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SummaryThis thesis 
on
entrates on the development and appli
ation of Gr�obner bases methods to a range of
ombinatorial problems (involving groups, semigroups, 
ategories, 
ategory a
tions, algebras and K-
ategories) and the use of rewriting for 
al
ulating Kan extensions.The �rst 
hapter gives a short introdu
tion to presentations, rewrite systems, and 
ompletion.Chapter Two 
ontains the most important result, whi
h is the appli
ation of Knuth-Bendix pro
eduresto Kan extensions, showing how rewriting provides a useful method for attempting to solve a variety of
ombinatorial problems whi
h 
an be phrased in terms of Kan extensions. A GAP3 program for Kanextensions is in
luded in the appendix.Chapter Three shows that the standard Knuth-Bendix algorithm is step-for-step a spe
ial 
ase of Bu
h-berger's algorithm. The one-sided 
ases and higher dimensions are 
onsidered, and the relations betweenthese are made pre
ise. The standard non
ommutative Gr�obner basis 
al
ulation may be expressed as aKan extension over modules. A non
ommutative Gr�obner bases program (in GAP3) has been written.Chapter Four relates rewrite systems, Gr�obner bases and automata. Automata whi
h only a

ept irre-du
ibles, and automata whi
h output redu
ed forms are dis
ussed for presentations of Kan extensions.Redu
tion ma
hines for rewrite systems are identi�ed with standard output automata and the redu
tionma
hines devised for algebras are expressed as Petri nets.Chapter Five uses the 
ompletion of a group rewriting system to algorithmi
ally determine a 
ontra
tinghomotopy ne
essary in order to 
ompute the set of generators for the module of identities among relationsusing the 
overing groupoid methods devised by Brown and Razak Salleh [17℄. (The resulting algorithmhas been implemented in GAP3). Redu
ing the resulting set of submodule generators is identi�ed as aGr�obner basis problem.
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Chapter 1Introdu
tion1.1 Presentations1.1.1 Ba
kgroundA 
omputational problem in group theory typi
ally begins \Given a group G, determine...". Methodsof solution of the problem depend on the way the information about G is given. The study of groupsgiven by presentations is 
alled 
ombinatorial group theory. Study of other algebrai
 obje
ts (for example
ategories) through presentations may be 
alled 
ombinatori
s. This se
tion is an attempt to outline alittle of the (
ontroversial) history of and motivation for the study of groups and in parti
ular the use ofgroup presentations.The origins of group theory might go ba
k to 1600 BC. Stone tablets remain as eviden
e that theBabylonians knew how to solve quadrati
 equations (though they had no algebrai
 notation). Thesolution (by radi
als) of a 
ubi
 equation was not dis
overed until the 16th 
entury, and publishedsimultaneously with the method for solving quarti
s (by redu
ing to a 
ubi
). Mathemati
ians su
h asEuler and Lagrange worked on the problem, and in 1824 Abel proved that there was no general solutionby radi
als of a quinti
 equation. Work began on determining whether a given quinti
 was soluble, andit is from �Evariste Galois's paper \On the Conditions of Solubility of Equations by Radi
als" (submittedand reje
ted in 1831) that group theory really began. (That is not to say that group theoreti
 ideas didnot exist before Galois (a

ording to [73℄, they did) and a number of results were obtained before thede�nition of an abstra
t group rea
hed its �nal form.) The �rst formal development of group theoryfollowed Galois's ideas and was limited almost entirely to �nite groups. The idea of an abstra
t in�nitegroup is in
luded in Arthur Cayley's work (1854, 1878) on group axioms, but was not pursued at thattime. Finitely generated groups were de�ned by Dy
k in 1882, and it is (disputedly) here that the �rstde�nition of a presentation by generators and relations was given.Studying groups be
ame important; groups of transformations 
ame from symmetries and 
ongruen
esin Eu
lidean Geometry, (semigroups 
ome from partial symmetries) automorphism groups were used inKlein's \Erlangen Programme", 
y
li
 groups 
ame from numbers and modular arithmeti
 and moregroups from Gauss's 
omposition of binary quadrati
 forms (groupoids from Brandt's generalisation ofthis problem). Abstra
t �nite groups were de�ned by Weber in 1882, and it was in 1893 that he publishedwhat we re
ognise as the modern de�nition of an arbitrary abstra
t group.A major stimulus to the study of in�nite dis
rete groups, however, was the development of topology.In 1895 Poin
ar�e introdu
ed the notion of a fundamental group �1(X; a) of 
losed paths of a spa
e Xfrom a point a. The properties of the fundamental group of a topologi
al spa
e 
orrespond to someproperties of the spa
e. Interest in 
lassifying the topologi
al spa
es generated interest in fundamentalgroups. In 1911 Max Dehn, a student of Hilbert's, wrote a paper [31℄ whi
h dealt with presentations offundamental groups of 
losed, orientable surfa
es, for whi
h he formulated three fundamental de
isionproblems: the word problem, the 
onjuga
y problem, and the isomorphism problem. It is thought that1



by this time the idea of trying to determine properties of a group given by a �nite presentation wasalready familiar. Anyway, some 
onsider the problems to be part of what be
ame known as \Hilbert'sProgramme". Nielsen was also an important in
uen
e: his work led naturally to the study of groupspresented through generators and relators.There are 
ertain advantages of presentations as a method for studying groups, or indeed other algebrai
stru
tures (monoids, 
ategories, algebras). One advantage is that a presentation is 
ompa
t as 
omparedto (say) a Cayley table. An eÆ
ient presentation des
ribes the group with the minimal amount of infor-mation. By now there is a lot of theoreti
al ma
hinery for working with presentations, this may be 
alled
omputational group theory (or 
omputational 
ategory theory, et
), whi
h really began with Turingand Newman's work at the end of World War II. Modern work in 
omputational group theory may befound in Charles Sims's re
ent book [73℄, and a lot of work developing 
omputer programs for grouptheoreti
 
omputations 
ontinues at Warwi
k (KBMAG), St Andrews (GAP) and Sydney (MAGMA)to name a few. The area has also broadened, problems with monoids are more widely resear
hed andnow 
ategories are 
oming into the pi
ture. Computational 
ategory theory is one relatively new �eld of
omputer algebra whi
h has 
onsiderable prospe
ts.Rewriting systems are sets of dire
ted equations or rules whi
h are useful in 
omputations. Rewrite rulesspe
ify the repeated repla
ement of subterms of a given formula with equivalent terms. Rewriting theorywas introdu
ed as a method of solving the word problem. The original word problem was expressed byAxel Thue in 1914:\Suppose one has a set of obje
ts, and a set of transformations (rules) that when applied to these obje
tsyield obje
ts in the same set. Given two obje
ts x and y in the set, 
an x be transformed into y, or isthere perhaps a third obje
t z su
h that both x and y 
an be transformed into z?".Thue established some preliminary results about strings of symbols (i.e. elements of a free monoid) andsuggested that the approa
h might extend to more stru
tured 
ombinatorial obje
ts (at about this timeDehn was working on the beginnings of 
ombinatorial group theory). Thue wanted to develop a \
al
u-lus" to de
ide the word problem, that is a set of pro
edures or algorithms that 
ould be applied to thegiven obje
ts to obtain the 
orre
t answer. He wanted a general algorithm to solve the word problem ina variety of di�erent settings.Apparently Thue's work was disregarded until the 1930's when logi
ians were seeking formal de�nitionsof 
on
epts like \algorithm" and \e�e
tive pro
edure". In the mid 1950's and 60's notions of semi-Thuesystems be
ame important in mathemati
al linguisti
s. Work on formal language theory used semi-Thuesystems as mathemati
al models for phrase-stru
ture grammars. At the same time te
hnology was im-proving to the extent where mathemati
ians began to 
onsider me
hani
al theorem proving, and in the1960's automated dedu
tion qui
kly developed. As a form of 
omputer program, rewriting systems madetheir debut in 1967 in a paper by Gorn. A parti
ularly in
uential role was played by a paper written byKnuth and Bendix in 1970 [48℄. They des
ribed an automati
 pro
edure for solving word problems inabstra
t algebras.In the 1970's term-rewriting systems took an important role in the study of automated dedu
tion, whi
hwas still a rapidly developing area. However, it was not really until the 1980's that Thue systemsbe
ame popular. A book whi
h 
ontains the most fundamental results of the 1980's is [7℄. Sin
e then,rewriting systems have 
ontinued to be of in
reasing interest, being investigated for di�erent propertiesand applied to a widening range of areas. The 
omputational aspe
t is parti
ularly important. Manymodern programs for symboli
 manipulation 
ontinue to use rewrite rules in an ad ho
 manner, andthere is now mu
h work on the more formal use of rewriting systems in programming (in parti
ular see[42℄[43℄[73℄). 2



