
Homology, Homotopy and Applications, vol. 10(1), 2008, pp.1–17

A NEW HIGHER HOMOTOPY GROUPOID:

THE FUNDAMENTAL GLOBULAR ω-GROUPOID

OF A FILTERED SPACE

RONALD BROWN

(communicated by G. Janelidze)

Abstract
We show that the graded set of filter homotopy classes rel

vertices of maps from the n-globe to a filtered space may be
given the structure of (strict) globular ω–groupoid. The proofs
use an analogous fundamental cubical ω–groupoid due to the
author and Philip Higgins in 1981. This method also relates
the construction to the fundamental crossed complex of a fil-
tered space, and this relation allows the proof that the crossed
complex associated to the free globular ω-groupoid on one ele-
ment of dimension n is the fundamental crossed complex of the
n-globe.
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1. Introduction

By the n-globe Gn we mean the subspace of Euclidean n-space R
n of points x such

that ‖x‖ 6 1 but with the cell structure for n > 1

Gn = e0± ∪ e1± ∪ · · · ∪ en−1
± ∪ en. (1)

This structure will be given precisely in section 2.

1
1

3

2

2

A filtered space is a compactly generated space X∞ and a sequence of subspaces

X∗ : X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X∞. (2)

A map of filtered spaces f : Y∗ → X∗ is a map f : Y∞ → X∞ such that f(Yn) ⊆ Xn

for all n > 0. This gives the category FTop of filtered spaces. A filter homotopy ft :
f0 ≃ f1 is a continuous family of filtered maps ft : Y∗ → X∗ for 0 6 t 6 1. This is to
be contrasted with a homotopy of filtered maps which has the requirement ft(Yn) ⊆
Xn+1 for all t and n > 0.

The n-globe Gn has a skeletal filtration giving a filtered space Gn
∗ . If X∗ is a

filtered space then we have a globular singular complex R
��	�

��

X∗ which in dimension n
is FTop(Gn

∗ , X∗). We will in appendix A explain the structure of R
��	�

��

X∗ as a globular
set.

We define

ρ
��	�

��

X∗ = (R
��	�

��

X∗/ ≡), (3)

where ≡ is the relation of filter homotopy rel vertices. It is clear that ρ
��	�

��

X∗ inherits
from R

��	�

��

X∗ the structure of globular set. Our main result is the following:

Theorem 1.1 (Main Theorem). For n > 1 there are compositions ◦i, 1 6 i 6 n in
dimension n giving the globular set ρ

��	�

��

X∗ the structure of strict globular ω-groupoid.

We call ρ
��	�

��

X∗ the fundamental globular higher homotopy groupoid of the filtered
space X∗. The proof of this theorem goes via the notion of cubical higher homotopy
groupoid of a filtered space, established in [BH81b]. It should be useful therefore to
put these results in context.
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A general characterisation of work on higher homotopy groupoids in which the
author has been involved may be subsumed in the following diagram of categories
and functors and its properties:

topological data
Ξ //

U
''OOOOOOOOOOOOOOOOO

algebraic data
B

oo

B
wwoooooooooooooooo

topological spaces

(4)

It has been possible to give categories of ‘topological data’, of ‘algebraic data’ and
functors as above, where U is the forgetful functor and B = U ◦ B, with the following
properties:

(1) the functor Ξ is defined homotopically and satisfies a higher homotopy van Kam-
pen theorem (HHvKT)1, in that it preserves certain colimits;

(2) Ξ ◦ B is naturally equivalent to 1;

(3) there is a natural transformation 1 → B ◦ Ξ preserving some homotopical infor-
mation.

The purpose of (1) is to allow some calculation of Ξ by gluing simple examples,
such as convex subsets, following the use of the fundamental groupoid in [Bro06].
This condition (1) at present also rules out some widely used algebraic data, such as
for example simplicial groups or groupoids, or differential graded algebras, since for
those cases no such functor Ξ is known. (2) shows that the algebraic data faithfully
captures some of the topological data. The imprecise (3) gives further information on
the algebraic modelling. The functor B should be called a classifying space because it
often generalises the classifying space of a group or groupoid. It has also been found
useful in the homotopy classification of maps.

Here is a table of examples that have been found.

Topological data Algebraic data

space with base point groups
space with set of base points groupoids

pointed pair of spaces crossed modules
filtered space crossed complexes

n-cube of pointed spaces catn-groups
n-cube of pointed spaces crossed n-cube of groups

Strong results in the last two cases are shown in [BL87, ES87].

