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Introduction

In a previous paper ([1]) we showed how a fibration of groupoids gave
rise to a six-term exact sequence (three terms of which were groups and
three were sets) and that this exact sequence included the bottom end of
the topologists' exact sequence of a fibration of spaces, and also in the
non-abelian cohomology of a group 0 the six-term exact sequence
associated with an exact sequence of coefficient ^-modules

This latter exact sequence is described for example by Serre in [9].
However a curious feature emerges, because Serre also describes a five-
term exact sequence (two terms of which are groups and three are sets)
associated with a sub-^-module A of B, where A is not necessarily normal
in B. One object of this paper is to show how this exact sequence fits into
the groupoid theory.

In order to do this we generalize the theory of Hl{G', A) (i = 0,1),
where G is a group and A is a group which is a £r-module, to the case where
0 and A are both groupoids. This seems a natural step to take, for since
the theory involves groupoids it seems reasonable to start with groupoids.
The general theory applies to the example by taking the exact sequence
of a covering morphism of groupoids constructed from the sub-Cr-module.

It is hoped that the constructions used on the way, particularly the
split extension of groupoids which is due to A. Frohlich, will prove more
generally useful. I would like to thank Professor Frohlich for permission
to use some material from some duplicated notes of his.

1. (^-modules
The notation for groupoids is as in [1]. Further, for any groupoid G,

we identify Oh(G) with the discrete subgroupoid of G on Ob(6r).

1.1. DEFINITION. A groupoid G acts on a groupoid A via a morphism
ct>: A -* Ob{G) if for each g in G(x,y) and a in the groupoid co"1^) there is
given an element g.<x (also written got, or 0a) in the groupoid oo~x{y); this
operation must satisfy the usual axioms:

(i) {hg)ot = h{ga),
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(ii) gtfa) = (gj8)(flfo),
(iii) l.a = a.

for elements h,g of G, £, a of A, and identity 1 of 0; in these axioms it is
understood that they hold when and only when both sides are denned.

Notice that because Ob(G) is discrete and co: A -> Ob(G) is a morphism,
the groupoid A is the sum

of the groupoids Ax = a r 1 ^ ) for all x in Ob(G). An element g in G(x,y)
defines a morphism gf Ax-> Ay of groupoids such that

when defined. Thus an operation of £ on .4 defines a functor A': G -»
where 3 ^ is the category of groupoids, by -4'(z) = ^ for x e Oh(G) and
4̂'(gf) = g% for g e G. Conversely, a functor A':G-+&d defines an

operation of G on the sum of the groupoids A'(x), x e Ob(G), in an
obvious way.

If A is discrete, the above coincides with the usual operation of a
groupoid on a set (as considered in [1]). An important example of an
operation of a groupoid on a set is the operation of a groupoid G on its
set Ob(G) of objects via the identity Ob(G) -> Ob(G); this is defined by
g(x) = y whenever g e G(x,y).

Again if G operates on the groupoid A via co: A -» Ob(G), then G also
operates on TTQA via TT0CO : TTQA -> Ob(G). This is because if g G G(X, y), then
g defines gf Ax -> Ay and gr$ induces g*: TT0AX -> TT^AV.

We shall need the notion of a trivial action of a groupoid G on A. If
G were a group, the action of G would be trivial if for each g in G, g$ is
always the identity. This cannot be transferred directly to the case where
G is a groupoid, since if G acts on A and g e G(x, y), where x, y are distinct,
then Ax ^ Ay and so g9: Ax -> Ay cannot be the identity. We therefore
make the following definition: G acts trivially on A if for all objects
x, y of G, any two elements g, h of G(x, y) induce the same isomorphism
Ax -> Ay. This is equivalent to saying that the group G{x] acts trivially
on Ax for each x e Ob(G).

1.2. PROPOSITION. Let the groupoid G act on the groupoid A. Then A
contains a unique maximal subgroupoid on which G acts trivially.

Proof. Let A% be the subgroupoid of Ax of elements fixed under G{x).
Let A0 be the union of these groupoids A®. We prove that G acts on A0.
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Let a e AG, geG(x,y). Then g<x e Ay, and if h e G{y}, we have
g~xhg e G{x}, whence

g~1hg<x = <x.

This implies hgoc = ga, and so got e A®.
Clearly G acts trivially on A°, and AG contains any subgroupoid of A

on which G acts trivially.

Note that A° can be empty, in contrast to the case when A is a group.
An example of this is the action of Z2 on J which interchanges the two
objects of J'.