1.1.2 Monoid and Group PresentationsIt is assumed that the reader is familiar with monoids and groups. The terms and de�nitions for presen-tations are given in the following paragraphs to �x the notation.Let X be a set. The free semigroup Xy on X 
onsists of all nonempty sequen
es (strings) of elementsof X. Composition is de�ned by 
on
atenation of the strings. The free monoid PX (sometimes denotedX�) on X 
onsists of all strings of elements of X, in
luding the empty string. Composition is de�ned bystring 
on
atenation with the empty string a
ting as identity.A set of relations R for a monoid generated by X is a subset of PX � PX. A 
ongruen
e =S on amonoid A is an equivalen
e relation on A su
h that, for all u; v 2 A, if l =S r then ulv =S urv. The
ongruen
e =R generated by R on PX, where R is a set of relations, is given by x =R y if and onlyif there is a system of equations x = u1l1v1u1r1v1 = u2l2v2� � � � � � � � �unrnvn = ywhere either (li; ri) or (ri; li) 2 R for i = 1; : : : ; n, n � 1. This is equal to the smallest equivalen
e relationon PX 
ontaining R su
h that for all u; v 2 PX x =R y ) uxv =R uyv [30℄. If A is a monoid and =Sa 
ongruen
e on A then the fa
tor monoid A= =S is the monoid whose elements are the 
ongruen
e
lasses of =S on A and whose 
omposition is indu
ed by that on A. The 
ongruen
e 
lass of an elementa 2 A with respe
t to S will be denoted [a℄S .A monoid presentation is a pair monhXjRi, where X is a set and R � PX �PX is a set of relations.The monoid it presents is the fa
tor monoid PX= =R. We say monhXjRi is a monoid presentation ofM if M �= PX= =R. The free group on X is the group F (X) with monoid presentation monh �XjR0iwhere �X := fx+; x� : x 2 Xg and R0 := f(x+x�; id); (x�x+; id) : x 2 Xg. A group presentation is apair grphXjRi where X is a set and R � F (X) (the group relators). The group it presents is de�nedas the monoid that is presented by monh �Xj �Ri where �R := R0 [ f(r; id) : r 2 Rg. (To verify that this isa group note that any element has the form [x1"1 : : : xn"n ℄ �R where x1; : : : ; xn 2 X; "1; : : : ; "n 2 f+;�gand so has inverse [xn�"n : : : x1�"1 ℄R0 where �(+) := �;�(�) := +.)A monoid is �nitely presented if it has a presentation monhX jRi where X and R are �nite sets(similarly for groups). Monoid presentations are often used to give all the information about the monoidin a 
ompa
t form. The main question, given a monoid presentation, is known as the word problem. Theword problem for a monoid presentation monhXjRi is as follows:INPUT: u; v 2 PX (two elements in the free monoid),QUESTION: u =R v? (do they represent the same element in the monoid presented?)Rewriting systems (de�ned later) are one method of ta
kling this problem (another being the Todd-Coxeter pro
edure). However, as is well known, rewriting 
annot solve the problem in general but onlywhen the rewriting system 
an be 
ompleted (de�ned later). Fortunately there are a large number ofinteresting examples (all �nite monoids, all abelian monoids - see later) for whi
h rewriting systems are
ompletable.1.1.3 Category and Groupoid PresentationsIt is assumed that the reader is familiar with the general 
on
epts of 
ategory, fun
tor and natural trans-formation. The following paragraphs �x the notation used and de�ne presentations of 
ategories and3



groupoids and the asso
iated word problem.A dire
ted graph � 
onsists of a set of obje
ts Ob�, a set of arrows Arr� and two fun
tions sr
; tgt :Arr�! Ob�. (Throughout the text, unless otherwise spe
i�ed, \graph" should be taken to mean su
h adire
ted graph. If a graph has only one obje
t this will be denoted �.) Amorphism of graphs F : �! �
onsists of fun
tions ObF : Ob� ! Ob�, ArrF : Arr� ! Arr� su
h that sr
 Æ ArrF = ObF Æ sr
 andtgt ÆArrF = ObF Æ tgt. This gives the 
ategory DirG of dire
ted graphs.The forgetful fun
tor U : Cat! DirG from the 
ategory of small 
ategories to dire
ted Graphs has a leftadjoint whi
h we write P , the free 
ategory on a graph. It is realised in the usual way: if � is a graphthen ObP� := Ob�, and the non-identity arrows P�(A1; A2) 
onsist of all paths a1 � � � an, i.e. sequen
esa1; : : : ; an 2 � su
h that tgt(ai) = sr
(ai+1) for i = 1; : : : ; n � 1; n � 1. The identity arrows are su
hthat for all obje
ts A of the free 
ategory idAa = a for any path a with sour
e A and 
 idA = 
 for anypath 
 with target A. Composition is de�ned by 
on
atenation. Thus if � has one obje
t then P� 
anbe identi�ed with the free monoid on Arr�.A set of relations R for a 
ategory A is a subset of ArrA� ArrA, every relation (l; r) 2 R must satisfysr
(l) = sr
(r), tgt(l) = tgt(r). A 
ongruen
e =S on a 
ategory A is an equivalen
e relation on theset ArrA whi
h satis�es l =S r ) sr
(l) = sr
(r); tgt(l) = tgt(r) and for all u; v 2 ArrA, if l =S r thenulv =S urv when these produ
ts are de�ned. The 
ongruen
e =R generated by R on P�, where Ris a set of relations, is given by x =R y if there is a system of equationsx = u1l1v1u1r1v1 = u2l2v2� � � � � � � � �unrnvn = ywhere either (li; ri) or (ri; li) 2 R for i = 1; ::; n and the produ
ts uilivi and uirivi are de�ned. If A is a
ategory and =S is a 
ongruen
e on A then the fa
tor 
ategory A= =S is the 
ategory whose obje
ts areObA and whose arrows are the 
ongruen
e 
lasses with respe
t to =S of ArrA with 
omposition indu
edby that on A. The 
ongruen
e 
lass of an arrow a 2 A with respe
t to S will be denoted [a℄S . Congruentarrows have the same sour
es and targets as ea
h other, so sr
; tgt are preserved.A 
ategory presentation is a pair 
ath�jRi, where � is a graph and R � ArrP� � ArrP� is a set ofrelations. The 
ategory it presents is the fa
tor 
ategory P�= =R. We say that 
ath�jRi is a 
ategorypresentation for C if C �= P�= =R.The free groupoid on � is denoted F (�). It is de�ned to be the free 
ategory P �� fa
tored by therelations R0 where Ob�� := Ob�, Arr�� := fa+; a� : a 2 Arr�g with sr
(a+) = tgt(a�) = sr
(a) andtgt(a+) = sr
(a�) = tgt(a) and R0 := f(a+a�; idsr
(a)); (a�a+; idtgt(a)) : a 2 Arr�g. A groupoid pre-sentation is a pair gpdh�jRi where � is a graph and R is a subset of the disjoint union of the vertexgroups of F (X). The groupoid it presents is de�ned as the 
ategory that is presented by 
ath��j �Ri where�� and R0 are as above and �R := R0 [ f(r; idsr
(r) : r 2 Rg. (To verify that this is a groupoid note thatany element has the form [a1"1 � � � an"n ℄ �R where a1; : : : ; an 2 �; "1; : : : ; "n 2 f+;�g and so has inverse[an�"n ::a1�"1 ℄ �R where �(+) := �;�(�) := +.)Some motivation for 
onsidering groupoid presentations is given by the fa
t that a presentation grphXjRiof a group G lifts to a presentation gpdh eX j eRi of the 
overing groupoid of the Cayley graph eX of thegroup G [40℄. In detail: let � : F (X) ! G be the quotient map, and let Ob eX = fg : g 2 Gg,Arr eX = f[g; x℄ : g 2 G;x 2 Xg where sr
([g; x℄) := g; tgt([g; x℄) := g�(x), and eR = G � R. (This is4



referred to in detail in Chapter 5). A monoid (or group) 
an be regarded as a 
ategory (or groupoid)with one obje
t. Let monhXjRi present a monoid M . Then the presentation 
ath�XjRi, where �X isthe one obje
t graph and Arr�X := X, is a 
ategory presentation for the monoid M .A 
ategory C is �nitely presented if it has a presentation 
ath�jRi where Ob�;Arr� and R are �nitesets. The word problem for a 
ategory presentation 
ath�jRi is as follows:INPUT: u; v 2 Arr(P�) (two arrows in the free 
ategory),QUESTION: u =R v? (do they represent the same element in the 
ategory presented?)Terminology: The trivial 
ategory, with 
ategory presentation 
ath�ji has only one obje
t � and onearrow { the identity id�. The null fun
tor maps a 
ategory to the trivial 
ategory, by mapping all theobje
ts to � and the arrows to id�. The hom-set of all arrows between two parti
ular obje
ts A and B ofa 
ategory P will be denoted P(A;B).1.2 Abstra
t Redu
tion RelationsWe re
all the de�nitions of redu
tion relations on abstra
t sets and some of their properties. This is abrief exposition of the introdu
tory material in [7℄, the results stated are proved there. These results willbe generalised to P-sets, where P is a 
ategory, in Se
tion 2.4Let T be a set. A redu
tion relation ! on a set T is a subset of T � T . We write l! r when (l; r) isan element (rule) of !. The pair (T;!) will be 
alled a redu
tion system. Redu
tion is the namegiven to the pro
edure of applying rules to a given term to obtain another term i.e. we \redu
e t1 to t2in one step" if (t1; t2) is an element of the redu
tion relation. An element t1 of T is said to be redu
ibleif there is another element t2 of T su
h that t1 ! t2, otherwise it is irredu
ible. The re
exive, transitive
losure of a redu
tion relation ! is denoted �! i.e. if t1 ! t2 ! � � � ! tn then we write t1 �! tn.The re
exive, symmetri
, transitive 
losure of ! is denoted �$ This is the smallest equivalen
e relationon T that 
ontains !. The equivalen
e 
lass of an element t of T under �$ will be denoted [t℄.The word problem for a redu
tion system (T;!) is:INPUT: t1; t2 2 T (two elements of T ).QUESTION: t1 �$Rt2 (are they equivalent under �$R)?Let! be a redu
tion relation on a set T . A normal form for an element t 2 T is an irredu
ible elementtN 2 T su
h that t �$ tN . A set of unique normal forms is a subset of T whi
h 
ontains exa
tly onenormal form for ea
h equivalen
e 
lass of T with respe
t to �$. A unique normal form fun
tion isa fun
tion N : T ! T whose image is a set of unique normal forms. One approa
h to solving the wordproblem is to attempt to 
hoose a set of unique normal forms as representatives of the 
lasses of theequivalen
e relation. Given any pair of elements, if their normal forms 
an be 
omputed, it 
an be seenthat the elements are equivalent if and only if their normal forms are equal.The de�nitions above indi
ate that if the irredu
ible elements are to be unique normal forms we requireexa
tly one irredu
ible in ea
h equivalen
e 
lass. Further, if redu
tion is to be the unique normal formfun
tion then we should be able to obtain the normal form of any element by a �nite sequen
e of redu
-tions. We 
onsider 
onditions that guarantee these properties. It is essential that equivalent elementsredu
e to the same irredu
ible. A redu
tion system (T;!) is 
on
uent, if for all terms t; u1; u2 2 Tsu
h that t �! u1 and t �! u2 there exists an element v 2 T su
h that u1 �! v and u2 �! v. The followingpi
ture illustrates the 
on
uen
e 
ondition. 5
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ts may be found in [7℄.Fa
t 1.2.1 If a redu
tion system (T;!) is 
on
uent then for ea
h t 2 T , [t℄ has at most one normalform.We require that the irredu
ibles be obtainable by a �nite sequen
e of redu
tions. A redu
tion system(T;!) is Noetherian (or terminating) if there is no in�nite sequen
e t1; t2; : : : 2 T su
h that for alli 2 N; ti ! ti+1. A redu
tion system (T;!) is lo
ally 
on
uent if for all elements t; u1; u2 2 T su
hthat t! u1 and t! u2 there exists a term v 2 T su
h that u1 �! v and u2 �! v.Fa
t 1.2.2 A Noetherian redu
tion system is 
on
uent if it is lo
ally 
on
uent.Fa
t 1.2.3 If a redu
tion system (T;!) is Noetherian then for every t 2 T , [t℄ has a normal form (notne
essarily unique).A redu
tion system (T;!) is 
omplete (or 
onvergent) if it is 
on
uent and ! is Noetherian.Fa
t 1.2.4 Let (T;!) be a redu
tion system. If it is 
omplete then for every t 2 T , [t℄ has a uniquenormal form.Some motivation for 
onsidering 
omplete redu
tion systems is that they enable the solution of theword problem through a normal form algorithm. The normal forms are the irredu
ible elements(
ompleteness ensures that there is exa
tly one irredu
ible in ea
h equivalen
e 
lass). The normal formfun
tion is repeated redu
tion (the Noetherian property ensures that the irredu
ible is rea
hed in �nitelymany redu
tions). So: given two terms, we redu
e them to irredu
ibles, the words are equivalent only ifthe irredu
ibles are equal.Fa
t 1.2.5 If a redu
tion system (T;!) is 
omplete and T is �nite, then the word problem for (T;!)is de
idable.It is not in general possible to determine whether a �nite redu
tion system is Noetherian, 
on
uent or
omplete. However, if a �nite system is known to be Noetherian, we 
an determine whether or not it is
omplete. Non-
on
uen
e o

