ON SEQUENTIALLY PROPER MAPS AND A
SEQUENTIAL COMPACTIFICATION

RONALD BROWN

Introduction

We study here the sequential versions of proper maps and of one-point com-
pactification, thus continuing the programme suggested in [6] of re-examining general
topology in a sequential light.

The main results on the sequential notion of proper maps give the equivalence of
a number of conditions on a sequentially continuous map f: X —» Y where X, Y
have unique (sequential) limits. Of these I would like to pick out:

(a) for any space Z, the map f x 1,: X x Z — Y x Z is sequentially closed,

(b) if s is a sequence in X with no convergent subsequence in X then fs has no
convergent subsequence in Y,

(c) fis sequentially closed and has sequentially compact fibres.

The first condition is taken as the definition of a sequentially proper map.

The starting point of this investigation was the notion of one-point sequential
compactification which defines for any space X a space X" such that X is an open
subspace of X *, X*\ X consists of a single point wy, and X * is sequentially compact.
The intuitive idea is that if s is a sequence in X with no convergent subsequence, then
s should converge to the “ point at infinity ”” wy of X *.

I would like to thank P. Stefan for contributing the proof of the harder part of
Theorem 2.8, and the referee for a number of references and helpful comments.

1. Sequentially continuous functions

The purpose of this section is to state some basic or technical results needed later.

The set of natural numbers is denoted by N and its one-point compactification
by N*. If s: N - X is a convergent sequence in a space X, then § denotes the union
of s(N) and its set of limits.

The basic sequential notions of [6, 8] are assumed known. We abbreviate *“ X has
unique sequential limits ** to ““ X has unique limits ”.

1.1 PrOPOSITION. The space X has unique limits if and only if the diagonal of X
is sequentially closed in X x X.

The proof is trivial.

1.2 PROPOSITION. A function f: X — Y is sequentially continuous if and only if
f~Y(B) is sequentially closed for every sequentially closed subset B of Y.

Proof. If f is not sequentially continuous, then there is a point x and sequence s
converging to x such that fs does not converge to f(x), whence there is an open
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neighbourhood U of f(x) such that s has a subsequence which is never in U. Let
B= Y\WU. Then B is closed and hence sequentially closed, but f ~1(B) is not
sequentially closed.

The proof of the converse implication is trivial.

It is well known that the following conditions on a space X are equivalent. (i) Each
point of X is closed. (ii) Each point of X is sequentially closed. (iii) X is T;. Also,
if X has unique limits then it is T; (by Theorem 1 of [16]).

We shall need later the following technical result.

1.3 PROPOSITION. Let s be a sequence in X with no convergent subsequence. Let
X be T,. Then the set A = {(s(n), n): ne N} is sequentially closed in X X N*.

Proof. Suppose there is a sequence ¢ = (14, #,) in A converging to a point (x, o)
not in A.

If « = w, then 7, has a subsequence #,j which is a strictly monotonic function
N — N. Then ¢,j = st,j is a subsequence of s converging to x, contradicting the
assumption on s.

If o # w, then ¢, is eventually constant at «, and so ¢, is eventually constant at
s(a). Hence every neighbourhood of x contains s(«), and so X is not T;.

We recall the basic properties of sequential compactness. (i) The product of two
sequentially compact spaces is sequentially compact. (i) A sequentially continuous
image of a sequentially compact space is sequentially compact. (iii) A sequentially
compact subset of a space with unique limits is sequentially closed. (iv) A sequentially
closed subset of a sequentially compact space is sequentially compact. We shall
need the consequence of (ii) and (iii) that if s is a convergent sequence in a space
with unique limits, then § is sequentially closed. A consequence of (ii), (iii) and (iv)
is that if X is sequentially compact, Y has unique limits, and f: X — Y is sequentially
continuous, then f: X — Y is sequentially closed. 1t follows from this and 1.2 that if,
further, f is bijective then f ™" is sequentially continuous.

2. Sequentially proper maps
We now show that the theory of proper maps, as given for example in [1],
transfers completely into the sequential framework.

2.1 Definition. A sequentially continuous function f: X — Y is sequentially
properif f x 1,: X x Z— Y x Z is sequentially closed for all spaces Z.

Clearly a sequentially proper map is itself sequentially closed, (take Z to be a
point). The proofs of the following four results mimic almost exactly the proofs of
corresponding results in [1], and are therefore omitted.