It is useful to have a condition for A° to be non-empty.
The action G on A is via a morphism w. A -> Ob(G). An equivariant

section of A (more precisely, of co) is a morphism A: Ob(G) -»• A of groupoids
such that coX = 1 and A commutes with the action of G; this latter
condition is that if g e G(x,y), then g.X(x) = \{y).

1.3. PROPOSITION. The groupoid A° is non-empty if A has an invariant
section. The converse holds if G is connected.

Proof. Let A: Ob(G) -> A be an invariant section. Let x e Ob(G), and
let a = \(x). If g e G{x}, then

g.la = g.\{x) = \(x) = la.

So A° is non-empty.
For the converse, suppose that G is connected and a e Ob(A°). Let

oj(a) = x. We define an invariant section 'through a' by X(y) = g.a for
some g e G(x, y)—since a e Ob{AG), g.a is independent of the choice of g
in G(x,y).

Given an invariant section A of A, let AG{X} be the set of sections
<p: x -> <p(x) such that (i) <p(x) e A{X(x)}, x e Ob(G), and (ii) if g e G(x,y),
then £.<?>(#) = <p{y). Clearly AG{X] forms a group under multiplication of
values; it is this group which replaces the usual group of fixed elements
defined when G and A are both groups.

1.4. PROPOSITION. / / G is connected, and X is an invariant section of A,
then for any x in Ob(G) there is an isomorphism

Proof. We define e by the evaluation <p \-> <p{x).
In order to define an inverse e to e, suppose that a 6 A{X(x)G(x)], and

y e Ob(G). Since G is connected, there is an element g in G(x,y) and
g.oL is independent of the choice of g. So we can define <p = e'(a) by
<p(y) = g.oc for any g e G(x,y).
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2. Split extensions
If a group G acts on a group A, then the split extension G x A is

defined. The (known) use of this construction in defining crossed
morphisms was explained in [1].

In this section we define the split extension G x A for the case that G
is a groupoid acting on the groupoid A (via o»: A -> Ob(Cr)). This definition
is due to Frohlich (in some duplicated notes on cGroupoids, groupoid
spaces and cohomology' (1965)).

The split extension is closely linked with covering groupoids, and so
to fix ideas we first assume that A is a set. We then let

Oh{G x A) = A

and if a, b e A, we let (G x A){a, b) be the set of pairs {g,b) such that
g e G(a){a), co(b)) and °a = b. (In this and some later sections it is
convenient to use exponential notation for operations; for ease of printing,
we write ~°a when a is operated on by g~x). The multiplication is given by
(h, c)(g, b) = (hg, c), for (g, b) as above and h e G(u)(b), co(c)), with hb = c.

This construction goes back, as far as I know, to Ehresmann ([3]).
In [4], Appendix 1, §1, it is observed that this construction gives an
equivalence from the category of operations of G on sets to the category
of covering groupoids of G (see also [5], p. 101).

Mackey ([7], [8]) exploits this construction in the theory of ergodic
actions, by replacing an ergodic action of a locally compact group G on a
Borel space S by the groupoid G x S; with a suitable Borel structure this
groupoid becomes an example of what Mackey calls an 'ergodic groupoid'f.

Higgins ([5]) makes extensive use of covering groupoids, particularly
the groupoid Tr((2 : H), which is G x {G/H), where G is a group, H is a
subgroup, and G operates on G/H in the usual way.

It has been observed by R. M. F. Moss that the Todd-Coxeter method
of enumerating cosets G/H when G is a finite group (see, for example,
[2], [6]) is really a method of constructing a multiplication table for the
groupoid Tr(G : H).

We now give a construction which includes this construction of covering
groupoids and also the split extensions of groups.

Let the groupoid G act on the groupoid A via o>: A -> Oh(G). We first let
Oh{G x A) = Oh{A).

Next let a,beOh{A). We define
(G x A){a,b)

to be the set
(2.1) {(g,<x):ge G(a>(a), w(b)), a e A(°a,&)}.

+ Note added in proof. For a more recent account of this theory, see [10].
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co (a) co(b)

The above diagram is useful in keeping a picture of these pairs.
Suppose further that (&,j9) e (G 2 A)(b,c). Then we let

Notice that this formula is exactly the same as the formula for the
multiplication in the split extension of groups. The following diagram
gives a picture of the above product. The odd thing is that this picture

(2.3)

cu (a) cv{b) co(c)

is clearer for the case where G and A are groupoids than it would be for
the case of groups—the formula (2.2) is forced, in the groupoid case,
simply by the necessity for the product to be well defined.

