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SummaryThis thesis onentrates on the development and appliation of Gr�obner bases methods to a range ofombinatorial problems (involving groups, semigroups, ategories, ategory ations, algebras and K-ategories) and the use of rewriting for alulating Kan extensions.The �rst hapter gives a short introdution to presentations, rewrite systems, and ompletion.Chapter Two ontains the most important result, whih is the appliation of Knuth-Bendix proeduresto Kan extensions, showing how rewriting provides a useful method for attempting to solve a variety ofombinatorial problems whih an be phrased in terms of Kan extensions. A GAP3 program for Kanextensions is inluded in the appendix.Chapter Three shows that the standard Knuth-Bendix algorithm is step-for-step a speial ase of Buh-berger's algorithm. The one-sided ases and higher dimensions are onsidered, and the relations betweenthese are made preise. The standard nonommutative Gr�obner basis alulation may be expressed as aKan extension over modules. A nonommutative Gr�obner bases program (in GAP3) has been written.Chapter Four relates rewrite systems, Gr�obner bases and automata. Automata whih only aept irre-duibles, and automata whih output redued forms are disussed for presentations of Kan extensions.Redution mahines for rewrite systems are identi�ed with standard output automata and the redutionmahines devised for algebras are expressed as Petri nets.Chapter Five uses the ompletion of a group rewriting system to algorithmially determine a ontratinghomotopy neessary in order to ompute the set of generators for the module of identities among relationsusing the overing groupoid methods devised by Brown and Razak Salleh [17℄. (The resulting algorithmhas been implemented in GAP3). Reduing the resulting set of submodule generators is identi�ed as aGr�obner basis problem.
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Chapter 1Introdution1.1 Presentations1.1.1 BakgroundA omputational problem in group theory typially begins \Given a group G, determine...". Methodsof solution of the problem depend on the way the information about G is given. The study of groupsgiven by presentations is alled ombinatorial group theory. Study of other algebrai objets (for exampleategories) through presentations may be alled ombinatoris. This setion is an attempt to outline alittle of the (ontroversial) history of and motivation for the study of groups and in partiular the use ofgroup presentations.The origins of group theory might go bak to 1600 BC. Stone tablets remain as evidene that theBabylonians knew how to solve quadrati equations (though they had no algebrai notation). Thesolution (by radials) of a ubi equation was not disovered until the 16th entury, and publishedsimultaneously with the method for solving quartis (by reduing to a ubi). Mathematiians suh asEuler and Lagrange worked on the problem, and in 1824 Abel proved that there was no general solutionby radials of a quinti equation. Work began on determining whether a given quinti was soluble, andit is from �Evariste Galois's paper \On the Conditions of Solubility of Equations by Radials" (submittedand rejeted in 1831) that group theory really began. (That is not to say that group theoreti ideas didnot exist before Galois (aording to [73℄, they did) and a number of results were obtained before thede�nition of an abstrat group reahed its �nal form.) The �rst formal development of group theoryfollowed Galois's ideas and was limited almost entirely to �nite groups. The idea of an abstrat in�nitegroup is inluded in Arthur Cayley's work (1854, 1878) on group axioms, but was not pursued at thattime. Finitely generated groups were de�ned by Dyk in 1882, and it is (disputedly) here that the �rstde�nition of a presentation by generators and relations was given.Studying groups beame important; groups of transformations ame from symmetries and ongruenesin Eulidean Geometry, (semigroups ome from partial symmetries) automorphism groups were used inKlein's \Erlangen Programme", yli groups ame from numbers and modular arithmeti and moregroups from Gauss's omposition of binary quadrati forms (groupoids from Brandt's generalisation ofthis problem). Abstrat �nite groups were de�ned by Weber in 1882, and it was in 1893 that he publishedwhat we reognise as the modern de�nition of an arbitrary abstrat group.A major stimulus to the study of in�nite disrete groups, however, was the development of topology.In 1895 Poinar�e introdued the notion of a fundamental group �1(X; a) of losed paths of a spae Xfrom a point a. The properties of the fundamental group of a topologial spae orrespond to someproperties of the spae. Interest in lassifying the topologial spaes generated interest in fundamentalgroups. In 1911 Max Dehn, a student of Hilbert's, wrote a paper [31℄ whih dealt with presentations offundamental groups of losed, orientable surfaes, for whih he formulated three fundamental deisionproblems: the word problem, the onjugay problem, and the isomorphism problem. It is thought that1



by this time the idea of trying to determine properties of a group given by a �nite presentation wasalready familiar. Anyway, some onsider the problems to be part of what beame known as \Hilbert'sProgramme". Nielsen was also an important inuene: his work led naturally to the study of groupspresented through generators and relators.There are ertain advantages of presentations as a method for studying groups, or indeed other algebraistrutures (monoids, ategories, algebras). One advantage is that a presentation is ompat as omparedto (say) a Cayley table. An eÆient presentation desribes the group with the minimal amount of infor-mation. By now there is a lot of theoretial mahinery for working with presentations, this may be alledomputational group theory (or omputational ategory theory, et), whih really began with Turingand Newman's work at the end of World War II. Modern work in omputational group theory may befound in Charles Sims's reent book [73℄, and a lot of work developing omputer programs for grouptheoreti omputations ontinues at Warwik (KBMAG), St Andrews (GAP) and Sydney (MAGMA)to name a few. The area has also broadened, problems with monoids are more widely researhed andnow ategories are oming into the piture. Computational ategory theory is one relatively new �eld ofomputer algebra whih has onsiderable prospets.Rewriting systems are sets of direted equations or rules whih are useful in omputations. Rewrite rulesspeify the repeated replaement of subterms of a given formula with equivalent terms. Rewriting theorywas introdued as a method of solving the word problem. The original word problem was expressed byAxel Thue in 1914:\Suppose one has a set of objets, and a set of transformations (rules) that when applied to these objetsyield objets in the same set. Given two objets x and y in the set, an x be transformed into y, or isthere perhaps a third objet z suh that both x and y an be transformed into z?".Thue established some preliminary results about strings of symbols (i.e. elements of a free monoid) andsuggested that the approah might extend to more strutured ombinatorial objets (at about this timeDehn was working on the beginnings of ombinatorial group theory). Thue wanted to develop a \alu-lus" to deide the word problem, that is a set of proedures or algorithms that ould be applied to thegiven objets to obtain the orret answer. He wanted a general algorithm to solve the word problem ina variety of di�erent settings.Apparently Thue's work was disregarded until the 1930's when logiians were seeking formal de�nitionsof onepts like \algorithm" and \e�etive proedure". In the mid 1950's and 60's notions of semi-Thuesystems beame important in mathematial linguistis. Work on formal language theory used semi-Thuesystems as mathematial models for phrase-struture grammars. At the same time tehnology was im-proving to the extent where mathematiians began to onsider mehanial theorem proving, and in the1960's automated dedution quikly developed. As a form of omputer program, rewriting systems madetheir debut in 1967 in a paper by Gorn. A partiularly inuential role was played by a paper written byKnuth and Bendix in 1970 [48℄. They desribed an automati proedure for solving word problems inabstrat algebras.In the 1970's term-rewriting systems took an important role in the study of automated dedution, whihwas still a rapidly developing area. However, it was not really until the 1980's that Thue systemsbeame popular. A book whih ontains the most fundamental results of the 1980's is [7℄. Sine then,rewriting systems have ontinued to be of inreasing interest, being investigated for di�erent propertiesand applied to a widening range of areas. The omputational aspet is partiularly important. Manymodern programs for symboli manipulation ontinue to use rewrite rules in an ad ho manner, andthere is now muh work on the more formal use of rewriting systems in programming (in partiular see[42℄[43℄[73℄). 2



1.1.2 Monoid and Group PresentationsIt is assumed that the reader is familiar with monoids and groups. The terms and de�nitions for presen-tations are given in the following paragraphs to �x the notation.Let X be a set. The free semigroup Xy on X onsists of all nonempty sequenes (strings) of elementsof X. Composition is de�ned by onatenation of the strings. The free monoid PX (sometimes denotedX�) on X onsists of all strings of elements of X, inluding the empty string. Composition is de�ned bystring onatenation with the empty string ating as identity.A set of relations R for a monoid generated by X is a subset of PX � PX. A ongruene =S on amonoid A is an equivalene relation on A suh that, for all u; v 2 A, if l =S r then ulv =S urv. Theongruene =R generated by R on PX, where R is a set of relations, is given by x =R y if and onlyif there is a system of equations x = u1l1v1u1r1v1 = u2l2v2� � � � � � � � �unrnvn = ywhere either (li; ri) or (ri; li) 2 R for i = 1; : : : ; n, n � 1. This is equal to the smallest equivalene relationon PX ontaining R suh that for all u; v 2 PX x =R y ) uxv =R uyv [30℄. If A is a monoid and =Sa ongruene on A then the fator monoid A= =S is the monoid whose elements are the ongruenelasses of =S on A and whose omposition is indued by that on A. The ongruene lass of an elementa 2 A with respet to S will be denoted [a℄S .A monoid presentation is a pair monhXjRi, where X is a set and R � PX �PX is a set of relations.The monoid it presents is the fator monoid PX= =R. We say monhXjRi is a monoid presentation ofM if M �= PX= =R. The free group on X is the group F (X) with monoid presentation monh �XjR0iwhere �X := fx+; x� : x 2 Xg and R0 := f(x+x�; id); (x�x+; id) : x 2 Xg. A group presentation is apair grphXjRi where X is a set and R � F (X) (the group relators). The group it presents is de�nedas the monoid that is presented by monh �Xj �Ri where �R := R0 [ f(r; id) : r 2 Rg. (To verify that this isa group note that any element has the form [x1"1 : : : xn"n ℄ �R where x1; : : : ; xn 2 X; "1; : : : ; "n 2 f+;�gand so has inverse [xn�"n : : : x1�"1 ℄R0 where �(+) := �;�(�) := +.)A monoid is �nitely presented if it has a presentation monhX jRi where X and R are �nite sets(similarly for groups). Monoid presentations are often used to give all the information about the monoidin a ompat form. The main question, given a monoid presentation, is known as the word problem. Theword problem for a monoid presentation monhXjRi is as follows:INPUT: u; v 2 PX (two elements in the free monoid),QUESTION: u =R v? (do they represent the same element in the monoid presented?)Rewriting systems (de�ned later) are one method of takling this problem (another being the Todd-Coxeter proedure). However, as is well known, rewriting annot solve the problem in general but onlywhen the rewriting system an be ompleted (de�ned later). Fortunately there are a large number ofinteresting examples (all �nite monoids, all abelian monoids - see later) for whih rewriting systems areompletable.1.1.3 Category and Groupoid PresentationsIt is assumed that the reader is familiar with the general onepts of ategory, funtor and natural trans-formation. The following paragraphs �x the notation used and de�ne presentations of ategories and3



groupoids and the assoiated word problem.A direted graph � onsists of a set of objets Ob�, a set of arrows Arr� and two funtions sr; tgt :Arr�! Ob�. (Throughout the text, unless otherwise spei�ed, \graph" should be taken to mean suh adireted graph. If a graph has only one objet this will be denoted �.) Amorphism of graphs F : �! �onsists of funtions ObF : Ob� ! Ob�, ArrF : Arr� ! Arr� suh that sr Æ ArrF = ObF Æ sr andtgt ÆArrF = ObF Æ tgt. This gives the ategory DirG of direted graphs.The forgetful funtor U : Cat! DirG from the ategory of small ategories to direted Graphs has a leftadjoint whih we write P , the free ategory on a graph. It is realised in the usual way: if � is a graphthen ObP� := Ob�, and the non-identity arrows P�(A1; A2) onsist of all paths a1 � � � an, i.e. sequenesa1; : : : ; an 2 � suh that tgt(ai) = sr(ai+1) for i = 1; : : : ; n � 1; n � 1. The identity arrows are suhthat for all objets A of the free ategory idAa = a for any path a with soure A and  idA =  for anypath  with target A. Composition is de�ned by onatenation. Thus if � has one objet then P� anbe identi�ed with the free monoid on Arr�.A set of relations R for a ategory A is a subset of ArrA� ArrA, every relation (l; r) 2 R must satisfysr(l) = sr(r), tgt(l) = tgt(r). A ongruene =S on a ategory A is an equivalene relation on theset ArrA whih satis�es l =S r ) sr(l) = sr(r); tgt(l) = tgt(r) and for all u; v 2 ArrA, if l =S r thenulv =S urv when these produts are de�ned. The ongruene =R generated by R on P�, where Ris a set of relations, is given by x =R y if there is a system of equationsx = u1l1v1u1r1v1 = u2l2v2� � � � � � � � �unrnvn = ywhere either (li; ri) or (ri; li) 2 R for i = 1; ::; n and the produts uilivi and uirivi are de�ned. If A is aategory and =S is a ongruene on A then the fator ategory A= =S is the ategory whose objets areObA and whose arrows are the ongruene lasses with respet to =S of ArrA with omposition induedby that on A. The ongruene lass of an arrow a 2 A with respet to S will be denoted [a℄S . Congruentarrows have the same soures and targets as eah other, so sr; tgt are preserved.A ategory presentation is a pair ath�jRi, where � is a graph and R � ArrP� � ArrP� is a set ofrelations. The ategory it presents is the fator ategory P�= =R. We say that ath�jRi is a ategorypresentation for C if C �= P�= =R.The free groupoid on � is denoted F (�). It is de�ned to be the free ategory P �� fatored by therelations R0 where Ob�� := Ob�, Arr�� := fa+; a� : a 2 Arr�g with sr(a+) = tgt(a�) = sr(a) andtgt(a+) = sr(a�) = tgt(a) and R0 := f(a+a�; idsr(a)); (a�a+; idtgt(a)) : a 2 Arr�g. A groupoid pre-sentation is a pair gpdh�jRi where � is a graph and R is a subset of the disjoint union of the vertexgroups of F (X). The groupoid it presents is de�ned as the ategory that is presented by ath��j �Ri where�� and R0 are as above and �R := R0 [ f(r; idsr(r) : r 2 Rg. (To verify that this is a groupoid note thatany element has the form [a1"1 � � � an"n ℄ �R where a1; : : : ; an 2 �; "1; : : : ; "n 2 f+;�g and so has inverse[an�"n ::a1�"1 ℄ �R where �(+) := �;�(�) := +.)Some motivation for onsidering groupoid presentations is given by the fat that a presentation grphXjRiof a group G lifts to a presentation gpdh eX j eRi of the overing groupoid of the Cayley graph eX of thegroup G [40℄. In detail: let � : F (X) ! G be the quotient map, and let Ob eX = fg : g 2 Gg,Arr eX = f[g; x℄ : g 2 G;x 2 Xg where sr([g; x℄) := g; tgt([g; x℄) := g�(x), and eR = G � R. (This is4



referred to in detail in Chapter 5). A monoid (or group) an be regarded as a ategory (or groupoid)with one objet. Let monhXjRi present a monoid M . Then the presentation ath�XjRi, where �X isthe one objet graph and Arr�X := X, is a ategory presentation for the monoid M .A ategory C is �nitely presented if it has a presentation ath�jRi where Ob�;Arr� and R are �nitesets. The word problem for a ategory presentation ath�jRi is as follows:INPUT: u; v 2 Arr(P�) (two arrows in the free ategory),QUESTION: u =R v? (do they represent the same element in the ategory presented?)Terminology: The trivial ategory, with ategory presentation ath�ji has only one objet � and onearrow { the identity id�. The null funtor maps a ategory to the trivial ategory, by mapping all theobjets to � and the arrows to id�. The hom-set of all arrows between two partiular objets A and B ofa ategory P will be denoted P(A;B).1.2 Abstrat Redution RelationsWe reall the de�nitions of redution relations on abstrat sets and some of their properties. This is abrief exposition of the introdutory material in [7℄, the results stated are proved there. These results willbe generalised to P-sets, where P is a ategory, in Setion 2.4Let T be a set. A redution relation ! on a set T is a subset of T � T . We write l! r when (l; r) isan element (rule) of !. The pair (T;!) will be alled a redution system. Redution is the namegiven to the proedure of applying rules to a given term to obtain another term i.e. we \redue t1 to t2in one step" if (t1; t2) is an element of the redution relation. An element t1 of T is said to be reduibleif there is another element t2 of T suh that t1 ! t2, otherwise it is irreduible. The reexive, transitivelosure of a redution relation ! is denoted �! i.e. if t1 ! t2 ! � � � ! tn then we write t1 �! tn.The reexive, symmetri, transitive losure of ! is denoted �$ This is the smallest equivalene relationon T that ontains !. The equivalene lass of an element t of T under �$ will be denoted [t℄.The word problem for a redution system (T;!) is:INPUT: t1; t2 2 T (two elements of T ).QUESTION: t1 �$Rt2 (are they equivalent under �$R)?Let! be a redution relation on a set T . A normal form for an element t 2 T is an irreduible elementtN 2 T suh that t �$ tN . A set of unique normal forms is a subset of T whih ontains exatly onenormal form for eah equivalene lass of T with respet to �$. A unique normal form funtion isa funtion N : T ! T whose image is a set of unique normal forms. One approah to solving the wordproblem is to attempt to hoose a set of unique normal forms as representatives of the lasses of theequivalene relation. Given any pair of elements, if their normal forms an be omputed, it an be seenthat the elements are equivalent if and only if their normal forms are equal.The de�nitions above indiate that if the irreduible elements are to be unique normal forms we requireexatly one irreduible in eah equivalene lass. Further, if redution is to be the unique normal formfuntion then we should be able to obtain the normal form of any element by a �nite sequene of redu-tions. We onsider onditions that guarantee these properties. It is essential that equivalent elementsredue to the same irreduible. A redution system (T;!) is onuent, if for all terms t; u1; u2 2 Tsuh that t �! u1 and t �! u2 there exists an element v 2 T suh that u1 �! v and u2 �! v. The followingpiture illustrates the onuene ondition. 5
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~~}}}}vThe following fats may be found in [7℄.Fat 1.2.1 If a redution system (T;!) is onuent then for eah t 2 T , [t℄ has at most one normalform.We require that the irreduibles be obtainable by a �nite sequene of redutions. A redution system(T;!) is Noetherian (or terminating) if there is no in�nite sequene t1; t2; : : : 2 T suh that for alli 2 N; ti ! ti+1. A redution system (T;!) is loally onuent if for all elements t; u1; u2 2 T suhthat t! u1 and t! u2 there exists a term v 2 T suh that u1 �! v and u2 �! v.Fat 1.2.2 A Noetherian redution system is onuent if it is loally onuent.Fat 1.2.3 If a redution system (T;!) is Noetherian then for every t 2 T , [t℄ has a normal form (notneessarily unique).A redution system (T;!) is omplete (or onvergent) if it is onuent and ! is Noetherian.Fat 1.2.4 Let (T;!) be a redution system. If it is omplete then for every t 2 T , [t℄ has a uniquenormal form.Some motivation for onsidering omplete redution systems is that they enable the solution of theword problem through a normal form algorithm. The normal forms are the irreduible elements(ompleteness ensures that there is exatly one irreduible in eah equivalene lass). The normal formfuntion is repeated redution (the Noetherian property ensures that the irreduible is reahed in �nitelymany redutions). So: given two terms, we redue them to irreduibles, the words are equivalent only ifthe irreduibles are equal.Fat 1.2.5 If a redution system (T;!) is omplete and T is �nite, then the word problem for (T;!)is deidable.It is not in general possible to determine whether a �nite redution system is Noetherian, onuent oromplete. However, if a �nite system is known to be Noetherian, we an determine whether or not it isomplete. Non-onuene ours when di�erent rules apply to the same term, giving di�erent reduedterms. A ritial pair is a pair (u1; u2) where there exists a term t 2 T suh that t ! u1 and t ! u2.A ritial pair (u1; u2) is said to resolve if there exists a term v 2 T suh that u1 �! v and u2 �! v.Fat 1.2.6 Let (T;!) be a redution system. Let N : T ! T be the normal form funtion where N(s)is the irreduible form of s with respet to !. If for all t ! s1; t ! s2, N(s1) = N(s2) then (T;!) isomplete.A Noetherian system may sometimes be made onuent by adding in extra rules (the unresolvable ritialpairs). This proedure will be disussed in the next hapter in the partiular setting with whih we areonerned. 6



Chapter 2Using Rewriting to Compute KanExtensions of AtionsThis hapter de�nes rewriting proedures for terms xjw where x is an element of a set and w is a word.Two kinds of rewriting are involved here. The �rst is the familiar xjulv ! xjurv. The seond is given byan ation of ertain words on elements, so allowing rewriting xjF (a)v ! x � ajv. Further, the elements xand x � a are allowed to belong to di�erent sets. The natural setting for this rewriting is a \presentation"kanh�j�jRelBjXjF i where �;� are (direted) graphs and X : � ! Sets and F : � ! P� are graphmorphisms to the ategory of sets, and the free ategory on � respetively, and RelB is a set of relationson P�. The main result de�nes rewriting proedures on the P-setT := GB2Ob� GA2Ob�XA� P(FA;B) (2.1)in order to attempt the omputation of Kan extensions of ations of ategories given by presentations(see setion 5).So the power of rewriting theory may now be brought to bear on a muh wider range of ombinatorialenumeration problems. Traditionally rewriting is used for solving the word problem for monoids. It maynow also be used in the spei�ation ofi) equivalene lasses and equivariant equivalene lasses,ii) arrows of a ategory or groupoid,iii) ation of a group on the osets given by a subgroup,iv) right ongruene lasses given by a relation on a monoid,v) orbits of an ation of a group or monoid.vi) onjugay lasses of a group,vii) oequalisers, pushouts and olimits of sets,viii) indued permutation representations of a group or monoid.and many others.
7



2.1 Kan Extensions of AtionsThe onept of the Kan extension of an ation will be entral to this hapter. It will therefore be de�nedhere with some familiar examples to motivate the onstrution listed afterwards. There are two typesof Kan extension (the details are in Chapter 10 of [51℄) known as right and left. Whih type is rightand whih left varies aording to authors' hosen onventions. In this text only one type is used (leftaording to [25℄, right aording to other authors) and to save onit it will be referred to simply as\the Kan extension" - it is the olimit one, so there is an argument for alling it a o-Kan, and the otherone simply Kan, but we shall not presume to do that here.Let A be a ategory. A ategory ation X of A is a funtor X : A ! Sets. This means that for everyobjet A there is a set XA and the arrows of A at on the elements of the sets assoiated to their souresto return elements of the sets assoiated to their targets. So if a1 is an arrow in A(A1; A2) then XA1and XA2 are sets and Xa1 : XA1 ! XA2 is a funtion where Xa1(x) is denoted x � a1. Furthermore,if a2 2 A(A2; A3) is another arrow then (x � a1) � a2 = x:(a1a2) so the ation preserves the omposition.This is equivalent to the fat that Xa2(Xa1(x)) = X(a1a2)(x) i.e. X is a funtor. Also F (idA) = idFAso x � id = x when de�ned.Given the ategory A and the ation de�ned by X, let B be a seond ategory and let F : A ! B be afuntor. Then an extension of the ation X along F is a pair (K; ") where K : B! Sets is a funtorand " : X ! F ÆK is a natural transformation. This means that K is a ategory ation of B and " makessure that the ation de�ned is an extension with respet to F of the ation already de�ned on A. So "is a olletion of funtions, one for eah objet of A, suh that "sr(a)(Xa) and K(F (a)) have the sameation on elements of K(F (sr(a)).The Kan extension of the ation X along F is an extension of the ation (K; ") with the universalproperty that for any other extension of the ation (K 0; "0) there exists a unique natural transformation� : K ! K 0 suh that "0 = " Æ �. Here K may thought of as the universal extension of the ation of Ato an ation of B. Kan ExtensionA F //X
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problem of omputing a Kan extension. MaLane wrote that \the notion of Kan extensions subsumesall the other fundamental onepts of ategory theory" in setion 10.7 of [51℄ (entitled \All Conepts areKan Extensions"). This list helps to illustrate his statement. Throughout these examples we use thesame notation as the de�nition, so the pair (K; ") is the Kan extension of the ation X of A along thefuntor F to B. By a monoid (or group) \onsidered as a ategory" we mean the one objet ategorywith arrows orresponding to the monoid elements and omposition de�ned by omposition in the monoid.1) Groups and MonoidsLet B be a monoid regarded as a ategory. Let A be the trivial ategory, ating trivially on a one point setX�, and let F : A! B be the inlusion map. Then the set K� is bijetive with the set of elements of themonoid and the right ation of the arrows of B is right multipliation by the monoid elements. The natu-ral transformation maps the unique element of X� to the element of K� representing the monoid identity.2) Groupoids and CategoriesLet B be a ategory. Let A be the (disrete) ategory of objets of B with identity arrows only. Let Xde�ne the trivial ation of A on a olletion of one point sets tAXA (one for eah objet A 2 ObA), andlet F : A ! B be the inlusion map. Then the set KB for B 2 B is isomorphi to the set of arrows ofB with target B and the right ation of the arrows of B is de�ned by right omposition. The naturaltransformation maps the unique element of a set XA to the representative identity arrow for the objetFA for every A 2 A.3) Cosets, and Congruenes on MonoidsLet B be a group onsidered as a ategory, and let A be a subgroup of B, with inlusion F . Let X mapthe objet of A to a one point set. The set K� represents the (right) osets of A in B, with the rightation of any group element b of ArrB taking the representative of the oset Hg to the representative ofthe oset Hgb. The left osets an be similarly represented, de�ning the right ation K by a left ationon the osets. The natural transformation piks out the representative for the subgroup H.Alternatively, let B be a monoid onsidered as a ategory and A be generated by arrows whih mapunder F to a set of generators for a right ongruene. Then the set K� represents the ongruene lasses,the ation of any monoid element b of ArrB taking the representative (in K�) of the lass [m℄ to therepresentative of the lass [mb℄. The natural transformation piks out the representative for the lass[id℄. (As above, left ongruene lasses may also be expressed in terms of a Kan extension.)4) Orbits of Group AtionsLet A be a group thought of as a ategory and let X de�ne the ation of the group on a set X�. Let Bbe the trivial ategory and let F be the null funtor. Then the set K� is a set of representatives of thedistint orbits of the ation and the ation of B on K� is trivial. The natural transformation " maps anyelement of the set X� to its orbit representative in B.5) Colimits in SetsLet A be any ategory and let B be the trivial ategory, with F being the null funtor and X being afuntor to sets. Then the Kan extension orresponds to the olimit of (the diagram) X : A ! Sets; K�is the olimit objet, and " de�nes the olimit funtions from eah set XA to K�. Examples of this arewhen A has two objets A1 and A2, and two non-identity arrows a1; a2 : A1 ! A2, (oequaliser of thefuntions Xa1 and Xa2 in Sets); A has three objets A1, A2 and A3 and two arrows a1 : A1 ! A2 anda2 : A1 ! A3 (pushout of the funtions Xa1 and Xa2 in Sets).6) Indued Permutation RepresentationsLet A and B be groups thought of as ategories, F being a group morphism and X being a right ationof the group A on the set X�. The Kan extension of the ation along F is known as the ation of B9



indued from that of A by F (sometimes written F�(X)). There are simple methods of onstruting theset K� when A and B are groups, but this is more diÆult for monoids.This last example is very lose to the full de�nition of a Kan extension. A Kan extension is the ationof the ategory B indued from the ation of A by F together with " whih shows how to get from theA-ation to the B-ation. The point of the other examples is to show that Kan extensions an be usedas a method of representing a variety of situations.2.3 Presentations of Kan Extensions of AtionsThe problem that has been introdued is that of \omputing a Kan extension". In order to keep theanalogy with omputation and rewriting for presentations of monoids we propose the following de�nitionof a presentation of a Kan extension. This formalises ideas used in [26℄.First, we de�ne `Kan extension data'.De�nition 2.3.1 A Kan extension data (X 0; F 0) onsists of small ategories A, B and funtors X 0 :A! Sets and F 0 : A! B.De�nition 2.3.2 A Kan extension presentation is a quintuple P := kanh�j�jRelBjXjF i wherei) � and � are graphs,ii) ath�jRelBi is a ategory presentation,iii) X : �! USets is a graph morphism,iv) F : �! UP� is a graph morphism.P presents the Kan extension data (X 0; F 0) where X 0 : A! Sets and F 0 : A! B ifi) � is a generating graph for A and X : �! Sets is the restrition of X 0 : A! Sets,ii) ath�jRelBi is a ategory presentation of B,iii) F : �! P� indues F 0 : A! B.We also say P presents the Kan extension (K; ") of the Kan extension data (X 0; F 0). The presentationis �nite if �, � and RelB are �nite.Remark 2.3.3 The fat that X; F indue X 0; F 0 implies extra onditions on X; F in relation to Aand B. In pratie we need only the values of X 0; F 0 on �. This is analogous to the fat that for osetenumeration of a subgroup H of G where G has presentation grph�jRi we need only that H is generatedby ertain words in the set �.2.4 P-setsIn this setion we extend some of the usual onepts and terminology of rewriting in order to apply themto the new situation.De�nition 2.4.1 For a ategory P, a P-set is a set T together with a funtion � : T ! ObP and apartial ation � of the arrows of P on T . The ation t �p is de�ned for t 2 T , p 2 ArrP when �(t) = sr(p)and satis�es i) �(t � p) = tgt(p);10



Further, for all t 2 T , p; q 2 ArrP suh that (t � p) � q is de�ned the following properties holdii) t � id�(t) = t;iii) (t � p) � q = t � (pq):De�nition 2.4.2 A redution relation on a P-set T is a relation ! on T suh that for all t1; t2 2 T ,t1 ! t2 implies �(t1) = �(t2).De�nition 2.4.3 A redution relation ! on the P -set T is admissible if for all t1; t2 2 T , t1 ! t2implies t1 � q ! t2 � q for all q 2 ArrP suh that sr(q) = �(t1).For the rest of this hapter we assume that P = kanh�j�jRelBjXjF i is a presentation of a Kan extension.The following de�nitions will be used throughout. Let P denote the free ategory P�. Then de�neT := GB2Ob� GA2Ob�XA� P(FA;B) (2.2)It is onvenient to write an element (x; p) of XA � P(FA;B) as xjp, a kind of \tagged word" { with xbeing the tag and p the word. The funtion � : T ! ObP is de�ned by�(xjp) := tgt(p) for xjp 2 T:The ation of P on T is given by right multipliationxjp � q := xjpq for xjp 2 T; q 2 ArrP when sr(q) = �(xjp):It is routine to verify that �(xjp � q) = tgt(q) and (xjp � q) � r = (xjp) � (qr), whenever these terms arede�ned, hene proving the following lemma.Lemma 2.4.4 T is a P-set.Now we de�ne some `rewriting proedures' whih require two types of rule.The �rst type is the `"-rules' R" � T � T . They are to ensure that the ation is an extension of theation of A { this is the requirement for " : X ! KF to be a natural transformation. For eah arrowa : A1 ! A2 in � we get a set of "-rules. In this set there is one rule for eah element x of XA1. FormallyR" := f(xjFa; x � ajidFA2)jx 2 XA1; a 2 �(A1; A2); A1; A2 2 Ob�g: (2.3)The other type is the `K-rules' RK � ArrP � ArrP: They are to ensure that the ation preserves thestruture of B { this is the requirement for K to be a funtor/ategory ation. These are simply therelations (l; r) of B, formally: RK := RelB: (2.4)Now de�neRinit := (R"; RK). This we all the initial rewrite system that results from the presentation.A rewrite system for a Kan presentation P is a pair R of sets RT , RP where RT � T � T andRP � ArrP�ArrP suh that for all (s; u) 2 RT , �(s) = �(u) and for all (l; r) 2 RP , sr(l) = sr(r) andtgt(l) = tgt(r).De�nition 2.4.5 The redution relation generated by a rewrite system R = (RT ; RP ) on the P-setT is de�ned as t1 !R t2 if and only if one of the following is true:11



i) There exist (s; u) 2 RT ; q 2 ArrP suh that t1 = s � q and t2 := u � q.ii) There exist (l; r) 2 RP , s 2 T , q 2 ArrP suh that t1 = s � lq and t2 = s � rq.Then we say t1 redues to t2 by the rule (s; u) or by (l; r) respetively.Note that !R is an admissible redution relation on T { the proof of this is part of the next lemma.The relation �!R is the reexive, transitive losure of !R, and �$R is the reexive, symmetri, transitivelosure of !R.Remark 2.4.6 Essentially, the rules of RP are two-sided and apply to any substring to the right of theseparator j. This distinguishes them from the one- sided rules of RT . The one-sided rules are not simply`tagged rewrite rules' (tags being the part to the left of j) beause the tags are being rewritten.Lemma 2.4.7 Let R be a rewrite system on a P-set T . Then �$R is an admissible equivalene relationon the P-set T .Proof By de�nition �$R is symmetri, reexive and transitive. Now let t1; t2 2 T be suh that t1 !R t2and let v 2 ArrP. be suh that sr(v) = �(t1). Then there are two possibilities. For the �rst ase suppose(i) there exist (s; u) 2 RT ; q 2 ArrP suh that t1 = s � q and t2 = u � q. Then it follows that t1 � v = s � qvand t2 � v = u � qv, (by P-set properties). For the seond ase suppose (ii) there exist s 2 T , (l1; r1) 2 RP ,q 2 ArrP suh that t1 = s � lq and t2 = s � rq. Then it follows that t1 � v = s � lqv and t2 � v = s � rqv.In either ase t1 � v !R t2 � v by the de�nition of !R. Therefore !R is admissible, and hene �$R isadmissible. 2Notation: the equivalene lass of t 2 T under �$R will be denoted [t℄.A Kan extension (K; ") is given by a set KB for eah B 2 Ob� and a funtionKb : KB1 ! KB2 for eahb : B1 ! B2 2 B, (de�ning the funtor K) together with a funtion "A : XA! KFA for eah A 2 ObA(the natural transformation). This information an be given in four parts: the set tKB, a funtion�� : tKB ! ObB, a partial funtion (ation) tKB � ArrP ! tKB and a funtion " : tXA ! tKB.Here tKB and tXA (by a small abuse of notation) are the disjoint unions of the sets KB, XA overObB, ObA respetively; ��(z) = B for z 2 KB and if sr(p) = B for p 2 ArrP then z � p is de�ned.Theorem 2.4.8 Let P = kanh�j�jRelBjXF i be a Kan extension presentation, and let P, T , Rinit =(R"; RK) be de�ned as above. Then the Kan extension (K; ") presented by P is given by the followingdata:i) the set tKB = T= �$R,ii) the funtion �� : tKB ! ObB indued by � : T ! ObP,iii) the ation of B on tKB indued by the ation of P on T ,iv) the natural transformation " determined by x 7! [xjidFA℄ for x 2 XA, A 2 ObA.Proof The initial rules R on T generate a redution relation ! on T . Let �$ denote the reexive,symmetri, transitive losure of !.Claim �$ preserves the funtion � .Proof Let [xjp℄ denote the lass of elements equivalent under �$ to xjp 2 T . We prove that $, thesymmetri losure of ! preserves � . Let t1; t2 2 T so that t1 $ t2. >From the de�nition of ! thereare two possible situations. For the �rst ase suppose that there exist (s1; s2) 2 R" suh that t1 = s1 � pand t2 = s2 � p for some p 2 ArrP. Clearly �(t1) = �(t2). For the other ase suppose that there exist12