2.2 PROPOSITION. The following .onditions are equivalent for an injective se-
quentially continuous function f: X — Y:

(@) fis sequentially proper,
) fis sequentiaﬂy closed,

(c) fis a sequential homeomorphism to f (X), which is sequentially closed in Y.
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2.3 PROPOSITION. Let f,: X, = Yy, f5: X, = Y, be sequentially proper. Then
f1 X f, is sequentially proper. Conversely, if f1 X f, is sequentially proper and X,, X,
are non-empty, then f,, f, are sequentially proper.

2.4 CorROLLARY. If f: X — Y is sequentially proper and surjective, and X has
unique limits, then Y has unique limits.

2.5 ProPOSITION. Let f: X — X', g: X' — X' be sequentially continuous.

(a) If f, g are sequentially proper then gf is sequentially proper.

(b) If gf is sequentially proper and f is surjective then g is sequentially proper.

(c) If gf is sequentially proper and g is injective, then f is sequentially proper.

(d) If gf is sequentially proper and X' has unique limits then f is sequentially proper.

We now comeé to our main result.

2.6 THEOREM. Let f: X — Y be sequentially continuous, and let Y have unique
limits. Consider the following conditions:

(a) fis sequentially proper,
(b) fx1: XxN* - Y x N* is sequentially closed,

(c) if s is a sequence in X with no subsequence convergent in X, then fs has no
subsequence convergent in Y,

(d) if B is a sequentially compact subset of Y, then f ~'(B) is a sequentially compact
subset of X,

() if s: N> Y is a convergent sequence, then f ~*(5) is sequentially compact.

Then (c) = (d) = (e) = (a) = (b); if further X is Ty, then (b)= (c).

Proof. (c)=(d). Suppose s is a sequence in f ~*(B). If s has no subsequence
convergent in X, then fs has no subsequence convergent in Y (by (c)). Since fsis a
sequence in B, this contradicts the sequential compactness of B.

So s has a subsequence sj convergent to x, say, and then fsj converges to f(x).
Since B is sequentially compact, and Y has unique limits, B is sequentially closed.
Therefore f(x) € B, and sj converges to the point x in f ~*(B).

(d) = (e). This is clear since § is sequentially compact.

(e) = (a). Let A be sequentially closed in X xZ and let (s, t) be a sequence in
B = (f x 1) (4) such that (s, ¢) converges to (y,z). We must prove that (y,z) € B.

Choose a sequence s” in X such that (s', ¢) is a sequence in 4 and f5" = s. Then 5" is
a sequence in £~ !(5) which is sequentially compact, and so s’ has a subsequence s'j
converging to a point x of X. Then (s'j, #) converges to (x, z) which therefore belongs
to A. But sj = fs'j converges to f(x) and also to v. Since Y has unique limits,
y = f(x) and so (y,z)eB.

(a) = (b) This is trivial.
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Finally the implication (b)=>(c) for the case X is T; follows easily from Pro-
position 1.3,

2.7 COROLLARY. Let Y have unique limits. Then a sequence s: N—> Y is a
sequentially proper map if and only if s has no convergent subsequence.

Proof. Suppose that s has a convergent subsequence r. Then s™!(f) is not
sequentially compact, and so s is not sequentially proper.

Suppose conversely that s has no convergent subsequence. Let B be sequentially
compact in Y. If s~1(B) is infinite, then s has a subsequence in B and so a convergent
subsequence. Hence s~ !(B) is finite and so sequentially compact. Hence s is sequen-
tially proper.

2.8 THEOREM. Let f: X — Y be sequentially continuous and let X, Y have unique
limits. Then fis sequentially proper if and only if f is sequentially closed and the fibres
f~1() are sequentially compact for all ye Y.

Proof. The forward implication is immediate from 2.6, The reverse implication
was conjectured in an earlier draft and first proved by P. Stefan.

We use the equivalence (€) <> (a) of Theorem 2.6. Let s be a sequence in Y
converging to y. We prove that f ~*(5) is sequentially compact.

Let ¢ be a sequence in f ~1(5). If ¢ lies infinitely often in some fibre of f then ¢ has a
subsequence lying in this fibre and so by our assumption on the fibres, this subsequence
has a convergent subsequence.

Otherwise, by replacing ¢ by a subsequence if necessary, we may suppose that
Jft = sj, where sj is a subsequence of s never taking the value y. However, since s
converges to y, so also does sj.

Let A = ¢(N). If ¢ has no convergent subsequence, then A is sequentially closed
(this follows from 2.7). By our assumptions, f (4) is sequentially closed, which is
absurd since y ¢ f (4) but ft converges to y.