It is clear from diagram (2.3) that (g, a) has left-identity (lw(6), 16)
and right-identity ( l ^ a j / l j . Further the inverse of (g, a) must be of the
form (g~x,oi), where a lies over <o(a). This suggests the choice

* a

co (a) S'

• b

co(b)

and it is easily checked that this works. Since associativity is easily
verified, G % A is a groupoid.

5388.3.25 O
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The notation G % A does not conflict with that used earlier in this
section, for A, if discrete, may be identified with its set Ob(^l) of objects,
and then the two definitions of G x A are identical.

Going back to the general case, the 'projection p: G x A -> G is defined
to be co on objects and (g, a) \-> g on elements. The injection i: A -*> G S< A
is defined to be the identity on objects and on elements to be
a \-> (lw(a), a). Clearly the image of i is the kernel of p.

When A is discrete, p: G x A -* G is & covering morphism. In general
we have

2.4. PROPOSITION. The projection p: G x A -» G is a fibration of
groupoids.

Proof. Let g in G{x,y) and a in Ob(^4) satisfy co(a) = x. Then g is
covered by {g,na) in StoSUa.

The action of G on A determines two actions of G on sets, namely the
action of G on TT0A, and the action of G onOh(A). These are both tied in
with the fibration p: G x A -*• G. In order to explain this for n0A, recall
from § 2 of [1] that the fibration p has a factorization

GxA

where Q = (G x ^4)/Ker^>, and p is a covering.

2.5. PROPOSITION. There is an isomorphism

(G x A)/Kerp -• G x 7

commuting with projection onto G.

Proof. Such an isomorphism is given by

The action of G on Ob(^4) gives a formal characterization of G x A,
which is due to Frohlich.

2.6. PROPOSITION. The morphisms

AX GS< A-^ G

have the following properties.
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(i) i is an isomorphism onto kerp;
(ii) G x1 A contains G %Ob(A) as a wide subgroupoid; p\G x Ob(^4)

is the covering projection, and Oh(i) is the identity;
(iii) if <xe G(°a, b), where g e G(oj(a), co(b)), then

these properties characterize the triple (G x" A,i,p) up to isomorphism.
Further each element X of G % A has a unique representation

A = i{<x)n,

with cce A and fi e G x

Proof. The proof of (i) and (ii) is clear, and (iii) is proved by a direct
computation. In order to prove that these properties characterize
G % A, suppose given morphisms

AJ± E-^ G

satisfying the analogue of (i), (ii), and (iii). We wish to define an
isomorphism 6: G x A -> E such that 6i = i\ p'd = p.

First, since Ob(E) = A, let 6 be the identity on objects.
Next let (g,oc) e {G x A)(a,b). We define

d(g,oi) = i'(ot)(g,°a) = (9>b)i'(-°<x),

(the last equality following from (iii)). I say that 6 is injective on
elements: because Ob(0) = 1 and, if 6(g, a) is an identity, then

g = p'd{g, a)

is also an identity, whence i'{<x) is an identity and so a is an identity.
Further 9 is surjective on elements: because suppose that £ e E(a,b).
Let p'(£) = g. Then p'{£{g-\a)) =p'(lb), and so £{g-\a) = i'{<x) for
a 6 A(°a, b), whence f = 6(g, a).

Finally we must prove that 6 is a morphism. So let (h, /?) e (G x A)(b, c),
{g,ot)e(G x A){a,b). Then

and

The last part of the proposition is easy to prove.

We wish to consider G x A as a functor of G and of A. Suppose then
that G acts on A via u>, and that G' acts on A' via w'. A morphism of



420 RONALD BROWN

these operations is a pair (0,/) such that I/J:G->G', f: A-+A' are
morphisms of groupoids and we have the axioms

(i) a//=Ob(</rK
(ii) ifj{g)-f{x') =f{g.xf) whenever both sides are defined.

In this way we obtain a category Ofi of groupoid operations.
It is easy to check that a morphism ((/»,/) of operations induces a

commutative square of morphisms

111 >c.zA.

G'

where «/> x / is a f-»/(a) on objects and is {g, a) h> 0A(<?),/(a)) on elements.
In this way x is a functor (9ft, -> ^d.

As a special case, let 0 = G', \fj = 1. If (1,/) is a morphism of operations,
then we say that / : A -> A' is a morphism of (r-modules. We need to
record the fact that certain properties of/are preserved under/ h> 1 x /.