(l; r) 2 RK suh that t1 = s � (lp) and t2 = s � (rp) for some s 2 T , p 2 ArrP. Again, it is lear that�(t1) = �(t2). Hene �� : T= �$R ! ObP is well-de�ned by �� [t℄ = �(t). 2Claim T= �$ is a B-set.Proof First we prove that B ats on the equivalene lasses of T with respet to �$. An arrow of B isan equivalene lass [p℄ of arrows of P with respet to RelB. It is required to prove that [t℄ � p := [t � p℄is a well de�ned ation of P on T= �$ suh that [t℄ � p = [t℄ � q for all p =RelB q. Let t 2 T; p 2 ArrP besuh that � [t℄ = sr[p℄ i.e. �(t) = sr(p). Then t � p is de�ned. Suppose s �$ t. Then [s � p℄ = [t � p℄ sines � p �$ t � p, whenever s � p; t � p are de�ned. Suppose p =RelB q. Then [t � p℄ = [t � q℄ sine t � p �$RK t � q,whenever t � p; t � q are de�ned and �$RelB is ontained in �$. Therefore P ats on T= �$ and this ationpreserves the relations of B and so de�nes an ation of B on T= �$. Furthermore ��([t℄ �p) = �� [t �p℄ = tgt(p)and if q 2 P suh that sr(q) = tgt(p) then ([t℄ � p) � q = [(t � p) � q℄ = [t � (pq)℄ = [t℄ � pq. 2The Kan extension may now be de�ned. For B 2 ObB de�neKB := f[xjp℄ : �� [xjp℄ = Bg: (2.5)For b : B1 ! B2 in B de�neKb : KB1 ! KB2 : [t℄ 7! [t � p℄ for [t℄ 2 KB1 where p 2 [b℄: (2.6)It is now routine to verify, sine p1 =RelB p2 implies t � p1 �$R t � p2, for all t where tdotp1 is de�ned,that this de�nition of the ation is a funtor K : B! Sets. Then de�ne" : X ! KF : x 7! [xjidFA℄ for x 2 XA;A 2 ObA: (2.7)It is straightforward to verify that this is a natural transformation sine xjidFA1 � Fa �$R x � ajidFA2 forall x 2 XA1, a : A1 ! A2 2 ObA.Therefore (K; ") is an extension of the ation X of A. The proof of the universal property of the extensionis as follows. Let K 0 : B! Sets be a funtor and "0 : X ! K 0F be a natural transformation. Then thereis a unique natural transformation � : K ! K 0, de�ned by�B[xjp℄ = K 0(f)("0A(x)) for [xjp℄ 2 KB;whih learly satis�es " Æ � = "0. 2Remark 2.4.9 If the Kan extension presentation is �nite then R is �nite. The number of initial rulesis by de�nition (�a2Arr�jXsr(a)j) + jRelBj.2.5 Rewriting Proedures for Kan ExtensionsIn the next setion we will explain the ompletion proess for the initial rewrite system. It is onvenientfor this proedure to have a notation for the implementation of the data struture for a �nite presentationP of a Kan extension. This we do here.2.5.1 Input DataObA This is a list of integers [1; 2; : : : ℄, where eah entry i orresponds uniquely to an objet Ai of �.ArrA This is a list of pairs of integers [[i1; j1℄; [i2; j2℄; : : : ℄, one for eah arrow ak : Aik ! Ajk of Arr�.The �rst element of eah pair is the soure of the arrow it represents, and the other entry is the target.13



ObB Similarly to Ob�, this is a list of integers representing the objets of �.ArrB This is a list of triples [[b1; i1; j1℄; [b2; i2; j2℄; : : : ℄, one triple for eah arrow bk : Bik ! Bjk ofArr�. The �rst entry of eah triple is a label for the arrow (in GAP this is alled a generator), and theother entries are integers representing the soure and target respetively. Note that the arrows of � didnot have labels. The arrows of � will form parts of the terms of T whilst those of � do not, so this iswhy we have labels here and not before.RelB This is a �nite list of pairs of paths. Eah path is represented by a �nite list [b1; b2; : : : ; bn℄ oflabels of omposable arrows of Arr�. In GAP it is onvenient to onsider these lists as words b1 � � � bnin the generators that are labels for the arrows of �.FObA This is a list of jOb�j integers. The kth entry represents the objet of � whih is the image ofthe objet Ak under F .FArrA This is a list of paths where the entry at the kth position is the path of P whih is the imageof the arrow ak of � under F . The length of the list is jArr�j.XObA This is a list of lists of distint (GAP) generators. There is one list of elements for eah objetin �. The list at position k represents the set whih is the image of Ak under X.XArrA This is a list of lists of generators. There is one list for eah arrow a of �. It represents theimage under the ation Xa of the set X(sr(a)). Suppose ak : Aik ! Ajk is the arrow at entry k inArr�, and [x1; x2; : : : ; xm℄ is the ith entry in XOb� (the image set X(Ai)). Then the kth entry ofXArr� is the list [x1 � a; x2 � a; : : : ; xm � a℄ where xi 2 X(Aj).Note: All the above lists are �nite sine the Kan extension is �nitely presented.2.5.2 Initial Rules ProedureThe programmed funtion InitialRules extrats from the above data the initial rewrite system Rinit :=(R"; RK).INPUT: (ObA,ArrA,ObB,ArrB,RelB,FObA,FArrA,XObA,XArrA);PROCEDURE: ans:=RelB;i:=1;while(i>Length(ArrA)) doa:=ArrA[i℄; ## arrowA:=a[1℄; ## soureXA:=XObA[Position(ObA,A)℄; ## setfor j in [1..Length(XA)℄ dox:=XA[j℄; ## elementxa:=XArrA[i℄[j℄; ## element after ationFa:=FArrA[i℄[j℄; ## image of arrowrule:=[[x,Fa℄,[xa℄℄; ## epsilon-ruleAdd(ans,rule);od;i:=i+1;od;OUTPUT: R:=ans; ## initial rewrite systemWe ontinue with the notation introdued so far, and apply the standard terminology of redutionrelations to the redution relation !R on T . 14



2.5.3 ListsIn our GAP implementation terms of T are represented by words in generators, the generators may bethought of as labels, and the words as lists. The �rst entry in the list must be a label for an element ofXA for some A 2 Ob�. The following entries will be labels for omposable arrows of �, with the soureof the �rst being FA. Formally:Let L be the set of lists l = [x; b1; : : : ; bn℄, n � 1, suh that p = b1 � � � bn is a redued path (i.e. withno identity arrows) of P and xjp 2 T or l = [x℄ and xjid�(x) 2 T . We will refer to List(t) as the uniquelist assoiated with the element t 2 T . We will make use of the omputer notation to extrat partiularelements of the list. So t[1℄ means the �rst element x when t = xjb1 � � � bn and t[2::5℄ is the sublist whihis [b1; : : : ; b4℄ in the example, whih is an arrow in P. Also, Length(t) means the number of elements inthe list t. A sublist of the list for a tagged string t 2 T will be referred to as a part of t.2.5.4 OrderingsTo work with a rewrite system R on T we will require ertain onepts of order on T . We show how touse an ordering >X on tXA together with an ordering >P on ArrP, these having ertain properties, toonstrut an ordering >T on T with the properties needed for the rewriting proedures.De�nition 2.5.1 A binary operation > on the set is alled a strit partial ordering if it is irreexive,antisymmetri and transitive.De�nition 2.5.2 Let >X be a strit partial ordering on the set tXA. It is alled a total ordering iffor all x; y 2 tXA either x >X y or y >X x or else x = y.De�nition 2.5.3 Let >P be a strit partial ordering on ArrP. It is alled a total path ordering if forall p; q 2 ArrP suh that sr(p) = sr(q) and tgt(p) = tgt(q) either p >P q or q >P p or else p = q.De�nition 2.5.4 The ordering >P is admissible on ArrP if p >P q ) upv >P uqv for all u; v 2 ArrPsuh that upv; uqv 2 ArrP.De�nition 2.5.5 An ordering > is well-founded on a set of elements if there is no in�nite sequenex1 > x2 > � � � . An ordering > is a well-ordering on a struture if it is well-founded and a total orderingwith respet to that struture.Lemma 2.5.6 Let >X be a well-ordering on the �nite set tXA and let >P be an admissible well-orderingon P. For t1; t2 2 T de�ne t1 >T t2 if( t1[2::Length(t1)℄ >P t2[2::Length(t2)℄ or t1[2::Length(t1)℄ = t2[2::Length(t2)℄ and t1[1℄ >X t2[1℄:Then >T is an admissible well-ordering on the P-set T .Proof It is straightforward to verify that irreexivity, antisymmetry and transitivity of >X and >Pimply those properties for >T . The ordering >T is admissible on T beause it is made ompatible withthe right ation (de�ned by omposition between arrows on P) by the admissibility of P on ArrP. Theordering is linear, sine if t1; t2 2 T suh that neither t1 >T t2 nor t2 >T t1, it follows by the linearity of>X and linearity of >P on ArrP that t1 = t2. That >T is well-founded is easily veri�ed using the fatthat any in�nite sequene in terms of >T implies an in�nite sequene in either >X or >P and >X and>P are both well-founded, so there are no suh sequenes. 2The last result shows that there is some sope for hoosing di�erent orderings on T . The atual hoie iseven wider than this but it is not relevant to disuss this here. We are not onerned here with onsidering15



ranges of possible orderings, but work with the one that is most straightforward to use. The orderingimplemented is a variation on the above. It orresponds to the length-lexiographial ordering and isde�ned in the following way.De�nition 2.5.7 (Implemented Ordering) Let >X be any linear order on (the �nite set) tXA. Let>� be a linear ordering on (the �nite set) Arr�. This indues an admissible ordering >P on ArrP wherep >P q if and only if Length(p) > Length(q) or Length(p) = Length(q) and there exists k > 0 suhthat p[i℄ >� q[i℄ for all i < k and p[k℄ = q[k℄. The ordering >T is then de�ned as follows: t1 >T t2 ifLength(t1) > Length(t2) or if Length(t1) = Length(t2) and t1[1℄ >X t2[1℄, or if Length(t1) = Length(t2)and there exists k 2 [1::Length(t1)℄ suh that t1[i℄ = t2[i℄ for all i < k and t1[k℄ >� t2[k℄.Proposition 2.5.8 The de�nitions above give an admissible, length-non-inreasing well-order >T on theP-set T .Proof It is immediate from the de�nition that >T is length-non-inreasing. It is straightforward toverify that >T is irreexive, antisymmetri and transitive. It an also be seen that >T is linear (supposeneither t1 >T t2 nor t2 >T t1 then t1 = t2, by the de�nition, and linearity of >X , >�). It is learfrom the de�nition that >T is admissible on the P-set T (if t1 >T t2 then t1:p >T t2:p). To provethat >T is well-founded on T , suppose that t1 >T t2 >T t3 >T � � � is an in�nite sequene. Then foreah i > 0 either Length(ti) > Length(ti+1) or if Length(ti) = Length(ti+1) and ti[1℄ >X ti+1[1℄, or ifLength(ti) = Length(ti+1) and there exists k 2 [1::Length(ti)℄ suh that ti[j℄ = ti+1[j℄ for all j < k andti[k℄ >� ti+1[k℄. This implies that there is an in�nite sequene of type n1 > n2 > n3 > � � � of positiveintegers from some �nite n1, or of type x1 >X x2 >X x3 > � � � of elements of tXA or else of typep1 >� p2 >� p3 >� � � � of arrows of �, none of whih is possible as >, >X , and >� are well-founded onN, tXA and Arr� respetively. Hene >T is well-founded. 2Proposition 2.5.9 Let >T be the order de�ned above. Then p1 >P p2 ) s � p1 >T s � p2.Proof This follows immediately from the de�nition of >T . 2Remark 2.5.10 The proposition an also be proved for the earlier de�nition of >T indued from >Xand >P .2.5.5 RedutionNow that we have de�ned an admissible well-ordering on T it is possible to disuss when a redutionrelation generated by a rewrite system is ompatible with this ordering.Lemma 2.5.11 Let R be a rewrite system on T . Orientate the rules of R so that for all (l; r) in R, ifl; r 2 ArrP then l >P r and if l; r 2 T then l >T r. Then the redution relation !R generated by R isompatible with >T .Proof Let t1; t2 2 T suh that t1 !R t2. There are two ases to be onsidered 2.4.2. For the �rst aselet t1 = s1 � p, t2 = s2 � p for some s1; s2 2 T , p 2 ArrP suh that (s1; s2) 2 R. Then s1 >T s2. It followsthat t1 >T t2 sine >T is admissible on T . For the seond ase let t1 = s � p1q, t2 = s � p2q for some s 2 T ,p1; p2; q 2 ArrP suh that (p1; p2) 2 T . Then p1 >P p2 and so by Proposition 2.5.9 s � p1 >T s � p2. Henet1 >T t2 by admissibility of >T on T . Therefore, in either ase t1 >T t2 so!R is ompatible with >T . 2
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Remark 2.5.12 A redution is the replaement of a part of a tagged string xjp 2 T aording to a ruleof R. Rules from RT replae the tag xj and part of the string p whilst rules from RP replae substringsof p. The redution relation !R is the suessive replaement of parts of a tagged string.It is a standard result that if a redution relation is ompatible with an admissible well-ordering, thenit is Noetherian. The next pseudo program shows the funtion Redue whih returns from a term t 2 Tand a rewrite system R � T � T tArrP�ArrP a term tn 2 [t℄ whih is irreduible with respet to !R.INPUT:(t,R);PROCEDURE: new:=t; old:=[℄;while not(new=old) doold:=new;for rule in R dolhs:=rule[1℄; rhs:=rule[2℄;if lhs is a sublist of newreplae lhs in new by rhsfi;od;od;OUTPUT: tn # irreduible term in T #2.5.6 Critial PairsWe an now disuss what properties of R will make !R a omplete (i.e. Noetherian and onuent)redution relation. By standard abuse of notation the rewrite system R will be alled omplete when!R is omplete. In this ase �$R admits a normal form funtion.Lemma 2.5.13 (Newman's Lemma) A Noetherian redution relation on a set is onuent if it isloally onuent [3℄.Hene, if R is ompatible with an admissible well-ordering on T and !R is loally onuent then !Ris omplete. By orientating the pairs of R with respet to the hosen ordering >T on T , R is made tobe Noetherian. The remaining problem is testing for loal onuene of !R and hanging R in order toobtain an equivalent onuent redution relation.We will now explain the notion of ritial pair for a rewrite system for T , extending the traditional notionto out situation. In partiular the overlaps involve either just RT , or just RP or an interation betweenRT and RP .A term rit 2 T is alled ritial if it may be redued by two or more di�erent rules i.e. rit!R rit1,rit !R rit2 and rit1 6= rit2. The pair (rit1; rit2) resulting from two single-step redutions of thesame term is alled a ritial pair. A ritial pair for a redution relation !R is said to resolve ifthere exists a term res suh that both rit1 and rit2 redue to a ommon term res i.e. rit1 �!R res,rit2 �!R res.We now de�ne overlaps of rules for our type of rewrite system, and show how eah kind results in aritial pair of the redution relation. Let R = (RT ; RP ) be a rewrite system, where RT � T � T andRP � ArrP�ArrP.De�nition 2.5.14 Let (rule1; rule2) be a pair of rules of R suh that rule1 and rule2 may both beapplied to the same term rit in suh a way that there is a part of the term rit that is a�eted by both17



the rules. When this ours the rules are said to overlap. There are �ve types of overlap for this kindof rewrite system.Suppose rule1; rule2 2 RT . Put rule1 := (s1; u1), rule2 := (s2; u2). Then there is one type of overlap:i) s1 = s2 � q for some q 2 ArrP; with resulting ritial pair (u1; u2 � q):Suppose rule1; rule2 2 RP . Put rule1 := (l1; r1), rule2 := (l2; r2). Then there are two possible types ofoverlap: ii) l1 = pl2q for some p; q 2 ArrP; with resulting ritial pair (r1; pr2q):iii) l1q = pl2 for some p; q 2 ArrP; with resulting ritial pair (r1q; pr2):Suppose rule1 2 RT , rule2 2 RP . Put rule1 := (s1; u1), rule2 := (l1; r1). Then there are two possibletypes of overlap:iv) s1 � q = s � l1 for some s 2 T; q 2 ArrP; with resulting ritial pair (u1 � q; s � r1):v) s1 = s � (l1q) for some s 2 T; q 2 ArrP; with resulting ritial pair (u1; s � r1q):One pair of rules may overlap in more than one way, giving more than one ritial pair. For example therules (xja2ba; yjba) and (a2; b) overlap with ritial term xja2ba and ritial pair (yjba; xjb2a) and alsowith ritial term xja2ba2 and ritial pair (yjba2; xja2b2).Lemma 2.5.15 Let R be a �nite rewrite system on the P-set T . If (t1; t2) is a ritial pair then either thepair resolves immediately or there is an overlap between two rules (rule1; rule2) suh that if the ritialpair (rit1; rit2) resulting from that overlap resolves then (t1; t2) resolves.Proof Let (t1; t2) be a ritial pair. Then there exists a ritial term t and two rules rule1, rule2 suhthat t redues to t1 with respet to rule1 and to t2 with respet to rule2. There are seven ases thatmust be onsidered.Suppose rule1 := (s1; u1); rule2 := (s2; u2) 2 RT . Then the rules must overlap on t as shown:u1 u2j q vvand there exist q; v 2 ArrP suh that t = s1 � qv = s2 � v and then t1 = u1 � qv and t2 = u2 � v. The ritialpair resulting from this overlap (i) is (u1 � q; u2) and if this resolves to a ommon term r then (t1; t2)resolves to r � v.Suppose rule1 := (l1; r1), rule2 := (l2; r2) 2 RP . Then there are three possible ways in whih the rulesmay apply to t. In the �rst ase the rules do not overlap:ssj r1l1 pp r2l2 qqand there exist s 2 T , p; q 2 ArrP suh that t = s � l1p l2q and then t1 = s � r1p l2q and t2 = s � l1pr2q.The pair (t1; t2) immediately resolves to u � r1pr2q by applying rule2 to t1 and rule1 to t2.18



In the seond ase one rule is ontained within the other:ssj r1p l2 q vvand there exist s 2 T , p; q; v 2 ArrP suh that t = s � l1v = s �p l2qv and then t1 = s �r1v and t2 = s �pr2qv.The ritial pair resulting from the overlap of the rules (ii) is (r1; pr2q) and if this resolves to a ommonterm r then (t1; t2) resolves to s � rv.In the third ase one part of the term is hanged by both rules:ssj r1p r2 q vvand there exist s 2 T , p; q; v 2 ArrP suh that t = s � l1qv = s �pl2v and then t1 = s �r1qv and t2 = s �pr2v.The ritial pair resulting from the overlap of the rules (iii) is (r1q; pr2) and if this resolves to a ommonterm r then (t1; t2) resolves to s � rv.Suppose �nally that rule1 := (s1; u1) 2 RT and rule2 := (l1; r1) 2 RP . Then there are (again) threepossible ways in whih the rules may apply to t. In the �rst ase the rules do not overlap:s1u1j pp r1l1 qqand there exist p; q 2 ArrP suh that t = s1 � pl1q and then t1 = u1 � pl1q and t2 = s1 � pr1q. The pair(t1; t2) immediately resolves to u1 � pr1q by applying rule2 to t1 and rule1 to t2.In the seond ase one rule is ontained within the other:s u1j r1 q vvand there exist s 2 T , q; v 2 ArrP suh that t = s1v = s � l1qv and then t1 = u1v and t2 = sr1qv. Theritial pair resulting from the overlap of the rules (iv) is (u1; s � r1q) and if this resolves to a ommonterm r then (t1; t2) resolves to r � v.In the third ase there is one part of the term hanged by both rules:s u1j r1 q vvand there exist s 2 T , q; v 2 ArrP suh that t = s1 � qv = s � l1v and then t1 = u1 � qv and t2 = s � r1v. Theritial pair resulting from the overlap of the rules (v) is (u1 � q; s � r1) and if this resolves to a ommonterm r then (t1; t2) resolves to r � v.Thus we have onsidered all possible ways in whih a term may be redued by two di�erent rules, andshown that resolution of the ritial pair (when not immediate) depends upon the resolution of the ritialpair resulting from a partiular overlap of the rules. 219



Corollary 2.5.16 If all the overlaps between rules of a rewrite system R on T resolve then all the ritialpairs for the redution relation !R resolve, and so !R is onuent.Proof Immediate from the Lemma. 2Lemma 2.5.17 All overlaps of a pair of rules of R an be found by looking for two types of overlapbetween the lists representing the left hand sides of rules.Proof Let rule1 = (l1; r1) and rule2 = (l2; r2) be a pair of rules. Reall that List(t) is the representa-tion of a term t 2 T as a list. The �rst type of list overlap ours when List(l2) is a sublist of List(l1)(or vie-versa). This happens in ases (i), (ii) and (v). The seond type of list overlap ours when theend of List(l1) mathes the beginning of List(l2) (or vie-versa). This happens in ases (iii) and (iv). 2The program for �nding overlaps and the resulting ritial pairs is alled CritialPairs. The outline ofpart of it is reprodued here: Let rule1 := (l1; r1) and rule2 := (l2; r2) be a pair of rules. The programompares rule1 with rule2 to look for overlaps. This part of the program shows how to determine whetherl1 ontains l2 or the beginning of l1 overlaps with the end of l2. To �nd other ritial pairs the programan ompare rule2 with rule1.l1 := List(l1); len1 := Length(l1);l2 := List(l2); len2 := Length(l2);# Searh for type 1 pairs (l2 is ontained in l1).if len1 >= len2 thenfor i in [1..len1-len2℄ doif l1{[i..i+len2-1℄} = l2 thenif i=1 then u := IdWord;else u := Produt( Sublist(l1,1,i-1) );if i+len2-1 = len1 then v := IdWord;else v := Produt( Sublist(l1,i+len2,len1) );[ u*r2*v, r1 ℄ ## ritial pair found# Searh for type 2 pairs: (right of l1 overlaps the left of l2)for i in [1..len1℄ dowhile not( i>len1 or i>len2 ) doif ( l1{[len1-i+1..len1℄} = l2{[1..i℄} ) thenif i = len1 then u := IdWord;else u := Produt( Sublist(l1,1,len1-i) );if i = len2 then v := IdWord;else v := Produt( Sublist(l2,i+1,len2) );[ r1*v, u*r2 ℄ ## ritial pair foundIt has now been proved that all the ritial pairs of a �nite rewrite system R on T an be listed. To testwhether a ritial pair resolves, eah side of it is redued using the funtion Redue. If Redue returnsthe same term for eah side then the pair resolves.2.5.7 Completion ProedureWe have shown how to (i) �nd overlaps between rules of R and (ii) test whether the resulting ritialpairs resolve. Further we have shown that if all ritial pairs for R resolve then !R is onuent. Wenow show that ritial pairs whih do not resolve may be added to R without a�eting the equivaleneR de�nes on T . 20



Lemma 2.5.18 Any ritial pair (rit1; rit2) of a rewrite system R may be added to the rewrite systemwithout hanging the equivalene relation �$R.Proof This result is proved by onsidering any ritial pair (t1; t2). By de�nition this pair is the resultof two di�erent single-step redutions being applied to a ritial term t. Therefore t!R t1 and t!R t2.It is immediate that t1 �$Rt �$Rt2, and so adding (t1; t2) to R does not add anything to the equivalenerelation �$. 2We have now set up and proved everything neessary for a variant of the Knuth-Bendix proedure, whihwill add rules to a rewrite system R resulting from a presentation of a Kan extension, to attempt to �ndan equivalent omplete rewrite system. The bene�t of suh a system is that !R then ats as a normalform funtion for �$R on T .Theorem 2.5.19 Let P = h�j�jRelBjXjF i be a �nite presentation of a Kan extension (K; "). LetP := P�, T := GB2Ob� GA2Ob�XA� P(FA;B);and let R = (R"; RP ) be the initial rewrite system for P on T . Let >T be an admissible well-orderingon T . Then there exists a proedure whih, if it terminates, will return a rewrite system RC whih isomplete with respet to >T suh that the admissible equivalene relations �$RC and �$R oinide.Proof The proedure �nds all ritial pairs resulting from overlaps of rules of R. It attempts to resolvethem. When they do not resolve it adds them to the system as new rules. Critial pairs of the new systemare then examined. When all the ritial pairs of a system resolve, then the proedure terminates, the�nal rewrite system RC obtained is omplete. This proedure has been veri�ed in the preeding resultsof this setion. 2INPUT: (R,>T);PROCEDURE: NEW:=R; OLD:=[℄;while not OLD=NEW doCRIT:=CritialPairs(R)for rit in CRIT dorit[1℄:=Redue(rit[1℄,R);rit[2℄:=Redue(rit[2℄,R);if rit[1℄=rit[2℄ then Remove(CRIT,rit);if rit[1℄<rit[2℄ then rit:=(rit[2℄,rit[1℄);od;Add(NEW,CRIT);od;OUTPUT: NEW; ## omplete rewrite system.The whole proedure, whih takes as input the presentation of a Kan extension and yields as output aomplete rewrite system with respet to the ordering >T , when this an be found, has been implementedin GAP in the �le kan:g. We will now briey disuss how to interpret a omplete rewrite system on T ,supposing that the program has returned one.2.6 Interpreting the Output2.6.1 Finite Enumeration of the Kan ExtensionWhen every set KB is �nite we may atalogue the elements of all of the sets tKB in stages. The�rst stage onsists of all the elements xjidFA where x 2 XA for some A 2 Ob�. These elements are21



onsidered to have length zero. The next stage builds on the set of irreduible elements from the lastblok to onstrut elements of the form xjb where b : FA ! B for some B 2 Ob�. This is e�etivelyating on the sets with the generating arrows to de�ne new (irreduible) elements of length one. Thenext builds on the irreduibles from the last blok by ating with the generators again. When all theelements of a blok of elements of the same length are reduible then the enumeration terminates (anylonger term will ontain one of these terms and therefore be reduible). The set of irreduibles is a set ofnormal forms for tKB. The subsets KB of tKB are determined by the funtion �� , i.e. if xjb1 � � � bn isa normal form in tKB and �(xjb1 � � � bn) := tgt(bn) = Bn then xjb1 � � � bn is a normal form in KBn. Ofourse if one of the sets KB is in�nite then this may prevent the enumeration of other �nite sets KBi.The same problem would obviously prevent a Todd-Coxeter ompletion. This ataloguing method onlyapplies to �nite Kan extensions. It has been implemented in the funtion kan, whih urrently has anenumeration limit of 1000 on tKB set in the program. If this limit is exeeded, the program returns theompleted rewrite system { provided the ompletion proedure terminates.2.6.2 Regular Expression for the Kan ExtensionLet R be a �nite omplete rewrite system on T for the Kan extension (K; "). Then the theory of languagesand regular expressions may be applied. The set of irreduibles in T is found after the onstrution ofan automaton from the rewrite system and the derivation of a language from this automaton. Details ofthis method may be found in Chapter Four.2.6.3 Iterated Kan ExtensionsOne of the pleasant features of this proedure is that the input and output are of similar form. Theonsequene of this is that if the extended ation K has been de�ned on � then given a seond funtorG0 : B! C and a presentation ath�jRelCi for C it is straightforward to onsider a presentation for theKan extension data (K 0; G0). This new extension is in fat the Kan extension with data (X 0; F 0 ÆG0)Lemma 2.6.1 Let kanh�j�jRelBjXjF i be a presentation for a Kan extension (K; "). Then letath�jRelCi present a ategory C and let G0 : B! C. Then the Kan extension presented bykanh�j�jRelCjXjF ÆGji is equal to the Kan extension presented by kanh�j�jRelCjKjGi.Proof Let kanh�j�jRelBjXjF i present the Kan extension data (X 0; F 0) for the Kan extension (K; ").Let C be a ategory �nitely presented by ath�jRelCi and let G0 : B ! C. Then kanh�j�jRelCjKjGipresents the Kan extension data (K 0; G0) for the Kan extension (L; �).We require to prove that (L; " Æ �) is the Kan extension presented by kanh�j�jRelCjXjF Æ Gi havingdata (X 0; F 0 ÆG0). It is lear that (L; � Æ �) de�nes an extension of the ation X along F ÆG beause Lde�nes an ation of C and " Æ � : X ! F ÆG Æ L is a natural transformation.For the universal property, let (M;�) be another extension of the ation X along F ÆG. Then onsider thepair (G ÆM;�), it is an extension of X along F . Therefore there exists a unique natural transformation� : X ! F Æ G ÆM suh that " Æ � = � by universality of (K; "). Now onsider the pair (M;�), it isan extension of K along G. Therefore there exists a unique natural transformation � : L ! M suhthat � Æ � = � by universality of (L; �). Therefore � is the unique natural transformation suh that" Æ � Æ � = �, whih proves the universality of the extension (L; " Æ �). 2
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2.7 Example of the Rewriting Proedure for Kan ExtensionsLet A and B be the ategories generated by the graphs below, where B has the relation b1b2b3 = b4.A1 a1 ** A2a2jj B1b4 ** b1 //b5 ''