urs when di�erent rules apply to the same term, giving di�erent redu
edterms. A 
riti
al pair is a pair (u1; u2) where there exists a term t 2 T su
h that t ! u1 and t ! u2.A 
riti
al pair (u1; u2) is said to resolve if there exists a term v 2 T su
h that u1 �! v and u2 �! v.Fa
t 1.2.6 Let (T;!) be a redu
tion system. Let N : T ! T be the normal form fun
tion where N(s)is the irredu
ible form of s with respe
t to !. If for all t ! s1; t ! s2, N(s1) = N(s2) then (T;!) is
omplete.A Noetherian system may sometimes be made 
on
uent by adding in extra rules (the unresolvable 
riti
alpairs). This pro
edure will be dis
ussed in the next 
hapter in the parti
ular setting with whi
h we are
on
erned. 6



Chapter 2Using Rewriting to Compute KanExtensions of A
tionsThis 
hapter de�nes rewriting pro
edures for terms xjw where x is an element of a set and w is a word.Two kinds of rewriting are involved here. The �rst is the familiar xjulv ! xjurv. The se
ond is given byan a
tion of 
ertain words on elements, so allowing rewriting xjF (a)v ! x � ajv. Further, the elements xand x � a are allowed to belong to di�erent sets. The natural setting for this rewriting is a \presentation"kanh�j�jRelBjXjF i where �;� are (dire
ted) graphs and X : � ! Sets and F : � ! P� are graphmorphisms to the 
ategory of sets, and the free 
ategory on � respe
tively, and RelB is a set of relationson P�. The main result de�nes rewriting pro
edures on the P-setT := GB2Ob� GA2Ob�XA� P(FA;B) (2.1)in order to attempt the 
omputation of Kan extensions of a
tions of 
ategories given by presentations(see se
tion 5).So the power of rewriting theory may now be brought to bear on a mu
h wider range of 
ombinatorialenumeration problems. Traditionally rewriting is used for solving the word problem for monoids. It maynow also be used in the spe
i�
ation ofi) equivalen
e 
lasses and equivariant equivalen
e 
lasses,ii) arrows of a 
ategory or groupoid,iii) a
tion of a group on the 
osets given by a subgroup,iv) right 
ongruen
e 
lasses given by a relation on a monoid,v) orbits of an a
tion of a group or monoid.vi) 
onjuga
y 
lasses of a group,vii) 
oequalisers, pushouts and 
olimits of sets,viii) indu
ed permutation representations of a group or monoid.and many others.
7



2.1 Kan Extensions of A
tionsThe 
on
ept of the Kan extension of an a
tion will be 
entral to this 
hapter. It will therefore be de�nedhere with some familiar examples to motivate the 
onstru
tion listed afterwards. There are two typesof Kan extension (the details are in Chapter 10 of [51℄) known as right and left. Whi
h type is rightand whi
h left varies a

ording to authors' 
hosen 
onventions. In this text only one type is used (lefta

ording to [25℄, right a

ording to other authors) and to save 
on
i
t it will be referred to simply as\the Kan extension" - it is the 
olimit one, so there is an argument for 
alling it a 
o-Kan, and the otherone simply Kan, but we shall not presume to do that here.Let A be a 
ategory. A 
ategory a
tion X of A is a fun
tor X : A ! Sets. This means that for everyobje
t A there is a set XA and the arrows of A a
t on the elements of the sets asso
iated to their sour
esto return elements of the sets asso
iated to their targets. So if a1 is an arrow in A(A1; A2) then XA1and XA2 are sets and Xa1 : XA1 ! XA2 is a fun
tion where Xa1(x) is denoted x � a1. Furthermore,if a2 2 A(A2; A3) is another arrow then (x � a1) � a2 = x:(a1a2) so the a
tion preserves the 
omposition.This is equivalent to the fa
t that Xa2(Xa1(x)) = X(a1a2)(x) i.e. X is a fun
tor. Also F (idA) = idFAso x � id = x when de�ned.Given the 
ategory A and the a
tion de�ned by X, let B be a se
ond 
ategory and let F : A ! B be afun
tor. Then an extension of the a
tion X along F is a pair (K; ") where K : B! Sets is a fun
torand " : X ! F ÆK is a natural transformation. This means that K is a 
ategory a
tion of B and " makessure that the a
tion de�ned is an extension with respe
t to F of the a
tion already de�ned on A. So "is a 
olle
tion of fun
tions, one for ea
h obje
t of A, su
h that "sr
(a)(Xa) and K(F (a)) have the samea
tion on elements of K(F (sr
(a)).The Kan extension of the a
tion X along F is an extension of the a
tion (K; ") with the universalproperty that for any other extension of the a
tion (K 0; "0) there exists a unique natural transformation� : K ! K 0 su
h that "0 = " Æ �. Here K may thought of as the universal extension of the a
tion of Ato an a
tion of B. Kan ExtensionA F //X
��????????????????? BK

���
�

�
�

�
�

�
�

�")SetsUniversal Property of Kan ExtensionA F //X
��>>>>>>>>>>>>>>>>>> BK0

���
�

�
�

�
�

�
�

�
A F //X

��>>>>>>>>>>>>>>>>>> BK
���

�
�

�
�

�
�

�
�

K0
nn

"
 

�

�
�

of_

"0 ) = ") �)Sets Sets2.2 ExamplesSome familiar problems will now be expressed in terms of Kan extensions. This is not a 
laim that theseproblems 
an always be 
omputed, it merely demonstrates that they are all spe
ial 
ases of the general8



problem of 
omputing a Kan extension. Ma
Lane wrote that \the notion of Kan extensions subsumesall the other fundamental 
on
epts of 
ategory theory" in se
tion 10.7 of [51℄ (entitled \All Con
epts areKan Extensions"). This list helps to illustrate his statement. Throughout these examples we use thesame notation as the de�nition, so the pair (K; ") is the Kan extension of the a
tion X of A along thefun
tor F to B. By a monoid (or group) \
onsidered as a 
ategory" we mean the one obje
t 
ategorywith arrows 
orresponding to the monoid elements and 
omposition de�ned by 
omposition in the monoid.1) Groups and MonoidsLet B be a monoid regarded as a 
ategory. Let A be the trivial 
ategory, a
ting trivially on a one point setX�, and let F : A! B be the in
lusion map. Then the set K� is bije
tive with the set of elements of themonoid and the right a
tion of the arrows of B is right multipli
ation by the monoid elements. The natu-ral transformation maps the unique element of X� to the element of K� representing the monoid identity.2) Groupoids and CategoriesLet B be a 
ategory. Let A be the (dis
rete) 
ategory of obje
ts of B with identity arrows only. Let Xde�ne the trivial a
tion of A on a 
olle
tion of one point sets tAXA (one for ea
h obje
t A 2 ObA), andlet F : A ! B be the in
lusion map. Then the set KB for B 2 B is isomorphi
 to the set of arrows ofB with target B and the right a
tion of the arrows of B is de�ned by right 
omposition. The naturaltransformation maps the unique element of a set XA to the representative identity arrow for the obje
tFA for every A 2 A.3) Cosets, and Congruen
es on MonoidsLet B be a group 
onsidered as a 
ategory, and let A be a subgroup of B, with in
lusion F . Let X mapthe obje
t of A to a one point set. The set K� represents the (right) 
osets of A in B, with the righta
tion of any group element b of ArrB taking the representative of the 
oset Hg to the representative ofthe 
oset Hgb. The left 
osets 
an be similarly represented, de�ning the right a
tion K by a left a
tionon the 
osets. The natural transformation pi
ks out the representative for the subgroup H.Alternatively, let B be a monoid 
onsidered as a 
ategory and A be generated by arrows whi
h mapunder F to a set of generators for a right 
ongruen
e. Then the set K� represents the 
ongruen
e 
lasses,the a
tion of any monoid element b of ArrB taking the representative (in K�) of the 
lass [m℄ to therepresentative of the 
lass [mb℄. The natural transformation pi
ks out the representative for the 
lass[id℄. (As above, left 
ongruen
e 
lasses may also be expressed in terms of a Kan extension.)4) Orbits of Group A
tionsLet A be a group thought of as a 
ategory and let X de�ne the a
tion of the group on a set X�. Let Bbe the trivial 
ategory and let F be the null fun
tor. Then the set K� is a set of representatives of thedistin
t orbits of the a
tion and the a
tion of B on K� is trivial. The natural transformation " maps anyelement of the set X� to its orbit representative in B.5) Colimits in SetsLet A be any 
ategory and let B be the trivial 
ategory, with F being the null fun
tor and X being afun
tor to sets. Then the Kan extension 
orresponds to the 
olimit of (the diagram) X : A ! Sets; K�is the 
olimit obje
t, and " de�nes the 
olimit fun
tions from ea
h set XA to K�. Examples of this arewhen A has two obje
ts A1 and A2, and two non-identity arrows a1; a2 : A1 ! A2, (
oequaliser of thefun
tions Xa1 and Xa2 in Sets); A has three obje
ts A1, A2 and A3 and two arrows a1 : A1 ! A2 anda2 : A1 ! A3 (pushout of the fun
tions Xa1 and Xa2 in Sets).6) Indu
ed Permutation RepresentationsLet A and B be groups thought of as 
ategories, F being a group morphism and X being a right a
tionof the group A on the set X�. The Kan extension of the a
tion along F is known as the a
tion of B9