In this paper we will deal only with the case of filtered spaces, which of course
includes the first three cases. There are still further choices of algebraic data as shown

1Jim Stasheff has suggested this term to the author, instead of the previously used Generalised van
Kampen Theorem, to make clear the higher homotopy information contained in theorems of this
type.



4 RONALD BROWN

in the following diagram of equivalent categories, which is taken from [Bro99]:

cubical
T -complexes

(a)
//

cubical
ω-groupoids

with connections

oo

(f)

((QQQQQQQQ

(b)

��

poly-T -complexesOO
(e)

��

globular
ω-groupoids

(c)uulllllllllll

simplicial
T -complexes (d)

// crossed
complexes

oo

OO

55lllllllllll

(5)

Each arrow here denotes an explicit functor which is an equivalence of categories.
The equivalences (a) and (b) are in [BH81a]; (a) is an essential technical tool in the
use of cubical ω-Gpds. The equivalence (c) is in [BH81c], and this with (b) implies
the equivalence (f); a direct form of this equivalence is given in the much harder
category case in [AABS02]. The equivalence (d) is due to Ashley in [Ash88]. The
equivalence (e) is due to Jones [Jon88]. The different forms of algebra reflect different
geometries, those of disks, globes, simplices, cubes, as shown in dimension 2 in the
following diagram.

It is because the geometry of convex sets is so much more complicated in dimensions
> 1 than in dimension 1 that new complications emerge for the theories of higher
order group theory and of higher homotopy groupoids.

A classical homotopical functor on filtered spaces is the fundamental crossed com-
plex ΠX∗ of a filtered space, defined using relative homotopy groups (in the case X0 is
a singleton) by Blakers, [Bla48]. Major achievements of the papers [BH81a, BH81b]
were

• to define a homotopical functor, which here we call ρ2, from filtered spaces to
cubical ω-groupoids with connections (and hence also to cubical T -complexes),
which in dimension n is the filter homotopy classes rel vertices of filtered maps
In
∗ → X∗ (but see Remark 2.3);

• to prove that this functor preserved certain colimits;

• to relate ρ2 with the classical functor Π from filtered spaces to crossed com-
plexes, and so to prove that Π preserves certain colimits.

The proofs do not involve traditional techniques such as singular homology or simpli-
cial approximation. The results give nonabelian information on second relative homo-
topy groups using crossed module theory, (see a survey in [Bro99]), and in higher
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dimensions give information on the action of the fundamental group. In particular
the HHvKT has as a corollary a previously unnoticed homotopical excision theorem
which has the Relative Hurewicz Theorem as a corollary [BH81b, Example 6, p.34],
while extra information on monoidal closed structures gives the Homotopy Addition
lemma for a simplex, [BS07], and homotopy classification theorems, [BH91].

Analogous methods to those of [BH81b] were used by Ashley in [Ash88] to define
a functor ρ∆ from filtered spaces to simplicial T -complexes; his ideas contributed to
[BH81b], and his results are applied in [FMa07].

However there has been a lack of a directly defined homotopical functor from
filtered spaces to globular ω-groupoids, and this gap will be filled in this paper.

The definition of classifying space is convenient via well developed simplicial con-
structions. In this way we get the classifying space of a crossed complex, [BH91].
Its properties are further exploited in, for example, [BGPT, FMa07, FMP06].
However the exposition in [BHS08] adopts an earlier cubical approach.

The equivalence of the category of globular ω–groupoids with the category of cubi-
cal ω–groupoids with connection, and the monoidal closed structure on the latter con-
structed in [BH87], implies a monoidal closed structure on the category of globular
ω–groupoids. Further it is shown in [BH91] that the simple rule [f ] ⊗ [g] 7→ [f ⊗ g]
gives a natural transformation

ρ2X∗ ⊗ ρ2 Y∗ → ρ2(X∗ ⊗ Y∗)

for any filtered spaces X∗, Y∗, where X∗ ⊗ Y∗ is the usual tensor product of filtered
spaces given by

(X∗ ⊗ Y∗)n =
⋃

p+q=n

Xp × Yq.

The induced transformation on crossed complexes is shown in [BB93] to be an iso-
morphism if X∗, Y∗ are cofibred and connected. It follows from the above that there
is a natural transformation

ρ
��	�

��

X∗ ⊗ ρ
��	�

��

Y∗ → ρ
��	�

��

(X∗ ⊗ Y∗).