B2b2~~||||||||B3b3``BBBBBBBBLet X : A! Sets be de�ned by XA1 = fx1; x2; x3g; XA2 = fy1; y2g withXa1 : XA1 ! XA2 : x1 7! y1; x2 7! y2; x3 7! y1,Xa2 : XA1 ! XA2 : y1 7! x1; y2 7! x2;and let F : A ! B be de�ned by FA1 = B1; FA2 = B2; Fa1 = b1 and Fa2 = b3b2. The input to theomputer program takes the following form. First we set up the variables:gap> F := FreeGroup("b1","b2","b3","b4","b5","x1","x2","x3","y1","y2");;gap> b1 := F.1;; b2 := F.2;; b3 := F.3;; b4 := F.4;; b5 := F.5;;gap> x1 := F.6;; x2 := F.7;; x3 := F.8;; y1 := F.9;; y2 := F.10;;Then we input the data:gap> ObA := [1,2℄;;gap> ArrA := [ [1,1℄, [2,2℄ ℄;;gap> ObB := [1,2,3℄;;gap> ArrB := [ [b1,1,2℄, [b2,2,3℄, [b3,3,1℄, [b4,1,1℄, [b5,1,3℄ ℄;;gap> RelB := [ [b1*b2*b3,b4℄ ℄;;gap> FObA := [1,2℄;;gap> FArrA := [b1,b2*b3℄;;gap> XObA := [ [x1,x2,x3℄, [y1,y2℄ ℄;;gap> XArrA := [ [y1,y2,y1℄,[x1,x2℄ ℄;;To ombine all this data in one reord do:gap> KAN := re( ObA:=ObA, ArrA:=ArrA, ObB:=ObB, ArrB:=ArrB, RelB:=RelB,FObA:=FObA, FArrA:=FArrA, XObA:=XObA, XArrA:=XArrA );;To alulate the initial rules dogap> IR := InitialRules( KAN );The output will bei= 1, XA= [ x1, x2, x3 ℄, Ax= x1, rule= [ x1*b1, y1 ℄i= 1, XA= [ x1, x2, x3 ℄, Ax= x2, rule= [ x2*b1, y2 ℄i= 1, XA= [ x1, x2, x3 ℄, Ax= x3, rule= [ x3*b1, y1 ℄i= 2, XA= [ y1, y2 ℄, Ax= y1, rule= [ y1*b2*b3, x1 ℄i= 2, XA= [ y1, y2 ℄, Ax= y2, rule= [ y2*b2*b3, x2 ℄[ [ b1*b2*b3, b4 ℄, [ x1*b1, y1 ℄, [ x2*b1, y2 ℄, [ x3*b1, y1 ℄,[ y1*b2*b3, x1 ℄, [ y2*b2*b3, x2 ℄ ℄This means that there are �ve initial "-rules from: ( x1jFa1; x1:a1jidFA2 ); ( x2jFa1; x2:a1jidFA2 );( x3jFa1; x3:a1jidFA2 ); ( y1jFa2; y1:a1jidFA1 ); ( y2jFa2; y2:ja11FA1 ); i.e. x1jb1 ! y1jidB2 ; x2jb1 !y2jidB2 ; x3jb1 ! y1jidB2 ; y1jb2b3 ! x1jidB1 ; y2jb2b3 ! x2jidB1 and one initial K-rule: b1b2b3 ! b4. Toattempt to omplete the Kan extension presentation do:23



gap> KB( IR );The output is:[ [ x1*b1, y1 ℄, [ x1*b4, x1 ℄, [ x2*b1, y2 ℄, [ x2*b4, x2 ℄, [ x3*b1, y1 ℄,[ x3*b4, x1 ℄, [ b1*b2*b3, b4 ℄, [ y1*b2*b3, x1 ℄, [ y2*b2*b3, x2 ℄ ℄In other words to omplete the system we have to add the rulesx1jb4 ! x1; x2jb4 ! x2; and x3jb4 ! x1:The result of attempting to ompute the sets by doing:gap> Kan(KAN);is a long list and then:enumeration limit exeeded: omplete rewrite system is:[ [ x1*b1, y1 ℄, [ x1*b4, x1 ℄, [ x2*b1, y2 ℄, [ x2*b4, x2 ℄, [ x3*b1, y1 ℄,[ x3*b4, x1 ℄, [ b1*b2*b3, b4 ℄, [ y1*b2*b3, x1 ℄, [ y2*b2*b3, x2 ℄ ℄This means that the sets KB for B in B are too large (the limit set in the program is 1000). In fat thisexample is in�nite. The omplete rewrite system is output instead of the sets. We an in fat use this toobtain regular expressions for the sets. In this ase the regular expressions are:KB1 := (x1 + x2 + x3)j(b5(b3b4�b5)�b3b4� + idB1):KB2 := (x1 + x2 + x3)jb5(b3b4�b5)�b3b4�(b1) + (y1 + y2)jidB2 :KB3 := (x1 + x2 + x3)jb5(b3b4�b5)�(b3b4�b1b2 + idB3) + (y1 + y2)jb2:The ations of the arrows are de�ned by onatenation followed by redution. For example x1jb5b3b4b4b5is an element of KB3, so b3 ats on it to give x1jb5b3b4b4b5b3 whih is irreduible, and an element of KB1.Details of how, in general, to obtain regular expressions will be given in Chapter Four.2.8 Speial Cases of the Kan Rewriting Proedure2.8.1 Groups and MonoidsORIGINAL PROBLEM: Given a monoid presentation monh�jReli, �nd a set of normal forms for themonoid presented.KAN INPUT DATA: Let � be the graph with one objet and no arrows. Let X� be a one point set. LetB be generated by the graph � with one objet and arrows labelled by �, it has relations RelB given bythe monoid relations. The funtor F maps the objet of � to the objet of �.KAN EXTENSION: The Kan extension presented by kanh�j�jRelBjXjF i is suh that K� is a set ofnormal forms for the elements of the monoid, the arrows of B (elements of PX) at on the right of B byright multipliation. The natural transformation " makes sure that the identity of B ats trivially andhelps to de�ne the normal form funtion. The normal form funtion is w 7! "�(1) � (w) := Kw("�(1)).In this ase the method of ompletion is the standard Knuth-Bendix proedure used for many years forworking with monoid presentations of groups and monoids. This type of alulation is well doumented.
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2.8.2 Groupoids and CategoriesORIGINAL PROBLEM: To speify a set of normal forms for the elements of a groupoid or ategorygiven by a �nite ategory presentation ath�jReli.KAN INPUT DATA: Let � be the disrete graph with no arrows and objet set equal to Ob�. Let XAbe a distint one objet set for eah A 2 Ob�. Let B be the ategory generated by � := � with relationsRelB := Rel. Let F be de�ned by the identity map on the objets.KAN EXTENSION: Then the Kan extension presented by kanh�j�jRelBjXjF i is suh that KB is aset of normal forms for the arrows of the ategory with target B, the arrows of B (elements of P�)at on the right of B by right multipliation. The natural transformation " makes sure that the iden-tities of B at trivially and helps to de�ne the normal form funtion. The normal form funtion isw 7! "A � (w) := Kw("A).Example 2.8.1 Consider the group S3 presented by hx; yjx3; y2; xyxyi: The elements arefid; x; y; x2; xy; yxg. The overing groupoid is generated by the Cayley graph. The 12 generating arrowsof the groupoid are G�X:f[id; x℄; [x; x℄; [y; x℄; : : : ; [yx; x℄; [id; y℄; [x; y℄; : : : ; [yx; y℄g:To make alulations learer, we relabel them fa1; a2; a3; : : : ; a6; b1; b2; : : : ; b6g.The groupoid has 18 relators G�R { the boundaries of irreduible yles of the graph. The yles maybe written [id; x3℄ and the orresponding boundary is [id; x℄[x; x℄[x2; x℄ i.e. a1a2a4. For the ategorypresentation of the group we ould add in the inverses fA1; A2; : : : ; A6; B1; B2; : : : ; B6g with the relatorsA1a1 and a1A1 et and end up with a ategory presentation with 24 generators and the 42 relations. Inthis ase however the groupoid is �nite and so there is no need to do this. For example there would beno need for A2 beause (a2)�1 = a4a1. x2a4
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Now suppose the left hand sides of two rules overlap (for example (a1a2a4; id) and (a4b1a3b6; id)) in oneof the two possible ways previously desribed then we have a ritial pair (b1a3b6; a1a2) ). The followingis GAP output of the ompletion of the rewrite system for the overing groupoid of our example:gap> Rel; ## Input rewriting system:[ [ a1*a2*a4, IdWord ℄, [ a2*a4*a1, IdWord ℄, [ a4*a1*a2, IdWord ℄,[ a3*a6*a5, IdWord ℄, [ a6*a5*a3, IdWord ℄, [ a5*a3*a6, IdWord ℄,[ b1*b3, IdWord ℄, [ b3*b1, IdWord ℄, [ b2*b5, IdWord ℄,[ b5*b2, IdWord ℄, [ b4*b6, IdWord ℄, [ b6*b4, IdWord ℄,[ a1*b2*a5*b3, IdWord ℄, [ a2*b4*a6*b5, IdWord ℄,25



[ a3*b6*a4*b1, IdWord ℄, [ a4*b1*a3*b6, IdWord ℄,[ a5*b3*a1*b2, IdWord ℄, [ a6*b5*a2*b4, IdWord ℄ ℄gap> KB( Rel ); ## Completed rewriting system:[ [ b1*b3, IdWord ℄, [ b2*b5, IdWord ℄, [ b3*b1, IdWord ℄,[ b4*b6, IdWord ℄, [ b5*b2, IdWord ℄, [ b6*b4, IdWord ℄,[ a1*a2*a4, IdWord ℄, [ a1*a2*b4, b1*a3 ℄, [ a1*b2*a5, b1 ℄,[ a2*a4*a1, IdWord ℄, [ a2*a4*b1, b2*a5 ℄, [ a2*b4*a6, b2 ℄,[ a3*a6*a5, IdWord ℄, [ a3*a6*b5, b3*a1 ℄, [ a3*b6*a4, b3 ℄,[ a4*a1*a2, IdWord ℄, [ a4*a1*b2, b4*a6 ℄, [ a4*b1*a3, b4 ℄,[ a5*a3*a6, IdWord ℄, [ a5*a3*b6, b5*a2 ℄, [ a5*b3*a1, b5 ℄,[ a6*a5*a3, IdWord ℄, [ a6*a5*b3, b6*a4 ℄, [ a6*b5*a2, b6 ℄,[ b1*a3*a6, a1*b2 ℄, [ b1*a3*b6, a1*a2 ℄, [ b2*a5*a3, a2*b4 ℄,[ b2*a5*b3, a2*a4 ℄, [ b3*a1*a2, a3*b6 ℄, [ b3*a1*b2, a3*a6 ℄,[ b4*a6*a5, a4*b1 ℄, [ b4*a6*b5, a4*a1 ℄, [ b5*a2*a4, a5*b3 ℄,[ b5*a2*b4, a5*a3 ℄, [ b6*a4*a1, a6*b5 ℄, [ b6*a4*b1, a6*a5 ℄ ℄It is possible from this to enumerate elements of the ategory. One method is to start with all theshortest arrows (a1; a2; : : : ; b6) and see whih ones redue and build indutively on the irreduible ones:Firstly we have the six identity arrows idid; idx; idy; idx2 ; idxy; idyx.Then the generators a1; a2; a3; a4; a5; a6; b1; b2; b3; b4; b5; b6 are all irreduible.Now onsider paths of length 2:a1a2; a1b2; a2a4; a2b4; a3a6; a3b6; a4a1; a4b1; a5a3; a5b3; a6a5; a6b5; b1a3; b1b3 ! idid;b2a5; b2b5 ! idx; b3a1; b3b1 ! idy; b4a6; b4b6 ! idx2 ; b5a2; b5b2 ! idxy; b6a4; b6b4 ! idyx.Building on the irreduible paths we get the paths of length 3: a1a2a4 ! idid; a1a2b4 ! b1a3;a1b2a5 ! b1; a1b2b5 ! a1; a2a4a1 ! idx; : : :All of them are reduible, and so we an't build any longer paths; the overing groupoid has 30 morphismsand 6 identity arrows and is the tree groupoid with six objets.Example 2.8.2 This is a basi example to show how it is possible to speify the arrows in an in�nitesmall ategory with a �nite omplete presentation. Let C be the ategory generated by the followinggraph � �A a // �Bb ��  // �Cd``with the relations b2 = ; ab2 = a. This rewriting system is omplete, and so we an determine whethertwo arrows in the free ategory P� are equivalent in C. An automaton an be drawn (see hapter 3),and from this we an speify the language whih is the set of normal forms. It is in fata(d(ad) � ab+ bd(ad) � ab) + by + d(ad)�ab+ d(ad)�ab(and the three identity arrows) where (ad)� is used to denote the set of elements of fadg� (similarly by),so d(ad)�, for example, denotes the set fd; dad; dadad; dadadad; : : : g, + denotes the union and �the di�erene of sets. This is the standard notation of languages and regular expressions.2.8.3 Coset systems and CongruenesORIGINAL PROBLEM: Given a �nitely presented group G and a �nitely generated subgroup H �nd aset of normal forms for the oset representatives of G with respet to H.KAN INPUT DATA: Let � be the one objet graph � with arrows labelled by the subgroup generators.Let X� be a one point set on whih the arrows of � at trivially. Let B be the ategory generated by the26



one objet graph � with arrows labelled by the group generators, with the relations RelB of B being thegroup relations. Let F be de�ned on � by inlusion of the subgroup elements to the group.KAN EXTENSION: The Kan extension presented by kanh�j�jRelBjXjF i is suh that the set K� is aset of representatives for the osets, Kb de�nes the ation of the group on the osets Hg 7! Hgb and"� maps the single element of X� to the representative for H in K�. Therefore it follows that the Kanextension de�ned is omputable if and only if the oset system is omputable.In the monoidal ase F is the inlusion of the submonoid A of the monoid B, and the ation is trivial asbefore. The Kan extension of this ation gives the quotient of B by the right ongruene generated by A,namely the equivalene relation generated by ab � b for all a 2 A; b 2 B, with the indued right ation of B.It is appropriate to give a alulated example here. The example is in�nite so standard Todd-Coxetermethods will not terminate, but the Kan extension / rewriting proedures enable the omplete spei�-ation of the oset system.Example 2.8.3 Let B represent the in�nite group presented bygrpha; b;  j a2b = ba; a2 = a; 3b = ab; aa = biand let A represent the subgroup generated by f2g.We obtain one initial "-rule (beause A has one generating arrow) i.e. Hj2 ! Hjid:We also have four initial K-rules orresponding to the relations of B:a2b! ba; a2! a; 3b! ab; aa! b:Note: On ompletion of this rewriting system for the group, we �nd 24 rules and for all n 2 N both anand n are irreduibles with respet to this system (one way to prove that the group is in�nite).The �ve rules are ombined and an in�nite omplete system for the Kan extension of the ation is easilyfound (using Knuth-Bendix with the length-lex order). The following is the GAP output of the set of 32rules:[ [ H*b, H*a ℄, [ H*a^2, H*a ℄, [ H*a*b, H*a ℄, [ H**a, H*a* ℄,[ H**b, H*a* ℄, [ H*^2, H ℄, [ a^2*b, b*a ℄, [ a^2*, *a ℄,[ a*b^2, b^2 ℄, [ a*b*, *b ℄, [ a**b, *b ℄, [ b*a^2, b*a ℄,[ b*a*b, b^2 ℄, [ b*a*, *b ℄, [ b^2*a, b^2 ℄, [ b**a, *b ℄,[ b**b, b^2* ℄, [ *a*b, *b ℄, [ *b*a, *b ℄, [ *b^2, b^2* ℄,[ *b*, b^2 ℄, [ ^2*b, b^2 ℄, [ H*a**a, H*a* ℄, [ H*a*^2, H*a ℄,[ b^4, b^2 ℄, [ b^3*, *b ℄, [ b^2*^2, b^3 ℄, [ b*^2*a, b^2 ℄,[ *a**a, b ℄, [ ^2*a^2, b*a ℄, [ ^3*a, *b ℄, [ *a*^2*a, *b ℄ ℄Note that the rules without H i.e. the two-sided rules, onstitute a omplete rewriting system for thegroup. The set KB (reall that there is only one objet B of B) is in�nite. It is the set of (right) osetsof the subgroup in the group. Examples of these osets inlude:H;Ha;H;Ha2;Ha;Ha3;Ha4;Ha5; : : :A regular expression for the oset representatives is:a� + + a:Alternatively onsider the subgroup generated by b. Add the rule Hb ! H and the omplete systembelow is obtained: 27



[ [ H*a, H ℄, [ H*b, H ℄, [ H**a, H* ℄, [ H**b, H* ℄, [ H*^2, H ℄,[ a^2*b, b*a ℄, [ a^2*, *a ℄, [ a*b^2, b^2 ℄, [ a*b*, *b ℄,[ a**b, *b ℄, [ b*a^2, b*a ℄, [ b*a*b, b^2 ℄, [ b*a*, *b ℄,[ b^2*a, b^2 ℄, [ b**a, *b ℄, [ b**b, b^2* ℄, [ *a*b, *b ℄,[ *b*a, *b ℄, [ *b^2, b^2* ℄, [ *b*, b^2 ℄, [ ^2*b, b^2 ℄,[ b^4, b^2 ℄, [ b^3*, *b ℄, [ b^2*^2, b^3 ℄, [ b*^2*a, b^2 ℄,[ *a**a, b ℄, [ ^2*a^2, b*a ℄, [ ^3*a, *b ℄, [ *a*^2*a, *b ℄ ℄Again, the two-sided rules are the rewriting system for the group. This time the subgroup has index 2,and the oset representatives are id and .2.8.4 Equivalene Relations and Equivariant Equivalene RelationsORIGINAL PROBLEM: Given a set 
 and a relation Rel on 
. Find a set of representatives for theequivalene lasses of the set 
 under the equivalene relation generated by Rel.KAN INPUT DATA: Let � be the graph with objet set 
 and generating arrows a : A1 ! A2 if(A1; A2) 2 Rel. Let XA := fAg for all A 2 
. The arrows of � at aording to the relation, sosr(a) � a = tgt(a). Let � be the graph with one objet and no arrows so that B is the trivial ategorywith no relations. Let F be the null funtor.KAN EXTENSION: The Kan extension presented by kanh�j�jRelBjXjF i is suh that K� := 
= �$Relis a set of representatives for the equivalene lasses of the set 
 under the equivalene relation generatedby Rel.Alternatively let 
 be a set with a group or monoid M ating on it. Let Rel be a relation on 
. De�ne� to have objet set 
 and generating arrows a : A1 ! A2 if (A1; A2) 2 Rel or if A1 �m = A2 Again,XA := fAg for A 2 Ob� and the arrows at as in the ase above. Let � be the one objet graph witharrows labelled by generators of M and for B let RelB be the set of monoid relations. Let F be the nullfuntor. The Kan extension gives the ation of M on the quotient of X by theM -equivariant equivalenerelation generated by Rel. This example illustrates the advantage of working in ategories, sine this isa oprodut of ategories whih is a fairly simple onstrution.2.8.5 Orbits of AtionsORIGINAL PROBLEM: Given a group G whih ats on a set 
, �nd a set KB of representatives forthe orbits of the ation of A on 
.KAN INPUT DATA: Let � be the one objet graph with arrows labelled by the generators of the group.Let X� := 
. Let � be the one objet, zero arrow graph generating the trivial ategory B with RelBempty. Let F be the null funtor.KAN EXTENSION: The Kan extension presented by kanh�j�jRelBjXjF i is suh that K� is a set ofrepresentatives for the orbits of the ation of the group on 
.We present a short example to demonstrate the proedure in this ase.Example 2.8.4 Let A be the symmetri group on three letters with presentationmonha; bja3; b2; ababi and let X be the set fv; w; x; y; zg. Let A at on X by giving a the e�et of thepermutation (v w x) and b the e�et of (v w)(y z).In this alulation we have a number of "-rules and no K-rules. The "-rules just list the ation, namely(trivial ations omitted):v ! w; w! x; x! v; v ! w; w ! v; y ! z; z ! y:The system of rules is omplete and redues to fw ! v; x ! v; z ! yg. Enumeration is simple:v; w ! v; x! v; y; z ! y, so there are two orbits of 
 represented by v and y.28



This is a small example. With large examples the idea of having a minimal element (normal form) ineah orbit to at as an anhor or point of omparison makes a lot of sense. This situation serves asanother illustration of rewriting in the framework of a Kan extension, showing not only that rewritinggives a result, but that it is the proedure one uses naturally to do the alulation.One variation of this is if 
 is the set of elements of the group and the ation is onjugation: xa := a�1xa.Then the orbits are the onjugay lasses of the group.Example 2.8.5 Consider the quarternion group, presented by ha; b j a4; b4; abab�1; a2b2i and 
 =fid; a; b; a2; ab; ba; a3; a2bg { enumerating the elements of the group using the method desribed inExample 3. Construt the Kan extension as above, where the ations of a and b are by onjugation onelements of A.There are 16 "-rules whih redue to fa3 ! a; a2b! b; ba! abg. The onjugay lasses are enumeratedby applying these rules to the elements of A. The irreduibles are fid; a; b; a2; abg, and these arerepresentatives of the �ve onjugay lasses.2.8.6 Colimits of Diagrams of SetsORIGINAL PROBLEM: Given a presentation of a ategory ation ath�jXi �nd the olimit of the dia-gram in Sets on whih the ategory ation is de�ned.KAN INPUT DATA: Let � and X be those given by the ation presentation. Let � be the graph withone objet and no arrows that generates the trivial ategory B with RelB empty. Let F be the nullfuntor.KAN EXTENSION: The Kan extension presented by kanh�j�jRelBjXjF i is suh that K� is the olimitobjet, and " is the set of olimit funtions of the funtor X : A! Sets.Partiular examples of this are when A has two objets A1 and A2, and two non-identity arrows a1 anda2 from A1 to A2, and Xa1 and Xa2 are funtions from the set XA1 to the set XA2 (oequaliser ofa1 and a2 in Sets); A has three objets A1, A2 and A3 and two non-identity arrows a1 : A1 ! A2 anda2 : A1 ! A3. XA1, XA2 and XA2 are sets, and Xa1 and Xa2 are funtions between these sets (pushoutof a1 and a2 in Sets). The following example is inluded not as an illustration of rewriting but to showanother situation where presentations of Kan extensions an be used to express a problem naturally.Example 2.8.6 Suppose we have two sets fx1; x2; x3g and fy1; y2; y3; y4g, with two funtions from the�rst to the seond given by (x1 7! y1; x2 7! y2; x3 7! y3) and (x1 7! y1; x2 7! y1; x3 7! y3).Then we an alulate the oequaliser. We have a number of "-rulesy1jid� ! x1jid�; y2jid� ! x2jid�; y3jid� ! x3jid�; y1jid� ! x1jid�; y2jid� ! x1jid�; y3jid� ! x3jid�:There is just one overlap, between (y2jid� ! x1jid�) and (y2jid� ! x2jid�): to resolve the ritial pair weadd the rule (x2jid� ! x1jid�), and the system is omplete:fy1jid� ! x1jid�; y2jid� ! x1jid�; y3jid� ! x3jid�; x2jid� ! x1jid�g:The elements of the set K� are easily enumerated:x1jid�; x2jid� ! x1jid�; x3jid�; y1jid� ! x1jid�; y2jid� ! x1jid�; y3jid� ! x3jid�; y4jid�:So the oequalising set is K� = fx1jid�; x3jid�; y4jid�g;and the oequaliser funtion to it from XA2 is given by yi 7! yijid� for i = 1; : : : ; 4 followed by redutionde�ned by ! to an element of K�. 29



2.8.7 Indued Permutation RepresentationsLet A and B be groups and let F : A! B be a morphism of groups. Let A at on the set XA. The Kanextension of this ation along F is known as the ation of B indued from that of A by F , and is writtenF�(XA). It an be onstruted simply as the set X � B fatored by the equivalene relation generatedby (xa; b) � (x; F (a)b) for all x 2 XA; a 2 A; b 2 B. The natural transformation " is given by x 7! [x; 1℄,where [x; b℄ denotes the equivalene lass of (x; b) under the equivalene relation �. The morphism F anbe fatored as an epimorphism followed by a monomorphism, and there are other desriptions of F�(XA)in these ases, as follows.Suppose �rst that F is an epimorphism with kernel N . Then we an take as a representative of F�(XA)the orbit set X=N with the indued ation of B.Suppose next that F is a monomorphism, whih we suppose is an inlusion. Choose a set T of represen-tatives of the right osets of A in B, so that 1 2 T . Then the indued representation an be taken to beXA� T with " given by x 7! (x; 1) and the ation given by (x; t)b = (xa; u) where t; u 2 T; b 2 B; a 2 Aand tb = au.On the other hand, in pratial ases, this fatorisation of F may not be a onvenient way of determiningthe indued representation. In the ase A;B are monoids, so that XA is a transformation representa-tion of A on the set XA, we have in general no onvenient desription of the indued transformationrepresentation exept by one form or another of the onstrution of the Kan extension.
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Chapter 3Nonommutative Gr�obner Bases(over �elds)The results and methods that will be disussed in this hapter use, or are related to, the nonommutativeversion of Gr�obner bases. The �rst setion therefore ontains a very brief introdution to the area ofomputer algebra known as Gr�obner basis theory.Setion 2 desribes expliitly the relation between Gr�obner bases and string rewriting. It is well known[56℄ that Buhberger's algorithm an be applied to rewriting problems, a omplete rewrite system beingequivalent to a Gr�obner basis, and observations have been made on the similarities between the Knuth-Bendix and Buhberger algorithms in this ase. However, the exat relation of the algorithms (i.e. thatKnuth-Bendix is a speial ase of Buhberger's algorithm) is not widely reognised. This setion makesthe orrespondene expliit.Setion 3 builds on the results disussed previously. One-sided rewriting systems and their relationsto the alulation of one-sided ideals are onsidered. The results are as follows:- A omplete one-sidedrewrite system for a right ongruene on a semigroup S is equivalent to a Gr�obner basis for a right idealin an algebra K[S℄ (to some extent, this is already known). In addition, the one-sided Knuth-Bendixalgorithm is a speial ase of the Buhberger algorithm (new). The setion onludes with an originalappliation of the one-sided Buhberger algorithm to omputing Green's relations for a ouple of monoids.This method for omputing Green's relations diretly from a presentation has ertain advantages of on-veniene and eÆieny over onventional methods (using transformation representations), and an alsodeal with in�nite problems.Setion 4 begins by showing how Gr�obner basis tehniques may be applied to K-ategory presentations.It then rounds o� the hapter by plaing the Gr�obner basis tehniques for nonommutative polynomialalgebras in terms of Kan extensions. This begins to give a new perspetive on nonommutative Gr�obnerbases and relates them more strongly to ategory theory.3.1 Historial Introdution to Gr�obner BasesIn 1926 Hermann posed a question [38℄ whih has sine arisen in di�erent forms in various areas and hasbeome known as the ideal membership problem. The problem is usually desribed in the followingway. Let X := fx1; : : : ; xng be a set of ommuting variables and let K be a �eld. Then de�ne K[X℄ to bethe polynomial ring, whose monomials are power produts of the xi and whose oeÆients are from K.Given a set F of polynomials f1; : : : ; fk 2 K[X℄ let hF i denote the ideal generated by F . Given anotherpolynomial f 2 K[X℄, the problem is to determine whether f is a member of hF i. This is equivalent to31



asking whether there are polynomials h1; : : : ; hk 2 K[X℄ suh that f = h1f1 + � � �+ hkfk.In 1965 Bruno Buhberger devised a solution [22℄ to this problem. His invention, Gr�obner bases (namedfor his supervisor), are speial generating sets for ideals in polynomial rings. Typially, one uses anordering on the monomials of the polynomial ring K[X℄ to work on a generating set F for the ideal hF i,omputing (using Buhberger's algorithm) a Gr�obner basis for the ideal.It took about ten years before the onept beame known to researh ommunities in Mathematis andTheoretial Computer Siene. It is now well reognised at least that Gr�obner basis tehniques enableus to answer questions of algebrai interest:i) The Ideal Desription Problem: does every ideal I 2 K[X℄ have a �nite generating set?ii) The Ideal Membership Problem: does a partiular polynomial f lie in an ideal hF i?iii) The Problem of Solving Polynomial Equations: �nd all ommon solutions in Kn of a system ofpolynomial equations in n variables.iv) Equality problem: are two polynomials f , f 0 equal in the quotient ring K[X℄=hF i (this is equivalentto asking whether f � f 0 is a member of hF i)?v) Intersetion Problem: What is the intersetion in K[X℄ of two ideals hF i and hF 0i?The problem we will be onentrating on is the membership problem. The others are looked at in moredetail in [29℄.Gr�obner basis theory has sine beome an important part of omputational algebra; in the ommutativease it is inluded in all major symboli omputation program systems and is applied in a wide varietyof seemingly unrelated researh areas. To name a few: appliations have been found in robotis, om-putational geometry, statistial analysis and geometri theorem proving. Further appliations to surfaemodelling and ryptography are under investigation. It is thought [9℄ \inevitable that like Galois theory,Buhberger theory will beome a tool used by pure mathematiians in proofs". For the moment it isused to ompute spei� examples.Sine Buhberger introdued Gr�obner bases for ideals in ommutative polynomial rings over �elds, a num-ber of authors have extended and generalised the theory to other algebrai objets. In 1978 Bergmanextended the notion of Gr�obner bases to the ase where the variables of X do not ommute [5℄. He alsoattempted to generalize Buhberger's algorithm for omputing the bases, but this was muh improvedby F.Mora in 1986 [55℄ who gives a variant of the Buhberger's algorithm whih is guaranteed to halt,returning a �nite Gr�obner basis of the �nitely generated ideal (with respet to a �xed ordering) if andonly if suh a basis exists. This proedure is desribed and illustrated later, I have implemented it inGAP (the program is grobner:g).The proedure has ertain disadvantages ompared with the ommutative method:i) Termination: the proedure will not neessarily terminate. When running the proedure, unless itatually does terminate, we annot tell whether or not it is going to at some point. Some judgementmust therefore be made, to say that if it has not ompleted after a ertain amount of time or aertain number of passes in the program, it may be onsidered to have failed { this is referred to as\foring termination".ii) Orderings: the orderings used have to be more ompliated, beause the order of the generators isimportant. This means that most orderings will use the lexiographi order at some point.32



iii) If an attempt is onsidered to have failed (see(i)), there is still the possibility that a di�erent orderingmay the proedure may be suessful. There are in�nitely many orderings on a free semigroup andso the proedure may in general be attempted in�nitely many times before a Gr�obner basis is found.iv) In the ommutative ase there is a proedure known as the Gr�obner walk, whereby you an onverta basis with respet to one order to a basis with respet to a new order [2℄. This does not workin the nonommutative ase beause it may be that there is no Gr�obner basis with respet to theseond order.In summary, one has an in�nite number of orderings to try, and also a small problem of knowing whento stop trying one ordering and onsider another. T. Mora points out that as there are in�nitely manyorders, the hanes of �nding the orret one in �nitely many attempts ould be zero. Hene the idea oftrying many possible orderings in parallel: T. Mora was not put o� by the idea of running many possiblesystems simultaneously, eah new polynomial reating as many new systems as there are ways of hoosingits leading term in a way ompatible with the original system. This may be a nightmare omputationally,but does produe an algorithm whih is guaranteed to halt if and only if I has a �nite Gr�obner basis withrespet to some ordering (whih satis�es a ertain property FDR). This method is theoretially powerful,being limited only by the ability to produe orderings satisfying the FDR property (there are in�nitelymany suh orderings). However, we still have the problem that failure to terminate within a ertain timeproves nothing, and also that the omputations get very big very quikly, and in terms of implementationin GAP, my program whih attempts ompletion of a single system using one ordering an be quite slowenough...The other method of extending Buhberger's theory was to keep the ommuting variables the same andhange the struture of the �eld of oeÆients. In 1978 Zaharius onsidered ommutative polynomialrings with oeÆients in ommutative, unital rings, satisfying some omputability requirements [80℄.More reently (1989) M�oller worked on the same problem [54℄. We �nd motivation for this diretion inChapter Five.My main referene and starting point was T.Mora's paper [56℄. Two useful introdutory books are thoseby Cox, Little and O'Shea [29℄ and Adams and Lousannau [1℄.Gr�obner basis theory ontinues to develop and generates \inreasing interest beause of its usefulness inproviding omputational tools whih are appliable to a wide range of problems in mathematis, sieneand engineering" [1℄. A onferene marking 33 years of Gr�obner bases was reently held at R.I.S.C. inLinz, and the proeedings [23℄ ontain papers on many di�erent aspets of Gr�obner bases (inluding afew on the nonommutative ase) whih are urrently being researhed. (There were plans to ompile adatabase of all the Gr�obner basis material, to be aessible through the R.I.S.C. internet site.)3.1.1 Algebra PresentationsLet K be a �eld. A K-algebra is a set A with a unique element 0, two binary operations + and � anda salar multipliation of elements of A by elements of K satisfying the following properties.i) a+ (b+ ) = (a+ b) + , ii) a+ 0 = 0 + a = a,iii) 9 � a 2 A : a+ (�a) = 0, iv) a+ b = b+ a,v) k(a+ b) = ka+ kb, vi) (k + h)a = ka+ ha,vii) (kh)a = k(ha), viii) (0)a = 0,ix) a � (b � ) = (a � b) � , x) a � (b+ ) = (a � b) + (b � ),xi) (b+ ) � d = (b � d) + ( � d), xii) (ka) � b = k(a � b) = a � (kb),for all k; h 2 K and a; b; ; d 2 A. 33



An ideal I in a K-algebra A is a sub-K-algebra I (losed under +, �, � and salar multipliation) suhthat for all f 2 I and a; b 2 A, a � f � b 2 I.Reall that Xy denotes the free semigroup of all nonempty strings of elements on the set X. A set ofrelations on the free semigroup is a set R � Xy �Xy. A set of relations R generates a ongruene =Ron the free semigroup. The fator semigroup Xy==R is the semigroup of ongruene lasses of Xy under=R. A semigroup presentation is a pair sgphXjRi where X is a set and R is a set of relations on Xy.The semigroup it presents is the fator semigroup Xy==R. This de�nition will be used in a later theorem.Let S be a semigroup and let K be a �eld. The free K-algebra K[S℄ on S onsists of all the polyno-mials (formal sums) k1m1 + � � � + ktmt where k1; : : : ; kt 2 K, m1; : : : ;mt 2 S. Addition of polynomialsis de�ned using the formal sums (+ is ommutative). The zero element of the algebra is denoted 0.Multipliation of polynomials is de�ned in the usual way: �ikimi � �jhjnj = �i;jkihjminj. When thesemigroup S has an identity element id the algebra K[S℄ has a multipliative identity also denoted id.Let K[S℄ be the free K-algebra on a semigroup S, where K is a �eld. Elements (polynomials) may bewritten f = k1m1 + � � � + ktmt as a sum of terms kimi, where the mi 2 S are monomials and ki 2 Kare oeÆients.Let F := ff1; : : : ; fng be a set of polynomials in K[S℄. The ideal generated by F is denoted hF i andde�ned to have as elements all sums of multiples of elements of F :hF i := fp1f1q1 + � � �+ pnfnqnjpi; qi 2 K[S℄g:Given K[S℄ and F the ideal membership problem is:INPUT: f 2 K[S℄ (a polynomial of the free algebra),QUESTION: f 2 hF i? (is it in the ideal?)i.e. are there polynomials p1; : : : ; pn; q1; : : : ; qn 2 K[S℄ so that f = p1f1q1 + � � �+ pnfnqn?The ideal determines a ongruene =F on K[S℄ wheref =F h, f � h 2 hF i:The proof is straightforward (if f =F h then p(f � h)q 2 hF i so pfq =F phq for all p; q 2 K[S℄).The fator algebra K[S℄==F is the algebra whose elements are ongruene lasses [f ℄ of elements ofK[S℄ with respet to =F . Addition is de�ned by [f ℄ + [h℄ := [f + h℄ and multipliation by [f ℄[h℄ = [fh℄for all f; h 2 K[S℄. Salar multipliation is also preserved, so k[f ℄ = [kf ℄, for k 2 K; f 2 K[S℄. It an beveri�ed that this is an algebra by heking the axioms i to xii.A K-algebra presentation is a pair alghSjF i where S is a semigroup and F � K[S℄. The algebra Athat it presents is the fator algebra K[S℄==F .The equality problem for a K-algebra presentation alghSjF i is as follows:INPUT: f; h 2 K[S℄ (two polynomials of K[S℄).QUESTION: f =F h? (are they equivalent under =F ?)This problem is the same as the problem of determining ideal membership of f � h (by de�nition of=F ). Therefore the equality problem asks whether there are p1; : : : ; pn; q1; : : : ; qn 2 K[S℄ suh thatf � h = p1f1q1 + � � � + pnfnq1. Reall that a set of normal forms for =F ontains exatly one element34



from eah ongruene lass and a normal form funtion N : K[S℄! K[S℄ is suh that N(K[S℄) is a setof normal forms, and for all p 2 K[S℄; p =F N(p).The approah is to onstrut a redution relation !F on K[S℄, that is ompatible with a well-ordering(so !F is Noetherian) and to attempt to make this redution relation onuent by hanging the set Fthat generates it without hanging the ongruene �$F .Let > be an admissible well-ordering on the semigroup S (i.e. a well-ordering > suh that m > n )umv > unv for all u; v 2 S).The leading term of a polynomial is the term with the largest monomial with respet to the hosenordering on S. The leading monomial is the monomial of the leading term, and the leading oeÆientis the oeÆient of the leading term. We will assume all polynomials to be moni, as we are working overa �eld, and an therefore divide all polynomials by their leading oeÆient. The funtion LM is used toextrat the leading monomial of a polynomial. The remainder rem of a polynomial f satis�esf = LM(f)� rem(f):We use the notions of leading monomials to de�ne a Noetherian redution relation.De�nition 3.1.1 Redution of a polynomial h = k1m1 + � � � + ktmt where k1; : : : ; kt 2 K andm1; : : : mt 2 S with respet to a basis F = ff1; : : : ; fng is possible if any of the monomials mj of his a multiple of a leading monomial of any fi 2 F . Suppose fi = li� ri (leading monomial li and remain-der ri) and that mj is a monomial in h suh that m = uliv for some u; v 2 S. Then m redues to uriv,and h redues to k1m1 + � � �+ kjuriv + � � � + ktst i.e.h! h� kju(fi)v:If none of the leading terms of any of the polynomials in F is a subword of any of the monomials of h,then h is said to be irreduible.Lemma 3.1.2 The redution relation !F is Noetherian.Proof For a proof by ontradition, suppose that!F is not Noetherian. Then there exists some in�nitesequene of redutions h1 !F h2 !F h3 !F � � � . This implies that there is an in�nite sequene ofmonomials m1 > m2 > m3 > � � � . This is not the ase as > is a well-ordering, therefore there is noin�nite sequene of redutions and !F is Noetherian. 2The reexive, symmetri, transitive losure of !F is denoted �$F .Lemma 3.1.3 Let F = ff1; : : : ; fng be a basis for an ideal on the free K-algebra K[S℄ on a semigroupS. Then �$F and =F oinide.Proof Suppose f �$F h. Then f � h = kulv � kurv = ku(l � r)v for some k 2 K; u; v 2 S; p 2 K[S℄and (l � r) 2 F . Therefore f � h 2 hF i. Hene �$F is ontained in =F .For the onverse, suppose f =F h. Then by de�nition f � h 2 hF i. Therefore there exist p1; : : : ; pn,q1; : : : ; qn 2 K[S℄ suh that f � h = p1f1q1 + � � � + pnfnqn. Now we an write pifiqi = k1iu1ifiv1i +� � �+ktiutifivti for some k1i ; : : : ; kti 2 K, u1i ; : : : ; uti , v1i ; : : : ; vti 2 S. Consider the sequene of one stepredutions f !F f�k11u11f1v11 !F f�k11u11f1v11�k21u21f1v21 !F � � � . The result will follow if h$Fh�kjujfjvj for all h 2 K[S℄; uj ; vj 2 S; kj 2 K. Now either h ontains a term kjujljvj where lf = LM(fj)in whih ase h!F h� kjujfjvj or else it does not, and h� kjujfjvj ! (h� kjujfjvj) + kjujfjvj = h.Either way h$F h� kjujfjvj , and so =F is ontained in �$F . Hene we have proved that =F oinideswith �$F . 235