indu
ed from that of A by F (sometimes written F�(X)). There are simple methods of 
onstru
ting theset K� when A and B are groups, but this is more diÆ
ult for monoids.This last example is very 
lose to the full de�nition of a Kan extension. A Kan extension is the a
tionof the 
ategory B indu
ed from the a
tion of A by F together with " whi
h shows how to get from theA-a
tion to the B-a
tion. The point of the other examples is to show that Kan extensions 
an be usedas a method of representing a variety of situations.2.3 Presentations of Kan Extensions of A
tionsThe problem that has been introdu
ed is that of \
omputing a Kan extension". In order to keep theanalogy with 
omputation and rewriting for presentations of monoids we propose the following de�nitionof a presentation of a Kan extension. This formalises ideas used in [26℄.First, we de�ne `Kan extension data'.De�nition 2.3.1 A Kan extension data (X 0; F 0) 
onsists of small 
ategories A, B and fun
tors X 0 :A! Sets and F 0 : A! B.De�nition 2.3.2 A Kan extension presentation is a quintuple P := kanh�j�jRelBjXjF i wherei) � and � are graphs,ii) 
ath�jRelBi is a 
ategory presentation,iii) X : �! USets is a graph morphism,iv) F : �! UP� is a graph morphism.P presents the Kan extension data (X 0; F 0) where X 0 : A! Sets and F 0 : A! B ifi) � is a generating graph for A and X : �! Sets is the restri
tion of X 0 : A! Sets,ii) 
ath�jRelBi is a 
ategory presentation of B,iii) F : �! P� indu
es F 0 : A! B.We also say P presents the Kan extension (K; ") of the Kan extension data (X 0; F 0). The presentationis �nite if �, � and RelB are �nite.Remark 2.3.3 The fa
t that X; F indu
e X 0; F 0 implies extra 
onditions on X; F in relation to Aand B. In pra
ti
e we need only the values of X 0; F 0 on �. This is analogous to the fa
t that for 
osetenumeration of a subgroup H of G where G has presentation grph�jRi we need only that H is generatedby 
ertain words in the set �.2.4 P-setsIn this se
tion we extend some of the usual 
on
epts and terminology of rewriting in order to apply themto the new situation.De�nition 2.4.1 For a 
ategory P, a P-set is a set T together with a fun
tion � : T ! ObP and apartial a
tion � of the arrows of P on T . The a
tion t �p is de�ned for t 2 T , p 2 ArrP when �(t) = sr
(p)and satis�es i) �(t � p) = tgt(p);10



Further, for all t 2 T , p; q 2 ArrP su
h that (t � p) � q is de�ned the following properties holdii) t � id�(t) = t;iii) (t � p) � q = t � (pq):De�nition 2.4.2 A redu
tion relation on a P-set T is a relation ! on T su
h that for all t1; t2 2 T ,t1 ! t2 implies �(t1) = �(t2).De�nition 2.4.3 A redu
tion relation ! on the P -set T is admissible if for all t1; t2 2 T , t1 ! t2implies t1 � q ! t2 � q for all q 2 ArrP su
h that sr
(q) = �(t1).For the rest of this 
hapter we assume that P = kanh�j�jRelBjXjF i is a presentation of a Kan extension.The following de�nitions will be used throughout. Let P denote the free 
ategory P�. Then de�neT := GB2Ob� GA2Ob�XA� P(FA;B) (2.2)It is 
onvenient to write an element (x; p) of XA � P(FA;B) as xjp, a kind of \tagged word" { with xbeing the tag and p the word. The fun
tion � : T ! ObP is de�ned by�(xjp) := tgt(p) for xjp 2 T:The a
tion of P on T is given by right multipli
ationxjp � q := xjpq for xjp 2 T; q 2 ArrP when sr
(q) = �(xjp):It is routine to verify that �(xjp � q) = tgt(q) and (xjp � q) � r = (xjp) � (qr), whenever these terms arede�ned, hen
e proving the following lemma.Lemma 2.4.4 T is a P-set.Now we de�ne some `rewriting pro
edures' whi
h require two types of rule.The �rst type is the `"-rules' R" � T � T . They are to ensure that the a
tion is an extension of thea
tion of A { this is the requirement for " : X ! KF to be a natural transformation. For ea
h arrowa : A1 ! A2 in � we get a set of "-rules. In this set there is one rule for ea
h element x of XA1. FormallyR" := f(xjFa; x � ajidFA2)jx 2 XA1; a 2 �(A1; A2); A1; A2 2 Ob�g: (2.3)The other type is the `K-rules' RK � ArrP � ArrP: They are to ensure that the a
tion preserves thestru
ture of B { this is the requirement for K to be a fun
tor/
ategory a
tion. These are simply therelations (l; r) of B, formally: RK := RelB: (2.4)Now de�neRinit := (R"; RK). This we 
all the initial rewrite system that results from the presentation.A rewrite system for a Kan presentation P is a pair R of sets RT , RP where RT � T � T andRP � ArrP�ArrP su
h that for all (s; u) 2 RT , �(s) = �(u) and for all (l; r) 2 RP , sr
(l) = sr
(r) andtgt(l) = tgt(r).De�nition 2.4.5 The redu
tion relation generated by a rewrite system R = (RT ; RP ) on the P-setT is de�ned as t1 !R t2 if and only if one of the following is true:11



i) There exist (s; u) 2 RT ; q 2 ArrP su
h that t1 = s � q and t2 := u � q.ii) There exist (l; r) 2 RP , s 2 T , q 2 ArrP su
h that t1 = s � lq and t2 = s � rq.Then we say t1 redu
es to t2 by the rule (s; u) or by (l; r) respe
tively.Note that !R is an admissible redu
tion relation on T { the proof of this is part of the next lemma.The relation �!R is the re
exive, transitive 
losure of !R, and �$R is the re
exive, symmetri
, transitive
losure of !R.Remark 2.4.6 Essentially, the rules of RP are two-sided and apply to any substring to the right of theseparator j. This distinguishes them from the one- sided rules of RT . The one-sided rules are not simply`tagged rewrite rules' (tags being the part to the left of j) be
ause the tags are being rewritten.Lemma 2.4.7 Let R be a rewrite system on a P-set T . Then �$R is an admissible equivalen
e relationon the P-set T .Proof By de�nition �$R is symmetri
, re
exive and transitive. Now let t1; t2 2 T be su
h that t1 !R t2and let v 2 ArrP. be su
h that sr
(v) = �(t1). Then there are two possibilities. For the �rst 
ase suppose(i) there exist (s; u) 2 RT ; q 2 ArrP su
h that t1 = s � q and t2 = u � q. Then it follows that t1 � v = s � qvand t2 � v = u � qv, (by P-set properties). For the se
ond 
ase suppose (ii) there exist s 2 T , (l1; r1) 2 RP ,q 2 ArrP su
h that t1 = s � lq and t2 = s � rq. Then it follows that t1 � v = s � lqv and t2 � v = s � rqv.In either 
ase t1 � v !R t2 � v by the de�nition of !R. Therefore !R is admissible, and hen
e �$R isadmissible. 2Notation: the equivalen
e 
lass of t 2 T under �$R will be denoted [t℄.A Kan extension (K; ") is given by a set KB for ea
h B 2 Ob� and a fun
tionKb : KB1 ! KB2 for ea
hb : B1 ! B2 2 B, (de�ning the fun
tor K) together with a fun
tion "A : XA! KFA for ea
h A 2 ObA(the natural transformation). This information 
an be given in four parts: the set tKB, a fun
tion�� : tKB ! ObB, a partial fun
tion (a
tion) tKB � ArrP ! tKB and a fun
tion " : tXA ! tKB.Here tKB and tXA (by a small abuse of notation) are the disjoint unions of the sets KB, XA overObB, ObA respe
tively; ��(z) = B for z 2 KB and if sr
(p) = B for p 2 ArrP then z � p is de�ned.Theorem 2.4.8 Let P = kanh�j�jRelBjXF i be a Kan extension presentation, and let P, T , Rinit =(R"; RK) be de�ned as above. Then the Kan extension (K; ") presented by P is given by the followingdata:i) the set tKB = T= �$R,ii) the fun
tion �� : tKB ! ObB indu
ed by � : T ! ObP,iii) the a
tion of B on tKB indu
ed by the a
tion of P on T ,iv) the natural transformation " determined by x 7! [xjidFA℄ for x 2 XA, A 2 ObA.Proof The initial rules R on T generate a redu
tion relation ! on T . Let �$ denote the re
exive,symmetri
, transitive 
losure of !.Claim �$ preserves the fun
tion � .Proof Let [xjp℄ denote the 
lass of elements equivalent under �$ to xjp 2 T . We prove that $, thesymmetri
 
losure of ! preserves � . Let t1; t2 2 T so that t1 $ t2. >From the de�nition of ! thereare two possible situations. For the �rst 
ase suppose that there exist (s1; s2) 2 R" su
h that t1 = s1 � pand t2 = s2 � p for some p 2 ArrP. Clearly �(t1) = �(t2). For the other 
ase suppose that there exist12