So ¢ has a convergent subsequence, i.e. we may assume that ¢ is convergent to x,
say. Then 7 is sequentially closed (since X has unique limits) and so f (?) is sequentially
closed. Hence yef (7). Since y¢f(4) we have y = f(x), and so xef ~*(3).

This completes the proof that f ~*(5) is sequentially compact.

There are a number of results in the literature related to Theorems 2.6 and 2.8.
A continuous mapping f: X — Y isquasi-perfect if fis closed and has countably com-
pact fibres (this condition occurs for example in [13, 15]); and f'is quasi-sequential [11]
if f is continuous and f ~*(3) is countably compact for each convergent sequence s
in Y. It is in effect proved in [15] that, for Hausdorff spaces, quasi-perfect mappings
onto sequential spaces are quasi-sequential. Now sequential compactness implies
countable compactness, and for sequential Hausdorff spaces countable compactness
implies sequential compactness [8]. So if X, Y are sequential Hausdorff spaces then
the conditions sequentially proper, quasi-perfect and quasi-sequential on a mapping
f: X - Y are all equivalent.

We conclude this section with some further results on sequential compactness.
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2.9 ProPOSITION. Consider the following conditions on a space X.
(a) X is sequentially compact,
(b) if P is a singleton space, then the unique map X — P is sequentially proper,
(c) for any space Y the projection X x Y — Y is sequentidlly closed,
(d) the projection X x N* — N* is sequentially closed.
Then (a) = (b) = (¢) = (d), and if X is Ty then (d) = (a).

The proof is either trivial or a simple consequence of Theorem 2. 6.

This proposition is related to results of [7] which gives the implication (a) = (¢)
assuming Y to be Fréchet and which gives (effectively) the implication (d) = (a)
without assumption on X. In [15] it is also noted that a Hausdorff space X is
countably compact if and only if the projection X X Y — Y is closed for every sequen-
tial space Y—one part of this equivalence clearly follows from 2.9.

3. A one-point sequential compactification

Let X be any space. Our object in this section is to define a space X" = X v {w}
by adding to X a point w not in X (w is called the point at infinity) such that X* is
sequentially compact and X is an open subspace of X *.

If X is already sequentially compact, then X" is to be simply the topological sum
of X and {w}. Otherwise, let S(X) be the set of all sequences in X which have no
convergent subsequences. We let the open sets of X" be those of X and also those
sets U in X which contain w and satisfy (i) U\ {o} is open in X, (ii) every element of
S(X) is eventually in U. The axioms for a topology are easily verified.

3.1 THEOREM. All the elements of S(X) converge to w, and to no other point of X"
X isopenin X" ; and X" is sequentially compact.

The proof is trivial.
Since sequential compactness implies countable compactness, X" is also a one-
point countable-compactification of X.

3.2 TueoreM. If X is sequential, then X" is sequential. If, further, X has unique
limits, then so also does X ". :

Proof. Let X be sequential. Let U be a sequentially open subset of X*. Then
U n X is sequentially open in X, and hence open in X. If w¢U, this completes the
proof that U is open. If w e U, then every element of S(X) is eventually in U because
these elements converge to o, and so U is open.

Suppose now X has unique limits. Since X is open, if a sequence s in X" con-
verges to both x and y in X, then x = y. So we suppose s converges to x in X and
prove s does not converge to w.

Since X is open, we may assume that s takes all its values in X. Since X has
unique limits, § is sequentially closed in X. Since X is sequential, § is closed in X and
so U = X\ §is openin X. If te S(X), then ¢ is eventually in U (for otherwise ¢ would
have a subsequence in the sequentially compact set § and so would have a convergent
subsequence). Hence U U {w} is open, and so s does not converge to .
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Let X* be the usual one-point compactification of X. The referee has pointed out
that Theorems 4 and 5 of [16], which show that X* has unique limits if X is KC
(i.e. if each compact subset of X is closed), and that if X is KC, then X* is KC if
and only if X is a k-space, help to explain the appearance of a good separation pro-
perty on X" even without local compactness conditions on X.

3.3 Example. Let X be a countable, sequential space with unique limits. Then
X* is sequentially compact and countable and hence compact. If X* is also Haus-
dorff, then X* = X ™, and so X must be locally compact. This shows that if X is the
rationals, then X" is a compact, countable, sequential space with unique limits
which is not Hausdorff. (Other examples of sequential spaces with unique limits
which are not HausdorfT are given in [8]).