De�nition 3.1.4 A Gr�obner basis G for an ideal I of K[S℄ is a basis for I that generates a ompleteredution relation !F (with respet to an admissible well-ordering on S) on K[S℄.Equivalent onditions for a basis being a Gr�obner basis are that an element h 2 K[S℄ is an element of Iif and only if it redues to zero by !G. Or [55℄, a set G � I of polynomials is a Gr�obner basis for I ifthe ideal generated (in S) by the leading monomials of G is equal to the ideal generated by the leadingmonomials of I. A basis F is not a Gr�obner basis with respet to an order > if! is not loally onuent.(Loal onuene and onuene are equivalent for a Noetherian redution relation). If it is not onuentthen there is a ritial pair of polynomials, obtained by reduing one polynomial in two di�erent ways.De�nition 3.1.5 Let K[S℄ be a K-algebra and let F � K[S℄. An S-polynomial ours when a polyno-mial h 2 K[S℄ may be redued in two distint ways h !F h1 and h !F h2, h1 6= h2 for h1; h2 2 K[S℄.The S-polynomial is de�ned to be the di�erene h1 � h2 between the redued polynomials. When anS-polynomial an be redued to zero we say that it an be resolved.If the distint redutions apply to di�erent terms of the polynomial then it is lear that further redutionwill yield a polynomial res so that h1 !F res and h2 !F res. In other words, the S-polynomial h1 � h2an be resolved. Similarly, if the redutions apply to the same term but do not overlap, the S-polymomialwill resolve. The interesting ases our when the redutions overlap on a monomial. All these ases aremultiples of the following situation.Let F := ff1; : : : ; fng � K[S℄. A pair of polynomials fi; fj is said to have a math if their leadingmonomials overlap. Suppose fi; fj are a pair of polynomials whose leading monomials li; lj overlap. Letri; rj denote the remainders of fi and fj respetively. The overlap is one of four types: uilivi = lj ,li = ujljvj, uili = ljvj or livi = ujlj .In any ase it is possible to write uilivi = ujljvj.where ui; uj ; vi; vj 2 S + id. The S-polynomial resultingfrom the overlap is uifivi � ujfjuj whih simpli�es to ujrjvj � uirivi.If all S-polynomials resulting from an overlaps of polynomials in F resolve, then F is a Gr�obner basis.If an S-polynomial does not resolve then it an be added to F without hanging hF i. This is essentiallyBuhberger's algorithm; all the S-polynomials of a set of polynomials F are found, and are redued as faras possible with respet to F . Any non-zero remainders are then added to F , and the proess is repeated.The ow hart on the next page desribes Buhberger's algorithm more preisely.Example 3.1.6 The following example is an appliation of nonommutative Gr�obner bases to the fourthHeke algebraH4. This problem (with other muh more omplex ones { for the string algebras) was kindlysuggested to me by Brue Westbury (Warwik) to test my omputer program grobner:g. The algebraH4 has presentation Q [fe1 ; e2; e3g℄==P where P is the set of polynomialsfe1e1 � e1; e2e2� e2; e3e3� e3; e3e1 � e1e3; e2e1e2� e1e2e1 + 29e2 � 29e1; e3e2e3� e2e3e2 + 29e3 � 29e2g:We apply the algorithm to P . The �rst overlap is between the lead monomials e2e2 and e2e1e2. Theunredued S-polynomial resulting from the overlap in e2e1e2e2 is (e2e1e2) � (e1e2e1e2 � 29e2e1 + 29e1e2).The remainder of this polynomial modulo P is zero, so it is resolved. In the same way, the S-polynomialsresulting from the overlaps in the words e2e2e1e1; e3e2e3e3 and e3e3e2e3 also resolve. The other over-lap is between the leading monomials e3e1 and e3e2e3. Redution of e3e2e3e1 gives us an irreduibleS-polynomial (e3e2e1e3) � (e2e3e2e1 � 29e2e1 + 29e1e3) whih we add to P . In fat P is now a Gr�obnerbasis { any other S-polynomials redue to zero.This Heke algebra has dimension 20, whih we an prove by using the Gr�obner basis to enumerate theirreduible monomials in a atalogue, muh like the rewrite situation:36



id,e1; e2; e3,e1e2; e1e3; e2e1; e2e3; e3e2,e1e2e1; e1e2e3; e1e3e2; e2e1e3 ; e2e3e2; e3e2e1,e1e2e1e3; e1e2e3e2; e1e3e2e1; e2e1e3e2; e2e3e2e1:Any irreduible polynomial will be a sum of Q-multiples of these monomials, any element of H4 isrepresentable by exatly one of these polynomials.3.2 Gr�obner Bases and Rewrite SystemsSimilarities between the two ritial pair ompletion methods (Knuth-Bendix and Buhberger's algo-rithm) have often been pointed out. Good (reent) referenes for this are [75, 70℄. In partiular itis well known that the ommutative Buhberger algorithm may be applied to presentations of abeliangroups to obtain a omplete rewrite system. Possibly further similarities were not reognised earlier asnonommutative Gr�obner bases were some time in developing. Teo Mora [56℄ reorded that a ompleterewrite system for a semigroup S presented by sgphXjReli is equivalent to a nonommutative Gr�obnerbasis for the ideal spei�ed by the ongruene =R on Xy in the algebra K[Xy℄ where K is a �eld. Theideal is equivalent to S. In fat, we show that step for step, the algorithms in this ase are equivalent,and so the Knuth-Bendix algorithm is a speial ase of Buhberger's algorithm. It is aepted that thework in this setion may already be known in some form, though it seems standard to talk in terms ofgroup and monoid rings and apply Buhberger's algorithm to solving the word problem in groups withoutreognising the restrited algorithm as the Knuth-Bendix algorithm { for reent examples see [8℄ [57℄ and[3℄. The following lemma is a variation of a result of [56℄.Lemma 3.2.1 Let K be a �eld and let S be a semigroup with presentation sgphXjRi. Then the algebraK[S℄ is isomorphi to the fator algebra K[Xy℄==F where F is the basis fli � ri) : (li; ri) 2 Rg.Proof De�ne � : K[Xy℄! K[S℄ by �(k1w1 + � � � + ktwt) := k1[w1℄R + � � � + kt[wt℄R for k1; : : : ; kt 2 K,w1; : : : ; wt 2 Xy. De�ne a homomorphism �0 : K[Xy℄==F! K[S℄ by �0([p℄F ) := �(p). It is injetivesine �0[p℄F = �[q℄F if and only if [p℄F = [q℄F (using the de�nitions �(p) = �(q) , p =F q). It is alsosurjetive. Let f 2 K[S℄. Then f = k1m1 + � � � + ktmt for some k1; : : : ; kt 2 K, m1; : : : ;mt 2 S. SineS is presented by sgphXjRi there exist w1; : : : ; wt 2 Xy suh that [wi℄R = mi for i = 1; : : : ; t. Thereforelet p = k1w1 + � � �+ ktwt. Clearly p 2 K[Xy℄ and also �0[p℄F = f . Hene �0 is an isomorphism. 2Theorem 3.2.2 Let K be a �eld, let S be a semigroup presented by sgphXjRi and let A be the K-algebra presented by alghXjF i where F := fl � r : (l; r) 2 Rg. Then the Knuth-Bendix ritial pairompletion proedure for R orresponds step-by-step to the nonommutative Buhberger algorithm for�nding a Gr�obner basis for the ideal generated by F .Proof Both the Knuth-Bendix and the Buhberger algorithm begin by speifying a monomial orderingon Xy whih we denote >. Our proof onsiders the two proedures in turn, identifying the orrespondingomponents by indexing them (i)-(xii).In terms of rewriting we onsider the rewrite system (i) R whih onsists of a set of rules (ii) of the form(l; r) orientated so that l > r. A word (iii) w 2 Xy may be redued (iv) with respet to R if it ontainsthe left hand side (v) l of a rule (l; r) as a subword (vi) i.e. if w = ulv for some u; v 2 X�. To reduew = ulv using the rule (l; r) we replae l by the right hand side (vii) r of the rule, and write ulv !R urv.The Knuth-Bendix algorithm looks for overlaps between rules (viii). Given a pair of rules (l1; r1), (l2; r2)37
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there are four possible ways in whih an overlap an our: l1 = u2l2v2, u1l1v1 = l2, l1v1 = u2l2 andu1l1 = l2v2. The ritial pair (xi) resulting from an overlap is the pair of words resulting from applyingeah rule to the smallest word on whih the overlap ours. The ritial pairs resulting from eah of thefour overlaps are: (r1; u2r2v2), (u1r1v1; r2), (r1v1; u2r2) and (u1r1; r2v2) respetively (see diagram).In one pass the ompletion proedure �nds all the ritial pairs resulting from overlaps of rules of R.Both sides of eah of the ritial pairs are redued as far as possible with respet to R to obtain a reduedritial pair (x) (1; 2). The original pair is said to resolve (xi) if 1 = 2. The redued pairs that havenot resolved are orientated, so that 1 > 2, and added to R forming R1. The proedure is then repeatedfor the rewrite system R1, to obtain R2 and so on. When all the ritial pairs of a system Rn resolve (i.e.Rn+1 = Rn) then Rn is a omplete rewrite system (xii).In terms of Gr�obner basis theory applied to this speial ase we onsider the basis (i) F whih onsistsof a set of two-term polynomials (ii) of the form l � r multiplied by �1 so that l > r. A monomial (iii)m 2 Xy may be redued (iv) with respet to F if it ontains the leading monomial (v) l of a polynomiall� r as a submonomial (vi) i.e. if m = ulv for some u; v 2 X�. To redue m = ulv using the polynomiall � r we replae l by the remainder (vii) r of the polynomial, and write ulv !F urv.The Buhberger algorithm looks for mathes between polynomials (viii). Given a pair of polynomialsl1 � r1, l2 � r2 there are four possible ways in whih an math an our: l1 = u2l2v2, u1l1v1 = l2,l1v1 = u2l2 and u1l1 = l2v2. The S-polynomial (xi) resulting from a math is the di�erene betweenthe pair of monomials resulting from applying eah two-term polynomial to the smallest monomial onwhih the math ours. The S-polynomials resulting from eah of the four mathes are: r1 � u2r2v2,u1r1 � v1; r2, r1v1 � u2r2 and u1r1 � r2v2 respetively (see diagram).In one pass the ompletion proedure �nds all the S-polynomials resulting from mathes of polynomialsof F . The S-polynomials are redued as far as possible with respet to F to obtain a redued S-polynomial(x) 1 � 2. Note that redution an only replae one term with another so the redued S-ploynomialwill have two terms unless the two terms redue to the same thing 1 = 2 in whih ase the originalS-polynomial is said to redue to zero (xi). The redued S-polynomials that have not been redued tozero are multiplied by �1, so that 1 > 2, and added to F forming F1. The proedure is then repeatedfor the basis F1, to obtain F2 and so on. When all the S-polynomials of a basis Fn redue to zero (i.e.Fn+1 = Fn) then Fn is a Gr�obner basis (xii).A ritial pair in R will our if and only if a orresponding S-polynomial ours in F . Redution of thepair by R is equivalent to redution of the S-polynomial by F . Therefore at any stage any new rulesorrespond to the new two-term polynomials and Fi := fl � r : (l; r) 2 Rig. Therefore the ompletionproedures as applied to R and F orrespond to eah other at every step. 2The following pitures illustrate the four ases in whih overlaps / mathes and ritial pairs / S-polynomials arise, showing their orrespondene, as desribed in the proof above.possible overlaps possible mathesof rules of polynomialsl1 ! r1 and l2 ! r2 l1 � r1 and l2 � r2l1 = u2l2v2 r1u2 r2l2 v2 l1 = u2l2v2(r1; u2r2v2) u2r2v2 � r1
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l2 = u1l1v1 r2u1 r1l1 v1 l2 = u1l1v1(u1r1v1; r2) r2 � u1r1v1
l1v1 = u2l2 r1u2 r2 v1 l1v1 = u2l2(r1v1; u2r2) u2r2 � r1v1
u1l1 = l2v2 r2u1 r1 v2 u1l1 = l2v2(u1r1; r2v2) r2v2 � u1v1Remark 3.2.3 The main onlusion to be drawn from this result is that there is no need for speialKnuth-Bendix programs: the nonommutative Buhberger algorithm applied to a rewrite system (setof two-term polynomials with oeÆients 1 and -1) is the Knuth-Bendix algorithm. All of the work inChapter Two is in fat about the appliation of a speial ase of the Gr�obner basis proedure; even Kanextensions are alulated using Gr�obner bases.Corollary 3.2.4 Abelian semigroups have omplete rewriting systems.Proof It is known that Buhberger's algorithm always terminates in the ommutative ase, and so itfollows that presentations of abelian semigroups will have omplete rewriting systems, whih an be foundby using the ommutative Buhberger algorithm. 23.3 One-sided IdealsIn this setion we desribe Gr�obner basis theory for one-sided ideals in nonommutative polynomial alge-bras. The �rst result shows how to use the standard nonommutative Buhberger algorithm to omputea Gr�obner basis for a one-sided ideal. Then we make expliit the orrelation between the Gr�obner basistheory for one-sided ideals and standard one-sided rewriting systems.Let K be a �eld and let S be a semigroup. Let F = ff1; : : : ; fng be a subset of polynomials (a basis foran ideal) in K[S℄. We will assume that the fi are all moni. Let hF ir denote the right ideal generated inK[S℄ by F i.e. hF ir := ff1q1 + � � �+ fnqn : q1; : : : ; qn 2 K[S℄g:A right ongruene on an algebra A is an equivalene relation =r suh that for all q 2 Af =r h) f + q =r h+ q and fq =r hq:
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Lemma 3.3.1 Let K[S℄ be the free K-algebra on S. Let F = ff1; : : : ; fng be a subset of K[S℄. Then�$rF de�nes a right ongruene on K[S℄ wheref !rF f � kfivif LM(fi)v ours in f with oeÆient k for fi 2 F , v 2 S and k 2 K. Furthermoref �$rF h, f � h 2 hF ir:Proof Suppose that f �$rF h in n steps. The hypothesis is that f =rF h and the proof is by indutionon n. For the base step set n = 0. Then f = h so f � h = 0 is in the ideal i.e. f =rF h. Assumethe hypothesis is true for n � 1 and suppose f �$rF h in n steps. There exists f 0 suh that f �$rF f 0 inn � 1 steps and f 0 $rF h. By the indution hypothesis f � f 0 is in the ideal Now either f 0 ! h andh = f 0 � kifivi or h! f 0 and f 0 = h � kifivi for some fi 2 F; ki 2 K and ui 2 S. So h = f 0 � kifivi orf 0 = h� kifivi whih means that f � h = f � f 0 � kifivi whih is learly in the ideal. So f =rF h.Conversely, suppose that f =rF h. Then we an write f�h = k1f1v1+� � �+knfnvn for some fi 2 F; ki 2 Kand ui 2 S. The hypothesis is that f �$rF h and the proof is by indution on n. For the base step putn = 0. Then f = h so f �$rF h by reexivity. For the indution step assume the hypothesis holds forn� 1 and onsider f � h = k1f1v1+ � � �+ knfnvn. By the indution hypothesis f �$rF h. There are threeases to onsider.In the �rst ase LT(fn) does not our in h and so h+ knfnvn !rF h.In the seond ase LT(fn) does not our in f and so f � knfnvn !rF f and sine f � knfnvn =h+ k1f1v1 + � � �+ kn�1fn�1vn�1 we have f � knfnvn �$rF h by the indution hypothesis.In the third ase let 1 6= 0 be the oeÆient of LM(fn) in h+ knfnvn and let 2 6= 0 be the oeÆient ofLM(fn) in h. Then h+ knfnvn !rfn h+ knfnvn � 1fnvn = h� (1 � kn)fnvn;eliminating the ourane of LM(fn) in h + knfnvn. Now 2 = 1 � kn so h !rfn h � (1 � kn)fnvn soh+ knfnvn and h are joinable. 2We introdue a tagging notation whih will allow the use of the two- sided Buhberger algorithm toompute a Gr�obner basis whih will allow us to solve the ideal membership problem for hF ir.De�nition 3.3.2 Let K[S℄ be the free K-algebra on a semigroup S. Let a be a symbol. Let tag : K[S℄!K[fag t S℄ be the morphism indued by tag(m) :=am for all m 2 S. So for f = k1m1 + � � � + knmnwhere k1; : : : ; kn 2 K and m1; : : : ;mn 2 S, a f := k1 am1 + � � � + kn amn 2 K[aS℄. Therefore tag iswell-de�ned. The inverse funtion tag�1, removing the tag, is similarly well- de�ned.We may refer to tagged and untagged polynomials. Let S be a semigroup given by a presentationhXjRi. Let �F be a set of polynomials f �f1; : : : �fmg, a basis for the one-sided ideal h �F ir in K[S℄. De�neH := fli � rij(li; ri) 2 Rg. De�ne a setion � of the fator morphism � : K[Xy℄ ! K[S℄, denoted by�( �fi) := fi and let F := �( �F ). Let > be an admissible well-ordering on Xy.De�nition 3.3.3 De�ne the redution relation !aFtH on K[aXy℄ byaf !aFtHaf � k afivwhenever LM(fi)v ours in f with oeÆient k for f 2 K[Xy℄; v 2 S; fi 2 F and byaf !aFtHaf � k auhivwhenever uLM(hi)v ours in f with oeÆient k for f 2 K[Xy℄; u; v 2 S; hi 2 H.41



This orresponds to the funtion ReduePoly in the program. The reexive, symmetri, transitive losurewill be denoted �$aFtH .Note how the redution of f requires that we �nd a monomial of af that is some multiple of a leadingmonomial from aF or H. This de�nition of redution will allow the appliation of the standard Buh-berger algorithm to aF tH to attempt to ompute a Gr�obner basis for the one-sided ideal h �F ir in K[S℄.First we require the following results.Proposition 3.3.4 The relation !aFtH is Noetherian on K[aXy℄. It is omplete if and only if it isalso loally onuent.Proof Any Noetherian redution relation is omplete if and only if it is loally onuent (see ChapterOne). Suppose there exists an in�nite sequene of redutions p1 !aFtH p2 !aFtH � � � of polynomialsp1; p2; : : : 2 K[aXy℄. This implies the existene of an in�nite sequene m1 > m2 > � � � of monomialsm1;m2; : : : 2 Xy beause the de�nition of redution replaes one term with terms whih are smaller withrespet to >. The ordereing > is Noetherian, therefore the sequene annot exist, proving that !aFtHis Noetherian. 2Theorem 3.3.5 (Simulation of Right Redution in a Monoid Ring)K[S℄=r�F �= K[aXy℄�$aFtHProof Let � represent the quotient morphism Xy ! S. Extend � to �0 : K[Xy℄! K[S℄.De�ne � : K[a Xy℄ ! K[S℄ by �(a f) := �0(f). De�ne �0 : K[a Xy℄= �$raFtH! K[S℄= =r�F by�0[a f ℄aFtH := [�(a f)℄r�F . We require to prove that �0 is well-de�ned, i.e. that � preserves the on-gruene lasses of �$raFtH on K[a Xy℄. It is suÆient to prove that �(a f) =r�F �(a f � k a fiv) and�(af) =r�F �(af � k auhiv whenever either fiv ours in f with oeÆient k for some u; v 2 Xy, fi 2 F ,hi 2 H.Now �(a f � k a fiv) = �0(f) � �0(kfiv). Reall that fi = �( �fi) where � is the extension of a setion of�. It follows that k �fi�(v) 2 h �F i therefore �0(f) =r�F �0(f) � k �fi�(v) as required. For the other ase lethi 2 H, f 2 K[Xy℄. Then �(a f � k a uhiv) = �0(f) � �0(kuhiv). Reall the de�nitions of � and H so�0(kuhiv) = 0 and so �0(f) =r�F �0(f)� �0(kuhiv). Hene � is well-de�ned.We now prove that �0 is surjetive. Let �f 2 K[S℄. Then the extension of � uniquely de�nes f 2 K[Xy℄and �0(f) = �f . Thus we have af 2 K[aXy℄ suh that �0[af ℄aFtH = [ �f ℄r�F .Finally, we prove that �0 is injetive. Let f; h 2 K[Xy℄ suh that �0[a f ℄aFtH = �0[a h℄aFtH . Thenimmediately [�0(f)℄r�F = [�0(h)℄r�F . Therefore �f � �h is a member of the right ideal generated by �F . It anbe veri�ed, using the de�nitions, that this implies that f �$aFtH h. Therefore �0 is a bijetion. 2Reall that a pair of monomials is onsidered to have a math if there is some overlap between them.Lemma 3.3.6 Let ! be a redution relation on K[aXy℄. Let ap be a polynomial whih redues in twopossible ways ap!ap1 and ap!ap2. If the S-polynomial ap1� ap2 redues to zero then there exists apolynomial aq suh that ap1 �!aq and ap2 !aq.Proof Let p; p1; p2 2 K[Xy℄ suh that a p !a p1 and a p !a p2 and a p1� a p2 �! 0. then there exist�1; : : : ; �t with �i = kihivi or �i = kiuifivi for some ui; vi 2 X�, ki 2 K, fi 2 F , hi 2 �(H) suh that42



ap1� ap2 !ap1� ap2� a�1 ! � � � !ap1� ap2� a�1�� � � � a�t = 0. Consider the �rst redution. Theleading monomial of �1 ours in p1 with oeÆient k1;1 and in p2 with oeÆient k2;1 for k1;1; k2;1 2 K suhthat k1;1+k2;1 = 1. Therefore ap1 !ap1�k1;1 a�1 and ap2 !ap2+k2;1 a�1. Repeating this proedurefor �2; : : : ; �t we obtain ap1 �!ap1 � k1;1 a�1 � � � � � k1;t a�t and ap2 �!ap2 + k2;1 a�1 + � � �+ k2;t a�t.Now (ap1� k1;1 a�1� � � � � k1;t a �t)� (ap2 + k2;1 a�1 + � � �+ k2;t a �t) = 0. Therefore ap1 and ap2 areredued to the same term. 2Lemma 3.3.7 The redution relation ! generated by aF tH is onuent on K[aXy℄ if and only if allS-polynomials resulting from mathes of aF tH redue to zero by !.Proof Let all S-polynomials resulting from mathes of aF tH redue to zero by!. Let ap be a ritialterm of (K[aXy℄;!). If the redutions apply to di�erent terms of a p or to disjoint parts of the sameterm then it is lear that the S-polynomial will redue to zero immediately (by applying the same tworedutions again). If the redutions apply to the same term of a p and are not disjoint then there arethree possibilities.For the �rst ase both rules ome from aF . So let ap!ap� k afivi and ap!ap� k afjvj for somefi; fj 2 F , vi; vj 2 X� suh that livi = ljvj are monomials of p with oeÆient k where li := LM(fi) andlj := LM(fj). Then there is an overlap suh that (without loss of generality) a liv =a lj for some v 2 X�.The S-polynomial resulting from this overlap is a rj� a riv where ri := rem(fi) and rj := rem(fj). Nowarj� ariv =afiv� afj ! 0, therefore (ap� k afivi)� (ap� k afjvj)! 0. Therefore by Lemma 3.3.6there exists a q 2 K[aXy℄ suh that a p � k a fivi �!a q and a p � k a fjvj �!a q. So the ritial pair(ap� k ahivi;ap� k a hjvj) resolves.For the seond ase one rule is from a F and one is from H. So let a p !a p � k a fivi and a p !ap� k aujhjvj for some fi 2 F , hj 2 H, vi; uj ; vj 2 X� suh that livi = ujljvj are monomials of p withoeÆient k where li := LM(fi) and lj := LM(hj). Then there are two possibilities for the overlap.For the �rst a liv =aulj for some u; v 2 X�. The S-polynomial resulting from this overlap is aurj� a rivwhere ri := rem(fi) and rj := rem(hj). Now a urj� a riv =a fiv� a uhj ! 0, therefore (a p � k afivi)� (ap� k aujhjvj)! 0.For the seond a li =a uljv for some u; v 2 X�. The S-polynomial resulting from this overlap is aurjv� a ri where ri := rem(fi) and rj := rem(hj). Now a urjv� a ri =a fi� a uhjv ! 0, therefore(ap� k afivi)� (ap� k aujhjvj)! 0.In either ase by Lemma 3.3.6 there exists a q 2 K[a Xy℄ suh that a p � k a fivi �!a q andap� k aujhjvj �!aq. So the ritial pair (ap� k afivi;ap� k aujhjvj) resolves.For the �nal ase, both rules ome from H. So let a p !a p� k auihivi and a p !a p� k aujhjvj forsome hi; hj 2 H, ui; vi; uj ; vj 2 X� suh that uilivi = ujljvj are monomials of p with oeÆient k whereli := LM(hi) and lj := LM(hj). Then there are two possibilities for the overlap.For the �rst liv = ulj for some u; v 2 X�. The S-polynomial resulting from this overlap is urj�riv whereri := rem(hi) and rj := rem(fj). Now urj � riv = hiv� uhj ! 0, therefore (ap� k auihivi)� (ap� k aujhjvj)! 0.For the seond li = uljv for some u; v 2 X�. The S-polynomial resulting from this overlap is urjv � riwhere ri := rem(hi) and rj := rem(hj). Now urjv � ri = hi � uhjv ! 0, therefore (ap� k auihivi)� (ap� k aujhjvj)! 0.In either ase by Lemma 3.3.6 there exists a q 2 K[a Xy℄ suh that a p � k a uifivi �!a q andap� k aujfjvj �!aq. So the ritial pair (ap� k auifivi;ap� k aujfjvj) resolves.43



This proves that however the ritial pair arises, it is a onsequene of some math between polynomialsand an be resolved. Therefore ! is onuent.The onverse is easily heked. Suppose that! is onuent. Then any S-polynomial arising from a mathbetween polynomials is the result of reduing one monomial in two di�erent ways i.e. ap!ap1 and ap2for some p; p1; p2 2 K[Xy℄. The S-polynomial is equal to ap1� ap2. The relation ! is loally onuentand so there exists aq 2 K[aXy℄ suh that ap1 !a q and ap2 !aq. Therefore ap1� ap2 �!aq� aq = 0as required. 2We have now proved the following theorem.Theorem 3.3.8 The Buhberger algorithm may be applied diretly to a set ontaining tagged polynomialsand non-tagged (two-term) polynomials to attempt to ompute a Gr�obner basis for a one-sided ideal in afree algebra on a �nitely presented semigroup.This widens the sope of the Gr�obner basis program grobner:g without modifying it. The program annow attempt to ompute bases for one sided ideals.3.3.1 Gr�obner Bases for Coset SystemsA tagged Gr�obner basis orresponds to a tagged omplete rewrite system in that speial ase (two-termpolynomials and no rewriting tags).Lemma 3.3.9 Let G be a group and K be a �eld. Let F := ff1; : : : ; fng � K[G℄ where the polynomialsin F eah have only two terms, the larger of whih has oeÆient 1, the other having oeÆient �1.Then the right ideal of F de�nes a subgroup of G.Proof De�ne H to be the set of elements m in G suh that m =rF id.H := fm j m 2 G and m� id 2 hF irgWe prove that H is a subgroup of G. Firstly, H � G, so omposition is assoiative.Let m1;m2 2 H, then m1 � id,m2 � id 2 hF ir by de�nition, and m1m2 � id = m1(m2 � id) + (m1 � id).Thereforem1m2 2 H, so H is losed under multipliation. Clearly id�id = 0 2 hF ir beause 0(fi) 2 hF irfor fi 2 F sine 0 2 K, so id 2 H. Finally, for any m 2 H, we have m � id 2 hF ir so m�1 � id =�m�1(m� id) 2 hF ir, so m�1 2 H.Therefore we have shown that hF ir de�nes a subgroup of G. 2Corollary 3.3.10 A omplete right oset rewriting system for the �nitely generated subgroup H of a�nitely presented group G may be omputed by �nding a Gr�obner basis for a partiular right ideal over apartiular algebra, when the Buhberger algorithm terminates.We will now apply the proedures that have been desribed to alulating some relations in �nitelypresented semigroups.3.3.2 Example: Computing Green's Relations for SemigroupsSemigroups are often desribed using Green's relations, speifying their L-lasses R-lasses, D-lasses andH-lasses. Eggbox diagrams depit the partitions of a semigroup into these lasses. We an determinethe lasses by using Gr�obner bases applied diretly to the presentation. The examples show that thereis also the possibility of dealing with in�nite semigroups having in�nitely many H-lasses, L-lasses or44



R-lasses. First we reall some de�nitions [45℄.A nonempty subset A of a semigroup S is a right ideal of S if AS � A. It is a left ideal of S if SA � A.If x is an element of S then the smallest right ideal of S ontaining x is xS [ fxg, we denote this hxir asit is alled the right ideal generated by x. Similarly the left ideal generated by x is Sx [ fxg andis denoted hxil.Green's RelationsLet S be a semigroup and let s and t be elements of S. We say that s and t are L-related if the leftideal generated by s in S is equal to the left ideal generated by t:s �L t, hsil = htil:Similarly they are R-related if the right ideals are the same:s �R t, hsir = htir:The L-relation is a right ongruene on S and the R-relation is a left ongruene on S. (The right ationof S on itself is preserved by the mapping to the L-lasses - so [xy℄�L = [xy℄�L = [x℄y�L , similarly forthe left ation and R-lasses.) The elements s and t are said to be H-related if they are both L-relatedand R-related, and are D-related if they are either L-related or R-related.To determine whether s and t are R (or L)-related we an ompute the appropriate Gr�obner bases andompare them. First let K be (any) �eld. Let S have presentation sgphXjReli Let F be a Gr�obnerbasis for K[S℄ { so K[Xy℄==F is isomorphi to K[S℄. We would add the polynomial as to the Gr�obnerbasis system for K[S℄ and ompute the Gr�obner basis, and see whether this was equivalent to the basisobtained for a t.Example 3.3.11 (Symmetri Monoid)The following example is for the �nite semigroup Sym(2) with monoid presentationmonhe; s; idje2 = e; s2 = id; sese = ese; eses = esei:The Gr�obner basis equivalent to the rewrite system isH := fe2 � e; s2 � id; eses� ese; sese� eseg:The elements are fid; e; s; es; se; ese; sesg. We alulate Gr�obner bases for the right and left ideals foreah of the elements. The results are displayed in the table below. In detail a Gr�obner basis for hsesirin K[S℄ is alulated in K[aX�℄ by adding a ses to the set of polynomials H. A math a sess betweens2� id and ases. This results in the S-polynomial ase(id)� (0)s whih simpli�es to ase. Another matha seses ours between eses � ese and a ses. This results in the S-polynomial a s(ese) � (0)es whihredues to a ese. Any further mathes result in S-polynomials whih redue to zero. The polynomialswe add to H to obtain a Gr�obner basis are fa se;a eseg (note that a ses is a multiple of a se so it isnot required in the Gr�obner basis). The table lists the polynomials whih, together with H, will give theGr�obner bases for the right and left ideals generated by single elements.element right ideal left idealid a id id`e ae e`s a id id`es ae es`; ese`se ase;aese e`ese aese ese`ses ase;aese es`; ese`45