(l; r) 2 RK su
h that t1 = s � (lp) and t2 = s � (rp) for some s 2 T , p 2 ArrP. Again, it is 
lear that�(t1) = �(t2). Hen
e �� : T= �$R ! ObP is well-de�ned by �� [t℄ = �(t). 2Claim T= �$ is a B-set.Proof First we prove that B a
ts on the equivalen
e 
lasses of T with respe
t to �$. An arrow of B isan equivalen
e 
lass [p℄ of arrows of P with respe
t to RelB. It is required to prove that [t℄ � p := [t � p℄is a well de�ned a
tion of P on T= �$ su
h that [t℄ � p = [t℄ � q for all p =RelB q. Let t 2 T; p 2 ArrP besu
h that � [t℄ = sr
[p℄ i.e. �(t) = sr
(p). Then t � p is de�ned. Suppose s �$ t. Then [s � p℄ = [t � p℄ sin
es � p �$ t � p, whenever s � p; t � p are de�ned. Suppose p =RelB q. Then [t � p℄ = [t � q℄ sin
e t � p �$RK t � q,whenever t � p; t � q are de�ned and �$RelB is 
ontained in �$. Therefore P a
ts on T= �$ and this a
tionpreserves the relations of B and so de�nes an a
tion of B on T= �$. Furthermore ��([t℄ �p) = �� [t �p℄ = tgt(p)and if q 2 P su
h that sr
(q) = tgt(p) then ([t℄ � p) � q = [(t � p) � q℄ = [t � (pq)℄ = [t℄ � pq. 2The Kan extension may now be de�ned. For B 2 ObB de�neKB := f[xjp℄ : �� [xjp℄ = Bg: (2.5)For b : B1 ! B2 in B de�neKb : KB1 ! KB2 : [t℄ 7! [t � p℄ for [t℄ 2 KB1 where p 2 [b℄: (2.6)It is now routine to verify, sin
e p1 =RelB p2 implies t � p1 �$R t � p2, for all t where t
dotp1 is de�ned,that this de�nition of the a
tion is a fun
tor K : B! Sets. Then de�ne" : X ! KF : x 7! [xjidFA℄ for x 2 XA;A 2 ObA: (2.7)It is straightforward to verify that this is a natural transformation sin
e xjidFA1 � Fa �$R x � ajidFA2 forall x 2 XA1, a : A1 ! A2 2 ObA.Therefore (K; ") is an extension of the a
tion X of A. The proof of the universal property of the extensionis as follows. Let K 0 : B! Sets be a fun
tor and "0 : X ! K 0F be a natural transformation. Then thereis a unique natural transformation � : K ! K 0, de�ned by�B[xjp℄ = K 0(f)("0A(x)) for [xjp℄ 2 KB;whi
h 
learly satis�es " Æ � = "0. 2Remark 2.4.9 If the Kan extension presentation is �nite then R is �nite. The number of initial rulesis by de�nition (�a2Arr�jXsr
(a)j) + jRelBj.2.5 Rewriting Pro
edures for Kan ExtensionsIn the next se
tion we will explain the 
ompletion pro
ess for the initial rewrite system. It is 
onvenientfor this pro
edure to have a notation for the implementation of the data stru
ture for a �nite presentationP of a Kan extension. This we do here.2.5.1 Input DataObA This is a list of integers [1; 2; : : : ℄, where ea
h entry i 
orresponds uniquely to an obje
t Ai of �.ArrA This is a list of pairs of integers [[i1; j1℄; [i2; j2℄; : : : ℄, one for ea
h arrow ak : Aik ! Ajk of Arr�.The �rst element of ea
h pair is the sour
e of the arrow it represents, and the other entry is the target.13



ObB Similarly to Ob�, this is a list of integers representing the obje
ts of �.ArrB This is a list of triples [[b1; i1; j1℄; [b2; i2; j2℄; : : : ℄, one triple for ea
h arrow bk : Bik ! Bjk ofArr�. The �rst entry of ea
h triple is a label for the arrow (in GAP this is 
alled a generator), and theother entries are integers representing the sour
e and target respe
tively. Note that the arrows of � didnot have labels. The arrows of � will form parts of the terms of T whilst those of � do not, so this iswhy we have labels here and not before.RelB This is a �nite list of pairs of paths. Ea
h path is represented by a �nite list [b1; b2; : : : ; bn℄ oflabels of 
omposable arrows of Arr�. In GAP it is 
onvenient to 
onsider these lists as words b1 � � � bnin the generators that are labels for the arrows of �.FObA This is a list of jOb�j integers. The kth entry represents the obje
t of � whi
h is the image ofthe obje
t Ak under F .FArrA This is a list of paths where the entry at the kth position is the path of P whi
h is the imageof the arrow ak of � under F . The length of the list is jArr�j.XObA This is a list of lists of distin
t (GAP) generators. There is one list of elements for ea
h obje
tin �. The list at position k represents the set whi
h is the image of Ak under X.XArrA This is a list of lists of generators. There is one list for ea
h arrow a of �. It represents theimage under the a
tion Xa of the set X(sr
(a)). Suppose ak : Aik ! Ajk is the arrow at entry k inArr�, and [x1; x2; : : : ; xm℄ is the ith entry in XOb� (the image set X(Ai)). Then the kth entry ofXArr� is the list [x1 � a; x2 � a; : : : ; xm � a℄ where xi 2 X(Aj).Note: All the above lists are �nite sin
e the Kan extension is �nitely presented.2.5.2 Initial Rules Pro
edureThe programmed fun
tion InitialRules extra
ts from the above data the initial rewrite system Rinit :=(R"; RK).INPUT: (ObA,ArrA,ObB,ArrB,RelB,FObA,FArrA,XObA,XArrA);PROCEDURE: ans:=RelB;i:=1;while(i>Length(ArrA)) doa:=ArrA[i℄; ## arrowA:=a[1℄; ## sour
eXA:=XObA[Position(ObA,A)℄; ## setfor j in [1..Length(XA)℄ dox:=XA[j℄; ## elementxa:=XArrA[i℄[j℄; ## element after a
tionFa:=FArrA[i℄[j℄; ## image of arrowrule:=[[x,Fa℄,[xa℄℄; ## epsilon-ruleAdd(ans,rule);od;i:=i+1;od;OUTPUT: R:=ans; ## initial rewrite systemWe 
ontinue with the notation introdu
ed so far, and apply the standard terminology of redu
tionrelations to the redu
tion relation !R on T . 14



2.5.3 ListsIn our GAP implementation terms of T are represented by words in generators, the generators may bethought of as labels, and the words as lists. The �rst entry in the list must be a label for an element ofXA for some A 2 Ob�. The following entries will be labels for 
omposable arrows of �, with the sour
eof the �rst being FA. Formally:Let L be the set of lists l = [x; b1; : : : ; bn℄, n � 1, su
h that p = b1 � � � bn is a redu
ed path (i.e. withno identity arrows) of P and xjp 2 T or l = [x℄ and xjid�(x) 2 T . We will refer to List(t) as the uniquelist asso
iated with the element t 2 T . We will make use of the 
omputer notation to extra
t parti
ularelements of the list. So t[1℄ means the �rst element x when t = xjb1 � � � bn and t[2::5℄ is the sublist whi
his [b1; : : : ; b4℄ in the example, whi
h is an arrow in P. Also, Length(t) means the number of elements inthe list t. A sublist of the list for a tagged string t 2 T will be referred to as a part of t.2.5.4 OrderingsTo work with a rewrite system R on T we will require 
ertain 
on
epts of order on T . We show how touse an ordering >X on tXA together with an ordering >P on ArrP, these having 
ertain properties, to
onstru
t an ordering >T on T with the properties needed for the rewriting pro
edures.De�nition 2.5.1 A binary operation > on the set is 
alled a stri
t partial ordering if it is irre
exive,antisymmetri
 and transitive.De�nition 2.5.2 Let >X be a stri
t partial ordering on the set tXA. It is 
alled a total ordering iffor all x; y 2 tXA either x >X y or y >X x or else x = y.De�nition 2.5.3 Let >P be a stri
t partial ordering on ArrP. It is 
alled a total path ordering if forall p; q 2 ArrP su
h that sr
(p) = sr
(q) and tgt(p) = tgt(q) either p >P q or q >P p or else p = q.De�nition 2.5.4 The ordering >P is admissible on ArrP if p >P q ) upv >P uqv for all u; v 2 ArrPsu
h that upv; uqv 2 ArrP.De�nition 2.5.5 An ordering > is well-founded on a set of elements if there is no in�nite sequen
ex1 > x2 > � � � . An ordering > is a well-ordering on a stru
ture if it is well-founded and a total orderingwith respe
t to that stru
ture.Lemma 2.5.6 Let >X be a well-ordering on the �nite set tXA and let >P be an admissible well-orderingon P. For t1; t2 2 T de�ne t1 >T t2 if( t1[2::Length(t1)℄ >P t2[2::Length(t2)℄ or t1[2::Length(t1)℄ = t2[2::Length(t2)℄ and t1[1℄ >X t2[1℄:Then >T is an admissible well-ordering on the P-set T .Proof It is straightforward to verify that irre
exivity, antisymmetry and transitivity of >X and >Pimply those properties for >T . The ordering >T is admissible on T be
ause it is made 
ompatible withthe right a
tion (de�ned by 
omposition between arrows on P) by the admissibility of P on ArrP. Theordering is linear, sin
e if t1; t2 2 T su
h that neither t1 >T t2 nor t2 >T t1, it follows by the linearity of>X and linearity of >P on ArrP that t1 = t2. That >T is well-founded is easily veri�ed using the fa
tthat any in�nite sequen
e in terms of >T implies an in�nite sequen
e in either >X or >P and >X and>P are both well-founded, so there are no su
h sequen
es. 2The last result shows that there is some s
ope for 
hoosing di�erent orderings on T . The a
tual 
hoi
e iseven wider than this but it is not relevant to dis
uss this here. We are not 
on
erned here with 
onsidering15