It would be interesting to have an example of a non-sequential space X such that
X * has unique limits (compare p. 265 of [16]).

We now investigate the uniqueness of one-point sequential compactifications.

3.4 THEOREM. Let Y be any space with unique limits containing X as an open
subspace, and let f: Y — X" be defined by

x if xeX
fx)=

Then f is sequentially continuous.

o if x¢X.

Proof. Let s be a sequence in Y converging to y. If y € X, then s is eventually in
the open set X and so fs converges to f (y). So we suppose y € N\ X.

If s has only a finite number of terms in X then fs is eventually constant with
value o so that fs converges to . If s has only a finite number of terms in Y\ X
then fs converges to o because s has no subsequence convergent in X (since Y has
unique limits). The remaining case is that s has infinitely many terms in both X and
Y\ X. Then s is obtained by gluing together two subsequences si and sj, one lying
in X and the other lying in Y\ X. The above arguments show that fsi, fsj both
converge to w, whence fs converges to .

3.5 COROLLARY. Let Y be a sequentially compact space with unique limits con-
taining the sequential space X as an open subspace and such that YN\X has exactly
one point. Then the unique bijectionf: ¥ — X" which is the identity on X is a sequential
homeomorphism.

The proof follows from 3.4 and the final sentence of §1.

The referee has raised the question of giving classes of spaces X for which
X* =X*. From 3.2 and 3.5 we have X* = X" if both X and X7 are sequential
with unique limits, For X* to have unique limits it is sufficient that X be KC, by
[16; Theorem 4]. We can also ensure that X + is first countable (and hence sequential)
by requiring that X be both first countable and the union of a countable number of
closed compact sets K; such that any compact set is contained in some K;.

Problem: find more general conditions for X * to be sequential.
We now relate sequentially proper maps and the one-point sequential com-
pactification. If f: X — Y is a function, then f*: X" - Y* will denote the obvious

©
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extension of f which takes wy, the point at infinity of X, to wy, the point at infinity of
Y.

3.6 THEOREM. Let X, Y be sequential spaces with unique limits,andletf: X — Y be
continuous. Then f* is continuous if and only if fis sequentially proper.

Proof. Suppose first that f is sequentially proper. It is sufficient to prove that f*
is sequentially continuous at wy. Let s be a sequence in X* converging to wy. It is
no loss of generality to assume that s does not take the value wy. Since X" has
unique limits, s is a sequence in X with no subsequence converging in X. Then fs
has no subsequence converging in Y, and fs converges to wy.

Conversely, suppose f* is continuous at wy. Then a sequence s in X with no
subsequence convergent in X must converge to wy, so that fs = f*s converges to wy.
Since Y * has unique limits, fs has no subsequence convergent in Y.

4. Some remarks on sequential topology

One pathological aspect of sequential space theory is that finite products of
sequential spaces are not necessarily sequential. This fact has been held to damage
the case for the sequential theory, as has the fact that some weak* topologies are not
sequential [12].

There is, however, a well-known reflection o from topological spaces to sequential
spaces which may be expressed as follows. We take N as universal example [3; p.306]
and for any space X let Z(X) consist of the sets s(N™) for all continuous functions
s: N* > X. Then X is a natural cover ([3; p.306] and [9]) and o: X —» X5 is a
reflection functor. So, instead of the usual product, we can use the product (X x Y);,
and this is a categorical product for sequential spaces and continuous functions.
(The use of this product rather than the usual one would not affect the results of our
§2).

It should also be noted that a cs-open topology on the space of continuous
functions, in which convergent sequence is used instead of compact set, has been
developed in [10]. Thus one is led to construct a Cartesian closed category of
Hausdorff sequential spaces which is analogous to and has many of the advantages
of the Cartesian closed catagory of compactly generated Hausdorff spaces which has
been discussed in, for example, [2, 14] for applications to topology and in [5] for
applications to analysis.

The reader is invited to try and extend the results of [3, 4] to a theory including the
sequential case, by starting from a class A" of compact Hausdorff spaces, and
replacing for all other Hausdorff spaces the words ‘ compact subspace >’ by “ con-
tinuous image of a space in .4 7. Two extreme cases are when A~ is all compact
Hausdorff spaces, and when /" consists of a singleton space. An interesting inter-
mediate case is when 4 = {N'}, and this is the sequential theory.

I do not know, however, of a general setting which includes the theories of proper
and of sequentially proper maps.
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