Two elements whose right ideals are generated by the same Gr�obner basis have the same right ideal(similarly left), and so it is immediately deduible that the R-lasses are fid; sg; fe; esg; fse; sesg andfeseg, the L-lasses are fid; sg; fe; seg; fes; sesg and feseg, the H-lasses are fid; sg; feg; fseg; fesg; fsesgand feseg and the D-lasses are fid; sg; fe; es; se; sesg and feseg.The eggbox diagram is as follows where L lasses are olumns, R-lasses are rows, D lasses are diagonalboxes and H lasses are the small boxes:id; s see seses eseThis example ould have been alulated by enumerating the elements of eah of the fourteen ideals(whih takes longer).Example 3.3.12 (Biyli Monoid)The next example is the Biyli monoid whih is in�nite and has monoid presentationmonhp; q j pq = idi:This means that the equivalent Gr�obner basis de�ned on the free monoid algebra K[fp; qg�℄ is fpq� idg.We begin the table as before: element right ideal left idealid a id. id`.p a id. p`.q aq. q`.p2 a id. p2`.qp aq. p`.q2 aq2. id`.� � � � � � � � �qnpm aqn. pm`.It an be seen that there are in�nitely many L-lasses and in�nitely many R-lasses. Representatives forthe L-lasses are q� beause qnpm`!l qn` { using the S-polynomial resulting from pn(qnpm`)!l pn`with (pnqn)pm `!l pm `. Similarly p� is a set of representatives for the R-lasses. All elements areD-related and none of them are H-related. So the eggbox diagram would be an in�nitely large box ofells, with one element in eah ell, this means that the monoid is bisimple.Example 3.3.13 (Polyyli Monoid)Now onsider the Polyyli monoid Pn whih has presentationmonhx1; : : : ; xn; y1; : : : ; yn; o j oxi=xio=oyi=yio=o; xiyi= id; xiyj=o for i; j=1; : : : ; n�1; i 6=jiand therefore the Gr�obner basis for K[Pn℄, where K is a �eld, isfxiyi � id; xiyj � 0for i; j = 1; : : : ; n� 1; i 6= jg:As might be expeted Green's relations for Pn are similar to those for the Biyli monoid. The L-lassesare represented by sequenes of yi's and the R-lasses are represented by sequenes of xi's.46



To verify this let X = xi1 � � � xik be a general word in the xi's, and let Y be yj1 � � � yjl a general word inthe yj's. Then we an show that Y X �L X. To do this we onsider the ideals hY X `i and hX `i. To�nd a Gr�obner basis for hY X `i onsider the math xjl � � � xj1yj1 � � � yjlxi1 � � � xik `. This results in theS-polynomial (id)xi1 � � � xik ` �xjl � � � xj1(0) whih simpli�es to xi1 � � � xik `= X `. This is a Gr�obner basisfor hY X `i, and so hY X `i = hX `i. Similarly ha Y Xi = ha Y i so Y X �R X for any Y = yj1 � � � yjl ,X = xi1 � � � xik .The eggbox diagram is drawn below. As before the L lasses are the olumns and the R-lasses the rows,H-lasses are the ells, and there is just one D-lass other than the one ontaining the zero. This provesthat the polyyli monoids are bisimple. The diagram is more onventional than the previous one, aslasses are listed but not individual elements, instead the number of elements in eah ell is indiated.
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1This illustrates the fat that Gr�obner bases an be used to ompute Green's relations for (in�nite) semi-groups whih have �nite omplete presentations. In partiularH-lasses have groups alled Sh�utzenbergergroups assoiated with them. It is known thatH-lasses in the sameD-lass have the same Sh�utzenbergergroup [50℄.Previous methods for alulating minimal ideals from presentations of semigroups have been variationson the lassial Todd-Coxeter enumeration proedure [24℄. The one-sided Gr�obner basis methods havelimitations in that a omplete rewrite system with respet to the hosen order might not be found, butthey do give the possibility of alulating the struture of in�nite semigroups.3.4 K-ategoriesA K-ategory is a ategory whose hom-sets (a hom-set is the set of all morphisms between a givenpair of objets) are K-modules. A morphism of K-ategories or K-funtor F preserves the K-modulestruture of the hom-sets so F (a + b) = F (a) + F (b); F (ka) = kF (a) for all arrows a; b suh that a+ bis de�ned and salars k in K. 47



The free K-ategory on a graph � is the ategory whose objets are objets of � and whose ar-rows ArrPK� are all polynomials of the form p = k1m1 + k2m2 + � � � + knmn where k1; : : : ; kn 2 K,m1; : : : ;mn 2 P�(A1; A2) for some A1; A2 2 Ob�. The funtions sr and tgt are preserved.The relations of a K-ategory ould be of the form l = r where eah side has the same soure andtarget. They an be written l�r and so we assume that the relations are set of polynomials R � ArrPK�.If R = fr1; : : : ; rng is suh a set of relations on PK� then the ongruene generated by R is de�nedas follows: f =R h if and only if f =h +k1p1r1q1 + � � �+ knpnrnqnfor some k1; : : : ; kn inK, p1; : : : ; pn; q1; : : : ; qn 2 ArrPK� where sr(f) = sr(h) = sr(p1) = � � � =sr(pn) and tgt(f) = tgt(h) = tgt(q1) = � � � = tgt(qn) and p1r1q1; : : : ; pnrnqn are de�ned in ArrPK�.The K-ategory PK�==R whose elements are the ongruene lasses of ArrPK� with respet to R is thefator K-ategory.De�nition 3.4.1 Let K be a �eld. A K-ategory presentation is a pair atKh�jRi where � is a graphand R � ArrPK��ArrPK�. The K-ategory it presents is the fator ategory PK�==R.The easiest example is of the free K-ategory generated by a graph with one vertex and no arrows (exeptthe identity). The arrows of the trivial K-ategory are simply the elements of K. If the graph now has aset of arrows X from the objet to itself, then the arrows of the free K-ategory are the elements of thenonommutative algebra K[X℄. It is possible to use Buhberger's algorithm to ompute Gr�obner baseswhih enable the spei�ation of the morphisms of a general K-ategory presented in this way.Let > be an admissible well-ordering on ArrP�. De�ne the leading monomial of a polynomial f tobe the monomial ourring in f whih is the greatest path in � with respet to > and denote it LM(f).De�ne a redution relation !R on ArrPK� by f ! f � kiuirivi when ui(LM(ri))vi ours in f withoeÆient ki 2 K for ui; vi 2 ArrP�, ri 2 R. If the redution relation generated by R is omplete (i.e.Noetherian and loally onuent), then we say that R is a Gr�obner basis.Lemma 3.4.2 ArrPK�=R �= ArrPK��$RProof It is lear from the de�nitions that the equivalene relation �$R is ontained in =R. Forthe onverse, suppose f =R h. Then there exist p1; : : : ; pn; q1; : : : ; qn 2 PK�, suh that f = h +p1r1q1 + � � � + pnrnqn. By splitting pi and qi into their omponent terms for i = 1; : : : ; n we obtainf = h+ k1u1r1v1+ � � �+ kjujrivj + � � �+ ktutrnvt for some k1; : : : ; kt 2 K, u1; : : : ; ut; v1; : : : ; vt 2 P�. Itfollows immediately from this that f �$R h. 2Proposition 3.4.3 The relation !R is Noetherian on ArrPK�.Proof Let f1 !R f2 !R f3 !R � � � be an in�nite redution sequene. This implies the existene of anin�nite sequene of terms m1;m2;m3; : : : 2 ArrP� suh that m1 > m2 > m3 > � � � . This annot existbeause > is Noetherian on ArrP�. 2Lemma 3.4.4 If all S-polynomials resulting from mathes of R redue to zero by !R then !R is loallyonuent on ArrPK�. 48



Proof Let all S-polynomials resulting from mathes of R redue to zero by !R. We require to provethat !R is loally onuent.Let f 2 ArrPK� suh that f !R f � k1u1r1v1 and f !R f � k2u2r2v2 i.e. k1u1r1v1 � k2u2r2v2 is anS-polynomial.For the �rst ase the polynomials do not overlap on their leading terms then the ritial pair reduesimmediately to p� p1 � p2.For the seond ase the polynomials overlap on their leading terms l1; l2, here we an assume k1 = k2and u1l1v1 = u2l2v2 for some u1; u2; v1; v2 2 ArrP�. The S-polynomial is u2r2v2 � u1r1v1, and itredues to zero by assumption. The S-polynomial is in fat equal to u1f1v1 � u2f2v2. Thereforep � k1u1f1v1 � (p � k2u2f2v2) �!R 0 and by Lemma 3.3.6 this implies that there exists q suh thatp� k1u1f1v1 �!F q and p� k2u2f2v2 �!F q. Hene !R is loally onuent and therefore onuent.For the onverse suppose that all ritial pairs of !R resolve. Then it follows by by the usual argumentthat all S-polynomials of !F redue to zero by !R. 2Buhberger's algorithm alulates the S-polynomials of a system R and attempts to redue them to zeroby !R. If an S-polynomial annot be redued it is added to the system. The S-polynomials of themodi�ed system R0are then omputed { the proess looping until a system is found whose S-polynomialsan all be redued to zero.Theorem 3.4.5 Buhberger's algorithm, applied to (R;>) will return a Gr�obner basis for =R on ArrPK�.Proof All that remains to be veri�ed is that S-polynomials resulting from mathes found in R an beadded to R without altering �$R. We assume all polynomials in R to be moni (possible sine K is a�eld). Now S-polynomials result from two types of overlap.For the �rst ase let r1; r2 be polynomials in R suh that uLM(r1) = LM(r2)v for some u; v 2 ArrP�.Then the S-polynomial is s := rem(r2)v � urem(r1) where rem(ri) := ri � LM(ri) for i = 1; 2. Nowrem(r2)v � urem(r1) = ur1 � r2v therefore s = rem(r2)v � urem(r1) =R 0, and hene the ongruenegenerated by R0 := R [ fsg oinides with =R.For the seond ase let r1; r2 be polynomials in R suh that uLM(r1)v = LM(r2) for some u; v 2 ArrP�.Then the S-polynomial is s := rem(r2) � urem(r1)v. Now rem(r2) � urem(r1)v = ur1v � r2 therefores = rem(r2) � u(r1)v =R 0, and hene the ongruene generated by R0 := R [ fsg oinides with =R.2Example 3.4.6 The free Q-ategory generated by the graph below has arrows of the form kidA1 ; kidA2and k1a1 + k2a2 for k; k1; k2 2 Q. A1 a1 **a2 44 A2If we fator this set of arrows by the relation 2a1 = a2 then we have a well-de�ned Q-ategory whosemorphisms are ompletely represented by fkidA1 j k 2 Qg [ fkidA2 j k 2 Qg [ fka1 j k 2 Qg.3.5 Kan ExtensionsIn the last hapter we showed that a number of ombinatorial problems soluble by rewriting methodsould be expressed in terms of the problem of omputing a partiular Kan extension over the ategory ofsets. In this setion, we investigate the Gr�obner basis analogue to this by expressing the presentation ofa non-ommutative polynomial algebra as a problem of omputing a Kan extension over framed modules49



Mods (modules over a �xed �eld or ring).AsK is traditionally used to represent the �eld in Gr�obner basis alulations, and to di�erentiate betweenKan extensions over Sets, the notation (E; ") will be used to denote the Kan extension.Theorem 3.5.1 Let K be a �eld. Let A be the trivial K-ategory generated by the graph with one objetA and the identity arrow 1A, and let B be the K-ategory with one objet B, arrows generated by a setX and polynomial relations P . Let M : A! Mods be the K-funtor that maps A to the K-module K[1℄and let F : A! B be the K-funtor mapping A to B.Let � : K[Xy℄ ! K[Xy℄=hP i be the homomorphism mapping polynomials f of the free algebra to idealshP i + f in the quotient algebra. Let the dimension of the algebra be n and let f�(m1); : : : ; �(mn)g be amonomial basis.Then the Kan extension of M along F is the pair (E; "), where E : B ! Mods is the K-funtor de�nedby E(B) = K[�(m1); : : : ; �(mn)℄; E(f) is de�ned by E(f)(�(mi)) = �(mi)�(f) and " : M ! EF is givenby "A(1) = �(id).Proof It is required to verify that E as de�ned above, is a K-funtor, " is a natural transformation ofK-funtors, and that for any other suh pair (E0; "0) there is a unique natural transformation � : E ! E0.First we verify that E is well-de�ned:E(f)(�(mi)) = �(mi)�(f) = �(mif) 2 EB beause f�(m1); : : : ; �(mn)g is a basis for �(K[X�℄).Also, E is a funtor preserving the K multipliation:E(f1f2)(�(mi)) = �(mif1f2) = E(f2)�(mif1) = E(f2)(E(f1)�(mi)) = E(f1) Æ E(f2)(�(mi)),E(kf)(�(mi)) = �(mi)�(fk) = �(mif)k = k�(mif) = kE(f)(�(mi)) andE(f1 + f2)(�(mi)) = �(mi(f1 + f2)) = �(mif1 +mif2)) = �(mif1) + �(mif2)= E(f1)(�(mi)) +E(f2)(�(mi)).Now we prove that " is a natural transformation: there is one generating arrow 1A in A and, for allk 2 K, we have "A(M(1A)(k)) = "(k) = k id and EF (1A)("A(k)) = E1B(k id) = k id.The universal property follows from the fat that EB is essentially the K-algebra B as a K-module,but we verify the property for ompleteness. Let (E0; "0) be a pair suh that E0 is a K-funtor fromB! KMods and "0 is a natural transformation of K-funtors.Any natural transformation of K-funtors � : E ! E0 suh that " Æ � = "0 must satisfy the ommutativediagram: M(A) "A //

"0A
%%EF (A) �FA //E(mi)

��

E0F (A)E0mi
��EF (A) �FA // E0F (A)whih allows the unique de�nition �(mi) = E0(mi)("0(1A)) for i = 1; : : : ; n. Hene (E; ") is universal. 2In Gr�obner basis omputations the set fm1; : : : ;mng is the set of irreduible monomials of the algebrawith respet to the ideal hP i, and so by using Gr�obner bases to alulate this set we alulate the Kanextension. 50



3.6 Conluding RemarksIn relating Gr�obner bases to rewriting systems we have ome as far as expressing the presentation ofa nonommutative polynomial algebra in the ategorial terms of a Kan extension. It is not laimedthat this result is partiularly deep or diÆult, but it illustrates the possibility of using Gr�obner basesto ompute di�erent types of Kan extensions. The result proves that the Kan extension an be used topresent a K-algebra, and so that there is a kind of Kan extension, (beyond the rewriting ones over sets)to whih Gr�obner basis methods of omputation may be applied.Expressing a presentation of a K-ategory as a Kan extension auses more problems. The reason for thisis that the K-ategory B presented may have arrows from di�erent soures leading into one target B. Inthis ase the olletion of irreduible monomial arrows with target B (whih we might expet to be EB)annot be a K-module (more like a union of K-modules), as addition aross the hom-sets is not de�ned.Open questions remain, therefore, as to how to express the other algebra presentations in terms of Kanextensions, whih would be likely to yield methods for using Gr�obner bases to ompute a greater rangeof Kan extensions.
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Chapter 4Redution and MahinesIn the �rst setion automata are onsidered in the standard way, as aeptors, but applied to the Kanextensions of Chapter 2. We show how to onstrut automata whih aept the unique normal formsof the elements of eah set KB for B 2 Ob�. Creating aepting automata for suh strutures is new,and we desribe their onstrution from the omplete rewriting systems as well as showing how to applystandard automata theory [41℄ to obtain a regular expression for the language whih is the set of irre-duible elements. Further, we extend the ideas to algebras. It appears that some work is being done inthis line [60℄ (monomial aeptors) but it is still appropriate to inlude it here, to relate the onepts.In the seond setion we move on to onsider a more useful lass of automata { those with output. Thesemahines not restrited to aepting or rejeting strings, but an redue them into the unique irreduiblerepresentative forms. The best known example of this is the use of the Cayley Graph to work out mul-tipliation of group elements. The use of the Cayley Graph as a redution mahine is the �rst thingto be desribed. Rewriting systems for Kan extensions an be translated into redution mahines forKan extensions. These mahines are de�ned as Moore mahines. The next onsideration is of redutionmahines for algebras, whih are onstruted from the Gr�obner bases. I believe this to be a new idea.The onstrution and operation of the \Gr�obner mahines" is explained, using a small Heke Algebra asan example.The �nal setion introdues a third type of mahine: a Petri net. There are many di�erent lasses of Petrinets, and we show how to onsider the \Gr�obner mahine" of the previous setion as a Petri net. Wealso show how ommutative Gr�obner bases may be applied to suessfully solve the standard problemsposed for reversible Petri nets. This small setion speulates on the relation between Petri nets andGr�obner bases and does not prove any results. It is hoped that it provides a starting point for furtherinvestigations into the relation between Petri nets and Gr�obner bases.4.1 Normal Forms Aeptors4.1.1 De�nitions and NotationFor a detailed introdution to automata theory refer to [28℄ or [41℄. This setion only outlines the essen-tial ideas we use.A (�nite) deterministi automaton is a 5-tuple A = (S;�; s0; Æ;Q) where S is a �nite set of states (rep-resented by irles), s0 2 S is the initial state (marked with an arrow), � is a �nite alphabet, Æ : S��! Sis the transition, Q � S is the set of terminal states (represented by double irles). A deterministiautomaton A is omplete if Æ is a funtion, and inomplete if it is only a partial funtion. If A isinomplete, then when Æ(s; a) is unde�ned, the automaton is said to rash.52



The extended state transition Æ� is the extension of Æ to ��. It is de�ned by Æ�(s; id) := s,Æ�(s; a) := Æ(s; a), Æ�(s; aw) := Æ�(Æ(s; a); w) where s 2 S, a 2 � and w is a string in ��. We areinterested in the �nal state Æ�(s0; w) of the mahine after a string w has been ompletely read. If themahine rashes or ends up at a non-terminal state then the string is said to have been rejeted. If itends up at a terminal state then we say the string is aepted.A language over a given alphabet � is a subset L of ��. The set L(A) of all aeptable strings isthe language aepted by the automaton A. A language L is a reognisable if it is aepted bysome automaton A. Two automata are equivalent if their languages are equal. The omplement ofa omplete, deterministi automaton is found by making non-terminal states terminal and vie versa. Ifthe language aepted by an automaton is L, then the language aepted by its omplement is �� � L.Lemma 4.1.1 ([28℄) Let A = (S;�; s0; Æ;Q) be an inomplete deterministi automaton. Then thereexists a omplete deterministi automaton ACP suh that L(A) = L(ACP ).Outline proof De�ne ACP = (S t d;�; s0; Æ1; Q) where the transition Æ1 : S � � ! S is de�ned byÆ1(s; a) := Æ(s; a) if Æ(s; a) is de�ned, otherwise Æ1(s; a) := d, and Æ1(d; a) := d. 2Diagrammatially this means that automata may be ompleted by adding one further non-terminal(dump) state d and adding in all the missing arrows so that they point to this state.A non-deterministi automaton is a 5-tuple A = (S;�; S0; Æ;Q) where S is a �nite set of states,S0 � S is a set of initial states, � is a �nite alphabet, Q � S is the set of terminal states and Æ : S��!P(S) is the transition mapping where P(S) is the power set.Lemma 4.1.2 ([28℄) Let A = (S;�; S0; Æ1; Q) be a non-deterministi automaton. Then there exists adeterministi automaton Ad suh that L(Ad) = L(A).Outline proof De�ne Ad := (Sd;�; S0d; Æd; Qd) where Sd := P(S) then S0d = S0 2 Sd, Qd := fU 2P(S)jU \Q 6= ;g. De�ne Æd(U; a) := Su2U Æ(u; a) for a 2 �. It an be veri�ed that L(Ad) = L(A). 2In pratie a non-deterministi automaton may be made deterministi by drawing a transition tree andthen onverting the tree into an automaton; for details of this see [28℄.Let � be a set (alphabet). The following notation is standard when working with languages. The emptyword will be denoted id. If x 2 �� then we will write x for fxg. If A;B 2 P�� then A + B := A [ B,A�B := A=B. Therefore, for example (x+ y)� + z = fx; yg� [ fzg.A regular expression over � is a string of symbols formed by the rulesi) a1 � � � an is regular for a1; : : : ; an 2 �,ii) ; is regular,iii) id is regular,iv) if x and y are regular then xy is regular,v) if x and y are regular then x+ y is regular,vi) if x is regular then x� is regular.A right linear language equation over � is an expression X = AX +E where A;X;E � ��.53



Theorem 4.1.3 (Arden's Theorem [28℄) Let A;X;E � �� suh that X = AX +E where A and Eare known and X is unknown. Theni) A�E is a solution,ii) if Y is any solution then A�E 2 Y ,iii) if id 62 A then A�E is the unique solution.Theorem 4.1.4 ([28℄) A system of right linear language equations:X0 = A0;0X0 + � � � + A0;n�1Xn�1 + E0,X1 = A1;0X0 + � � � + A1;n�1Xn�1 + E1,� � � � � � � � � � � � � � � � � � � � � � � �Xn�1 = An�1;0X0 + � � � + An�1;n�1Xn�1 + En�1.where Ai;j; Ei 2 (��) and id 62 Ai;j for i; j = 0; : : : ; n� 1, has a unique solution.Outline proof Begin with the last equation. By assumption id 62 An�1;n�1. So by Arden's theo-rem Xn�1 = A�n�1;n�1(An�1;0X0 + � � � + An�1;n�2Xn�2 + En�1). Substitute this value for Xn�1 intothe remaining n� 1 equations and repeat the proedure. Eventually an equation in X0 only will be ob-tained whih an be solved expliitly. The bak-substitution will give expliit values of X1; : : : ;Xn�1. 2Theorem 4.1.5 ([28℄) Let A be a (non)-deterministi automaton. Then L(A) is regular.Outline proof (for the deterministi ase)Let A := (S;�; s0; Æ;Q) where S = fs0; : : : ; sn�1g. De�ne Xi := fz 2 �� : Æ(si; z) 2 Qg for i =0; : : : ; n � 1. It is lear that L(A) = X0. De�ne Ei := ; if si 62 Q and Ei := fidg if si 2 Q fori = 0; : : : ; n� 1. De�ne Ai;j := fa 2 � : Æ(si; a) = sjg for i; j = 0; : : : ; n� 1. Form the following system:X0 = A0;0X0 + � � � + A0;n�1Xn�1 + E0,X1 = A1;0X0 + � � � + A1;n�1Xn�1 + E1,� � � � � � � � � � � � � � � � � � � � � � � �Xn�1 = An�1;0X0 + � � � + An�1;n�1Xn�1 + En�1.This system of n right linear equations in n unknowns satis�es the onditions of the previous theorem andtherefore has a unique solution. Moreover, the solution an easily be onverted into regular expressions.2So every non-deterministi automaton gives rise to a system of language equations from whose solutionsa desription of the language may be obtained.Theorem 4.1.6 (Kleene's Theorem [28℄) A language L is regular if and only if it is reognisable.4.1.2 Aeptors for Kan ExtensionsThroughout this setion we will use the notation introdued in Chapter Two. Reall that a presentationof a Kan extension (K; ") is a quintuple P := kanh�j�jRelBjXjF i where � and � are graphs, RelB isa set of relations on P := P�, while X : �! Sets and F : �! P are graph morphisms. Elements of theset T := GB2Ob� GA2Ob�XA� P(FA;B)54



are written t = xjb1 � � � bn with x 2 XA, and b1; : : : ; bn 2 Arr� are omposable with sr(b1) = FA. Thefuntion � : T ! Ob� is de�ned by �(xjb1 � � � bn) := tgt(bn) and the ation of P on T , written t � p fort 2 T , p 2 ArrP, is de�ned when �(t) = sr(p).In Chapter Two we de�ned an initial rewriting system Rinit := (R"; RK) on T , and gave a proedure forattempting to omplete this system. We will be assuming that the proedure has terminated, returninga omplete rewriting system R = (RT ; RP ) on T . In this setion automata will be used to �nd regularexpressions for eah of the sets KB for B 2 Ob�.Reall that tXA is the union of the images under X of all the objets of � and tKB is the union ofthe images under K of all the objets of �. In general the automaton for the irreduible terms whihare aepted as members of tKB is the omplement of the mahine whih aepts any string ontainingunde�ned ompositions of arrows of B, any string not ontaining a single xi on the left-most end, andany string ontaining the left-hand side of a rule. This essentially uses a semigroup presentation of theKan extension.Lemma 4.1.7 Let P present the Kan extension (K; "). Then the set tKB may be identi�ed with thenon-zero elements of the semigroup having the presentation with generating setU := (tXA) tArr� t 0and relations0u = u0 = 0 for all u 2 U ,ux = 0 for all u 2 U; x 2 tXA,xb = 0 for all x 2 XA; A 2 Ob�; b 2 Arr� suh that sr(b) 6= FA,b1b2 = 0 for all b1; b2 2 Arr� suh that sr(b2) 6= tgt(b1)x(Fa) = (x � a) for all x 2 XA; a 2 ArrA suh that sr(a) = A,l = r for all (l; r) 2 RelB.Proof The semigroup de�ned is the set of equivalene lasses of T with respet to the seond tworelations (i.e. the Kan extension rules R" and RK) with a zero adjoined and multipliation of any twolasses of T de�ned to be zero. 2Lemma 4.1.8 Let P be a presentation of a Kan extension (K; "). Then T is a regular language overthe alphabet � := (tXA) tArr�.Proof To prove that T is regular over � we de�ne an automaton with input alphabet � whih reognisesT � ��. De�ne A := (S;�; s0; Æ;Q) where S := Ob� t s0 t d, Q := Ob� and Æ is de�ned as follows:Æ(s0; u) :=� FA for u 2 XA;A 2 Ob�d otherwise.for B 2 Ob�; Æ(B; u) :=� tgt(u) for u 2 Arr�; sr(u) = Bd otherwise.Æ(d; u) := d for all u 2 �:It is lear from the de�nitions that the extended state transition Æ� is suh that Æ�(so; t) 2 Ob� if andonly if t 2 T . Hene L(A) = T . 2Theorem 4.1.9 Let P be a presentation of a Kan extension (K; "). Let R be a �nite rewriting systemon T . Then the set of elements IRR(!R) � T whih are irreduible with respet to !R is a regularlanguage over the alphabet � := tXA tArr�. 55



Proof We de�ne an inomplete non-deterministi automaton A with input alphabet �, and language�� � IRR(!R) i.e. that rejets only the irreduible elements of T and aepts all reduible and unde-�ned elements. This is suÆient proof for the theorem, sine a language reognised by an inompletenon-deterministi automaton A is reognisable and therefore regular. The omplement of �� � IRR(R)is IRR(R) and therefore if �� � IRR(R) is regular then IRR(R) is regular.Begin by de�ning L(RT ) and L(RP ) to be the sets of left hand sides of rules of RT and RP respetively.Then de�ne PL(RT ) and PL(RP ) to be the sets of all pre�xes of elements of L(RT ) and L(RP ) and de�nePPL(RT ) and PPL(RP ) to be the sets of all proper pre�xes of elements of L(RT ) and L(RP ). The properpre�xes of a term xjb1 � � � bn are the terms xjb1; : : : ; xjbn�1. Note that eah x has its own state and wedo not require that xjid is a pre�x. Similarly the proper pre�xes of a path b1 � � � bn are the elementsb1; : : : b1 � � � bn�1. The di�erene between proper pre�xes and pre�xes is that xjb1 � � � bn is onsidered tobe a pre�x of itself (but not a proper one), similarly for b1 � � � bn. Note PPL(RT ) [ L(RT ) = PL(RT ),similarly for RP .De�ne A := (S;�; s0; Æ;Q) where S := s0 t (Ob� [ (tXA) [ PPL(RT ) [ PPL(RP )) tD, Q := s0 tD.Let x; b 2 � so that x 2 tXA and b 2 Arr�. Let x1 2 tXA, B 2 Ob�, u 2 PPL(RP ) and p 2 PPL(RP ).De�ne the transition Æ : S � �! P(S) by:Æ(s0; x) := � fxg if x 62 L(RT );fDg if x 2 L(RT );Æ(s0; b) := fDg;Æ(y; x) := fDg;Æ(y; b) := 8>><>>: fx1jb; tgt(b)g if x1jb 2 PPL(RT );ftgt(b)g if �(y) = sr(b); yjb 62 PL(RT );fDg if x1jb 2 L(RT );fDg if �(y) 6= sr(b);Æ(B; x) := fDg;Æ(B; b) := 8>><>>: fb; tgt(b)g if sr(b) = B; b 2 PPL(RP );ftgt(b)g if sr(b) = B; b 62 PL(RP );fDg if sr(b) = B; b 2 L(RP );fDg if sr(b) 6= B;Æ(u; x) := fDg;Æ(u; b) := 8>><>>: fu � b; tgt(b)g if u � b 2 PPL(RT );ftgt(b)g if �(u) = sr(b); u � b 62 PL(RT );fDg if u � b 2 L(RT );fDg if �(u) 6= sr(b);Æ(p; x) := fDg;Æ(p; b) := 8>><>>: fpb; tgt(b)g if pb 2 PPL(RP );ftgt(b)g if tgt(p) = sr(b); pb 62 PL(RP );fDg if pb 2 L(RP );fDg if tgt(p) 6= sr(b);Æ(D;x) := fDg;Æ(D; b) := fDg:It follows from these de�nitions that the extended state transition funtion Æ� is suh that Æ�(s0; t)\Q 6= ;if and only if t is in �� � T or if some part of t is the left-hand side of a rule of R (i.e. if t is reduible).Therefore �� � IRR(R) is regular, hene IRR(R) is regular. 256



Corollary 4.1.10 Let R be a �nite omplete rewriting system for a Kan extension (K; "). Then regularexpressions for the sets KB of the extended ation K an be alulated.Outline proof This follows from the preeding results. The automaton A of the theorem an be on-struted using the spei�ations in the proof. By the results quoted in the introdution to this haptera omplete deterministi automaton that reognises the same language an be de�ned. The omplementof this has a language that an be identi�ed with tKB. Language equations for this automaton an bewritten down and Arden's theorem may be applied to �nd a solution, whih gives the language of theautomaton as a regular expression. 2The following example illustrates the alulations outlined above.Example 4.1.11 We onstrut simple automata whih aept the terms whih represent elements ofsome set KB for B 2 ObB for the general example of a Kan extension 2.7. Reall that the graphs wereA1 a1 ** A2a2jj B1b4 )) b1 //b5 ''

B2b2~~||||||||B3b3``BBBBBBBBThe relations are RelB = fb1b2b3 = b4g, X was de�ned by XA1 = fx1; x2; x3g;XA2 = fy1; y2g withXa1 : XA1 ! XA2 : x1 7! y1; x2 7! y2; x3 7! y1, Xa2 : XA1 ! XA2 : y1 7! x1; y2 7! x2; and F wasde�ned by FA1 = B1, FA2 = B2, Fa1 = b1 and Fa2 = b2b3.The ompleted rewriting system was:x1jb1 ! y1jidB2 , x2jb1 ! y2jidB2 , x3jb1 ! y1jidB2 , y1jb2b3 ! x1jidB1 ,y2jb2b3 ! x2jidB1 , x1jb4 ! x1jidB1 , x2jb4 ! x2jidB1 , x3jb4 ! x1jidB1 ,b1b2b3 ! b4.The proper pre�x sets are PPL(RT ) := fy1jb2; y2jb2g and PPL(RP ) := fb1; b1b2g. The following tablede�nes the inomplete non-deterministi automaton whih rejets only the terms of T that are irreduiblewith respet to the ompleted relation !. The alphabet over whih the automaton is de�ned is � :=fx1; x2; x3; y1; y2; b1; b2; b3; b4; b5g.state/letter x1 x2 x3 y1 y2 b1 b2 b3 b4 b5s0 x1 x2 x3 y1 y2 D D D D Dx1 D D D D D D D D D B3x2 D D D D D D D D D B3x3 D D D D D D D D D B3y1 D D D D D D y1jb2; B3 D D Dy2 D D D D D D y2jb2; B3 D D Dy1jb2 D D D D D D D D D Dy2jb2 D D D D D D D D D DB1 D D D D D b1; B2 D D B1 B3B2 D D D D D D B3 D D DB3 D D D D D D D B1 D Db1 D D D D D D b1b2; B3 D D Db1b2 D D D D D D D D D DD D D D D D D D D D D57



By onstruting the transition tree for this automaton, we will make it deterministi. The next pitureis of the partial transition tree { the arrows to the node marked fDg are omitted.s0x1hhhhhhhhhhhh
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fD;B1gfD;B1g fD;B1gThe tree is onstruted with strit observation of the order on tXA and Arr�, all arrows are drawnfrom fs0g and then arrows from eah new state reated, in turn. When a label e.g. fB3g ours thatbranh of the tree is ontinued only if that state has not been de�ned previously. Eventually the stage isreahed where no new states are de�ned, all the branhes have ended. The tree is then onverted into anautomaton by `gluing' all states of the same label. The initial state is fs0g and a state is terminal if itslabel ontains a terminal state from the original automaton. The automaton an often be made smaller,for example, here all the terminal states may be glued together. One possibility is drawn below:
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?>=<89:;5Here the state S1 is labelled 1 and orresponds to the glueing together of fx1g, fx2g and fx3g to formfx1; x2; x3g and the state S2 is fy1; y2; b1; B2g. States S3 and S4 represent fB3g and fB1g respetivelyand state S5 is fy1jb2; y2jb2; B3; b1b2g. The omplement of this automaton aepts all irreduible elementsof tKB. When S1 and S4 are terminal the language aepted is KB1. When S2 is terminal the languageaepted is KB2. When S3 and S5 are terminal the language aepted is KB3. The language equationsfrom the automaton for KB1 are:
58



X0 = (x1 + x2 + x3)X1 + (y1 + y2)X2;X1 = b5X3 + idB1 ;X2 = b2X5;X3 = b3X4;X4 = b1X2 + b4X4 + b5X3 + idB1 ;X5 = ;:Putting X2 = ; and eliminating X1 and X3 by substitution givesX0 = (x1 + x2 + x3)(b5b3X4 + idB1);X4 = (b4 + b5b3)X4 + idB1 :Finally, applying Arden's Theorem to X4 we obtain the regular expressionX0 = (x1 + x2 + x3)j(b5b3(b4 + b5b3)� + idB1):The separator \j" may be added at this point. Similarly, we an obtain regular expressions for KB2 andKB3. For KB2 we haveX0 = (x1 + x2 + x3)jb5b3(b4 + b5b3)�b1 + (y1 + y2)jidB2 :For KB3 the expression isX0 = (x1 + x2 + x3)j(b5b3(b4 + b5b3)�(b1b2 + b5) + b5) + (y1 + y2)jb2:4.1.3 Aepting Automata for AlgebrasWe have disussed automata for rewriting systems whih aept only irreduible words. The onept willnow be generalised to Gr�obner bases. The irreduibles of an algebra K[S℄=hP i in whih we are interestedare the irreduible monomials; reduibility of a polynomial is determined by reduibility of the monomialsit ontains. Therefore the automaton we draw is over the alphabetX, the generators of S and the languageit aepts is the set of irreduible monomials. The automaton below is for the in�nite dimensional algebraQ [fa; bgy ℄ fatored by the ideal generated by the Gr�obner basis fa3 � b+ 2; ba2b� 2b2 + 4ag.
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a;bOOThe point of drawing aeptor automata is to �nd nie expressions for the sets of irreduibles. If analgebra is �nite then the number of irreduible monomials it has is the dimension of the algebra. In thein�nite example above we an at least �nd a regular expression for the set of irreduible monomials.It is: (a2b+ ab+ b)(ab+ b)�(a2 + a+ id) + (a2 + a)Any element of the algebra is then uniquely expressible as a sum of K-multiples of these monomials.59