ranges of possible orderings, but work with the one that is most straightforward to use. The orderingimplemented is a variation on the above. It 
orresponds to the length-lexi
ographi
al ordering and isde�ned in the following way.De�nition 2.5.7 (Implemented Ordering) Let >X be any linear order on (the �nite set) tXA. Let>� be a linear ordering on (the �nite set) Arr�. This indu
es an admissible ordering >P on ArrP wherep >P q if and only if Length(p) > Length(q) or Length(p) = Length(q) and there exists k > 0 su
hthat p[i℄ >� q[i℄ for all i < k and p[k℄ = q[k℄. The ordering >T is then de�ned as follows: t1 >T t2 ifLength(t1) > Length(t2) or if Length(t1) = Length(t2) and t1[1℄ >X t2[1℄, or if Length(t1) = Length(t2)and there exists k 2 [1::Length(t1)℄ su
h that t1[i℄ = t2[i℄ for all i < k and t1[k℄ >� t2[k℄.Proposition 2.5.8 The de�nitions above give an admissible, length-non-in
reasing well-order >T on theP-set T .Proof It is immediate from the de�nition that >T is length-non-in
reasing. It is straightforward toverify that >T is irre
exive, antisymmetri
 and transitive. It 
an also be seen that >T is linear (supposeneither t1 >T t2 nor t2 >T t1 then t1 = t2, by the de�nition, and linearity of >X , >�). It is 
learfrom the de�nition that >T is admissible on the P-set T (if t1 >T t2 then t1:p >T t2:p). To provethat >T is well-founded on T , suppose that t1 >T t2 >T t3 >T � � � is an in�nite sequen
e. Then forea
h i > 0 either Length(ti) > Length(ti+1) or if Length(ti) = Length(ti+1) and ti[1℄ >X ti+1[1℄, or ifLength(ti) = Length(ti+1) and there exists k 2 [1::Length(ti)℄ su
h that ti[j℄ = ti+1[j℄ for all j < k andti[k℄ >� ti+1[k℄. This implies that there is an in�nite sequen
e of type n1 > n2 > n3 > � � � of positiveintegers from some �nite n1, or of type x1 >X x2 >X x3 > � � � of elements of tXA or else of typep1 >� p2 >� p3 >� � � � of arrows of �, none of whi
h is possible as >, >X , and >� are well-founded onN, tXA and Arr� respe
tively. Hen
e >T is well-founded. 2Proposition 2.5.9 Let >T be the order de�ned above. Then p1 >P p2 ) s � p1 >T s � p2.Proof This follows immediately from the de�nition of >T . 2Remark 2.5.10 The proposition 
an also be proved for the earlier de�nition of >T indu
ed from >Xand >P .2.5.5 Redu
tionNow that we have de�ned an admissible well-ordering on T it is possible to dis
uss when a redu
tionrelation generated by a rewrite system is 
ompatible with this ordering.Lemma 2.5.11 Let R be a rewrite system on T . Orientate the rules of R so that for all (l; r) in R, ifl; r 2 ArrP then l >P r and if l; r 2 T then l >T r. Then the redu
tion relation !R generated by R is
ompatible with >T .Proof Let t1; t2 2 T su
h that t1 !R t2. There are two 
ases to be 
onsidered 2.4.2. For the �rst 
aselet t1 = s1 � p, t2 = s2 � p for some s1; s2 2 T , p 2 ArrP su
h that (s1; s2) 2 R. Then s1 >T s2. It followsthat t1 >T t2 sin
e >T is admissible on T . For the se
ond 
ase let t1 = s � p1q, t2 = s � p2q for some s 2 T ,p1; p2; q 2 ArrP su
h that (p1; p2) 2 T . Then p1 >P p2 and so by Proposition 2.5.9 s � p1 >T s � p2. Hen
et1 >T t2 by admissibility of >T on T . Therefore, in either 
ase t1 >T t2 so!R is 
ompatible with >T . 2
16



Remark 2.5.12 A redu
tion is the repla
ement of a part of a tagged string xjp 2 T a

ording to a ruleof R. Rules from RT repla
e the tag xj and part of the string p whilst rules from RP repla
e substringsof p. The redu
tion relation !R is the su

essive repla
ement of parts of a tagged string.It is a standard result that if a redu
tion relation is 
ompatible with an admissible well-ordering, thenit is Noetherian. The next pseudo program shows the fun
tion Redu
e whi
h returns from a term t 2 Tand a rewrite system R � T � T tArrP�ArrP a term tn 2 [t℄ whi
h is irredu
ible with respe
t to !R.INPUT:(t,R);PROCEDURE: new:=t; old:=[℄;while not(new=old) doold:=new;for rule in R dolhs:=rule[1℄; rhs:=rule[2℄;if lhs is a sublist of newrepla
e lhs in new by rhsfi;od;od;OUTPUT: tn # irredu
ible term in T #2.5.6 Criti
al PairsWe 
an now dis
uss what properties of R will make !R a 
omplete (i.e. Noetherian and 
on
uent)redu
tion relation. By standard abuse of notation the rewrite system R will be 
alled 
omplete when!R is 
omplete. In this 
ase �$R admits a normal form fun
tion.Lemma 2.5.13 (Newman's Lemma) A Noetherian redu
tion relation on a set is 
on
uent if it islo
ally 
on
uent [3℄.Hen
e, if R is 
ompatible with an admissible well-ordering on T and !R is lo
ally 
on
uent then !Ris 
omplete. By orientating the pairs of R with respe
t to the 
hosen ordering >T on T , R is made tobe Noetherian. The remaining problem is testing for lo
al 
on
uen
e of !R and 
hanging R in order toobtain an equivalent 
on
uent redu
tion relation.We will now explain the notion of 
riti
al pair for a rewrite system for T , extending the traditional notionto out situation. In parti
ular the overlaps involve either just RT , or just RP or an intera
tion betweenRT and RP .A term 
rit 2 T is 
alled 
riti
al if it may be redu
ed by two or more di�erent rules i.e. 
rit!R 
rit1,
rit !R 
rit2 and 
rit1 6= 
rit2. The pair (
rit1; 
rit2) resulting from two single-step redu
tions of thesame term is 
alled a 
riti
al pair. A 
riti
al pair for a redu
tion relation !R is said to resolve ifthere exists a term res su
h that both 
rit1 and 
rit2 redu
e to a 
ommon term res i.e. 
rit1 �!R res,
rit2 �!R res.We now de�ne overlaps of rules for our type of rewrite system, and show how ea
h kind results in a
riti
al pair of the redu
tion relation. Let R = (RT ; RP ) be a rewrite system, where RT � T � T andRP � ArrP�ArrP.De�nition 2.5.14 Let (rule1; rule2) be a pair of rules of R su
h that rule1 and rule2 may both beapplied to the same term 
rit in su
h a way that there is a part of the term 
rit that is a�e
ted by both17



the rules. When this o

urs the rules are said to overlap. There are �ve types of overlap for this kindof rewrite system.Suppose rule1; rule2 2 RT . Put rule1 := (s1; u1), rule2 := (s2; u2). Then there is one type of overlap:i) s1 = s2 � q for some q 2 ArrP; with resulting 
riti
al pair (u1; u2 � q):Suppose rule1; rule2 2 RP . Put rule1 := (l1; r1), rule2 := (l2; r2). Then there are two possible types ofoverlap: ii) l1 = pl2q for some p; q 2 ArrP; with resulting 
riti
al pair (r1; pr2q):iii) l1q = pl2 for some p; q 2 ArrP; with resulting 
riti
al pair (r1q; pr2):Suppose rule1 2 RT , rule2 2 RP . Put rule1 := (s1; u1), rule2 := (l1; r1). Then there are two possibletypes of overlap:iv) s1 � q = s � l1 for some s 2 T; q 2 ArrP; with resulting 
riti
al pair (u1 � q; s � r1):v) s1 = s � (l1q) for some s 2 T; q 2 ArrP; with resulting 
riti
al pair (u1; s � r1q):One pair of rules may overlap in more than one way, giving more than one 
riti
al pair. For example therules (xja2ba; yjba) and (a2; b) overlap with 
riti
al term xja2ba and 
riti
al pair (yjba; xjb2a) and alsowith 
riti
al term xja2ba2 and 
riti
al pair (yjba2; xja2b2).Lemma 2.5.15 Let R be a �nite rewrite system on the P-set T . If (t1; t2) is a 
riti
al pair then either thepair resolves immediately or there is an overlap between two rules (rule1; rule2) su
h that if the 
riti
alpair (
rit1; 
rit2) resulting from that overlap resolves then (t1; t2) resolves.Proof Let (t1; t2) be a 
riti
al pair. Then there exists a 
riti
al term t and two rules rule1, rule2 su
hthat t redu
es to t1 with respe
t to rule1 and to t2 with respe
t to rule2. There are seven 
ases thatmust be 
onsidered.Suppose rule1 := (s1; u1); rule2 := (s2; u2) 2 RT . Then the rules must overlap on t as shown:u1 u2j q vvand there exist q; v 2 ArrP su
h that t = s1 � qv = s2 � v and then t1 = u1 � qv and t2 = u2 � v. The 
riti
alpair resulting from this overlap (i) is (u1 � q; u2) and if this resolves to a 
ommon term r then (t1; t2)resolves to r � v.Suppose rule1 := (l1; r1), rule2 := (l2; r2) 2 RP . Then there are three possible ways in whi
h the rulesmay apply to t. In the �rst 
ase the rules do not overlap:ssj r1l1 pp r2l2 qqand there exist s 2 T , p; q 2 ArrP su
h that t = s � l1p l2q and then t1 = s � r1p l2q and t2 = s � l1pr2q.The pair (t1; t2) immediately resolves to u � r1pr2q by applying rule2 to t1 and rule1 to t2.18