This natural transformation, which is difficult to construct directly, may be used to
enrich the category of filtered spaces over the monoidal closed category of globular
ω-groupoids.

It should be apparent from the above that it is the cubical case which gives the
intuition and power formulating and proving these theorems; the basic reason is
that cubical theory is handy for: subdivision and its inverse, multiple compositions;
the notion of commutative cube; and is also good for tensor products and higher
homotopies. Many theorems can then, by equivalences of categories, be translated to
the other cases. However the proofs for the cubical cases, particularly the properties
of thin elements and T –complexes, involve also the use of crossed complexes and the
equivalence of categories (a), (b) of diagram (5). Crossed complexes also have a well
developed homotopy theory, [BG89], and have a clear relation with chain complexes
with operators, [BH90].
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The relation with simplicial theory is useful because of the wide development
of simplicial theory. Finally, the relation with the globular theory could be useful
because of the wide familiarity of uses of weak structures and lax functors and nat-
ural transformations: for example, compare the discussion of Schreier theory using
crossed complexes in [BH82, BP96] with the use of 2-groupoids in [BBF05]. Cal-
culational applications are usually made using crossed complexes. For example, the
paper [BP96] uses the notion of small free crossed resolution to give calculations
which yield small parametrisations of some nonabelian extensions of groups, whereas
the notion of free globular ω-groupoid is lacking, or undeveloped.

2. Disks, globes, and cubes

Our results follow from an analysis of the relations between globes and cubes. These
results are probably well known but need to be done carefully for our purposes.

We give real space R
n the Euclidean norm ‖x‖2 = x2

1 + x2
2 + · · · + x2

n. We embed
R

n in R
n+1 as usual by x 7→ (x, 0). The n-cube In will be the subset of R

n of points x
such that |xi| 6 1 for all i. Thus I = I1 is identified with [−1, 1] and we also identify
In with the n-fold product of I with itself.

The n-disk is the subspace Dn of R
n of points x with ‖x‖ 6 1. The (n− 1)-sphere

Sn−1 is the subspace of Dn of points x with ‖x‖ = 1.

We define the n-globe Gn to be Dn as a space, but with the cell structure

Gn = e0± ∪ e1± ∪ · · · ∪ en−1
± ∪ en.

Here for i < n the closed cell ēi
± is the set of points x = (x1, . . . , xn) ∈ Gn such that

‖x‖ = 1, xj = 0 for j < n− i and ±xn−i > 0. This convention is in keeping with the
relationship with cubes which we find convenient. Note that the (n− 1)–skeleton of
Gn is contained in Sn−1.

For each of Q = ∆,2, ��	�

�� we have a singular complex SQX of a topological space X ,
giving the well known simplicial and cubical singular complex, and also a ‘globular’
singular complex consisting of mapsGn → X . We will later describe this as a ‘globular
set’.

Definition 2.1. We now define by induction maps φn : In → Gn, n > 1, with the
following properties, for x = (x1, . . . , xn) ∈ In:

(i) φ1(x1) = x1;

(ii) |xi| = 1 for some i = 1, . . . , n if and only if ‖φn(x)‖ = 1;

(iii) |xi| = 1 for some i = 1, . . . , n implies (φn(x))j = 0 for j < i.

We set for x = (t, y) ∈ I × In−1:

φn(t, y) = (t
√

1 − ‖φn−1(y)‖2, φn−1(y)). (6)

First note that if x = (t, y) then

‖φn(x)‖2 = t2 + (1 − t2)‖φn−1(y)‖
2.
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This easily proves (ii) and (iii) by induction. 2

The maps φn : In → Gn induce a map φ̄ : S
��	�

��

X → S2X .

We define the globular subset γK of a cubical set K to agree with K in dimensions
0, 1 and to be in dimension n > 2 the set of k such that ∂±i k ∈ Im εi−1

1 , i = 2, . . . , n.

Proposition 2.2. The image of φ̄ : S
��	�

��

X → S2X is exactly the globular subset of
S2X.

Proof. We prove by induction from the formula for φn that the image is globular.
Let pi

1 : R
n → R

n−i be the projection omitting the first i coordinates. Suppose that
φn−1∂̄

±
i = fn−1p

i−1
1 . Then φn∂̄

±
i+1 = f ′

n−1p
i
1 where f ′

n−1(x) = (0, fn−1(x)).