It is possible to adapt the automaton so that it aepts polynomials by allowing + and � to be elementsof the input alphabet, with transitions (from eah state) labelled by + and � going to the initial state,and by adding k for k 2 K as a loop at the initial state. In this way it may be possible to de�neautomati algebras. One diÆulty to suh a de�nition is the fat that a multiplier/equality reogniserhas to reognise that two polynomials are equal though the terms may be input in a di�erent order (b+a2and a2 + b). There is not the option, as with the aeptor, of working only with monomials. The reasonfor this is that the normal form of a monomial w multiplied by a generator x (as if to de�ne the multiplierautomaton) may well not be a monomial. We mention these issues in passing, only here being onernedwith the aeptors and with the redution mahines (next setion).4.2 Redution Mahines4.2.1 Cayley GraphsThe Cayley graph � of a group G with generating set X, and quotient morphism � : F (X) ! G isthe graph with vertex set Ob� := G and edge set Arr� := G �X with sr[g; x℄ = g, tgt[g; x℄ = g�(x).The Cayley graph is a representation of the whole multipliation table for the group. In this setion weindiate how to use the Cayley graph of a group to help with rewriting proedures. The results are notsurprising, but formalise ertain proedures whih may sometimes be useful.Proposition 4.2.1 Let G be the group given by the �nite presentation grphXjReli. Let � be the Cayleygraph of G. Let � : F (X) ! G be the quotient map. Let > be the length-lex order on X� indued by alinear order on X. Then > spei�es a tree in the Cayley graph and a vertex labelling V � X� where forall w1 2 V , w2 2 F (X) suh that �(w1) = �(w2) it is the ase that w2 > w1 or w2 = w1.Proof Sine G is �nite the inverse of any generator an be represented by a positive power. So for anyword r 2 F (X) there is a word r+ obtained by replaing eah x�1 with xOrder(x)�1, with �(r) = �(r+).Therefore we onsider the presentation monhXjRi where R := f(r+; id) : r 2 Relg of G. Let T := ;,V := ;. Start at vertex id and add this label to V . Go through the elements of X in order, adding theedge [id; x℄ to T whenever it will not reate a yle in the graph. When an edge [id; x℄ is added to T thetarget vertex label x should be added to V . Clearly, if xi 2 V and �(xi) = �(xj) for some xj in X thenxj > xi and xj 62 V or else xj = xi.Now repeat the following step until all the verties of the graph are represented in V ; that is until�(V ) = G. Choose the vertex with least label w of V in the graph and go through the elements of X inorder adding edges [w; x℄ to T whenever �(wx) 62 �(V ). This is the ondition that to add that edge willnot reate a yle. For eah new edge [w; x℄ added to T , add the vertex label wx to V .It is immediate from the indutive onstrution that the set of vertex labels V is least in the sense thatfor any w in V , w is the least element of F (X) with respet to > with image �(w). Furthermore, sine� is onneted and edges are hosen so as not to reate yles, T de�nes a spanning tree of � with edges[�(w); x℄. 2Corollary 4.2.2 The set of vertex labels V is a set of unique normal forms for G in F (X) and the treeT de�nes a normal form funtion N : F (X)! V .Proof It is immediate from the last result that V is a set of unique normal forms for R on X�. The nor-mal form funtion is de�ned by using the Cayley graph as a redution mahine operating on F (X). Letx"00 x"11 � � � x"mm be an input word where "i := �1 and xi 2 X. Start at the vertex with label id and followthe path [id; x"00 ℄[�(x"00 ); x"11 ℄ � � � [�(x"00 � � � x"m�1m�1 ); x"mm ℄. The label of the target vertex �(x"00 x"11 � � � x"mm ) isthe least element w 2 F (X) suh that �(w) = �(x"00 x"11 � � � x"mm ). This de�nes a normal form funtion N .60



2Example 4.2.3 Consider the Cayley graph for the dihedral group D8 whih is presented bygrpha; bja4; b2; ababi. The Cayley graph is depited below, with the verties labelled aording to theordering indued by a < b. a3
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CCCConsider the word aba3b. Beginning at id follow the path to a. Read b and go to vertex ab. Read a andso go to vertex b. When the �nal b is read, it takes us to the vertex with label a2, hene N(aba3b) = a2.4.2.2 Redution Mahines for Kan ExtensionsWe now generalise the redution mahine idea to Kan extensions. Formally, standard output automataare de�ned in two ways, as Moore mahines or Mealy mahines (see [41℄). The redution mahines hereare Moore mahines.A Moore mahine is a six-tuple M := (S;�; s0; Æ; �;�) where S is the set of states with an initial states0, � is the input alphabet, � is the output alphabet, Æ is the transition funtion from S � �! S and� : S ! � is a mapping whih gives the output assoiated with eah state. (All states are \terminal".)As before Æ� denotes the extended state transition funtion.We ontinue with the assumption that P := kanh�j�jRelBjXjF i is the �nite presentation of the Kanextension (K; ") and R = (RT ; RP ) is a �nite omplete rewriting system on the P-set T given by P. Wewill only work with �nite mahines, so for the rest of this hapter the Kan extensions will be assumed tobe �nite i.e. tKB is �nite.Proposition 4.2.4 Let P be a presentation of a �nite Kan extension, with omplete rewriting systemR. Then there exists a Moore mahine M = (S;�; s0; Æ; �;�) suh that �(Æ(w)) is the irreduible formof w with respet to !R on T .Proof De�ne a Moore mahine M in the following way. Let S := (T= �$R) t s0 t d, � := XA t Arr�,and � := T t 0. Let s0 be the initial state. De�ne Æ : S � T ! S by Æ(s0; x) := [xjidFA℄ andÆ([t℄; x) = Æ(d; x) := d for all x 2 XA;A 2 Ob� and t 2 T ; and Æ([t℄; b) := [t � b℄ for all t 2 T; b 2 Arr�suh that �(t) = sr(b) and Æ([t℄; b) = Æ(s; b) = Æ(d; b) := d otherwise. Then de�ne � : S ! � by�(s) = �(d) = 0 and �([t℄) := N(t). It is lear from these de�nitions that �(Æ(s; t)) = N(t) for all t 2 T .261



Example 4.2.5 We onlude this subsetion with an example of a redution mahine for a Kan exten-sion. Let P be a Kan extension where � and � are as follows:A1 a1
��a2 CCA2 B1 b1 // B2 b2 // b4 99B3b5 �� b3 // B4The relations of B are RelB := f(b2b5b3; b4); (b25; b5)g. The funtors F and X are de�ned by:- FA1 := B1,FA2 := B4, Fa1 := b1b2b3, Fa2 := b1b4 and XA1 := fx1; x2; x3g; XA2 := fy1; y2g, Xa1 : XA1 ! XA2 :x1 7! y1; x2 7! y1; x3 7! y2, Xa2 : XA1 ! XA2 : x1 7! y1; x2 7! y2; x3 7! y2. The initial rewritingsystem is in fat omplete. It isfx1jb1b2b3 ! y1jidB4; x2jb1b2b3 ! y1jidB4; x3jb1b2b3 ! y2jidB4; x1jb1b4 ! y1jidB4;x2jb1b4 ! y2jidB4; x3jb1b4 ! y2jidB4; b2b5b3 ! b4; b25 ! b5g:Following the diretions in the proof above we onstrut the Moore mahine. There are 14 states [t℄ 2 Sand also the initial state s and the dump state d whih rejets any terms that are not de�ned in T .�(S) := fd; x1jidB1; x2jidB1; x3jidB1; y1jidB4; y2jidB4;x1jb1; x2jb1; x3jb1; x1jb1b2; x2jb1b2; x3jb1b2; x1jb1b2b5; x2jb1b2b5; x3jb1b2b5g:The non-trivial part of the transition funtion is as follows:Æ(s; x1) = [x1jidB1℄ Æ(s; x2) = [x2jidB1℄ Æ(s; x3) = [x3jidB1℄Æ(s; y1) = [y1jidB4℄ Æ(s; y2) = [y2jidB4℄ Æ([x1jidB1℄; b1) = [x1jb1℄Æ([x2jidB1℄; b1) = [x2jb1℄ Æ([x3jidB1℄; b1) = [x1jb1℄ Æ([x1jb1℄; b2) = [x1jb1b2℄Æ([x1jb1℄; b4) = [y1jidB4℄ Æ([x2jb1℄; b2) = [x2jb1b2℄ Æ([x2jb1℄; b4) = [y2jidB4℄Æ([x3jb1℄; b2) = [x3jb1b2℄ Æ([x3jb1℄; b4) = [y2jidB4℄ Æ([x1jb1b2℄; b3) = [y1jb1℄Æ([x1jb1b2℄; b5) = [y1jb2℄ Æ([x2jb1b2℄; b3) = [y2jb1℄ Æ([x2jb1b2℄; b5) = [y2jb2℄Æ([x3jb1b2℄; b3) = [y1jb1℄ Æ([x3jb1b2℄; b5) = [y2jb2℄The mahine an be represented by a diagram { states have not been irled as the labels are too long,and the state d whih rejets anything not de�ned is not drawn.
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4.2.3 Redution Mahines for AlgebrasWe have shown how to use general rewriting systems to onstrut automata. In a similar way Gr�obnerbases may be used to onstrut redution mahines for �nite dimensional algebras. The onepts of re-dution mahines for the previous strutures were new but based on standard automata for semigroups.The Gr�obner redution mahines for algebras are di�erent from basi output automata.Let K be a �eld and let X be a set. Let !R be a redution relation on K[Xy℄. We de�ne a redutionmahine M to be a marked graph whose verties V are labelled by monomials of X� that are irre-duible with respet to !R. (The monoid identity id represents the algebra identity 1.) Edges havethe form (; x) with  2 K, x 2 X and from every vertex m there will be at least one edge (; x) foreah x 2 X. The targets of these edges are the monomials of the redued form of mx with respet to!R.A state of the mahine an be represented by a vetor in K[Xy℄n, where n is the number of verties. Thevalue at eah vertex represents the unproessed input. When the Cayley graph mahines were onsideredin this way, the state of a mahine was essentially a funtion V ! F (X). Thus it seems reasonable thatthe state of a Gr�obner mahine should be represented by a funtion V ! K[Xy℄. Essentially the state ofa mahine is the spei�ation of a value v 2 K[Xy℄ for eah vertex m.The mahine ats by reading the �rst letter x1 2 X of a monomial x1 � � � xn of the value v at a vertex mand moves to a new state determined by all the edges leaving m that are labelled (i; x1) and have targetmi. The value at m is dereased by kx1 � � � xm where k is the oeÆient of x1 � � � xn in v and the valueat eah mi 2 S is inreased by ix2 � � � xn. The vital di�erene between these mahines and earlier onesis that monomials an redue to polynomials, and so there may be more than one arrow with the sameletter label oming from a vertex. This beomes learer on examination of an example.Example 4.2.6 The third Heke algebra is Q [fe1 ; e2g�℄=hP i whereP := fe21 � e1; e22 � e2; e2e1e2 � e1e2e1 + 2=9 e2 � 2=9 e1g:In fat P is a Gr�obner basis for this algebra. The algebra has dimension 6, the irreduible monomialsbeing id; e1; e2; e1e2; e2e1; e1e2e1. We draw a mahine whih ats to redue polynomials in Q [fe1 ; e2g�℄The edges have two labels; a generator e1 or e2 and a oeÆient from Q , (1 where unmarked). Forexample e1e2e1e2 redues to e1e2e1 � 29e1e2 + 29e1 so there are three arrows with letter label e2 omingout of the vertex e1e2e1.The following diagram shows the \Gr�obner mahine" for the Heke algebra de�ned above.ide1uuuuu
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Read e2 and the state is now given by the value e1e2e1 at e1e2 and 0 elsewhere. Read e1 and the state ofthe mahine is e2e1 at e1e2e1 and 0 elsewhere. Read e2 and the new state is given by e1 at e1e2e1, �2=9e1at e1e2 and 2=9e1 at e1 with 0 elsewhere. At vertex e1e2e1 read e1 and the new state of the mahine is 1at e1e2e1 and the values of the other verties unhanged. At vertex e1e2 read �2=9e1 and the new stateof the mahine is given by 7=9 at e1e2e1 and 2=9e1 at e1 and 0 elsewhere. To �nish, read 2=9e1 at e1,and the �nal state of the mahine is given by the values of 7=9 at state e1e2e1, 2=9 at e1 and 0 elsewhere.The output polynomial is therefore 7=9e1e2e1 + 2=9e1, this is the irreduible form of e1e2e1e2e1.The \Gr�obner Mahines" desribed are really no more than \pitures" of the Gr�obner bases. We willformalise the ideas of redution mahines for algebras, for the general ase, by using Petri nets.4.3 Petri netsThis setion introdues Petri nets and formalises the \Gr�obner mahines" devised in the previous setionin terms of these well-de�ned strutures.4.3.1 Introdution to Petri netsPetri nets are a graphial and mathematial modelling tool appliable to many systems. They maybe used for speifying information proessing systems that are onurrent, asynhronous, distributed,parallel, non-deterministi, and/or stohasti. Graphially, Petri nets are useful for illustrating and de-sribing systems, and tokens an simulate the dynami and onurrent ativities. Mathematially, it ispossible to set up models suh as state equations and algebrai equations whih govern the behaviour ofsystems. Petri nets are understood by pratitioners and theoretiians and so provide a powerful link ofommuniation between them. For example engineers an show mathematiians how to make pratialand realisti models, and mathematiians may be able to produe theories to make the systems moremethodial or eÆient. A good introdution to the ideas of Petri nets is [58℄.An integer-valued Petri net is a kind of direted graph together with an initial state (alled an initialmarking M0). The underlying graph of a Petri net is a direted, weighted bipartite graph. The twokinds of verties are plaes (represented by irles) and transitions (represented by retangles). Edgesgo between plaes and transitions and are labelled with their weights. A marking assigns a non-negativeinteger to eah plae. If a plae p is assigned k in a marking then we say p has k tokens (representedby blak dots). In modelling, plaes represent onditions and transitions represent events. A transitionhas input and output plaes, whih represent preonditions and postonditions (respetively) of the event.A Petri net (without spei� initial marking) is a 4-tuple N = (P; T;F ; w) where:P = fp1; : : : ; pmg is a �nite set { the plaes,T = ft1; : : : ; tng is a �nite set { the transitions,F � (P � T ) [ (T � P ) is a set of edges { the ow relation,w : F ! N is a weight funtion,and P \ T = ;, P [ T 6= ;.The state of a Petri net is represented by a marking. A marking is a funtion M : P ! N + f0g. LetN be a Petri net where eah plae is given a distint label pi. To every marking M we will assoiate apolynomial pol(M) := �P pM(p) that is the formal sum of terms where M(p) is a non-negative integerand p is a plae label.The behaviour of dynami systems may be desribed in terms of system states and hanges. A markingof a Petri net is hanged aording to the �ring rule:64



i) A transition t is enabled if eah input plae p of t is marked with at least w(p; t) tokens wherew(p; t) is the weight of the edge from p to t.ii) An enabled transition may or may not �re { depending on whether or not the relevant event ours.iii) Firing of an enabled transition t removes w(p; t) tokens from eah input plae p of t and adds w(t; q)tokens to eah output plae q of t where w(t; q) is the weight of the edge from t to q.Example 4.3.1 The markings of the nets below are given by the polynomials H2+2O2 and 2H2+2O2respetively. The transition t is enabled in the seond ase and not in the �rst:
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O2t tEah transition t has an assoiated polynomial pol(t) := �P pw(p; t)��P pw(t; p), that is the sum of theweights of tokens that a �ring of transition t takes from eah input plae minus the sum of weights of tokensthat it adds to eah output plae. A �ring/ourrene sequene is denoted by M0 t1! M1 t2! � � � tn! Mnwhere theMi are markings and the ti are transitions (events) transformingMi�1 intoMi. For i = 1; : : : ; nit follows from the de�nitions that pol(Mi) = pol(Mi�1) � pol(ti). Therefore the above �ring sequenegives the information pol(Mn) = pol(M0)� pol(t1)� pol(t2)� � � � � pol(tn).Example 4.3.2 The formula 2H2 +O2 = 2H2O is represented by the transition in the diagrams below,the left diagram shows the initial marking and the right shows the marking after the transition has �red.
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/.-,()*+ H2O ?>=<89:;��H2OThe polynomial for the transition is 2H2 +O2 � 2H2O and the �ring sequene would be denoted 2H2 +2O2 t! O2 + 2H2O.One of the main problems in Petri net theory is reahability (see [32℄ for some examples). A marking Mis said to be reahable from a marking M0 in a net N , if there is a sequene of �rings that transformsM0 to M .De�nition 4.3.3 The reahability problem for a Petri net N is as follows:INPUT: M1, M2, two markings of M ,QUESTION: is M2 reahable from M1?Often a Petri net omes with a spei�ed initial markingM0. Then the reahability refers to reahabilityfrom M0 and the reahability problem refers to deiding whether a marking M is reahable from M0.Note: For the type of Petri nets de�ned so far reahability is deidable [58℄ (in exponential time and spae).A Petri net N is alled reversible if a marking M2 is reahable from another marking M1 implies thatM1 is reahable from M2. A Petri net with initial marking may be alled reversible if there is alwaysa �ring sequene of events that will transform the net from any reahable marking bak to the initialmarking. 65



Proposition 4.3.4 Let N be a reversible Petri net. De�ne F := fpol(t) : t 2 Tg and let hF i be the idealgenerated by F in Z[P ℄. Let M and M 0 be two markings of N . Then M 0 is reahable from M only ifpol(M)� pol(M 0) 2 hF i.Proof From the de�nitions above, if M 0 is reahable from M then there is a �ring sequene M =M0 t1! M1 t2! � � � tn! Mn = M 0 so that pol(M 0) = pol(M) � pol(t1) � � � � � pol(tn). This implies thatpol(M)� pol(M 0) = pol(t1) + � � �+ pol(tn) 2 hF i. 2Example 4.3.5 Let N be the reversible Petri net given by the marked graph below:
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/.-,()*+e /.-,()*+fThe plaes are P := fa; b; ; d; e; fg and the polynomials de�ned by the transitions are t1 := a+ b � 2e,t2 := 2b+ 2� e� 2f and t3 := + d� 4f . A Gr�obner basis (using the order f > e > d >  > b > a) forthe ideal generated in Q [P ℄ isF := fd� 3� 3b+ a; e� 12a� 12b; f + 14a� 34b� g:For any marking M the polynomial pol(M) may be redued, using the relation !F de�ned by theGr�obner basis, to an irreduible form irr(M) 2 Q>0 [fa; b; g�℄. Here are three examples.pol(M0) = 2a+ 2b+ 3+ d!F 2a+ 2b+ 3� (�3� 3b+ a) = a+ 5b+ 6pol(M1) = 4e+ 2+ 4f !F 4(12a+ 12b) + 2+ 4(�14a+ 34b+ ) = a+ 5b+ 6pol(M2) = a+ d+ 3e+ 5f !F a+ (3+ 3b� a) + 3(12a+ 12b) + 5(�14a+ 34b+ ) = 14a+ 334 b+ 8So M2 is not reahable from M0 beause the orresponding polynomials do not redue to the same form.It is here the ase that M1 is reahable from M0 but this result does not neessarily follow from theredued polynomials for these markings being the same.Remark 4.3.6 We an draw a rational-valued Petri net that is equivalent to the original net N butwhose transition polynomials are the Gr�obner basis and whose markings are a funtion P ! Q>0 . Thisis onstruted by drawing a state for eah letter and a transition for eah polynomial. The ars into atransition ome from the letters with positive oeÆient and are weighted with that oeÆient. Similarlythe ars leaving a transition orrespond to the negative terms in the polynomial.4.3.2 Gr�obner Mahines as Petri-NetsThe Gr�obner mahine for reduing polynomials whih was desribed at the end of Setion 4.2 an beexpressed quite niely as a Petri net.Theorem 4.3.7 Let K be a �eld, let X be a set and let F � K[Xy℄ be a Gr�obner basis for the ideal hF i.Then there is a Petri net N whih an be marked with a polynomial f 2 K[Xy℄ so that any resultingsequene of �rings an be extended to a �nite sequene of �rings that terminates with a unique non-livestate. All states reahable from the initial marking may be identi�ed with polynomials that are equivalentunder =F to f . 66



Proof We will de�ne a type of Petri net and �ring rule from the Gr�obner basis. Let N := (P; T;F ; w).The set of plaes P is the set of monomialsm of K[Xy℄ whih are irreduible with respet to!F , togetherwith an `initial' plae labelled id. The set of transitions T is identi�ed with P �X.The ow relation F is desribed as follows. The transition (m;x) has a single input edge from m withweight x. If mx 2 P then (m;x) has a single output edge to mx with weight 1. If mx 62 P then mx isthe leading monomial of some f = mx��ni=1kimi in F . In this ase there is an output edge from (m;x)to eah non-leading term in f , the edge to mi having weight ki.The Petri net just de�ned di�ers from the standard type in that the weight funtion returns elementsof K or elements of X rather than just integers. So w : F ! K[Xy℄. Similarly a marking is a funtionM : P ! K[Xy℄ and is identi�ed with the polynomial pol(M) := �P mM(m)Let M1 be a marking, with M1(m) 2 K[Xy℄ for eah m 2 P . Let (m;x) be an enabled transition, sothat M1(m) ontains a term kxv for some k 2 K, v 2 X�. If mx is irreduible, then when (m;x) �res,the term kxv is removed from m while mx gains a term kv, so the resulting marking M2 is suh thatpol(M2) := �PmM2(m) = �PmM1(m)�m(kxv) +mx(kv) = pol(M1):Alternatively, when f = mx� �ni=1kimi 2 F and (m;x) �res, M2 is suh thatpol(M2) = pol(M1)�m(kxv) + �ni=1mi(kkiv) = pol(M1)� kfv;and so pol(M1)!F pol(M2).Thus a �ring represents a single step redution by !F . The relation is omplete, sine F is a Gr�obnerbasis, and therefore there exists a unique non-live marking (irreduible polynomial) whih may be reahedwithin a �nite �ring sequene (sequene of redutions). 2Example 4.3.8 The piture for the third Heke Algebra Petri net (whose Grobner mahine was Example4.2.6) is as follows (with eah transition label (m;x) written mx):e21 1
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situation illustrated here the state s holds tokens to a value of e2v for some string v then the transitiont is enabled (to the value of v).
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s0If transition t then �res, the output state s0 reeives tokens to the value of 29v, whih is added to the tokenvalue it already holds. The marking remaining on the net when all enabled transitions have �red and thenet is no-longer live (this happens due to the Noetherian property of the Gr�obner basis), represents theirreduible form of the polynomial given by the initial marking. This polynomial is extrated from thePetri net by adding the token multiples of the states, i.e. if there are 9 tokens at state e1 and 53 tokensat state e1e2 then the polynomial is 9e1 + 53e1e2.Remark 4.3.9 The nature of Petri nets is to allow for onurrent operations, and this ties in well withthe di�erent ways in whih a polynomial may be redued by a set of other polynomials. A Petri net anbe used to model redution by a set of non-ommutative polynomials. It is only in those sets whih areGr�obner bases, however, that the non-live state eventually reahed is entirely determined by the initialmarking.4.4 RemarksThe main theme of Chapter Four was the relation between rewrite systems / Gr�obner bases and varioustypes of mahine.Automata an be useful for determining whether or not a struture is �nite (has a �nite number ofelements). The automaton is drawn diretly from the omplete rewriting system, the equations for it (see[28℄) an be solved (Arden's theorem) to obtain a regular expression for the language (i.e. the set of nor-mal forms of the elements) whih will be in�nite if the free monoid (Kleene star) of some sub-expressionours. Beyond aeptane or rejetion of words, these automata have no output. It is more helpful toonsider the type of mahines (\Cayley mahines") whih take any word as input and output its reduedform. We introdued suh Cayley mahines (or \Gr�obner mahines") for algebras. Input is a polynomialand the unique irreduible form of that algebra element is the output. These mahines an be seen astypes of automata with output or { as illustrated for the polynomial ring ase { as Petri nets.The main result of the seond setion was the de�nition of redution mahines for �nite Kan extensions.The �nal setion of this hapter on mahines introdued Petri nets. It is of interest to model Gr�obnerbases with Petri nets, beause it would be extremely useful to �nd some equivalenes between them,so that Petri nets ould be analysed using Gr�obner bases. With this aim in mind we showed how the\Gr�obner mahine" for an algebra is a type of Petri net. An example of an appliation of ommutativeGr�obner bases to the reahability problem in reversible Petri nets is also given. There is muh sope forfurther work in this area.
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Chapter 5Identities Among RelationsThere is a large number of papers on omputing resolutions of groups, in the usual sense of homologialalgebra. Many of these omputations are for partiular lasses of groups (e.g. p-groups, nilpotent groups)and some of these ompute only resolutions mod p. In general, they do not ompute modules of identitiesamong relations beause they are not spei� to a presentation.This problem an be put more generally as that of extending a partial resolution of a group. That is, weare given an exat sequene of free ZG-modules Cn ! Cn�1 ! � � � ! C1, and we are asked to extend itby further stages. For the identities among relations for a presentation P = grphXjRi, the initial ase isn = 2 with the boundary given by the Whitehead-Fox derivative�2 = (�r=�x) : (ZG)R ! (ZG)X:The problem is to extend this by one or two more stages { the boundaries of the free generators of C3then give generators for the module of identities. If also we �nd C4 and the boundary to C3, then wehave a module presentation of the module of identities.This problem is usually expressed as `hoose generators for the kernel of �2'. However, it is not lear howthis an be done algorithmially. The main result of Brown/Razak [17℄ relates this problem to the on-strution of a partial ontrating homotopy for a partial free rossed resolution of the universal overinggroupoid of the group G. This ontrating homotopy is related to hoies of what are often alled 0- and1-ombings of the Cayley graph.The main results of this hapter show how to de�ne an \extra information rewriting system" or EIRSand how to use this to onstrut the homotopy h1. The EIRS reords the steps that have been takenin rewriting. The `reord' is a sequene of elements of the free rossed module of the presentation. Thisshows that the normal form funtion of a omplete rewriting system for a group presentation determines(up to some hoies) a set of free generators for the part C3 of a resolution, together with the boundaryto C2. In fat the generators of C3 are in one to one orrespondene with the elements of G � R, butthe boundary depends on the hoie of omplete EIRS. This method of omputing h1 means that theomputation of a set of generators for the module of identities among relations is ompletely algorithmi.This work was done with the help of Chris Wensley. The omputer program idrels:g implements theproedure.The next problem is that of reduing the generating set of the jRj � jGj identities omputed. When thegroup is small (e.g. S3) this an be done by trial and error. In fat S3 is a Coxeter group, and for theseit has already been proven [68, 67℄ that the standard presentation yields a minimum of 4 generators forthe module of identities. The methods of these papers do not, however, produe relations among thesemodule generators. 69



The example of S3 is used to demonstrate how redued sets of generators at one level determine theidentities at the next level, and the way in whih the reduible elements are expressed in terms of theirreduibles allows the alulation of these new identities. The example is a good illustration beause itis small enough to be done by hand, whilst illustrating that the rossed resolution for even a small groupgiven by a familiar presentation may be quite omplex.The �nal part of the hapter identi�es why the problem of reduing the set of generators is diÆult, andexpresses it in terms of a Gr�obner basis problem (the submodule problem).The rossed omplex onstrution of [17℄, together with an enhaned rewriting proedure and nonom-mutative Gr�obner basis theory over rings are brought together to indiate an algorithmi method foronstruting a free rossed resolution of a group. This is an area that will require muh further develop-ment.5.1 BakgroundThere are strong geometrial and algebrai reasons for studying the module of identities among relations[15, 63℄. The following exposition gives some of the topologial bakground.We assume the usual notion of a presentation P := grphXjRi of a group G, where X is a set generatingG and R � F (X) is alled the set of relators. To allow for repeated relators we an also onsider presen-tations of the form grphX;R; wi where w : R ! F (X) is a funtion suh that w(R) = R.From P we form the ell-omplex K = K(P) of the presentation. This is a 2-dimensional omplex. Its1-skeleton K1 is Wx2X S1x, a wedge of direted irles - one for eah generator x 2 X:�x1 �� x2eex3DDThis topologial spae has fundamental group �1(K1; �) isomorphi to the free group F (X) on the setX. Now K is formed as K = K1 [ffrg fe2rg;by attahing to K1 a 2-ell by a map fr : S1r ! K1 hosen in the homotopy lass w(r) 2 F (X) = �1(K1)for eah r 2 R. The homotopy type of K is independent of the hoie of fr in its homotopy lass.In the next setion we shall de�ne the free rossed module (Æ2 : C(w) ! F (X)) on a funtion w : R !F (X). Whitehead [77, 78, 79℄ proved that (�2(K2;K1; �) ! �1(K1; �)) is the free rossed module onw : R ! �1(K1; �) = F (X), and so is isomorphi to (C(w) ! F (X)). In partiular kerÆ2 �= �2(K; �),the seond homotopy group of the geometrial model of the presentation, and so this homotopy group isalso alled the module of identities among relations for the group presentation.Example 5.1.1 The torus T = S1�S1 has a ell struture (S1_S1)[fr fe2rg and its fundamental groupis presented by P := grpha; b j aba�1b�1i. In this ase �2(T ) = 0, sine �2(S1) = 0, but it is not soobvious that ker Æ2 = 0.More bakground to these topologial ideas may be found in [11℄. There have been many papers writtenon �2(K2; �) = ker(C(R) ! F (X)) (some examples are [4, 12, 14, 77, 78, 79, 36, 37℄). The methodsoften use a geometrial notion of \pitures" [6, 63, 64, 65, 66, 67℄ to work with identities among relations.Although the omputation of �2(K2; �) is redued to an algebrai problem on rossed modules, this has70



not previously helped the omputation. We shall follow the paper [17℄ in developing algorithmi methodsfor this omputation. For this, we need the language of free rossed modules.Let P := grphXjRi be a group presentation. An identity among relations is a spei�ed produt ofonjugates of relations � = (r1"1)u1(r2"2)u2 � � � (rn"n)unwhere ri 2 R; "i = �1; ui 2 F (X) suh that � equals the identity in F (X).Example 5.1.2 Let grphXjRi be a group presentation. Then for any elements r; s 2 R we have theidentities r�1s�1rsr = id,rs�1r�1sr�1 = id.When a group has a Cayley graph whih forms a simply onneted region omprised of ells whoseboundaries orrespond to relators, an identity � may be obtained by the following proedure:� Order the ells as 1; : : : ; m in suh a way that for all i = 1; : : : ;m the �rst i ells form a simplyonneted sub-region �i.� Choose to transverse eah ell in an anti-lokwise diretion.� Form a produt of of onjugates of relators v1 � � � vm where vi is determined as ell i is added to �i�1.To add i, start from the vertex id and move lokwise around the boundary of �i�1 until a suitablestart vertex on the boundary of i is reahed. A start vertex is suh that the word formed by theanti-lokwise boundary of i starting at that vertex is either the relator ri or the inverse r�1i of therelator label orresponding i. Let ui be the word given by the path from id to the start vertex. Thenthe required term is vi := (r"ii )u�1i .� Finally set � := v1 � � � vmr"bb where r"bb is the relator assoiated to the boundary.Example 5.1.3 In the ase of a spei� group presentation, S3 = grphx; y jx3; y2; xyxyi, label therelators in S3 as r; s; t respetively, and order the ells of the Cayley graph as shown below:�
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We an verify algebraially that � is an identity:7! (xyxy)(y�2)(x�3)y�1(xyxy)y�1(y�2)x(y�2)x�1y�1x(xyxy)y�1xx�3= (xyxy)(y�2)(yx�3y�1)(yxyxyy�1)(x�1y�2x)(x�1yxy�2x�1y�1x)(x�1yxyxyy�1x)(x�3)= id:5.2 The Module of Identities Among RelationsTo disuss relations among generators of G we use free groups. To disuss identities among the relationsof G we need free rossed modules. The preise idea of a onsequene of the relations, and in partiularof an identity is similar to that of speifying a relator as an element of the free group, but takes theation of F into aount.Pei�er and Reidemeister were the �rst to detail the onstrution in [61, 69℄ in 1949. Reidemeister setsup the neessary group ation by assoiating eah element of a �rst group with an automorphism ofa seond group, de�ning a homomorphism between the two groups, requiring that it ful�lls CM1. Helooks at the lass of Pei�er relations of the kernel of this homomorphism, and fators the �rst group bythe ongruene generated by the Pei�er relations. The onstrution is the same as that detailed below,but he does not mention the terms \group ation" or \rossed module". Given that \rossed mod-ule" had only been de�ned by Whitehead in 1946, this is not so surprising. It was not until 1982 thatperhaps the �rst paper [15℄ to reognise and name the strutures that Reidemeister de�ned was published.Formally, given a group F , a pre-rossed F -module is a pair (C; Æ) where Æ : C ! F is a groupmorphism with an ation of F on C denoted u (u 2 F ) so that:CM1) Æ(u) = u�1(Æ)u for all  2 C; u 2 F:A rossed F -module is a pre-rossed F -module that also satis�es the Pei�er relation:CM2) �11 = Æ1 for all ; 1 2 C:When (Æ; C; F ) is a rossed module it is also ommon to refer to it as the rossed F (X)-module (Æ; C).For more information on rossed modules see [18, 19, 20, 49℄.The following exposition is a ombination of ideas in [15, 30, 69℄. It details the onstrution of the moduleof identities among relations. The onstrution is not exatly the same as that in the referenes, sine itis in terms of rewriting systems on a free monoid rather than normal subgroups of a free group.Let P := grphX;R; wi be a presentation of a group G whereR is a set of labels for the relators identi�edby the (not neessarily injetive funtion) w : R! F (X) and R := w(R).A rossed F (X)-module (C; Æ) is free on the funtion w : R ! F (X) if, given any other rossedF (X)-module (D; ) with a map � : R ! D, there exists a unique morphism of rossed F (X)-modules� : C ! D whih satis�es � Æ � = �.De�ne Y := R� F (X), and write elements of Y in the form (�; u), where � 2 R; u 2 F (X).Put Y + := fy+ : y 2 Y g and Y � := fy� : y 2 Y g. Elements of the free monoid (Y + t Y �)� are alledY-sequenes and have the form (�1; u1)"1 � � � (�n; un)"n :72