2.7. PROPOSITION. Let / : A -*• A' be a morphism of G-modules. If f
satisfies any of the following properties, then so correspondingly does 1 x /,
namely (i) injective; (ii)fibration; (iii) connected fibres; (iv) quotient mapping;
(v) discrete kernel; (vi) covering morphism.

Proof. Note that (i) and (v) are obvious; that (ii) and (iii) together are
equivalent to (iv); and that (ii) and (v) together are equivalent to (vi).
So we need prove only (ii) and (iii).

Suppose that / is a fibration. Let a e Oh{A) = Oh{G x A), and let
(g,p)e{QXA'){f{a),b). Then j8 e A'(gf (a),b) = A'(f(ga),b). Since/is a
fibration, there is an a in A{ga,a') such that /(a) = jS. Then (g,oc) is a
lift of (g, jS) starting at a. Thus 1 S< / is a fibration.

Suppose tha t /has connected fibres. If a, a' e Ob (̂ 4) satisfy/(a) —f(a'),
then there is an a in A(a, a'), whence oj{a) = co(a') and

We now give a useful example of a G -̂module A, where G is a group and
A is a groupoid.

2.8. EXAMPLE. Let C be a group acting on a set S, and let G be a
group acting on both C and S in such a way that

(i) °cs = °c°s for all c e C, s e S, g e G.
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Then the split extension C x 8 admits an action of 0 by

(ii) '{C,8) = {%'8).

That this action satisfies (i) and (iii) of Definition 1.1. is clear, and the
verification of 1.1 (ii) is trivial. So we have a (r-module C x 8, and the
projection C x S -> C is a covering morphism of (^-modules.

A special case of this example will be used later, namely when there is
given a (r-submodule D of C and S is the set C/D of left-cosets with the
natural action of C, so that G x" 8 = Tr(C : D).

A generalization of this example is to consider a groupoid G acting on
a groupoid C via o>: C -+ Oh(G). Suppose also that C acts on a groupoid 8
via £:(?-*• Ob(O) while G acts on C via rj = a>£: 8 -> Ob(G) in such a way
that °cs = °c °s whenever c e C, s e 8, g e G, and both sides are well
defined. We can then define an action of G on A = C x S by (ii) above.
Thus if a, 6 6 0b(8), c e C(((a), £(&)), 5 e £(ca, 6), # e G(rj(a), ripa)), then

as required, and it is straightforward to verify the axioms for an action.

3. Crossed morphisms
Let A be a (r-module via o»: A -> Ob((•?), and consider again the

projection p: G x A ->• G of the split extension. We are interested in
sections of p, by which we mean morphism s: G ->• G x A such that
ps — l0. Such a section is on objects of the form x -> s(x){s(x) e Ob(A))
and on elements of the form g -» (gr, s(gr)). The properties satisfied by s
lead to

3.1. DEFINITION. A crossed-morphism s: G -> A consists of a function
s: Oh(G) —> 0b(-4) and a function s on elements such that

(i) if a: 6 Ob((r), then cos(x) = x,
(ii) if g G G(x,y) then s{g) e ^(^(a;),^?/)),

(iii) <s(Agr) = s(h).hs(g) whenever hg is defined.
Clearly there is a bisection between the sections s oip: G x A -> G and

the crossed morphisms s: G -> A, assigning to each section s its principal
part s. Notice that, according to the discussion in § 2, we have

This correspondence between sections of p and crossed morphism is
well known for groups. One of its standard uses is that results on crossed
morphisms can be deduced from corresponding results on morphisms.
For example, if G is free, then a section s: G -> G x A oi G x A -> G
is entirely determined by its effect on a basis for G; it follows that the
same is true for a crossed morphism G -> A.
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The first question about crossed morphisms is whether they exist.
Some conditions for existence are given in the next proposition.

3.2. PROPOSITION. Each invariant section A of to: A -> Ob(G) determines
a crossed morphism «sA: G -> A. If A is totally disconnected then each crossed
morphism s: G -> A determines an invariant section A5 0/ to. The function
A h> sA is bijective if A is discrete.

Proof. Let A: Ob((?) -> A be an invariant section of o>. Let sA: G -> A
be defined on objects by x h» A(z) and on elements by gr \-> lA(l/) for
gr G G{x, y). Then if A e G(y, z), fir e (?(&, 2/),

Thus sA is a crossed morphism.