For the converse, we prove by induction that these are the only identifications that
φn makes. Suppose φn(t, y) = φn(t′, y′). Then φn−1(y) = φn−1(y

′) and

t
√

1 − ‖φn−1(y)‖2 = t′
√

1 − ‖φn−1(y′)‖2.

Thus if ‖φn−1(y)‖ 6= 1 then t = t′. But ‖φn−1(y)‖ = 1 implies some |yi| = 1, by the
inductive hypothesis.

Let X∗ be a filtered space. Then we obtain three filtered singular complexes RQX∗

for Q = D, ��	�

��,2 defined as graded sets by

(RQX∗)n = FTop(Qn
∗ , X∗).

There are also associated graded homotopy sets ρQX∗ which in dimension n are given
by the quotient maps

pQ : RQX∗ → ρQX∗ = RQX∗/ ≡

where ≡ is the relation of homotopy rel vertices through filtered maps.

In the casesQ = D,2 it is known that these graded sets obtain additional structure
giving us for Q = D the fundamental crossed complex ΠX∗ and for Q = 2 what is
called in [BH81b] the fundamental (cubical) ω-groupoid (with connections) of X∗.
However the proof that the standard compositions on R2X∗ are inherited by ρ2X∗

is non trivial, as is the crucial result that p2 is a Kan fibration of cubical sets.

Remark 2.3. In [BH81b], the homotopies are not taken rel vertices and a condition J0

is imposed, that each map İ2 → X0, where İ2 is the boundary of I2, may be extended
to a map I2 → X1. This condition is in many ways inconvenient. The filling processes
used in the proofs can all be started by assuming instead that the homotopies are rel
vertices so that the maps İ2 → X0 required to be extended are in fact all constant.
The details will be available in [BHS08]. 2

Our first main result is:

Theorem 2.4. The induced map

φ∗ : ρ
��	�

��

X∗ → ρ2X∗

is injective.
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Proof. Let [α], [β] ∈ (ρ
��	�

��

X∗)n be such that φ∗[α] = φ∗[β], that is

[αφ] = [βφ]

in (ρ2X∗)n. Let H : αφ ≡ βφ be such a homotopy. Then H is a map In+1 → X such
that writing In+1 = In × I, each Ht : In → X is a filtered map.

We use a folding map Φ : In → In given by Definition 3.1 of [AABS02] (see
Definition B.2) which has the property that Φ factors through φ.

We now define a new homotopy Kt = ΦHt : In → X . Then Kt is a globular homo-
topy Φαφ ≡ Φβφ. But, by assumption, αφ, βφ are already globular maps. So the proof
is completed with the following lemma.

Lemma 2.5. If a : In
∗ → X∗ is a globular map, then Φa is globularly equivalent to a.

Proof. Since Φ is a composition of the folding operations ψi, it is sufficient to prove
that ψia ≡��	�

�� a. We follow the proof of [AABS02, Proposition 3.4]. By the definition
of ψi:

ψia = Γ+
i ∂

−
i+1a ◦i+1 a ◦i+1 Γ−

i ∂
+
i+1a.

But ∂−i+1a and ∂+
i+1a are globular. By the laws (A2) we obtain, since a is globular,

that

Γ∓
i ∂

±
i+1a ∈ ImΓ∓

i εi = Im ε2i = Im ε1+1εi.

So standard contractions of the two cubes Γ∓
i ∂

±
i+1a yield a homotopy of ψia ≡��	�

�� a

through globular maps.

It now follows that α, β : Gn
∗ → X∗ are globularly equivalent.

This proof is a higher dimensional version of an argument in section 6 of [BHKP02].

Corollary 2.6. The compositions in ρ2 X∗ are inherited by ρ
��	�

��

X∗ to give the latter
the structure of globular ω-groupoid.

We do not know how to prove directly that ρ
��	�

��

X∗ may be given this structure of
globular ω–groupoid.

3. The free globular ω-groupoid on one generator

Let X∗ be a filtered space. Then we have a diagram of maps of homotopy sets

(ΠX∗)n
i

−→ (ρ
��	�

��

X∗)n
j

−→ (ρ2X∗)n. (7)

We know from [BH81b] that the composition j ◦ i is injective. We already know
that j is injective. It follows that i is injective. Thus the globular ω-groupoid ρ

��	�

��

X∗

contains the crossed complex ΠX∗, and the results of [BH81c] show that the latter
generates the former as ω-Gpd.