De�ne an ation of F (X) on Y by (�; u)x := (�; ux) for x 2 F (X):This indues an ation of F (X) on (Y + t Y �)�. De�ne a monoid morphism Æ : (Y + t Y �)� ! F (X) tobe that indued by Æ( (�; u)") = u�1(w�)"u where " = �:De�ne RP := f(y�z+y+; z+Æy+) : y; z 2 Y g[ f(y+z�y�; z�Æy�) : y; z 2 Y g[ f(y�y+; id) : y 2 Y g[ f(y+y�; id) : y 2 Y gand de�ne !RP to be the redution relation generated by RP on (Y + t Y �)�. For a; b 2 (Y + t Y �)� ifa �$RP b then a and b are said to be Pei�er Equivalent.De�nition 5.2.1 The Pei�er Problem is as follows:INPUT: a; b 2 (Y + t Y �)� two elements of the free monoid,QUESTION: a �$RP b? are they Pei�er Equivalent?The motivation for solving this Pei�er Problem omes from the fat that we wish to onstrut a partiularfree rossed module, whose kernel will be the module of identities among relations. De�neC(R) := (Y + t Y �)��$RP :Lemma 5.2.2 C(R) is a group.Proof Let a; b 2 (Y + tY �)�. The ongruene �$RP preserves the omposition of Y-sequenes so we de-�ne [a℄RP [b℄RP := [ab℄RP . The identity is [id℄RP , and if a = y"11 � � � y"nn for y1; : : : ; yn 2 Y , "1; : : : ; "n = �then [a℄�1RP := [y�"nn � � � y�"11 ℄RP is the inverse. 2Lemma 5.2.3 There is an ation of F (X) on C(R) de�ned by[a℄x := [ax℄ for x 2 F (X):Proof Let y; z 2 Y , x 2 F (X) then y = (�; u) and z = (�; v) for some u; v 2 F (X); �; � 2 R:(y�z+y+)x = (�; ux)�(�; vx)+(�; ux)+= y�1 z+1 y+1 where y1 = (�; ux); z1 = (�; vx) 2 Y�$P z1+Æy+1= (�; vx)+Æ(�;ux)+ by de�nition of y1; z1= (�; vx(x�1Æ(�; u)+x)+ by de�nition of the ation on (Y + t Y �)�= (�; vÆ(�; u)+x)+= ((�; v)+Æ(�;u)+ )x= (z+Æy+)x by de�nition of y; zSimilarly (y+z�y�)x �$RP (z�Æy�)x, and it is also lear that (y+y�)x �$RP (id)x = id and (y�y+)x �$RP(id)x = id. Therefore the ation of F (X) on C(R) is well-de�ned by [a℄x := [ax℄. 273



Lemma 5.2.4 There is a group homomorphism Æ2 : C(R)! F (X) de�ned byÆ2[a℄RP := Æ(a) for a 2 (Y + t Y �)�:Proof Let a; b 2 (Y + t Y �)�. We require to prove that if a �$RP b then Æ(a) = Æ(b). It is thereforesuÆient to prove, for all y; z 2 Y , that Æ(y�z+y+) = Æ(z+Æy+), Æ(y+z�y�) = Æ(z�Æy� ) and Æ(y+y�) =Æ(y�y+) = idF (X). Let y = (�; u); z = (�; v) 2 Y . ThenÆ(y�z+y+) = Æ(�; u)�Æ(�; v)+Æ(�; u)+;= u�1w(�)�1uv�1w(�)vu�1w(�)u;= Æ(�; vu�1w(�)u)+;= Æ(�; vÆ(�; u)+)+;= Æ((�; v)+Æ(�;u)+ );= Æ(z+Æy+);and Æ(y+y�) = Æ(�; u)+Æ(�; u)�;= u�1w(�)uu�1w(�)�1u;= idF (X):The other two ases an be proved in the same way, therefore Æ2 is well-de�ned. 2Theorem 5.2.5 (C(R); Æ2) is the free rossed F (X)-module on w : R! F (X).Proof First we verify the rossed module axioms.CM1: Let a = (�1; u1)"1 � � � (�n; un)"n for (�1; u1); : : : ; (�n; un) 2 Y , "1; : : : ; "n = � and let x 2 F (X).Then Æ2([a℄xRP ) = Æ([(�1; u1)"1 ℄x) � � � Æ([(�n; un)"n ℄x)= x�1u�11 w(�1)"1(1)u1x � � � x�1u�1n w(�n)"n(1)unx;= x�1(u�11 w(�1)"1(1)u1 � � � u�1n w(�n)"n(1)un)x;= x�1Æ((�1; u1)"1 � � � (�n; un)"n)x;= x�1Æ2[(�1; u1)"1 � � � (�n; un)"n ℄RP x;= x�1Æ2[a℄RP x:CM2: Let y; z 2 Y . We �rst use the basi rules of RP to verify that y+z+y� �$RP z+Æy� andy�z�y+ �$RP z�Æy+ . z+Æy+y� �$RP (y+y�)�z+(y+y�);= y+y�z+y+y�!RP y+z+Æyy�:Therefore y+z+Æy+y� �$RP (z+Æy+)Æy� :74



So for all z1 2 Y y+z+1 y� �$RP z+Æy�1 :The other ase may be proved in the same way but using the basi rule y+z�y� !RP z�Æy� . Thereforethe Pei�er relation y�"z�y" �$RP z�Æy" holds for all y"; z� 2 (Y + t Y �)�.Let a = y"11 � � � y"nn , b = z�11 � � � z�mm . We prove that [a℄�1RP [b℄RP [a℄RP = [bÆ(a)℄RP . First note that [a℄�1RP =[y�"nn � � � y�"11 ℄RP . Nowy�"nn � � � y�"11 z�11 � � � z�mm y"11 � � � y"nn = y�"nn � � � y�"22 (y�"11 z�11 y"11 ) � � � (y�"11 z�mm y"11 )y"22 � � � y"nn ;�$RP y�"nn � � � y�"22 z�1Æy"111 � � � z�mÆy"11m y"22 � � � y"nn :Repeating the proedure we obtain �$RP z�1Æy"11 ���Æy"nn1 � � � z�mÆy"11 ���Æy"nnm ;= (z�11 � � � z�mm )Æ(y"11 ���y"nn ):Therefore we have veri�ed CM2:-[y"11 � � � y"nn ℄�1RP [z�11 � � � z�mm ℄RP [y"11 � � � y"nn ℄RP = [(z�11 � � � z�mm )Æ(y"11 ���y"nn )℄RP :Finally we show that (C(R); Æ2) is free on w : R! F (X). Reall that F (X) ats on Y by (�; u)x = (�; ux).De�ne � : R ! C(R) by �(�) := [(�; id)℄RP . Then let (D; ) be any other rossed F (X)-module with amap � : R ! D. We an de�ne a unique morphism of rossed modules � : C(R) ! D whih satis�es� Æ � = � by putting �([(�; u)℄RP ) := �(�).Therefore we have proved that (C(R); Æ2), as de�ned on (Y + t Y �)� using RP , is the free rossed F (X)-module generated by w : R! F (X). 2Remark 5.2.6 The usual method of onstrution of C(R) does not use rewriting systems but fatorsthe free prerossed module (F (Y ); Æ0) by the ongruene =P generated by the set of all Pei�er relationsP on F (Y ). Detail of this onstrution are found in [15℄. It may be veri�ed that the natural map� : (Y + t Y �)� ! F (Y ) indues an isomorphism�0 : (Y + t Y �)��$RP �! F (Y )=P :The motivation for this setion is to give an exposition of the onstrution of C(R). Sine this thesis isonerned with rewriting, we've presented the exposition in terms of rewriting. It is simply an alternativeexposition of standard work that is neessary bakground for what is to follow.The Pei�er Problem that we have identi�ed is that of determining whether two Y-sequenes representthe same element of C(R). If a 2 (Y + tY �)� and Æ2(a) = id then [a℄RP 2 kerÆ2, the module of identitiesamong relations, and a is alled an identity Y-sequene. There is a speial property whih will allowus to onvert the Pei�er Problem for identity sequenes into a Gr�obner basis problem, and this will bedisussed in Setion 6. In general there is no proedure for solving the Pei�er Problem. As a result theexample here is a simple one, inluded to demonstrate the rewriting proedure.75



Example 5.2.7 The result of the following example is proved in [18℄.The multipliative yli group Cn of order n has a presentation grphx j xni. Let r represent the relatorxn, then Y := f(r; xi) : i 2 Zg. with Æ : (Y + t Y �)� ! F (X) de�ned by Æ(r) = xn soÆ2(r; xi)+ = x�iÆ(r)xi = x�i(xn)xi = xn:Æ2(r; xi)� = x�iÆ(r)�1xi = x�i(xn)xi = x�n:The ation of F (X) on (Y + t Y �)� is given by(r; xi)x = (r; xi+1):The elements of Y + t Y � an be denoted ai; Ai i 2 Z where ai := (r; xi)+, Ai := (r; xi)�. We onsiderthe rewriting system RP on (Y + t Y �)� given by:f(Aiajai; aÆaij ) : i; j 2 Zg [ f(aiAjAi; AÆAij ) : i; j 2 Zg [ f(aiAi; id) : i 2 Zg [ f(Aiai; id) : i 2 ZgThe rewriting system is learly in�nite. Put i = j in the above rules and we obtain Aiaiai $RP ai+nand aiAiAi $RP Ai�n. So ai+n !RP ai and Ai !RP Ai�n for all i 2 Z. It follows immediately fromthese rules that fa0; : : : ; an�1; A0; : : : ; An�1g is a omplete set of generators for C(R) as a monoid. Thenow �nite set of relations is f(aiAi; id); (Aiai; id); (Aiajai; aj); (aiAjAi; Aj)g Therefore C(R) for Cn is thefree abelian group on n generators a0; a1; : : : ; an�1. Further, we �nd that axi = ai+1 for i = 0; : : : ; n� 1and axn�1 = a0. Thus the C(R), whih is a Cn-module is isomorphi to Z[Cn℄, the free Cn-module on onegenerator.Remark 5.2.8 The Pei�er Problem (of deiding when two sequenes are Pei�er equivalent) does notarise only in rossed modules. When a 2-ategory is onstruted, by fatoring a sesquiategory (see[74, 76℄) by the interhange law, the pairs arising from that interhange law are relations among the twoells involving the whiskering ation of the ategory morphisms. Tim Porter identi�ed this in [62℄ allingthem Pei�er pairs. Thus the Pei�er Problem is not restrited to the onstrution of rossed modules.5.3 Free Crossed Resolutions of GroupsThe following exposition was onstruted with Ronnie Brown.The notion of resolution of ZG-modules for G a group is a standard part of homologial algebra and theohomology of groups [27, 10℄. It has been shown in [18, 16, 17℄ that there are omputational advantagesin onsidering free rossed resolutions of groups. This will be on�rmed by bringing these alulations intothe ontext of rewriting proedures. For this we need to give some basi de�nitions in the form we require.An important aspet of the alulation in [17℄ is the use of the Cayley graph, being seen here as data fora free rossed resolution of the universal overing groupoid eG of the group G. This groupoid orrespondsto the ation of G on itself by right multipliation. That is, the objets of eG are the elements of G and anarrow of eG is a pair (g1; g2) : g1 ! g1g2, with the obvious omposition. We have the overing morphismof groupoids p0 : eG! G : (g1; g2) 7! g2.If X is a set of generators of the group G, we have a standard morphism � : F (X)! G. We also have astandard morphism e� : F ( eX)! eG. Herei) eX is the Cayley graph of (X;G) with arrows [g; x℄ : g ! g�(x) for x 2 X; g 2 G.76



ii) F ( eX) is the groupoid with objets again the elements of G and arrows pairs [g; u℄ : g ! g(�u) forg 2 G, u 2 F (X), with omposition de�ned by [g; u℄[g(�u); v℄ := [g; uv℄. In fat F ( eX) is the freegroupoid on the graph eX , so that a morphism f from F ( eX) to a groupoid is determined by thegraph morphism f j eX .Then e� : F ( eX) ! eG is given on arrows by e�[g; u℄ := [g; �(u)℄. There is also the overing morphismp1 : F ( eX) ! F (X) given by p1[g; u℄ := u. This gives the ommutative diagram of morphisms ofgroupoids F ( eX) e� //p1
��

eGp0
��F (X) � // G (5.1)

In fat this diagram is a pullbak in the ategory of groupoids. Also, p1 maps F ( eX)(1; 1) isomorphiallyto ker�, and F ( eX) is the free groupoid on the graph eX.Now let P = grphXjRi be a presentation of G. As explained in the previous setion, this gives rise to afree rossed F (X)-module Æ2 : C(R)! F (X), whose kernel is �2(P), the ZG-module of identities amongrelations. The aim is to ompute a presentation for this module in terms of information on the Cayleygraph. For this we extend diagram 5.1 in the �rst instane toC( eR)p2
��

~Æ2 // F ( eX) e� //p1
��

eGp0
��C(R) Æ2 // F (X) � // G (5.2)

Here ~Æ2 : C( eR) ! F ( eX) is a free rossed module of groupoids. For details, we refer the reader to [17℄.All the reader needs to know for now is thati) C( eR) is a disjoint union of groups C( eR)(g) for g 2 G and ~Æ2 maps C( eR)(g) to F ( eX)(g; g).ii) for eah g 2 G; p2 maps the group C( eR)(g) isomorphially to C(R), so that elements of C( eR)(g)are spei�ed by pairs [g; ℄ where  2 C(R).iii) F ( eX) operates on C( eR) by [g; ℄[g;u℄ := [g�(u); u℄ for g 2 G,  2 C(R), u 2 F (X).iv) The morphisms ~Æ2, p2 are given by ~Æ2[g; ℄ := [g; Æ2℄ and p2[g; ℄ := .A proof that ~Æ2 : C( eR) ! F ( eX) is the free rossed F ( eX)-module on eR := G � R is given in [17℄. Thisimplies that morphisms and homotopies on C( eR) an be de�ned by their values on the elements [g; r℄ forg 2 G, r 2 R.The key feature of this onstrution is that eG is a ontratible groupoid, i.e. it is onneted and has trivialvertex groups. We are going to onstrut a partial ontrating homotopy of ~Æ2 : C( eR)! F ( eX). This isa key part of the proedure of onstruting generators (and then relations) for �2(P). The philosophyas stated in [17℄ is to onstrut a \home" for a ontrating homotopy { this will be explained later. Thepoint is that this leads to a \tautologial" proof that the generators onstruted do in fat generate �2(P).Suh a partial ontrating homotopy onsists of funtionsh0 : G! F ( eX) and h1 : F ( eX)! C( eR)with the properties that 77



i) h0(g) : g 7! id in F ( eX), g 2 G.ii) h1 is a morphism (from a groupoid to a group).iii) ~Æ2h1[g; u℄ = (h0g)�1[g; u℄h0(g(�u)) for all [g; u℄ 2 F ( eX).We always assume that h0(id) = id 2 F ( eX)(id)Remark 5.3.1 h0 and h1 are related to what are ommonly alled 0- and 1-ombings of the Cayleygraph [39℄. We hope to pursue this elsewhere.The hoie of h0 is equivalent to hoosing a setion � of � : F (X) ! G, i.e. a representative word foreah element of G, by h0(g) = [g; �(g)�1℄, for g 2 G. What h1 does is provide for eah word u 2 F (X) arepresentation u = Æ2(proR(u))NR(u)where pro(u) = p2h1[id; u℄ 2 C(R) { the proedure through whih the normal form NR(u) := (��(u))�1is reahed. To verify this onsider (iii), assuming h0(id) = id, we have~Æ2h1[id; u℄ = [id; u℄h0(�u):Then Æ2(pro(u)) = Æ2p2h1[id; u℄= p1~Æ2h1[id; u℄= p1([id; u℄h0(�u))= up1h0(�u)Thus pro(u) shows how to write u(NR(u))�1 2 Æ2C(R) as a onsequene of the relators R. Conversely,a rewriting proedure to be given later will allow us to determine h1 given h0 and a omplete rewritingsystem for P = grphXjRi.We an now stateProposition 5.3.2 Given h0, h1 as above, the module �2(P) is generated by the (separation) elementssep(g; r) := p2(h1~Æ2[g; r℄)�1r�(g)�1 (5.3)for all g 2 G, r 2 R.Outline proof The fat that the elements sep(g; r) of 5.3 are identities among relations is easily heked,as follows:Æ2(p2(h1~Æ2[g; r℄)�1r�(g)�1) = Æ2(p2(h1[id; Æ2(rg)℄)�1r�(g)�1)= Æ2(p2([id; ℄)�1r�(g)�1) where  satis�es Æ2() = Æ2(r�(g)�1);= Æ2()�1Æ2(r�(g)�1 )= id:The important point is that these elements sep(g; r) generate the module of identities. The proof of thisan be made tautologous by taking the onstrution one step further, i.e.eC3 ~Æ3 //p3
��

C( eR)p2
��

~Æ2 // F ( eX) e� //p1
��

eGp0
��C3 Æ3 // C(R) Æ2 // F (X) � // G78



Here C3 is the free ZG-module on (g; r) 2 �R where �R := G� R { we use round brakets to distinguishelements of �R from those of eR. The morphism Æ3 is de�ned byÆ3(g; r) := p2((h1~Æ2[g; r℄)�1)r�(g)�1 :The de�nition is veri�ed by heking that Æ2Æ3(g; r) = id i.e.Æ2Æ3(g; r) = Æ2p2((h1~Æ2[g; r℄)�1r�(g)�1)= Æ2(�1r�(g)�1) where  satis�es Æ2() = Æ2(r�(g)�1)= id:(Mapping a free ZG-module into a free rossed G-module, is aeptable beause the image lies in kerÆ2whih is a ZG-module.) In fat we de�ne eC3, h2 and ~Æ3 as followseC3(g) := fgg �C3;h2[g; r℄ := (id; (g; r));~Æ3(g2; [g1; r℄) := (g2; Æ3(g1; r)):We now hek diretly that~Æ3h2[g; r℄ = [id; Æ3(g; r)℄;= [id; p2((h1~Æ2[g; r℄)�1)r�(g)�1 ℄;so that = (h1(Æ1[g; r℄))�1r�(g)�1 :In the partial resolution of eG we have, for any  2 C( eR),~Æh2() = (h1(~Æ2))�1h0id;sine this holds for all  = [g; r℄ 2 eR. So~Æ2() = 0 implies that  = ~Æ3((h2)(h0id)�1 :Hene ker~Æ2 � im~Æ3, so ker~Æ2 = im~Æ3. Therefore kerÆ2 = imÆ3. 2To summarise: the problem of onstruting a rossed resolution of a group given a partiular presentationhas been redued to the problem of onstruting a ontrating homotopy and a overing rossed omplexthat begins with a groupoid de�ned on the Cayley graph.5.4 Completion Proedure and Contrating HomotopiesIn this setion we de�ne what we all an \extra information ompletion proedure". The implementationmay be found in kb2:g. Input to the proedure is a set of relators for a group. If the proedure terminatesthen the output is a set of \extra information" rules. These rules will not only redue any word in thefree group to a unique irreduible but will express the atual redution in terms of the original relators.79



De�nition 5.4.1 An extra information rewriting system for a group presentation grphXjRi is aset of triples R2 := f(l1; 1; r1); : : : ; (ln; n; rn)g, where R1 := f(l1; r1); : : : ; (ln; rn)g is a rewriting systemon F (X) and 1; : : : ; n 2 C(R), suh that li = Æ2(i)ri for i = 1; : : : ; n. We say R2 is omplete if R1is omplete.Lemma 5.4.2 Let R2 be a omplete EIRS for grphXjRi. Then for any w 2 F (X) there exists (; z), 2 C(R), z 2 F (X) suh that z is irreduible with respet to !R1, and w = (Æ2)z.Proof If w is irreduible then we take z = w and  = idC(R). Otherwise there is a sequene of redutionsw = u1l1v1u1r1v1 = u2l2v2� � � � � �unrnvn = zwhere n � 1, and for i = 1; : : : ; n, ui; vi 2 F (X) and there exists i 2 C(R) suh that (li; i; ri) 2 R2.Then sine li = (Æ2i) ri for i = 1; : : : ; n w = u1 (Æ21) r1v1u1r1v1 = u2 (Æ22) r2v2� � � � � �unrnvn = z:Hene w = ((Æ21)u�11 � � � (Æ2n)u�1n )z. 2This de�nes the funtion RedueWord2, whih aepts as input (w;R2) and returns as output (; z). Wewill write w !R2 (; z).Lemma 5.4.3 Let grphXjRi be a �nite group presentation whih is ompletable with respet to an or-dering >. Then there exists a proedure KB2 whih will return the omplete EIRS for the group.Proof De�ne R2 := f(Æ�; (�; id); id) : � 2 Rg. It is lear that this de�nes an EIRS sine Æ� = Æ2(�; id)id.If R1 is omplete then R2 is omplete. If R1 is not omplete then there is an overlap between a pair ofrules (l1; r1); (l2; r2) of R1 where (l1; 1; r1); (l2; 2; r2) 2 R2. There are two ases to onsider.For the �rst ase suppose u1l1v1 = l2 for some u1; v1 2 F (X). Then the ritial pair resulting fromthe overlap is (u1r1v1; r2). Redue eah side of the pair using RedueWord2, so u1r1v1 !R2 (d1; z1) andr2 !R2 (d2; z2). Then if z1 > z2 add the extra information rule (z1; d�11 1�u�11 2d2; z2) or if z2 > z1 add(z2; d�12 �12 u�111 d1; z1).For the seond ase suppose u1l1 = l2v2 for some u1; v2 2 F (X). Then the ritial pair resulting fromthe overlap is (u1r1; r2v2). Redue eah side of the pair by R2 as before, so that u1r1 !R2 (d1; z1) andr2v2 !R2 (d2; z2). Then if z1 > z2 add the extra information rule (z1; d�11 �u�111 2d2; z2) or if z2 > z1 add(z2; d�12 �12 u�111 d1; z1).It an be seen immediately from the above that the e�et on R1 is a standard ompletion of the rewritingsystem, and that the triples (l; ; r) added to R2 satisfy the requirement l = Æ2()r, so that when theompletion proedure terminates R2 will be a omplete extra information rewriting system. 2This de�nes the proedure KB2. 80



Example 5.4.4 Q8 is presented by grpha; b j a4; b4; abab�1; a2b2i. Let r; s; t and u denote the relatorsi.e. Æ(r) = a4; Æ(s) = b3; : : : . We begin with the EIRSR2 := f(a4; r; id); (b4; s; id); (aba; t; b); (a2b2; u; id)g:As explained before, all the extra information rules are triples (l; ; r) suh that l = (Æ2)r and we writel !R2 (; r), thinking of the () part as the reord of the proedure by whih r is obtained from l usingthe original group relators. For example aba !R2 (t; b) { we have to work with a monoid presentationand hoose to make use of the fat that Q8 is �nite, rather than introdue generators for the inverses,whih is what the omputer program does. We look for overlaps between the left hand sides of the rules.The �rst overlap we examine is between the �rst and third rules:a4baa4!idzzz

}}zzz aba!bEEE

""EEEba a3boo_ _ _ _ _ _ _ _Without the extra information the ritial pair is (a3b; ba) and the new rule is a3b ! ba. For the EIRSrule we need  so that a3b = Æ()ba where  is a produt of onjugates of relators. The new EIRS ruleas de�ned in the proof (seond ase) is (a3b; t�a�3r; ba). This is heked by:a4ba = (a4)ba!R2 (r; id)ba = (r; ba) and a4ba = a3(aba)!R2 a3(t; b) = (ta�3 ; a3b):Therefore Æ2(r)ba = Æ2(ta�3)a3b, so a3b = Æ2(ta�3)�1(r)ba = Æ2(t�a�3r)ba: so  = t�a�3r. If we ontinuethis \extra information ompletion" for Q8 we end up with the EIRSb2 !R2 (r�1ua�2 ; a2);aba!R2 (t; b);ba2 !R2 (t�1t�a�1rb�1a�2 ; a2b);bab!R2 (r�b�1a�1b�1tb�1r�1u�a�2r; a);a4 !R2 (r; id);a3b!R2 (t�a�3r; ba):So, for example, a5ba3 redues to a2b and a5ba3 = Æ2(rt�a�1rb�1a�2)a2b.The \extra information" Knuth-Bendix proedure KB2 results in a rewriting system with information onwhere the rules ame from. This extra information is in no way unique.Let grphXjRi be a presentation of a group G. Let eX denote the Cayley graph. Edges of the graph arereorded as pairs [g; x℄, where g is the group element identi�ed with the soure vertex, and x is a groupgenerator identi�ed with the edge label.Lemma 5.4.5 (Complete Rewriting Systems Determine h0)Let G be a �nite group, �nitely presented by grphXjRi, with quotient morphism � : F (X) ! G. Then aomplete rewriting system R1 for the presentation determines h0 : G! F ( eX).Proof Let N be the normal form funtion de�ned by!R1 on F (X). De�ne h0(g) := [id;N(g)℄�1. Thenh0(g) : g ! id in F ( eX) as required. 2
81



Theorem 5.4.6 (Complete EIRS's Determine h1)Let G be a �nite group, �nitely presented by grphXjRi, with quotient morphism � : F (X) ! G. Then aomplete EIRS R2 for the presentation determines h1 : F ( eX)! C( eR)(id).Proof Reall that eX is the Cayley graph of G. Let [g; x℄ 2 eX. De�neh1[g; x℄ := [id; RedueWord2(N(g)xN(g�x)�1; R2)[1℄℄:Then learly h1[g; x℄ 2 C( eR)(id) and ~Æ2h1[g; x℄ = [id;N(g)℄[g; x℄[id;N(g�x)℄�1 = h0(g)�1[g; x℄h0(g�x).Extending this de�nition of h1 on eX therefore gives the morphism h1 of the groupoid F ( eX) to the groupC( eR)(id) satisfying the required onditions. 2Corollary 5.4.7 There exists an algorithm for de�ning h0; h1 for any �nite ompletable group presen-tation grphXjRi.Proof Calulate R2, using KB2. Let N be the normal form funtion de�ned by !R1 (reall R1 is partof R2). Put h0(g) := [id;N(g)℄�1. Put h1[g; x℄ := [id; RedueWord2(N(g)xN(g�x)�1; R2)[1℄℄. 2Example 5.4.8 Below is the Cayley graph for Q8. The double edges indiate the tree de�ned by thelength-lex ordering. a3a
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The order in whih the rules are applied does not matter for our purposes { it does a�et the answerbut we only wish to �nd a representation of the word as a produt of onjugates of relators, whihrepresentation it is is not important { though smaller ones are preferable for eÆieny reasons. The listbelow gives the yles reated by adding in non-tree edges as produts of relator yles.[g; x℄ 7! h1[g; x℄[b; b℄ 7! bb(a2)�1 ! b2a�2 ! su�1,[ab; a℄ 7! ab(b)�1 ! aba2b ! t,[ab; b℄ 7! ab2(a3)�1 ! ab2a ! uar�1,[ba; a℄ 7! ba2(a2b)�1 ! ba4ba6 ! su�1uba�2s�a�2,[ba; b℄ 7! bab(a)�1 ! baba3 ! t�a�1b�1ub�1 ,[a3; a℄ 7! a4(id)�1 ! a4 ! r,[a3; b℄ 7! a3b(ba)�1 ! a3ba5b ! rt�a,[a2b; a℄ 7! a2ba(ab)�1 ! a2ba3ba3 ! ta�1 ,[a2b; b℄ 7! a2b2(id)�1 ! a2b2 ! u.This example gives 32 generators for the module of identities. In fat this an be redued to 7 but theredution requires methods not dealt with in this thesis.5.5 Algorithm for Computing a Set of Generators for �2Setion 5.3 desribed how the problem of speifying a free rossed resolution of a group redued to theproblem of de�ning a ontrating homotopy of a overing rossed omplex.The omputation of a omplete rewriting system for the group is used to de�ne the �rst part of theontrating homotopy h1 on the edges of the Cayley graph. The formulae from the de�nition of theovering rossed omplex are used to �nd a omplete set of generators for the kernel of Æ2 (the identitiesamong relations). The pre-images of these elements generate C3 as a ZG-module. By reduing this setof generators and writing eah of the reduible generators in terms of the irreduible ones we de�ne h2on the generators of C2. This is made lear in the example, and is the part whih orresponds to theGr�obner basis omputation, though we do it by inspetion.Now the rossed omplex formulae with h2 are used to �nd a omplete set of generators for the kernelof Æ3 (the identities among identities). Again, we redue the set of identities, so that their pre-imagesfreely generate C4 as a ZG-module. The proess of redution of the identities de�nes the next ontratinghomotopy h3, and again we use the formulae to �nd a omplete set of generators for kerÆ4, and redutionto a set whose pre-image freely generates C5 as a ZG-module.This proedure may in theory be repeated as muh as is wished, in order to ompute the resolution of thegroup up to any level. The limitations are ones of pratiality: in our example the redution of the setof identities is done by inspetion (involving a lot of trial and error) this takes time (weeks). A Gr�obnerbasis proedure (over the group ring) would provide a omputerisable method for de�ning hn, and thiswould mean that the omputation of the resolution was limited only by the omputer's apaity. Theorrespondene between the homotopy de�nition and the Gr�obner basis omputation (for redution) isexplained more fully in the next setion.5.5.1 Spei�ation of the ProgramA olletion of GAP3 funtions has been written to perform these alulations and will be rewritten inGAP4 and submitted as a share pakage. The funtion IdRel1 aepts as input a free group and a list of83



relators. It goes through a number of alulations, inluding an \extra information" Knuth-Bendix om-pletion proedure and returns a omplete set of generators for the module of identities among relations.The struture of the program idrel:g is outlined below.Preliminary funtions neessary are:RedueWord(word;R1): redues a word with respet to a rewriting system R1, in the standard way.RedueWord2(word;R2): applies an EIRS R2 to a word and redues it as far as possible within thatsystem. Output is a pair [; w℄ where word = Æ2()w, where  is a Y-sequene.InverseYsequene(a): Y-sequenes are represented by lists a = [s1; u1℄; : : : ; [sn; un℄ where ui 2 F andsi is a relator or an inverse of a relator. This funtion inverts suh a sequene to [sn; un℄; : : : ; [s1; u1℄.This is used to invert produts of onjugates of relators whih are represented as Y-sequenes.KB2(R2): is an implementation of the \extra information" Knuth-Bendix proedure desribed in Setion4. The input rules are in the form of lists of length three where the middle entry represents the produtof onjugates of relators (r1; u1)"1 � � � (rn; un)"n as a Y-sequene [[r"11 ; u1℄; : : : ; [r"nn ; un℄℄. The output ruleswill have the same form. If [l; ; r℄ is a rule in suh a system then l ! r and l = Æ2()r.Given a presentation grphXjreltsi, de�ne F := F (X). The main funtion is:IdRel1(F; relts). First G is de�ned to be the quotient of the free group F by the relators relts. Let� : F ! G be the quotient morphism. It is neessary to keep trak of whether an element is in Gor F . The next step is to onstrut the initial EIRS from the relators. The program uses the monoidpresentation of the group to enable it to aept relators ontaining inverses without hanging them. Theresulting EIRS is then ompleted using KB2 to obtain K2. The analogous ordinary system is K1. TheCayley graph is represented by a list of edges, whih are pairs [g; x℄ where g is an irreduible in F and xis a generator. The so-alled alpha-edges are the edges not in the spanning tree given by the length-lexorder. The map h1 is de�ned on these alpha-edges by h1[g; x℄ := [id; RedueWord2(N(g)x;K2)℄ and weapply p2 immediately, so reording only the seond part of this pair. To obtain the identities amongrelations all relator yles in the Cayley graph must be onsidered. These are reorded as pairs [g; r℄where g is a vertex and r is a relator. The boundary ~Æ2 of the yle is basially found by splitting upthe relator r to obtain a list of edges. Non-alpha edges are removed sine h1 maps any edge of the treeto id. The remaining edges of eah yle are identi�ed with their images under p2h1. The identities arealulated by manipulating the information held so as to obtain a representation of p2(h1~Æ2[g; r℄)�1r�(g)�1for eah [g; r℄ pair.The output is in the form of a reord id1 (say) with the following �elds:id1:free the free group F ;id1:rels the relators relts;id1:elF the normal forms of the group elements;id1:K the (ordinary) ompleted rewriting system;id1:idents the generating set of identities among relations;id1:isIdsReord true { a hek that the identities generated all have the image id.A small example is printed here { others are on disk in �les idreleg1:g to idreleg3:g. If IdRelPrintLevelis set to be greater than 1 (up to 3) information on the progression through the program is printed tothe sreen. 84



