps.
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Let A=AUT(M, P, 3), the full subcrossed complex of E on the vertex set
A = Aut(M, P, 3) of automorphisms of the crossed module (M, P, 3). Thus A, is
the group of units of E, and A inherits from E the structure of a regular, braided
crossed module.

Now an element of A, is a 2-fold homotopy over an automorphism of (M, P, J)
and consists of a pair (m, f) where me M and f € A;. An element of A, is a
1-fold homotopy over an automorphism of (M, P, ) and consists of a triple
(u, h, f) where ueP, feAy, and h is an f-derivation P— M such that the
endomorphism f° of (M, P, 3) which gives the source vertex of (u, h, f) is
actually an automorphism. Clearly f° is an automorphism of (M, P, 3) if and
only if

g()=f(v)oh(v), g(m)=f(m)hd(m)

for all v e P and m € M, defines an automorphism of (M, P, 3). Here we make
use of results due to K. J. Norrie [14] which extend results of J. H. C. Whitehead
[15] (see also [11]). For f € E,, denote by Der;(P, M) the set of f-derivations
P—-M.

3.2. ProposiTion [14). If f is an automorphism of P then Der,(P, M) is a
monoid with composition

(h1°h2)(v) = hy(V)hy(vf ~'0hy(v)) = ha(v)h\(V)ha(f 7 B8R (V))

and identity element 0: v—1 for all v € P.

Proof. In [15] Whitehead defines a monoid structure on the set Der(P, M) of
derivations P— M. Now if f is an automorphism of P and A is an f-derivation,
then hAf~' is a derivation: hence we can use f to transport Whitehead’s
composition on Der(P, M) to Dery(P, M) and the result is as stated. Whitehead’s
composition is of course recovered by taking f = idp.

3.3. ProrosiTioN [14]. Let f be an automorphism of the crossed module
(M, P, 3) and let h: P— M be an f-derivation. Then the following are equivalent:

(i) h is a unit in the monoid Der;(P, M),
(ii) g: v—f(v)3h(v) is an automorphism of P,
(iii) g: mw— f(m)h3(m) is an automorphism of M.

Proof. For f equal to the identity automorphism of (M, P, 3), this result is due
to Whitehead [15] (see Lue’s account in [11]). Now A is a unit in Der;(P, M) if
and only if Af~' is a unit in Der(P, M) and by Whitehead’s result, this is
equivalent to gf~' being an automorphism of P or of M: since f is an
automorphism of (M, P, 3), this is in turn equivalent to g being an automorphism
of P or of M.

We write Der/(P, M) for the group of units of Der,(P, M) and h* for the
inverse of h € Derf(P, M). If f is the identity, we write Der* for Der;. An
element of A, is now seen to consist of a triple (u, h, f) where ueP,
f € Aut(M, P, 3), and h € Der; (P, M).
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3.4. THEOREM. The regular crossed module A = AUT(M, P, 9) corresponds via
the equivalence of Theorem 2.2 to the 2-crossed module

8
M 5 PxDer*(P, M) — Aut(M, P, 3)

in which 8(m)=(3(m), h,,) where h,,(v)=m~"m and s(u, h) = f where f(m)=
(mha(m))“"1 for meM and f(v)=uvdh(v)u~' for ve P, and where P acts
diagonally on Der*(P, M) in the semidirect product.

Proof. The costar in the groupoid A; at the identity automorphism 1 of
(M, P, 3) may be identified as a set with P X Der*(P, M) and the source map
s: P x Der*(P, M)— Aut(M, P, 9) is then as claimed in the theorem. The group
structure on the costar is given by (u;, h,)(u,, hy) = (u u,, h;) where

h3(v) = (hys(uz, hy) + h2)(v)
= hy(v)hys(uz, hy)(v)*“
= hy(v)h,(uvdh,(v)us )™
= hy(v)h1(uv3hy(v))hy(ur) ™!
= ho(v)hy(uzv)?**hy Shy(v)hy (1) ™!
= hy(uav)hy(v)hOho(V)hy(uz) ™"
Now P acts on Der*(P, M) by
h*(v) = h(uv)h(u)~' = h(uvu™")4,

that is diagonally, and we see that h;=h,°h{* where o denotes Whitehead’s
composition of derivations as in Proposition 3.2. Hence the group structure in the
costar is

(u1, h1)(ua, ho) = (uyus, hyohi?)

and we have the semidirect product P x Der*(P, M).
The vertex group A,(1) is identified with the group M with 6(m) = (3(m), h,,)
as required.