We need below the following result.
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Theorem 3.1. If G is a globular ω-groupoid, then there is a filtered space X∗ such
that ρ

��	�

��

X∗
∼= G.

Proof. Let C be the crossed complex associated with the ω-groupoid G under the
equivalence (c) of diagram (5). By Corollary 9.3 of [BH81b], there is a filtered space
X∗ such that ΠX∗

∼= C. (Here X is the classifying space BC filtered by Xn = BC(n)

where C(n) is the nth truncation of C.) It follows that ρ
��	�

��

X∗
∼= G.

Theorem 3.2. The globular ω–groupoid ρ
��	�

��

Gn
∗ is the free globular ω–groupoid on the

class of the identity map, and its associated crossed complex is isomorphic to ΠGn
∗ .

Proof. Let ι : Gn
∗ → Gn

∗ denote the identity map, and [ι] its class in ρ
��	�

��

Gn
∗ . Let H be

a globular ω-groupoid and let x ∈ Hn. We have to show there is a unique morphism
α : ρ

��	�

��

Gn
∗ → H such that α[ι] = x. By Theorem 3.1 we may assume H is of the form

ρ
��	�

��

X∗ for some filtered space X∗. Then x has a representative g : Gn
∗ → X∗. It follows

that ρ
��	�

��

(g)([ι]) = x. This proves existence of such a morphism.

Suppose β : ρ
��	�

��

Gn
∗ → H is another morphism such that β([ι]) = x. Then γ(α), γ(β) :

ΠGn
∗ agree on the generating element cn ∈ πn(Gn, Gn

n−1, 1) of that group. However
ΠGn

∗ is generated as crossed complex by all elements Φdcn ∈ πr(G
n
r , G

n
r−1, 1) for all

globular face operators d from dimension n to dimension r for 0 6 r 6 n. Since α, β
are morphisms of ω–groupoids, α(Φdcn) = dαΦcn = dβΦcn = β(dΦcn) . Therefore
α, β agree on ΠGn

∗ . But the latter generates ρ
��	�

��

Gn
∗ as ω–groupoid. So α = β.

The form of this crossed complex may be deduced from the cubical Homotopy
Addition Lemma, [BH81a, Lemma 7.1].

δx =






−x+
1 − x−2 + x−1 + x+

2 if n = 2,

−x+
3 − (x−2 )u2x − x+

1 + (x−3 )u3x + x+
2 + (x−1 )u1x if n = 3,

∑n

i=1(−1)i{x+
i − (x−i )uix} if n > 4

(where ui = ∂+
1 ∂

+
2 · · · ı̂ · · · ∂+

n+1). In the case when x is globular, this reduces to

δx = −x+
1 + x−1 if n > 2.

Notice that this is a groupoid formula if n = 2.

It would be interesting to have a purely algebraic proof of this result.

4. The higher homotopy van Kampen Theorem

Suppose for the rest of this section that X∗ is a filtered space. We suppose given
a cover U = {Uλ}λ∈Λ of X such that the interiors of the sets of U cover X. For each

ζ ∈ Λn we set U ζ = U ζ1 ∩ · · · ∩ U ζn , U ζ
i = U ζ ∩Xi. Then U ζ

0 ⊆ U ζ
1 ⊆ · · · is called the

induced filtration U ζ
∗ of U ζ . So the globular homotopy ω-groupoids in the following
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̺
��	�

��

-diagram of the cover are well defined:

⊔
ζ∈Λ2 ̺

��	�

��

U ζ
∗

a //
b

//
⊔

λ∈Λ ̺
��	�

��

Uλ
∗

c // ̺
��	�

��

X∗ (8)

Here
⊔

denotes disjoint union (which is the same as coproduct in the category of
globular ω-groupoids); a, b are determined by the inclusions aζ : Uλ ∩ Uµ → Uλ, bζ :
Uλ ∩ Uµ → Uµ for each ζ = (λ, µ) ∈ Λ2; and c is determined by the inclusions cλ :
Uλ → X.

Definition 4.1. A filtered spaceX∗ is said to be connected if the following conditions
hold for each n > 0 :
• If r > 0, the map π0X0 → π0Xr, induced by inclusion, is surjective; i.e. X0 meets
all path connected components of all stages of the filtration Xr.
• (for n > 1): If r > n and x ∈ X0, then πn(Xr, Xn, x) = 0. 2

Theorem 4.2. Suppose that for every finite intersection U ζ of elements of U , the
induced filtration U ζ

∗ is connected. Then

(C) X∗ is connected;

(I) c in the above ̺
��	�

��

–diagram is the coequaliser of a, b in the category of globular
ω–groupoids.