In the se
ond 
ase one rule is 
ontained within the other:ssj r1p l2 q vvand there exist s 2 T , p; q; v 2 ArrP su
h that t = s � l1v = s �p l2qv and then t1 = s �r1v and t2 = s �pr2qv.The 
riti
al pair resulting from the overlap of the rules (ii) is (r1; pr2q) and if this resolves to a 
ommonterm r then (t1; t2) resolves to s � rv.In the third 
ase one part of the term is 
hanged by both rules:ssj r1p r2 q vvand there exist s 2 T , p; q; v 2 ArrP su
h that t = s � l1qv = s �pl2v and then t1 = s �r1qv and t2 = s �pr2v.The 
riti
al pair resulting from the overlap of the rules (iii) is (r1q; pr2) and if this resolves to a 
ommonterm r then (t1; t2) resolves to s � rv.Suppose �nally that rule1 := (s1; u1) 2 RT and rule2 := (l1; r1) 2 RP . Then there are (again) threepossible ways in whi
h the rules may apply to t. In the �rst 
ase the rules do not overlap:s1u1j pp r1l1 qqand there exist p; q 2 ArrP su
h that t = s1 � pl1q and then t1 = u1 � pl1q and t2 = s1 � pr1q. The pair(t1; t2) immediately resolves to u1 � pr1q by applying rule2 to t1 and rule1 to t2.In the se
ond 
ase one rule is 
ontained within the other:s u1j r1 q vvand there exist s 2 T , q; v 2 ArrP su
h that t = s1v = s � l1qv and then t1 = u1v and t2 = sr1qv. The
riti
al pair resulting from the overlap of the rules (iv) is (u1; s � r1q) and if this resolves to a 
ommonterm r then (t1; t2) resolves to r � v.In the third 
ase there is one part of the term 
hanged by both rules:s u1j r1 q vvand there exist s 2 T , q; v 2 ArrP su
h that t = s1 � qv = s � l1v and then t1 = u1 � qv and t2 = s � r1v. The
riti
al pair resulting from the overlap of the rules (v) is (u1 � q; s � r1) and if this resolves to a 
ommonterm r then (t1; t2) resolves to r � v.Thus we have 
onsidered all possible ways in whi
h a term may be redu
ed by two di�erent rules, andshown that resolution of the 
riti
al pair (when not immediate) depends upon the resolution of the 
riti
alpair resulting from a parti
ular overlap of the rules. 219



Corollary 2.5.16 If all the overlaps between rules of a rewrite system R on T resolve then all the 
riti
alpairs for the redu
tion relation !R resolve, and so !R is 
on
uent.Proof Immediate from the Lemma. 2Lemma 2.5.17 All overlaps of a pair of rules of R 
an be found by looking for two types of overlapbetween the lists representing the left hand sides of rules.Proof Let rule1 = (l1; r1) and rule2 = (l2; r2) be a pair of rules. Re
all that List(t) is the representa-tion of a term t 2 T as a list. The �rst type of list overlap o

urs when List(l2) is a sublist of List(l1)(or vi
e-versa). This happens in 
ases (i), (ii) and (v). The se
ond type of list overlap o

urs when theend of List(l1) mat
hes the beginning of List(l2) (or vi
e-versa). This happens in 
ases (iii) and (iv). 2The program for �nding overlaps and the resulting 
riti
al pairs is 
alled Criti
alPairs. The outline ofpart of it is reprodu
ed here: Let rule1 := (l1; r1) and rule2 := (l2; r2) be a pair of rules. The program
ompares rule1 with rule2 to look for overlaps. This part of the program shows how to determine whetherl1 
ontains l2 or the beginning of l1 overlaps with the end of l2. To �nd other 
riti
al pairs the program
an 
ompare rule2 with rule1.l1 := List(l1); len1 := Length(l1);l2 := List(l2); len2 := Length(l2);# Sear
h for type 1 pairs (l2 is 
ontained in l1).if len1 >= len2 thenfor i in [1..len1-len2℄ doif l1{[i..i+len2-1℄} = l2 thenif i=1 then u := IdWord;else u := Produ
t( Sublist(l1,1,i-1) );if i+len2-1 = len1 then v := IdWord;else v := Produ
t( Sublist(l1,i+len2,len1) );[ u*r2*v, r1 ℄ ## 
riti
al pair found# Sear
h for type 2 pairs: (right of l1 overlaps the left of l2)for i in [1..len1℄ dowhile not( i>len1 or i>len2 ) doif ( l1{[len1-i+1..len1℄} = l2{[1..i℄} ) thenif i = len1 then u := IdWord;else u := Produ
t( Sublist(l1,1,len1-i) );if i = len2 then v := IdWord;else v := Produ
t( Sublist(l2,i+1,len2) );[ r1*v, u*r2 ℄ ## 
riti
al pair foundIt has now been proved that all the 
riti
al pairs of a �nite rewrite system R on T 
an be listed. To testwhether a 
riti
al pair resolves, ea
h side of it is redu
ed using the fun
tion Redu
e. If Redu
e returnsthe same term for ea
h side then the pair resolves.2.5.7 Completion Pro
edureWe have shown how to (i) �nd overlaps between rules of R and (ii) test whether the resulting 
riti
alpairs resolve. Further we have shown that if all 
riti
al pairs for R resolve then !R is 
on
uent. Wenow show that 
riti
al pairs whi
h do not resolve may be added to R without a�e
ting the equivalen
eR de�nes on T . 20



Lemma 2.5.18 Any 
riti
al pair (
rit1; 
rit2) of a rewrite system R may be added to the rewrite systemwithout 
hanging the equivalen
e relation �$R.Proof This result is proved by 
onsidering any 
riti
al pair (t1; t2). By de�nition this pair is the resultof two di�erent single-step redu
tions being applied to a 
riti
al term t. Therefore t!R t1 and t!R t2.It is immediate that t1 �$Rt �$Rt2, and so adding (t1; t2) to R does not add anything to the equivalen
erelation �$. 2We have now set up and proved everything ne
essary for a variant of the Knuth-Bendix pro
edure, whi
hwill add rules to a rewrite system R resulting from a presentation of a Kan extension, to attempt to �ndan equivalent 
omplete rewrite system. The bene�t of su
h a system is that !R then a
ts as a normalform fun
tion for �$R on T .Theorem 2.5.19 Let P = h�j�jRelBjXjF i be a �nite presentation of a Kan extension (K; "). LetP := P�, T := GB2Ob� GA2Ob�XA� P(FA;B);and let R = (R"; RP ) be the initial rewrite system for P on T . Let >T be an admissible well-orderingon T . Then there exists a pro
edure whi
h, if it terminates, will return a rewrite system RC whi
h is
omplete with respe
t to >T su
h that the admissible equivalen
e relations �$RC and �$R 
oin
ide.Proof The pro
edure �nds all 
riti
al pairs resulting from overlaps of rules of R. It attempts to resolvethem. When they do not resolve it adds them to the system as new rules. Criti
al pairs of the new systemare then examined. When all the 
riti
al pairs of a system resolve, then the pro
edure terminates, the�nal rewrite system RC obtained is 
omplete. This pro
edure has been veri�ed in the pre
eding resultsof this se
tion. 2INPUT: (R,>T);PROCEDURE: NEW:=R; OLD:=[℄;while not OLD=NEW doCRIT:=Criti
alPairs(R)for 
rit in CRIT do
rit[1℄:=Redu
e(
rit[1℄,R);
rit[2℄:=Redu
e(
rit[2℄,R);if 
rit[1℄=
rit[2℄ then Remove(CRIT,
rit);if 
rit[1℄<
rit[2℄ then 
rit:=(
rit[2℄,
rit[1℄);od;Add(NEW,CRIT);od;OUTPUT: NEW; ## 
omplete rewrite system.The whole pro
edure, whi
h takes as input the presentation of a Kan extension and yields as output a
omplete rewrite system with respe
t to the ordering >T , when this 
an be found, has been implementedin GAP in the �le kan:g. We will now brie
y dis
uss how to interpret a 
omplete rewrite system on T ,supposing that the program has returned one.2.6 Interpreting the Output2.6.1 Finite Enumeration of the Kan ExtensionWhen every set KB is �nite we may 
atalogue the elements of all of the sets tKB in stages. The�rst stage 
onsists of all the elements xjidFA where x 2 XA for some A 2 Ob�. These elements are21




onsidered to have length zero. The next stage builds on the set of irredu
ible elements from the lastblo
k to 
onstru
t elements of the form xjb where b : FA ! B for some B 2 Ob�. This is e�e
tivelya
ting on the sets with the generating arrows to de�ne new (irredu
ible) elements of length one. Thenext builds on the irredu
ibles from the last blo
k by a
ting with the generators again. When all theelements of a blo
k of elements of the same length are redu
ible then the enumeration terminates (anylonger term will 
ontain one of these terms and therefore be redu
ible). The set of irredu
ibles is a set ofnormal forms for tKB. The subsets KB of tKB are determined by the fun
tion �� , i.e. if xjb1 � � � bn isa normal form in tKB and �(xjb1 � � � bn) := tgt(bn) = Bn then xjb1 � � � bn is a normal form in KBn. Of
ourse if one of the sets KB is in�nite then this may prevent the enumeration of other �nite sets KBi.The same problem would obviously prevent a Todd-Coxeter 
ompletion. This 
ataloguing method onlyapplies to �nite Kan extensions. It has been implemented in the fun
tion kan, whi
h 
urrently has anenumeration limit of 1000 on tKB set in the program. If this limit is ex
eeded, the program returns the
ompleted rewrite system { provided the 
ompletion pro
edure terminates.2.6.2 Regular Expression for the Kan ExtensionLet R be a �nite 
omplete rewrite system on T for the Kan extension (K; "). Then the theory of languagesand regular expressions may be applied. The set of irredu
ibles in T is found after the 
onstru
tion ofan automaton from the rewrite system and the derivation of a language from this automaton. Details ofthis method may be found in Chapter Four.2.6.3 Iterated Kan ExtensionsOne of the pleasant features of this pro
edure is that the input and output are of similar form. The
onsequen
e of this is that if the extended a
tion K has been de�ned on � then given a se
ond fun
torG0 : B! C and a presentation 
ath�jRelCi for C it is straightforward to 
onsider a presentation for theKan extension data (K 0; G0). This new extension is in fa
t the Kan extension with data (X 0; F 0 ÆG0)Lemma 2.6.1 Let kanh�j�jRelBjXjF i be a presentation for a Kan extension (K; "). Then let
ath�jRelCi present a 
ategory C and let G0 : B! C. Then the Kan extension presented bykanh�j�jRelCjXjF ÆGji is equal to the Kan extension presented by kanh�j�jRelCjKjGi.Proof Let kanh�j�jRelBjXjF i present the Kan extension data (X 0; F 0) for the Kan extension (K; ").Let C be a 
ategory �nitely presented by 
ath�jRelCi and let G0 : B ! C. Then kanh�j�jRelCjKjGipresents the Kan extension data (K 0; G0) for the Kan extension (L; �).We require to prove that (L; " Æ �) is the Kan extension presented by kanh�j�jRelCjXjF Æ Gi havingdata (X 0; F 0 ÆG0). It is 
lear that (L; � Æ �) de�nes an extension of the a
tion X along F ÆG be
ause Lde�nes an a
tion of C and " Æ � : X ! F ÆG Æ L is a natural transformation.For the universal property, let (M;�) be another extension of the a
tion X along F ÆG. Then 
onsider thepair (G ÆM;�), it is an extension of X along F . Therefore there exists a unique natural transformation� : X ! F Æ G ÆM su
h that " Æ � = � by universality of (K; "). Now 
onsider the pair (M;�), it isan extension of K along G. Therefore there exists a unique natural transformation � : L ! M su
hthat � Æ � = � by universality of (L; �). Therefore � is the unique natural transformation su
h that" Æ � Æ � = �, whi
h proves the universality of the extension (L; " Æ �). 2
22