Suppose now that A is totally disconnected and that s: G -» A is a
crossed morphism. If geG(x,y) then s(g) e A(°s(x),s(y)) whence
°s(x) = s(i/). Thus x -» lg(a.) is an invariant section of co.

Clearly if A is discrete then 5 t-» A5 is an inverse of A h> sA.

3.3. EXAMPLE. Let G be an infinite cyclic group with generator t, and
let G operate on «/ so that t interchanges 0 and 1. Then JQ is empty, so
that co:«/ -» Ob(G) has no invariant section. However since G is free, we
can define two crossed morphisms s: G -> «/ as follows. Let * denote the
unique object of G. If s(*) = 0, then s(t) e «/((0,0) = , /( l ,0) , and so we
have a unique crossed morphism s: G -> J with s(t) = t"1. If s(*) = 1,
then s(t) e J^\, 1) = «/(0,1), and so we have a unique crossed morphism
s: G -+ J with s(t) = i.

For either of these crossed morphism, s(t) = 5(<~1), and so the action of
G on «/ and these crossed morphisms determine an action of Z2 on «/ and
two crossed morphisms Z2 -»•«/.

4. Cohomology
Let A be a (r-module via co: A -+ Oh(G). In this section we realize the

crossed morphisms G ->• A as (in essence) the set of objects of a groupoid
Z^G; A). We then construct fibrations induced by fibrations A -> B of
(r-modules and hence obtain exact sequences.

As explained in the last sections, the crossed morphisms G -> A are in
one-to-one correspondence with the sections of p: G x A -> G. These
sections are the objects of the fibre of p*: (G(G % A)) -> {GG) over l0.
So we define the groupoid

; A) to bep*-i{l0);
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the objects of Z\G\ A) are to be the sections of p or the crossed
morphisms to A as is convenient. Conditions for Z*(G; A) to be non-empty-
are given in the last section.

We now determine the elements of Z1(G; A), which we abbreviate for
the present to Z1.

4.1. PROPOSITION. Let s,t be two objects of Z1. Then Zx{s,t) is bijective
with the set of mappings <p: Ob(6r) -> A such that

(i) txxp = 1,

(ii) if x e Oh(G), then <p(x) e A(s(x),t(x)),
(iii) if g e G(x, y) then the following diagram commutes

' (.'•)

Proof. The homotopies in Z1 project to identities in (GG). Therefore a
homotopy s ~ t in Z1 assigns to each object x of G an element {lx,(p(x))
of G x A such that w<p{x) = lx and, for any g e G(x,y),

that is,

and this is equivalent to (iii).

4.2. PROPOSITION. Let s be an object of Z1, and <p: Ob(G) -> A a function
such that (i) a><p = 1, (ii) if x e Oh(G), then <p(x) e A(s(x), t(x)) for some
function t: Ob(G) -+ Oh(A). Then there is a unique object t of Z1 such that <p
is a homotopy s ~t.

Proof. We define t: G -> A by the condition that if g e G(x,y) then
the diagram of Proposition 4.1 (iii) commutes. I t is straightforward to
check that t is a crossed morphism.

In particular let co: A -> Ob(6r) have an invariant section A: Ob(6r) -> A
defining a section sA: G -> G >< A. In § 1 we defined from A a group AG{X}.

4.3. COROLLARY. The group Zr{sx} is isomorphic to A°{\}.

Proof. This follows from Proposition 4.1 (iii): by taking g e G{x} we
find that <p(x) e A{X(x)}°, and by taking g e G(x, y) we find that
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The one-dimensional cohomology set of G with coefficients in A is defined
to be

We determine this in some simple cases.

4.4. PROPOSITION. If A is discrete, then H\G: A) is bijective with A0.

Proof. Since A is discrete, the crossed morphisms G -» A are bijective
with the set of invariant sections of a>: A -> Ob(G). Further, by-
Proposition 4.1, Z1(G; A) is discrete.

If f:B-+A is a morphism of (r-modules, then / clearly induces a
morphism of groupoids ZX{G;B) -+ZX(G; A) and hence a function

4.5. PROPOSITION. Let B be a full subgrowpoid of A which is also a
G-submodule. Then the function i%: H^G: B) -» HX{G\ A) induced by the
inclusion i: B ->• A is injective. If, further, B is representative in A, then
i% is bijective.

Proof. L e t s , i: G -» B b e crossed m o r p h i s m s a n d tp: is ~it& h o m o t o p y .
For each x e Ob{G), <p{x) G A(s{x),t(x)); since B is full, <p(x) e B{s(x),t(x)}
and so <p determines a homotopy s ~ i. This proves i* injective.