Proof. This follows from Theorem B of [BH81b], i.e. the analogous theorem for ρ2,
and the fact that the equivalence from the category of globular ω-groupoids to that
of cubical ω-groupoids with connections takes ρ

��	�

��

X∗ to ρ2X∗.

Remark 4.3. If one could find convenient ‘globular filtrations’ of spaces, analogous
to the cell decompositions of CW-complexes, then one should be able to use these
results to show that ρ

��	�

��

of such a filtration was a free globular ω-groupoid.

5. Monoidal closed structures

The category of cubical ω–groupoids with connection is monoidal closed, [BH87].
We recall from that paper how the tensor product is defined.

For cubical ω-Gpds F,G,H , we define a bimorphism

b : F,G→ H (9)

to be a family of functions b = bp,q : Fp ×Gq → Hp+q such that if x ∈ Fp, y ∈ Gq and
p+ q = n then:

(i) ∂α
i b(x, y) =

{
b(∂α

i x, y) if 1 6 i 6 p,

b(x, ∂α
i−py) if p+ 1 6 i 6 n;

(ii) εib(x, y) =

{
b(εix, y) if 1 6 i 6 p+ 1,

b(x, εi−py) if p+ 1 6 i 6 n+ 1;

(iii) Γib(x, y) =

{
b(Γix, y) if 1 6 i 6 p,

b(x,Γi−py) if p+ 1 6 i 6 n;
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(iv) b(x ◦i x
′, y) = b(x, y) ◦i b(x

′, y) if 1 6 i 6 p and x ◦i x
′ is defined in F ;

(v) b(x, y ◦j y
′) = b(x, y) ◦p+j b(x, y

′) if 1 6 j 6 q and y ◦j y
′ is defined in G;

The tensor product of cubical ω–groupoids F,G is given by the the universal bimor-
phism F,G→ F ⊗G: that is any bimorphism F,G→ H uniquely factors through a
morphism F ⊗G→ H .

We next recall a result from [BH91].

Proposition 5.1. Let X∗, Y∗ be filtered spaces. Then there is a natural transforma-
tion

η : ρ2X∗ ⊗ ρ2 Y∗ → ρ2(X∗ ⊗ Y∗).

Proof. This natural transformation is determined by the bimorphism

([f ], [g]) 7→ [f ⊗ g]

where f : Ip
∗ → X∗, g : Iq

∗ → Y∗. The proof that this is well defined and gives a bimor-
phism is routine, given the geometry of the cubes, that Ip

∗ ⊗ Iq
∗
∼= Ip+q

∗ , and the well
definedness of compositions on filter homotopy classes, as proved in [BH81b].

It is proved in [BH91], by considering the corresponding free crossed complexes,
that this morphism is an isomorphism ifX∗, Y∗ are skeletal filtrations ofCW -complexes,
and in [BB93] that this is an isomorphism if X∗, Y∗ are connected and cofibred.

Because the categories of cubical and of globular ω-groupoids are equivalent, and
the former has a monoidal closed structure, this is inherited by the latter.

So we deduce from the above results:

Theorem 5.2. Let X∗, Y∗ be filtered spaces. Then there is a natural transformation

η : ρ
��	�

��

X∗ ⊗ ρ
��	�

��

Y∗ → ρ
��	�

��

(X∗ ⊗ Y∗)

which is an isomorphism if X∗, Y∗ are connected and cofibred.

6. Nerves and classifying spaces of globular ω-groupoids

Here we just show how to define a simplicial nerve N∆G of a globular ω-groupoid
G, by the standard procedure:

(N∆G)n = ω-Gpd(ρ
��	�

��

∆n
∗ , G). (10)

The geometric realisation of this simplicial set then defines the classifying space BG
of G. However it is not so easy to see how to exploit this. The classifying space of a
crossed complex is applied in for example [BH91, BGPT, FMa07, FMP06].