gap> Read("idrel.g");gap> IdRelPrintLevel:=1;;gap> F:=FreeGroup("a","b");;gap> a:=F.1;;b:=F.2;;gap> R:=[a^3,b^2,a*b*a*b℄;;gap> id1:=IdRel1(F,R);;gap> id1.idents;[ [ [ r1-1, IdWord ℄, [ r1^-1, IdWord ℄ ℄,[ [ r1^-1, IdWord ℄, [ r1, a^-1 ℄ ℄,[ [ r3^-1, IdWord ℄, [ r2, a^-1*b^-1*a^-1 ℄,[ r2^-1, IdWord ℄, [ r1^-1, b^-1 ℄, [ r3, a^-2*b^-1 ℄, [ r1, b^-1 ℄ ℄,[ [ r1^-1, IdWord ℄, [ r1, a^-2 ℄ ℄,[ [ r2^-1, IdWord ℄, [ r1^-1, b^-1 ℄, [ r3, a^-2*b^-1 ℄,[ r3^-1, IdWord ℄, [ r2, a^-1*b^-1*a^-1 ℄, [ r1, b^-1*a^-1 ℄ ℄,[ [ r3^-1, IdWord ℄, [ r2, a^-1*b^-1*a^-1 ℄,[ r2^-1, IdWord ℄, [ r1^-1, b^-1 ℄, [ r3, a^-2*b^-1 ℄,[ r1, a^-1*b^-1 ℄ ℄, [ [ r2^-1, IdWord ℄, [ r2, IdWord ℄ ℄,[ [ r2^-1, a^-1 ℄, [ r2, a^-1 ℄ ℄,[ [ r2^-1, IdWord ℄, [ r2, b^-1 ℄ ℄,[ [ r3^-1, a^-2 ℄, [ r1, IdWord ℄, [ r2^-1, a^-1*b^-1 ℄,[ r1^-1, IdWord ℄, [ r3, a^-2 ℄, [ r2, a^-2 ℄ ℄,[ [ r2^-1, a^-1 ℄, [ r2, b^-1*a^-1 ℄ ℄,[ [ r2^-1, a^-1*b^-1 ℄, [ r1^-1, IdWord ℄, [ r3, a^-2 ℄,[ r3^-1, a^-2 ℄, [ r1, IdWord ℄, [ r2, a^-1*b^-1 ℄ ℄,[ [ r2^-1, IdWord ℄, [ r3^-1, IdWord ℄, [ r2, a^-1*b^-1*a^-1 ℄, [ r3, IdWord ℄ ℄,[ [ r2^-1, a^-1 ℄, [ r2^-1, IdWord ℄, [ r1^-1, b^-1 ℄, [ r3, a^-2*b^-1 ℄,[ r2^-1, a^-1*b^-1 ℄, [ r1^-1, IdWord ℄, [ r3, a^-2 ℄, [ r3, a^-1 ℄ ℄,[ [ r1^-1, IdWord ℄, [ r3^-1, a^-2 ℄, [ r1, IdWord ℄, [ r3, b^-1 ℄ ℄,[ [ r3^-1, a^-2 ℄, [ r1, IdWord ℄, [ r1^-1, IdWord ℄, [ r3, a^-2 ℄ ℄,[ [ r2^-1, IdWord ℄, [ r3^-1, IdWord ℄, [ r2, a^-1*b^-1*a^-1 ℄, [ r3, b^-1*a^-1 ℄ ℄,[ [ r2^-1, a^-1*b^-1 ℄, [ r1^-1, IdWord ℄, [ r3, a^-2 ℄, [ r2^-1, a^-1 ℄,[ r2^-1, IdWord ℄, [ r1^-1, b^-1 ℄, [ r3, a^-2*b^-1 ℄, [ r3, a^-1*b^-1 ℄ ℄ ℄gap>The program returns a set of 18 generators for kerÆ2, these are the images under Æ3 of a set of generatorsfor eC3. For the output of higher stages to be useful implementation of some Gr�obner basis proedureswill be neessary. This is disussed in Setion 6.Example 5.5.1 We now present the results obtained for S3 followed by some of the details of thealulations whih an be done by hand in this ase, beginning with the presentationG := grphx; y j x3; y2; (xy)2i:The desription of the partial free rossed resolution is as follows. Let X = fx; yg and de�ne R to be theset of relator labels fr; s; tg whose images under w arefx3; y2; (xy)2g:C2 is the free rossed F (X)-module on w : R ! F (X).C3 is the free ZG-module generated by four elements f�1; : : : ; �4g whose images under Æ3 generate kerÆ2and are fr�1rx�1 ; s�1sy�1 ; t�1ty�1x�1 ; ts�xyr�ys�1txs�xr�1tx�1g:C4 is the free ZG-module generated by �ve elements f�1; : : : ; �5g whose images under Æ4 generate kerÆ3and are 85



f�1(id+x+x2); �2(id+y); �3(x+y); �4(x2� id)� �2(yx+x2)� �1(xy� id); �4(y�1)� �3(x�yx+ id)+ �2g:C5 is the free ZG-module generated by six elements f�1; : : : ; �6g whose images under Æ5 generate kerÆ4and are f�1(x� id); �2(y � id); �3(x2 � y); �4(id+ x+ x2) + �2(id + x+ x2)� �1(id� y);�5(id+ yx) + �4(x+ y) + �3 + �2(x2); �5(id+ y) + �3(id� x+ y)� �2g:C6 is the free ZG-module generated by seven elements f�1; : : : ; �7g whose images under Æ6 generate kerÆ5and are f�1(id+ x+ x2); �2(id+ y); �3(x+ y); �4(x2 � id)� �1(x2 + y);�6(id+ x+ x2)� �5(id+ y + xy) + �4(id + y)� �3(y)� �2(x2);�5(x2 � y) + �2(x)� �3; �6(yx� x)� �3(id+ x+ y)g:This de�nes the resolution of the group (C0) up to the sixth level C6. If identities among relations �i areequivalent to �rst order syzygies then the �i are like the fourth order syzygies.The alulations proeeded as follows:First of all we omputed an \extra information" omplete rewriting system for the group (GAP output):gap> R:=[x^3,y^2,x*y*x*y℄;[ x^3, y^2, x*y*x*y ℄gap> R2:=List( R, r -> [ r, [ [ r, IdWord ℄ ℄, IdWord ℄ );[ [ x^3, [ [ x^3, IdWord ℄ ℄, IdWord ℄, [ y^2, [ [ y^2, IdWord ℄ ℄,IdWord ℄,[ x*y*x*y, [ [ x*y*x*y, IdWord ℄ ℄, IdWord ℄ ℄gap> KB2(R2);[ [ y^2, [ [ y^2, IdWord ℄ ℄, IdWord ℄,[ x^3, [ [ x^3, IdWord ℄ ℄, IdWord ℄,[ x^2*y, [ [ y^-1*x^-1*y^-1*x^-1, x^-2 ℄,[ y^2, x^-1*y^-1*x^-3 ℄, [ x^3, IdWord ℄ ℄, y*x ℄,[ x*y*x, [ [ y^-2, x^-1*y^-1*x^-1 ℄, [ x*y*x*y, IdWord ℄ ℄, y ℄,[ y*x^2, [ [ y^-1*x^-1*y^-1*x^-1, x^-2*y^-1 ℄,[ x^3, y^-1 ℄, [ y^2, IdWord ℄ ℄, x*y ℄,[ y*x*y, [ [ x^-3, IdWord ℄, [ x*y*x*y, x^-2 ℄ ℄, x^2 ℄ ℄The six rules may be translated as follows:y2 !R2 (s; id) x3 !R2 (r; id)x2y !R2 (t�x�2sx�1y�1x�3r; yx) xyx!R2 (s�x�1y�1x�1t; y)yxy !R2 (r�1tx�2 ; x2) yx2 !R2 (t�x�2y�1ry�1s; xy)The word on the left hand side redues to the word at the right hand end, and is equal to the boundaryof the entry in brakets multiplied by that redued word. N(g) denotes the normal form (unique reduedword) in F (X) representing the element g and � is the quotient map : F (X) ! G. The homotopyh1 is de�ned on the edges [g; x℄ of the Cayley graph (G � X) by �nding produts of onjugates of therelators (R) whose images under Æ2 are N(g)xN(g�(x))�1. (For small groups like this one it is possibleto do this quite eÆiently by inspetion.) In general one de�nes h1 algorithmially by using the \extrainformation" rewriting system introdued in the previous setion. The de�nition of h1 in this example isas follows: (I have hosen to use a more eÆient de�nition than that suggested by the omputer programbeause it simpli�es the manual alulations to follow. The only loss by using the omputer generatedde�nition is that of spae. With groups even a little larger or more omplex there is no option but to usethe omputer generated de�nition.) 86



edge [g; x℄ h1[g; x℄ p2h1[g; x℄in eC1 in eC2 in C2[id; x℄ 1 1[id; x℄ 1 1[x; x℄ 1 1[x; y℄ 1 1[y; x℄ 1 1[y; y℄ [id; s℄ s[x2; x℄ [id; r℄ r[x2; y℄ [id; rsxt�x℄ rsxt�x[xy; x℄ [id; ts�1℄ ts�1[xy; y℄ [id; tsxyt�1℄ tsxyt�1[yx; x℄ [id; sryt�1℄ sryt�1[yx; x℄ [id; stys�1r�1℄ stys�1r�1Table 1: De�ning h1The formulae for the rossed omplex give us a omplete set of generators for kerÆ2.[g; r℄ ~Æ2[g; r℄ p2((h1~Æ2[g; r℄)�1[g; r℄[g;g�1℄) p3h2[g; r℄in eC2 in eC1 in C2 in C3[id; r℄ [1; x℄[x; x℄[x2; x℄ 1 0[x; r℄ [x; x℄[x2; x℄[1; x℄ r�1rx�1 �1[y; r℄ [y; x℄[yx; x℄[xy; x℄ 1 0[x2; r℄ [x2; x℄[1; x℄[x; x℄ r�1rx�2 �1(1 + x2)[xy; r℄ [xy; x℄[y; x℄[yx; x℄ r�x�1y�1x�1ry�1x�1 ��1(xy)[yx; r℄ [yx; x℄[xy; x℄[y; x℄ r�y�1rx�1y�1 �1(y)[id; s℄ [1; y℄[y; y℄ 1 0[x; s℄ [x; y℄[xy; y℄ s�y�1x�1sx�1 ��2(x2)[y; s℄ [y; y℄[1; y℄ s�1sy�1 �2[x2; s℄ [x2; y℄[yx; y℄ ty�1x�3t�x�2 ��3(x)[xy; s℄ [xy; y℄[x; y℄ 1 0[yx; s℄ [yx; y℄[x2; y℄ txs�xt�y�1s�x�1y�1 �3(y)� �2(yx)[id; t℄ [1; x℄[x; y℄[xy; x℄[y; y℄ 1 0[x; t℄ [x; x℄[x2; y℄[yx; x℄[xy; y℄ ts�xyr�ys�1txs�xr�1tx�1 �4[y; t℄ [y; x℄[yx; y℄[x2; x℄[1; y℄ 1 0[x2; t℄ [x2; x℄[1; y℄[y; x℄[yx; y℄ ty�1x�3t�x�2 ��3(x)[xy; t℄ [xy; x℄[y; y℄[1; x℄[x; y℄ t�1ty�1x�1 �3[yx; t℄ [yx; x℄[xy; y℄[x; x℄[x2; y℄ txs�xr�1ts�xyr�ys�1tx�1y�1 �4(1) � �3(yx)Table 2: Calulating kerÆ2 and de�ning h2The last olumn shows how the other identities found may be expressed (in C3) in terms of the fourgenerating ones. The main result so far is that the module of identities among relations for this grouppresentation is generated by four elements. This result an be obtained by other methods. However, wenow use the results of that last olumn to alulate a set of generators for the module of identities amongidentities. This last olumn de�nes h2 on the free generators of eC2 (listed in the seond olumn of thetable) so that it annihilates the ation of eC1 as required.The elements p3(�h2~Æ3[g; �℄ + [g; �℄h0(g)) for [g; �℄ 2 eC3 are a generating set of identities among the iden-tities. The table below gives the identity resulting from eah generator [g; �℄ of eC3. These were obtained87



by �rst alulating the images under ~Æ3. This e�etively gives us the boundary of the generator.For example, ~Æ3[id; �1℄ is [id; r℄�1[x; r℄[x;x�1℄, This is beause Æ3(�1) = r�1rx�1 , and ~Æn(g; ) := [g; Æn()℄ andwe then write [g; Æn()℄ as a produt of the generators of Cn�1 as a C1-module as h2 will be de�ned on thesegenerators. Similarly, ~Æ3[x2; �4℄ is [x2; t℄[y; s℄�[y;xy℄[yx; r℄�[yx;y℄[x2; s℄�1[x; t℄[x;x℄[x; s℄�[x;x℄[x2; r℄�1[id; t℄[id;x�1℄.(Reall that the ation is de�ned as [g; ℄[g;y℄ = [g�y; y℄.)When we have turned the [g; �℄ into suh a produt of eC2 generators, we an alulate h2(~Æ3[g; �℄) usingthe last table. Note that a property of h2 is that it must annihilate the ation of eC1, it is also a morphism,in that it preserves the multipliation of the elements of eC2. Therefore h2~Æ3[id; �1℄ is h2[id; r℄�1 = h2[x; r℄and h2~Æ3[x2; �4℄ is h2[x2; t℄�h2[y; s℄�h2[yx; r℄�h2[x2; s℄+h2[x; t℄�h2[x; s℄�h2[x2; r℄+h2[id; t℄. We anread these values o� the previous table, as we have de�ned h2 on all the elements [g; r℄. So h2~Æ3[id; �1℄ is[id;�0 + �1℄ = [id; �1℄and h2~Æ3[x2; �4℄ is [id; �4 � �2 � �1(y)� (��3(x)) + �4 � (��2(x2))� �1(1 + x2) + 0℄.To obtain the identities we negate the above h2~Æ3[g; �℄'s and add [g; �℄h0(g) whih is e�etively [id; �(g)℄.We �nally projet this sum down to C3: p2h2~Æ3[id; �1℄ is ��1 + �1 = 0 and p2h2~Æ3[x2; �4℄ is �4(x � 1) ��2(x2 � id) + �1(id+ x2 + y).The following table gives the identities resulting from all the generators.[g; �℄ p3(�h2~Æ3[g; �℄ + [g; �℄h0(g)) p4h3[g; �℄in �C3 in C3 in C4[id; �1℄ 0 0[x; �1℄ 0 0[y; �1℄ 0 0[x2; �1℄ �1(id+ x+ x2) �1[xy; �1℄ 0 0[yx; �1℄ �1(y + xy + yx) �1(y)[id; �2℄ 0 0[x; �2℄ 0 0[y; �2℄ �2(id+ y) �2[x2; �2℄ �2(x+ yx)� �3(x+ y) �2(x)� �3[xy; �2℄ �2(x2 + xy) �2(x2)[yx; �2℄ �3(x+ y) �3[id; �3℄ 0 0[x; �3℄ �3(x2 + yx) �3(x)[y; �3℄ �3(x+ y) �3[x2; �3℄ 0 0[xy; �3℄ �3(id+ xy) �3(y)[yx; �3℄ 0 0[id; �4℄ 0 0[x; �4℄ �4(x2�id)+�3(x+y)��2(yx+x2)��1(xy�1) �4 + �3[y; �4℄ �4(y � 1)��3(x�yx+id)+�2 �5[x2; �4℄ �4(x�1) � �2(x2�id)+�1(id+x2+y) ��4(x)� �2(x2)� �1[xy; �4℄ �4(xy � 1)� �3(id�yx�y)��2(yx)��1(xy�id) �5(x2) + �4 + �3(x)[yx; �4℄ �4(yx�id)��3(id�y�yx)��2(x2+yx�id)+�1(x2+id+y) ��5(yx)� �4(x)� �2(x2) + �1Table 3: Calulating kerÆ3 and de�ning h3The images of the �i generate the kernel as a ZG-module, the �i themselves provide a set of generatorsfor �C4. We use the formula p4(�h3~Æ4[g; �℄ + [g; �℄h0(g)) to alulate a generating set of 30 elements for88



kerÆ4, whih we an redue to six. The last table de�nes h3 (\in eC4" olumn) on the generators of C3([g; �℄ olumn).[g; �℄ p4(�h3~Æ4[g; �℄ + [g; �℄h0(g)) p5h4[g; �℄in �C4 in C4 in C5[id; �1℄ ��1 + �1 0[x; �1℄ ��1 + �1(x2) ��1(x2)[y; �1℄ ��1(y) + �1(y) 0[x2; �1℄ ��1 + �1(x) �1[xy; �1℄ ��1(y) + �1(xy) �1(y)[yx; �1℄ ��1(y) + �1(yx) ��1(yx)[id; �2℄ ��2 + �2 0[x; �2℄ ��2(x2) + �2(x2) 0[y; �2℄ ��2 + �2(y) �2[x2; �2℄ ��2(x) + �2(x) 0[xy; �2℄ ��2(x2) + �2(xy) �2(x2)[yx; �2℄ ��2(x) + �2(yx) �2(x)[id; �3℄ ��3 + �3 0[x; �3℄ ��3(y) + �3(x2) �3[y; �3℄ ��3(y) + �3(y) 0[x2; �3℄ ��3(x) + �3(x) 0[xy; �3℄ ��3(x) + �3(xy) �3(yx)[yx; �3℄ ��3 + �3(yx) �3(y)[id; �4℄ ��4 + �4 0[x; �4℄ �4(x+ id) + �2(x2 + x+ id)� �1(id� y) + �4(x2) �4[y; �4℄ �5(id+ yx) + �4(x) + �3 + �2(x2) + �4(y) �5[x2; �4℄ ��4(x) + �4(x) 0[xy; �4℄ �5(x2 + id) + �4 + �3(x� id) + �2(x+ id) + �4(xy) ��6 + �5(y)� �2(x)[yx; �4℄ ��5(x2 + yx)� �4(x+ id)� �3(x) + �1(y � id) + �4(yx) ��6(x2 + x) + �5(xy)��4 + �3(y)� �2[id; �5℄ ��5 + �5 0[x; �5℄ ��5(x2) + �5(x2) 0[y; �5℄ �5 + �3(id� x+ y)� �2 + �5(y) �6[x2; �5℄ �5(yx) + �3(x� y + id)� �2(x) + �5(x) �6(x) + �3(id+ x)[xy; �5℄ �5(x2) + �3(y � id+ x)� �2(x2) + �5(xy) �6(x) + �3(x2 � id)[yx; �5℄ ��5(yx) + �5(yx) 0Table 4: Calulating kerÆ4 and de�ning h4So now we have six generators for eC5 : f�1; : : : ; �6g and their images f�1(x� id); �2(y � id); �3(x2 �y); �4(id+x+x2)+�2(id+x+x2)��1(id�y); �5(id+yx)+�4(x+y)+�3+�2(x2); �5(id+y)+�3(id�x+y)��2ggenerate the module of identities among the identities among identities (kerÆ4). The last olumn de�nesh4.
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[g; �℄ p5(�h4~Æ5[g; �℄ + [g; �℄h0(g)) in C6[id; �1℄ 0 0[x; �1℄ 0 0[y; �1℄ 0 0[x2; �1℄ �1(id+ x+ x2) �1[xy; �1℄ �1(y + xy + yx) �1(y)[yx; �1℄ 0 0[id; �2℄ 0 0[x; �2℄ 0 0[y; �2℄ �2(id+ y) �2[x2; �2℄ 0 0[xy; �2℄ �2(x2 + xy) �2(x2)[yx; �2℄ �2(x+ yx) �2(x)[id; �3℄ 0 0[x; �3℄ �3(xy + x2) �3(x)[y; �3℄ 0 0[x2; �3℄ �3(x+ y) �3[xy; �3℄ �3(id+ xy) �3(y)[yx; �3℄ 0 0[id; �4℄ 0 0[x; �4℄ �4(x2�id)� �1(x2+y) �4[y; �4℄ �6(id+x+x2)� �5(1+y+xy) + �4(1+y)� �3(y)� �2(x2) �5[x2; �4℄ �4(x� id) + �1(yx+ id) ��4(x)[xy; �4℄ �6(id+x+x2)� �5(1+y+xy) + �4(1+xy)� �3(y)� �2(x2) + �1(y+x2) �5 � �4(xy)[yx; �4℄ �6(id+x+x2)� �5(1+y+xy) + �4(1+yx)� �3(y)� �2(x2)� �1(yx+id) �5 + �4(y)[id; �5℄ 0 0[x; �5℄ �5(x2 � y) + �2(x)� �3 �6[y; �5℄ 0 0[x2; �5℄ ��6(x2+x+id) + �5(id+y+x)� �4(id+y)� �3(x+x2) + �2(id+x2) �6(x2)� �5+�3[xy; �5℄ ��6(x2+x+id) + �5(id+y+yx)� �4(id+y)� �3(x+x2+yx) + �2(x2) ��5 � �3(x+id)[yx; �5℄ �5(yx�id)� �3(y)� �2(x2) �6(y)� �2(x2)[id; �6℄ 0 0[x; �6℄ ��3(x2 + yx) ��3(x2)[y; �6℄ �6(y�id) + �3(yx) �7[x2; �6℄ ��3(x+ y) ��3[xy; �6℄ �6(xy�x2) + �3(y�x2+yx) + �2(x2) �7(x2) + �3(x)[yx; �6℄ �6(yx�x)� �3(x+y +id) + �2(x) �7(x)� �3(y + id)Table 5: Calulating kerÆ5 and de�ning h5We ould alulate the identities for the next level, using the last table as a de�nition for h5, omputinga set of 42 generators for kerÆ6 (using p6(�h5~Æ6[g; �℄ + [g; �℄h0(g)) ) and reduing them as before. It doesnot get more ompliated: for n�3 Cn is a ZG-module and the expression pn(�hn�1~Æn[g; ℄+[g; ℄h0(g)),where  is a generator of Cn, gives a set of generators for Cn+1 as a ZG-module (whih may be reduedover the ZG-module). It is in priniple possible to ontinue this exerise further, but it is not of value todo so here. The obvious onjeture it that Cn will be the free ZG-module generated by n+ 1 elements.Notie that every time we are hoosing a set of independent generators for the ZG-submodule; the set isnot unique, and we do not have an algorithm for determining whih generator is expressible in terms of theothers or how to express it in this way. The method used is no more than inspetion and trial and error.The purpose of inluding this example is that it best shows what may be ahieved using the overing90



groupoids and homotopies methods, the omplexity of even a very small example, and thus illustrates theneessity for a omputer algorithm to extrat suh information as was summarised at the beginning ofthis example. The next setion shows that these problems an be expressed in terms of nonommutativeGr�obner bases over group rings. New work is being developed [52℄ on algorithms for suh problems, andso expressing the problem of devising an algorithm for obtaining redued sets of identities and higheridentities is a step forward, and until suh Gr�obner basis algorithms beome available we annot expetto be able to have algorithms for reduing the sets of generating identities.5.6 The Submodule ProblemThe previous setions have shown that a variation of the nonommutative Buhberger algorithm (Knuth-Bendix algorithm) may be applied to a group presentation to obtain the ontrating homotopy h1, anda set of generators for the module of identities among relations for the group presentation. This muhhas been implemented in the program idrel:g for GAP. The remaining problem is that of reduing theset of generators with respet to the ation of ZG on the module.We disussed earlier the Pei�er Problem whih ours at the �rst level (identities among relations:kerÆ2 � C(R)). This problem is diÆult beause we need to test for equality in the free rossed F (X)-module, in other words, to test for Pei�er equivalene of two sequenes (reall that the Pei�er rules implythat [s; v℄[r; u℄ = [r; u℄[s; vÆ(r)u℄ = [r; uÆ(s)v ℄). In this ase we essentially wish to be able to redue theset of generating identities to a set f�1; : : : ; �kg that is in some sense minimal over ZG i.e. no �j an bewritten as a sum of ZG-multiples of the other identities. To summarise { there are great diÆulties inreduing the set of generators of the module of identities among relations. Furthermore, unless we anexpress eah of the original generators in terms of those in the redued set it is not pratial to de�ne h2on suh a large set.We will now use a property whih onverts the Pei�er Problem into a Gr�obner basis problem. Thisproperty is fully explained in [15℄. First, reall that the rossed module is de�ned by taking the Pei�erequivalene lasses of the free group F (R � F (X)). This is the same as looking at the free monoid(Y + t Y �)� fatored by the relations needed for the group as well as by the Pei�er relations. Elementsof (Y + t Y �)� are alled Y-sequenes.An identity Y-sequene is one whose image under Æ2 is the identity in F (X).The identity property uses a result on the abelianisation of C(R) to desribe a useful way of determiningwhether an identity Y -sequene (i.e. one identi�ed with an element of the kernel of Æ2, whih is abelian)is Pei�er equivalent to the empty sequene.An identity Y -sequene a = (r1; u1)"1 ; : : : ; (rk; uk)"1 has thePrimary Identity Property if the indexingnumbers 1; : : : ; k of the sequene y an be paired (i; j) so that ri = rj, �(uj) = �(uj) and "i = �"j .Lemma 5.6.1 ([15℄) Let a 2 (Y + t Y �)�. Then a has the Primary Identity Property if and only if itis Pei�er equivalent to the empty sequene.Let X be a set and let K be a ring. Reall that the free right K-moduleK[X℄ on X has as elements allformal sums x1k1+� � �+xnkn where x1; : : : ; xn 2 X and k1; : : : ; kn 2 K. Right multipliation by elementsof K and addition of elements of K[X℄ are de�ned, with a zero and inverses, and (x1+x2)k = x1k+x2k.Let P := fp1; : : : ; png � K[X℄. Reall that the sub ZG-module generated by P ishP i := fp1�1 + � � �+ pn�n : �1; : : : ; �n 2 Kg91



Let grphXjRi be a presentation of a group G. The group ring ZG is the free right Z-module on Gtogether with a omposition, making it an algebra over the ring Z. The free right ZG-module ZG[R℄ onthe set R has elements of the form r1�1 + � � �+ rn�n where r1; : : : ; rn 2 R and �1; : : : ; �n 2 ZG.Lemma 5.6.2 Let grphXjRi be a presentation of a group G, with quotient morphism � : F (X) ! G.Let � = (r1; u1)"1 � � � (rn; un)"n be an identity Y- sequene and let � denote the empty sequene. De�ne� : (Y + t Y �)� ! ZG[R℄ by �((r; u)") := r(�u") with �(�) = 0. Then � �$RP � if and only if �(�) = 0.Proof We verify that � preserves the G-ation: �(((r; u)")v) = �((r; uv)") = r(�(uv)") = (�(r; u)")�v.The result now follows immediately from the de�nition of �, the Primary Identity Property and theprevious lemma. 2Corollary 5.6.3 Let �1; �2 be identity Y-sequenes. Then �1 �$RP �2 if and only if h�1i = h�2i in ZG[R℄.De�nition 5.6.4 Let K[X℄ be a right K-module and let a; b 2 K[X℄. The Submodule Problem isINPUT a; b 2 K[X℄ (two elements of the right K-module,)QUESTION hai = hbi? (do they generate the same submodule?)So we have shown that the Pei�er Problem for identity Y-sequenes simpli�es to the Submodule Problem.If the Submodule Problem an be solved then it is possible to redue the set of generators of kerÆ2 to aset of generating identities f�1; : : : �tg suh that no subset of this will generate the same sub ZG-module.This is in some sense a minimal set of generators for kerÆ2 (see later note).At the next levels, kerÆn for n � 3, the problem is simpler in that we are now working entirely inZG-modules, and do not enounter the Pei�er Problem. The only problem we now enounter is theSubmodule Problem.In the kerÆ3 ase (Table 3) we have a set of 24 generators as elements of C2, whih here is the freeZG-module on f�1; : : : ; �4g. Some of these generators are zero, others are of the form �1(id+x+x2) and�2(x+yx)� �3(x+y).The problem may be phrased in the terms of a Gr�obner basis problem. This is a reasonable approah,beause methods for dealing with ommutative Gr�obner bases over rings exist [1℄ (essentially for Prini-pal Ideal Domains) and methods for nonommutative Gr�obner bases over rings (spei�ally group andmonoid rings) are being developed [52℄. Let P := fp1; : : : ; png be a set of polynomials with oeÆientsin ZG and monomials from a set M i.e. p1; : : : ; pn are elements of the ZG-module ZG(M). The task isto �nd a set Q := fq1; : : : ; qmg that generates the same sub ZG-module, but is suh that no qi is a sumof ZG-multiples of the other qj.Bases for modules are not in general unique or of the same rank. So it is possible that there are two suhsets Q and Q0 and that these are of di�erent sizes. We are onerned not with �nding the generating setwith smallest ardinality but with �nding a set whih ontains no subset whih would generate the samesubmodule.If Q is a Gr�obner basis for P then by de�nition hP i = hQi. If Q is a redued Gr�obner basis then it is suhthat no element qi of Q is a sum of ZG-multiples of the other elements qj of Q. This puts the problemof �nding a redued set of sub-module generators in terms of a Gr�obner basis problem.
92



5.7 Conluding RemarksThe purpose of this hapter was to make algorithmi the methods given in [17℄. In fat we have om-puterised the initial part of the onstrution, using rewriting theory and the Knuth-Bendix ompletionproedure to algorithmially de�ne the �rst ontrating homotopies h0 and h1. The program idrels:gwill ompute, from a group presentation, a omplete generating set for the module of identities amongrelations.Unfortunately we annot yet produe an algorithm for the minimalisation of this set of generators. Twomajor barriers to a redution proedure have been identi�ed. Firstly, the Pei�er Problem, a partiularlydiÆult word problem enountered in rossed modules and 2-ategories as a result of the Pei�er rulesor interhange law. This has been redued, using a property de�ned in [15℄ to the Submodule Problem,whih is also enountered at higher levels, and indiates that methods for nonommutative Gr�obner basesover group rings are required. Methods for solving this problem are progressing, thanks to ollaborationwith Birgit Reinert (Kaiserslautern). A program for reduing the �rst generating set of identities exists.This work will ontinue with the aim of extending the program so that it will ompute minimal generatingsets for the ZG-modules Cn for any given n.Investigation of whether the ompletion of a monoid presentation yields something useful for the on-strution of a resolution of the monoid would also be an interesting area of work. We do not knowwhether the overing groupoids methods of [17℄ might generalise to a overing ategories of monoidsmethod for alulating something orresponding to identities among relations for monoids. This lookslike the beginnings of a nonommutative syzygy theory, and would de�nitely be worth investigating.
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File 1: knuth.gThe �rst program is an implementation of the standard Knuth-Bendix proedure whih may be appliedto string rewriting. A rewrite system R is input in the form of a list R of pairs of words. The importantsubroutines are:� OnePass(word; R): redues word (if possible) by applying one rule from R. This proedure involvessearhing to see if the left side of a rule in R is a subword of word and then replaing that part of wordwith the right side of the rule.� RedueWord(word; R) redues word as far as possible with respet to R by the repeated appliation ofthe previous funtion. (Note that the redued form an only be guaranteed to be unique if R is omplete.)� CritialPairs(R): overlaps between the left hand sides of the rules in R are found, and the resultingritial pairs are found and redued with respet to R.� OnePassKB(R): this funtion omputes the ritial pairs of a rewrite system R and then resolves theseritial pairs by adding then to R.� SystemRedue(R): is an eÆieny measure rather than theoretially essential. It normalises an ordinaryrewrite system by reduing the rules (both sides of eah rule are redued by the other rules and the rulesimplied by other rules within the system are hene removed).The main funtion of the program is KB.� KB(R): attempts to omplete the rewrite system (with respet to the length-lex order). If it ahievesthe ompletion it returns the omplete (redued) rewrite system as a list of ordered pairs.When the rewriting system is for a monoid there are further funtions whih will enumerate the elementsof the monoid.� NextWords(F; Words): reates new words of length n+1 by omposing single generators from (the freegroup) F with irreduible words of length n.� Enumerate(F; R): uses the previous funtion and redue(word; R) to build up bloks of words of thesame length (on the irreduibles one unit shorter) and then to redue these words as far as possible.When a whole blok of new words is reduible, there are no more irreduible words to be found.File 2: kan.gThe main funtion of the program is alled Kan. The input, funtions and output are fully desribed inChapter Two.� InitialRules(KAN): The �rst sub-routine onstruts the initial rewrite system of mixed one-sided andtwo-sided rules. All the rules of the form (x�Fa;Xa(x)) for a 2 A are added to the relations of theategory B. This establishes an initial rewriting system for the group.� Kan(KAN): This ompletes the rewriting system with respet to length-lex (where possible) by allingknuth:g. It then enumerates the elements of the sets whih make up the Kan extension. The ation ofB on the resulting elements an easily be omputed.File 3: npoly.gThis �le provides de�nitions and some operations for polynomials with rational oeÆients and non-ommutative monomials in a semigroup.
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� PolyFromTerms([[k1; m1℄; ::; [kn; mn℄℄): reates a (nonommutative) polynomial from a list of terms. Apolynomial is stored as a reord but printed niely as a polynomial k1 m1+ � � � + kn mn. There are anumber of operations:� IsNonCommPoly(poly): tests whether a reord is a polynomial.� LengthPoly(poly): returns the number of terms.� LeadTerm(poly): extrats the leading term (whih onsists of the monomial of greatest size with respetto the length-lex order and its oeÆient).� LeadCoeff(poly): returns the oeÆient of the leading term.� LeadMonom(poly): returns the monomial part of the leading term.� MakeMoni(poly): divides a a polynomial by its leading oeÆient to return a moni polynomial.� NeatenPoly(poly): adds like terms (non-destrutive).� poly1 = poly2: equality between polynomials is well de�ned.� AreEquivPolys(poly1; poly2): polynomials are equivalent if one is a multiple of the other.� AddPoly(poly1; poly2) : returns the `neatened' sum of two `neat' polynomials.� SubtratPoly(poly1; poly2) : returns the `neatened' di�erene of two `neat' polynomials.To summarise: a polynomial reord poly has the following �elds: poly:IsNonComPoly is true; poly:termsis a list of terms [; m℄ where  is a rational and m is a word; poly:isNeat is either true or false;poly:operations will be NonCommPolyOps; poly:lead is a term [; m℄; poly:leadmon is poly:lead[2℄;poly:isMoni is either true or false.All these funtions are required for the nonommutative Gr�obner basis program.File 4: grobner.gThis is a program for omputing the nonommutative Gr�obner basis of a set of polynomials. It onsistsof a number of funtions:� ReduePoly(poly; POL): redues a polynomial poly by subtrating multiples of polynomials in POL.The redued form an only be guaranteed to be unique with a Gr�obner basis.� OrderSystem(POL): orders a set of polynomials with respet to their leading monomials.� PolySystemRedue(POL): Removes polynomials whih are sums of multiples of other polynomials inthe system.� SPolys(ALL; NEW): ompares two lists of polynomials for mathes (if the lists are equal then this is thestandard proedure and �nds all mathes in the system) and alulates the resulting S-polynomials.� GB(POL): returns (where possible) a Gr�obner basis for a system of nonommutative polynomials overthe rationals (with respet to the length-lex order).File 5: idrel.gThis program aepts as input a free group and a list of relators. It goes through a number of alulations,inluding an \extra information" Knuth-Bendix ompletion proedure and returns a omplete set ofgenerators for the module of identities among relations. The input, funtions and output are fullydesribed in Chapter Five, with examples.
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