Now suppose that B is representative in A. Then for each x e Ob(6?)
we can choose an element <p(x) in A from s{x) to some object t{x) of B. If
g G G(x,y), define t(g) by the equation

i{g)°<p{x) = <p{y)s(x).

Then i{g) e A{°t{x),t{y)); because B is (^-invariant, H(x) e Ob{B), and
because B is full, i{g) e B(°t(x), t{g)). That t is a crossed morphism follows
from Proposition 4.2. This proves i* surjective.

4.6. COROLLARY. Let each Ax, x e Ob(G), be connected and let
A: Ob(<2) -^ A be an invariant section of to: A -> Oh(G). Let B be the full
subgrowpoid of A on the objects X(x), x e Ob(C?). Then the inclusion
i: B -> A induces a bijection i#: Hl(G; B) ->• H1^; A).

We now consider exact sequences induced by a fibration of (r-modules.
Let j : B -> C be a fibration of (r-modules, let fx: Ob(G) -> B be an

invariant section of B -*- Ob{G)\ then v =jp: Ob(G) -> C is an invariant
section of C -> Oh(G). Let

and let i: A -> JS be the inclusion.
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4.7. PBOPOSITION. The groupoid A is a G-submodule of B; fx = iX
where A: Oh(G) -> A is an invariant section; and there is a sequence

which is exact in the usual sense.

Proof. By Proposition 2.9,

is a fibration. By [1], Proposition 2.14,

is a fibration. I claim that the fibre of j% over $„ is Z1(G; A).
Let s: G -> B be a crossed morphism such that js = sv. Then clearly

the image of s is contained in A. Again if <p: s ~ i is a homotopy of
crossed morphisms such that j<p is the constant homotopy sv ~ sv, then
again the image of <p must lie in A. Thus j^HsJ = Z1(G; A).

The exact sequence follows immediately from [1], Theorem 4.3, and
Corollary 4.3 above,

4.9. EXAMPLE. Let Gbe a group and let Cbea group which is a G-module.
Let D be a sub-G-module of C. Then there is an exact sequence

d
(4.10) 1 • DG • C° > {C/D)G

Proof. Let j : B ->• C be the covering morphism G x {C/D) ~> C. By
Example 2.8, B is a (r-module andj is a morphism of (r-modules.

Let e denote the coset D in C/D. Then e is fixed under G and j maps
B{e} isomorphically to D. By Proposition 4.5, HX{G\ B) is isomorphic to
H1{G,B{e}) and hence is isomorphic to H^G; D).

The fibre A of j is the discrete groupoid C/D. By Proposition 4.4,
; A) = (C/D)°. So the exact sequence (4.10) is a special case of (4.8).

The sequence (4.10) is the exact sequence of a subgroup ([9],
Proposition 36, p. 1-64). The additional information contained in [9],
Corollaries 1 and 2, p. 1-65 may be obtained by considering other fibres

EEFERENCES
1. R. BBOWK, 'Fibrations of groupoids', J. Algebra 15 (1970) 103-32.
2. H. S. M. COXETEB, and V. J. MOSER, Generators and relations for discrete groups

(Springer-Verlag, Berlin, 1957).



426 GROUPOIDS AS COEFFICIENTS

3. C. EHBESMANN, 'Gattungen vonlokalen Strukturen', Jbr. Deutsch. Math.-Verein.
60 (1957) 49-77.

4. P. GABBIEL, and M. ZISMAN, Categories of fractions and homotopy theory (Springer -
Verlag, Berlin, 1966).

5. P. J. HiGGnsrs, Categories and groupoids (van Nostrand-Reinhold, Princeton,
1971).

6. J. LEECH, 'Coset enumeration', in Computational problems in abstract algebra,
ed. J. Leech (Pergamon, Oxford) 1969 pp. 21-35.

7. G. W. MACKEY, 'Ergodic theory, group theory and differential geometry', Proc.
Nat. Acad.Sci. U.S.A. 50 (1963) 1184-91.

8. 'Ergodic theory and virtual groups', Math. Ann. 166 (1966) 187-207.
9. J. P. SEBBE, Cohomologie galoisienne, Lecture Notes in Mathematics No. 5

(Springer-Verlag, Berlin, 1964).
10. A. RAMSAY, 'Virtual groups and group actions', Advances in Math. 3 (1971)

253-322.

Department of Pure Mathematics
University College of North Wales

Bangor, Caernarvonshire