Appendix A. The globular site

We now recall from [BH81c] a definition which in [Str87], and later work, is
termed that of a globular set. This is a sequence (Sn)n>0 of sets with two families of
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functions

d±i : Sn → Si, i = 0, . . . , n− 1,

si : Si → Sn, i = 0, . . . , n− 1,

satisfying the following laws, where α, β = ±:

(i) dα
i d

β
j = dα

i for i < j, α, β = ±;

(ii) sjsi = si for i < j;

(iii) dβ
j si =






sβ
j for j < i,

1 for j = i,

si for j > i.

A globular site GS is a small category such that globular sets can be identified
with contravariant functors GS → Set. We want to identify such a site whose objects
are the globes Gn of section 2. We therefore define maps

d̄±i : Gi → Gn, s̄i : Gn → Gi (11)

x 7→ (0n−i,±
√

1 − ‖x‖2, x), (x1, . . . , xn) 7→ (x1, . . . , xi) (12)

for i < n, where 0j = (0, . . . , 0)︸ ︷︷ ︸
j

.

Appendix B. The cubical site

Let K be a cubical set, that is, a family of sets {Kn;n > 0} with face maps ∂α
i :

Kn → Kn−1 (i = 1, 2, . . . , n; α = +,−) and degeneracy maps εi : Kn−1 → Kn (i =
1, 2, . . . , n) satisfying the usual cubical relations:

∂α
i ∂

β
j = ∂β

j−1∂
α
i (i < j), (B.1)(i)

εiεj = εj+1εi (i 6 j), (B.1)(ii)

∂α
i εj =






εj−1∂
α
i (i < j)

εj∂
α
i−1 (i > j)

id (i = j)

(B.1)(iii)
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We say that K is a cubical set with connections if it has additional structure maps
(called connections) Γ+

i ,Γ
−
i : Kn−1 → Kn (i = 1, 2, . . . , n− 1) satisfying the relations:

Γα
i Γβ

j = Γβ
j+1Γ

α
i (i < j) (B.2)(i)

Γα
i Γα

i = Γα
i+1Γ

α
i (B.2)(ii)

Γα
i εj =

{
εj−1Γ

α
i (i < j)

εjΓ
α
i−1 (i > j)

(B.2)(iii)

Γα
j εj = ε2j = εj+1εj , (B.2)(iv)

∂α
i Γβ

j =

{
Γβ

j−1∂
α
i (i < j)

Γβ
j ∂

α
i−1 (i > j + 1),

(B.2)(v)

∂α
j Γα

j = ∂α
j+1Γ

α
j = id, (B.2)(vi)

∂α
j Γ−α

j = ∂α
j+1Γ

−α
j = εj∂

α
j . (B.2)(vii)

The connections are to be thought of as extra ‘degeneracies’. (A degenerate cube of
type εjx has a pair of opposite faces equal and all other faces degenerate. A cube of
type Γα

i x has a pair of adjacent faces equal and all other faces of type Γα
j y or εjy .)

The prime example of a cubical set with connections is the singular cubical complex
K = S2X of a space X . Here Kn is the set of singular n-cubes in X (i.e. continuous
maps In → X). The face maps are induced as usual by maps ∂̄±i : In−1 → In and the
degeneracies by the projections pi : In → In−1. The connections Γα

i : Kn−1 → Kn are
induced by the maps γα

i : In → In−1 defined by

γα
i (t1, t2, . . . , tn) = (t1, t2, . . . , ti−1, A(ti, ti+1), ti+2, . . . , tn)

where A(s, t) = max(s, t),min(s, t) as α = −,+ respectively.

The complex S2X has some further relevant structure, namely the composition
of n-cubes in the n different directions. Accordingly, we define a cubical set with
connections and compositions to be a cubical set K with connections in which each
Kn has n partial compositions ◦j (j = 1, 2, . . . , n) satisfying the following axioms.

If a, b ∈ Kn, then a ◦j b is defined if and only if ∂−j b = ∂+
j a , and then

{
∂−j (a ◦j b) = ∂−j a

∂+
j (a ◦j b) = ∂+

j b
∂α

i (a ◦j b) =

{
∂α

j a ◦j−1 ∂
α
i b (i < j)

∂α
i a ◦j ∂

α
i b (i > j),

(B.3)

The interchange laws. If i 6= j then

(a ◦i b) ◦j (c ◦i d) = (a ◦j c) ◦i (b ◦j d) (B.4)

whenever both sides are defined. (The diagram

[
a b
c d

]

j

i

��

//

will be used to indicate that both sides of the above equation are defined and also to
denote the unique composite of the four elements.)
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If i 6= j then