Note that Aut(M, P, 3) acts on P X Der*(P, M) by

(u, b)Y = (f(w), f~'hf)
and on M by m/ =f"'(m). The action of Px Der*(P, M) on M is simply
m®“" = m* and the Peiffer lifting is given by
((u1, hy), (u2, ha)) = {(u1, h1)7", (2, h2)} U (g, hy)

= ({(u_l’ hl*u1 )’ (u2’ hZ)} : S(uh hl))(uhhl)

=h" (u)"

= h?‘(u{’uzul).

Loday shows in [9] that the homotopy groups of the CW-complex modelled by

a crossed square may be computed as the homology groups of a certain complex
of non-abelian groups: Conduché (private communication, 1984) has observed
that this complex is a 2-crossed module. The form of the 2-crossed module

identified in Theorem 3.4 suggests that it may be obtained as the non-abelian
complex associated to a crossed square. In this way our results concur with those
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of K. J. Norrie in [14]. She treats the crossed module Z: Der*(P, M)—
Aut(M, P, 3) in which Z(h)=g;", where for all h € Der*(P, M), me M, and
veP, g,(m)=mhd(m), and g,(v) =vdh(v), as defined by Lue [11], as an
analogue for the automorphism group of a group and shows that there is a
crossed square

M 25 Der (P, M)

al l:—:
P~ Aut(M, P, )

in which ¢(m) = h,,, p(u)(m)=m*", Y)(v)=uvu" for all meM, u, veP
and with h-function §:" Der*(P, M) X P— M given by evaluation.

3.5. THeOREM. The crossed square above has, as associated 2-crossed module,
that already obtained from AUT(M, P, 3) in Theorem 3.4.

Proof. Certainly the associated 2-crossed module consists of the complex
shown: we need only verify that the evaluation map & gives rise to the Peiffer
lifting given in the proof of Theorem 3.4. The Peiffer lifting determined by & is

<(ul’ hl): (u2’ h2)> = E(hfy ul_luZul) = h;k(ul—lu2ul)1

as we required.

We conclude with some sample computations of the 2-crossed modules of
Theorem 3.4. The homology groups of the 2-crossed module are of particular
interest since they are also the homotopy groups m,, 7,, and m; of the
corresponding 3-type.

ExampLE 1. Let M be a P-module, considered as a crossed P-module with
trivial boundary map. In this case Der*(P, M) is just the usual abelian group
Der(P, M) of derivations P— M. Then if (u, h) € P Der(P, M), we have that
s(u, h)(m)=m"" and s(u, h)(v) = uvu™"': the cokernel of s is written Out(M, P)
and this is ;. The kernel of s consists of elements (u, h) such that u € Z(P), the
centre of P, and acts trivially on M, whilst 4 is any derivation. The homomorph-
ism ¢ is given by 6(m) = (1, h,,) and thus the second homotopy group 7, is

(Z(P) Nstabp(M)) x H'(P, M).
Finally, 7, is the fixed point subgroup M of M.

ExampLE 2. Let M be a normal subgroup of P and let 3: M < P. be the
inclusion. Now
Aut(M, P) = {@ e Aut P| a(M)c M}

and s(u, h)(v) = uvh(v)u~!, with m, the cokernel of s. Now s(u, h) =1 if and
only if h(v)=v™'u"'vu and h(v)e M for all ve P. So kers={u e P| [x,u]le M
for all x € P} and Im 6 = M, whence n,= Z(P/M). Further, x, is trivial.

The computation of the groups &; and &, depends upon a characterization of
those automorphisms of a crossed module 3: M— P which are induced by
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derivations P— M, and of those derivations inducing the identity automorphism:
convenient characterizations remain to be found for the general case. However,
75 is easily described as ker 3N M”.

ExampLE 3. In our final example, we point out a substructure of
AUT(M, P, 3). Consider the sub-2-crossed module determined by the subgroup
Autp(M, P, 3) of Aut(M, P, 3) consisting of all automorphisms of 3: M— P
which are the identity on P. If (u, h) € PX Der*(P, M) and s(u, h)(v) = v for all
v € P, then dh(v) = [v, u]. Thus the sub-2-crossed module is

M— D— Autp(M, P, 3),

where D = {(u, h) € Px Der*(P, M)| dh(v)=[v, u] for all veP}. This we
recognise as the group considered by Lue in [10] and there denoted DER(P, M).
The group operation on D takes the simple form (u,, h,)(u,, hy) = (U u,, hs)
where h3(v) = hy(v)hy(v)™.
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