εi(a ◦j b) =

{
εia ◦j+1 εib (i 6 j)

εia ◦j εib (i > j)
(B.5)

Γα
i (a ◦j b) =

{
Γα

i a ◦j+1 Γα
i b (i < j)

Γα
i a ◦j Γα

i b (i > j)
(B.6)(i)

Γ+
j (a ◦j b) =

[
Γ+

j a εja

εj+1a Γ+
j b

]

j+1

j

��

//

(B.6)(ii)

Γ−
j (a ◦j b) =

[
Γ−

j a εj+1b

εjb Γ−
j b

]

j+1

j

��

//

(B.6)(iii)

These last two equations are the transport laws2.

It is easily verified that the singular cubical complex S2X of a space X satisfies
these axioms if ◦j is defined by

(a ◦j b)(t1, t2, . . . , tn) =

{
a(t1, . . . , tj−1, 2tj , tj+1, . . . , tn) (tj 6

1
2 )

b(t1, . . . , tj−1, 2tj − 1, tj+1, . . . , tn) (tj >
1
2 )

whenever ∂−j b = ∂+
j a.

We will now describe two graded subsets of a cubical set K. The globular subset K
��	�

��

consists in dimension n of the elements a such that ∂α
i a ∈ Im εi−1

1 , i = 1, . . . , n. The
diskal subset KD consists in dimension n of the elements a such that ∂α

i a ∈ Im εn−1
1

for (α, i) 6= (−, 1). Clearly KD ⊆ K
��	�

��

⊆ K.

Proposition B.1. If K is a cubical set with compositions, then the compositions
◦i are inherited by K

��	�

��

so that if dα
i : K

��	�

��

n → K
��	�

��

n−i is defined by a 7→ (∂α
1 )i(a), then

K
��	�

��

becomes a globular set with compositions. If further K is a cubical ω–category
(–groupoid), then K

��	�

��

is a globular ω–category (–groupoid).

It is proved in [BH81a] that if K is a cubical ω–groupoid then KD inherits the
structure of crossed complex, and in [BH81c], see also [AABS02], that K

��	�

��

inherits
the structure of globular ω-groupoid.

A globular ω-category is a globular set as above with category structures ◦i on Sn

0 6 i 6 n− 1 for each n > 0 such that ◦i has Si as its set of objects and D−
i , D

+
i , Ei

as its initial, final, and identity maps. These category structures must be compatible,
that is:

(i) if i > j and α = ± then

Dα
i (x ◦j y) = Dα

i x ◦j D
α
i y,

whenever the left hand side is defined;

2Recall from [BS76] that the term connection was chosen because of an analogy with path-
connections in differential geometry. In particular, the transport law is a variation or special case of
the transport law for a path-connection.
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(ii) Ei(x ◦j y) = Eix ◦j Eiy in Sn whenever the left hand side is defined;

(iii) (The interchange law) if i 6= j then

(x ◦j y) ◦i (z ◦j w) = (x ◦i z) ◦j (y ◦j w)

whenever both sides are defined.

It is standard to write both sides of the interchange law (when defined) as
[
x y
z w

]

i

j

��

//

Definition B.2. LetK be a cubical set with connections and compositions. The folding
operations are the operations

ψi,Ψr,Φm : Kn → Kn

defined for 1 6 i 6 n− 1, 1 6 r 6 n and 0 6 m 6 n by

ψix = Γ+
i ∂

−
i+1x ◦i+1 x ◦i+1 Γ−

i ∂
+
i+1x,

Ψr = ψr−1ψr−2 . . . ψ1,

Φm = Ψ1Ψ2 . . .Ψm = ψ1(ψ2ψ1) . . . (ψm−1 . . . ψ1).

2

Note in particular that Ψ1, Φ0 and Φ1 are identity operations.

Here is a picture of ψ1 : K2 → K2:

x
2

1

��

//
ψ1(x) =

Proposition B.3. Let K be a cubical set with connections and compositions. The
‘folding’ operator Φn : Kn → Kn satisfies ∂±i Φnx ∈ Im εi−1

1 for 1 6 i 6 n and x ∈ Kn.
That is, ImΦ is contained in the globular subset of K.

This is part of Proposition 3.3(iii) of [AABS02]. Note that the compositions are
needed to define Φn but this property of Φn requires only the properties (B1), (B2)
giving the relations between cubical operations and connections, and does not require
any axioms on the compositions.
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