2.7 Example of the Rewriting Pro
edure for Kan ExtensionsLet A and B be the 
ategories generated by the graphs below, where B has the relation b1b2b3 = b4.A1 a1 ** A2a2jj B1b4 ** b1 //b5 ''

B2b2~~||||||||B3b3``BBBBBBBBLet X : A! Sets be de�ned by XA1 = fx1; x2; x3g; XA2 = fy1; y2g withXa1 : XA1 ! XA2 : x1 7! y1; x2 7! y2; x3 7! y1,Xa2 : XA1 ! XA2 : y1 7! x1; y2 7! x2;and let F : A ! B be de�ned by FA1 = B1; FA2 = B2; Fa1 = b1 and Fa2 = b3b2. The input to the
omputer program takes the following form. First we set up the variables:gap> F := FreeGroup("b1","b2","b3","b4","b5","x1","x2","x3","y1","y2");;gap> b1 := F.1;; b2 := F.2;; b3 := F.3;; b4 := F.4;; b5 := F.5;;gap> x1 := F.6;; x2 := F.7;; x3 := F.8;; y1 := F.9;; y2 := F.10;;Then we input the data:gap> ObA := [1,2℄;;gap> ArrA := [ [1,1℄, [2,2℄ ℄;;gap> ObB := [1,2,3℄;;gap> ArrB := [ [b1,1,2℄, [b2,2,3℄, [b3,3,1℄, [b4,1,1℄, [b5,1,3℄ ℄;;gap> RelB := [ [b1*b2*b3,b4℄ ℄;;gap> FObA := [1,2℄;;gap> FArrA := [b1,b2*b3℄;;gap> XObA := [ [x1,x2,x3℄, [y1,y2℄ ℄;;gap> XArrA := [ [y1,y2,y1℄,[x1,x2℄ ℄;;To 
ombine all this data in one re
ord do:gap> KAN := re
( ObA:=ObA, ArrA:=ArrA, ObB:=ObB, ArrB:=ArrB, RelB:=RelB,FObA:=FObA, FArrA:=FArrA, XObA:=XObA, XArrA:=XArrA );;To 
al
ulate the initial rules dogap> IR := InitialRules( KAN );The output will bei= 1, XA= [ x1, x2, x3 ℄, Ax= x1, rule= [ x1*b1, y1 ℄i= 1, XA= [ x1, x2, x3 ℄, Ax= x2, rule= [ x2*b1, y2 ℄i= 1, XA= [ x1, x2, x3 ℄, Ax= x3, rule= [ x3*b1, y1 ℄i= 2, XA= [ y1, y2 ℄, Ax= y1, rule= [ y1*b2*b3, x1 ℄i= 2, XA= [ y1, y2 ℄, Ax= y2, rule= [ y2*b2*b3, x2 ℄[ [ b1*b2*b3, b4 ℄, [ x1*b1, y1 ℄, [ x2*b1, y2 ℄, [ x3*b1, y1 ℄,[ y1*b2*b3, x1 ℄, [ y2*b2*b3, x2 ℄ ℄This means that there are �ve initial "-rules from: ( x1jFa1; x1:a1jidFA2 ); ( x2jFa1; x2:a1jidFA2 );( x3jFa1; x3:a1jidFA2 ); ( y1jFa2; y1:a1jidFA1 ); ( y2jFa2; y2:ja11FA1 ); i.e. x1jb1 ! y1jidB2 ; x2jb1 !y2jidB2 ; x3jb1 ! y1jidB2 ; y1jb2b3 ! x1jidB1 ; y2jb2b3 ! x2jidB1 and one initial K-rule: b1b2b3 ! b4. Toattempt to 
omplete the Kan extension presentation do:23



gap> KB( IR );The output is:[ [ x1*b1, y1 ℄, [ x1*b4, x1 ℄, [ x2*b1, y2 ℄, [ x2*b4, x2 ℄, [ x3*b1, y1 ℄,[ x3*b4, x1 ℄, [ b1*b2*b3, b4 ℄, [ y1*b2*b3, x1 ℄, [ y2*b2*b3, x2 ℄ ℄In other words to 
omplete the system we have to add the rulesx1jb4 ! x1; x2jb4 ! x2; and x3jb4 ! x1:The result of attempting to 
ompute the sets by doing:gap> Kan(KAN);is a long list and then:enumeration limit ex
eeded: 
omplete rewrite system is:[ [ x1*b1, y1 ℄, [ x1*b4, x1 ℄, [ x2*b1, y2 ℄, [ x2*b4, x2 ℄, [ x3*b1, y1 ℄,[ x3*b4, x1 ℄, [ b1*b2*b3, b4 ℄, [ y1*b2*b3, x1 ℄, [ y2*b2*b3, x2 ℄ ℄This means that the sets KB for B in B are too large (the limit set in the program is 1000). In fa
t thisexample is in�nite. The 
omplete rewrite system is output instead of the sets. We 
an in fa
t use this toobtain regular expressions for the sets. In this 
ase the regular expressions are:KB1 := (x1 + x2 + x3)j(b5(b3b4�b5)�b3b4� + idB1):KB2 := (x1 + x2 + x3)jb5(b3b4�b5)�b3b4�(b1) + (y1 + y2)jidB2 :KB3 := (x1 + x2 + x3)jb5(b3b4�b5)�(b3b4�b1b2 + idB3) + (y1 + y2)jb2:The a
tions of the arrows are de�ned by 
on
atenation followed by redu
tion. For example x1jb5b3b4b4b5is an element of KB3, so b3 a
ts on it to give x1jb5b3b4b4b5b3 whi
h is irredu
ible, and an element of KB1.Details of how, in general, to obtain regular expressions will be given in Chapter Four.2.8 Spe
ial Cases of the Kan Rewriting Pro
edure2.8.1 Groups and MonoidsORIGINAL PROBLEM: Given a monoid presentation monh�jReli, �nd a set of normal forms for themonoid presented.KAN INPUT DATA: Let � be the graph with one obje
t and no arrows. Let X� be a one point set. LetB be generated by the graph � with one obje
t and arrows labelled by �, it has relations RelB given bythe monoid relations. The fun
tor F maps the obje
t of � to the obje
t of �.KAN EXTENSION: The Kan extension presented by kanh�j�jRelBjXjF i is su
h that K� is a set ofnormal forms for the elements of the monoid, the arrows of B (elements of PX) a
t on the right of B byright multipli
ation. The natural transformation " makes sure that the identity of B a
ts trivially andhelps to de�ne the normal form fun
tion. The normal form fun
tion is w 7! "�(1) � (w) := Kw("�(1)).In this 
ase the method of 
ompletion is the standard Knuth-Bendix pro
edure used for many years forworking with monoid presentations of groups and monoids. This type of 
al
ulation is well do
umented.
24



2.8.2 Groupoids and CategoriesORIGINAL PROBLEM: To spe
ify a set of normal forms for the elements of a groupoid or 
ategorygiven by a �nite 
ategory presentation 
ath�jReli.KAN INPUT DATA: Let � be the dis
rete graph with no arrows and obje
t set equal to Ob�. Let XAbe a distin
t one obje
t set for ea
h A 2 Ob�. Let B be the 
ategory generated by � := � with relationsRelB := Rel. Let F be de�ned by the identity map on the obje
ts.KAN EXTENSION: Then the Kan extension presented by kanh�j�jRelBjXjF i is su
h that KB is aset of normal forms for the arrows of the 
ategory with target B, the arrows of B (elements of P�)a
t on the right of B by right multipli
ation. The natural transformation " makes sure that the iden-tities of B a
t trivially and helps to de�ne the normal form fun
tion. The normal form fun
tion isw 7! "A � (w) := Kw("A).Example 2.8.1 Consider the group S3 presented by hx; yjx3; y2; xyxyi: The elements arefid; x; y; x2; xy; yxg. The 
overing groupoid is generated by the Cayley graph. The 12 generating arrowsof the groupoid are G�X:f[id; x℄; [x; x℄; [y; x℄; : : : ; [yx; x℄; [id; y℄; [x; y℄; : : : ; [yx; y℄g:To make 
al
ulations 
learer, we relabel them fa1; a2; a3; : : : ; a6; b1; b2; : : : ; b6g.The groupoid has 18 relators G�R { the boundaries of irredu
ible 
y
les of the graph. The 
y
les maybe written [id; x3℄ and the 
orresponding boundary is [id; x℄[x; x℄[x2; x℄ i.e. a1a2a4. For the 
ategorypresentation of the group we 
ould add in the inverses fA1; A2; : : : ; A6; B1; B2; : : : ; B6g with the relatorsA1a1 and a1A1 et
 and end up with a 
ategory presentation with 24 generators and the 42 relations. Inthis 
ase however the groupoid is �nite and so there is no need to do this. For example there would beno need for A2 be
ause (a2)�1 = a4a1. x2a4
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Now suppose the left hand sides of two rules overlap (for example (a1a2a4; id) and (a4b1a3b6; id)) in oneof the two possible ways previously des
ribed then we have a 
riti
al pair (b1a3b6; a1a2) ). The followingis GAP output of the 
ompletion of the rewrite system for the 
overing groupoid of our example:gap> Rel; ## Input rewriting system:[ [ a1*a2*a4, IdWord ℄, [ a2*a4*a1, IdWord ℄, [ a4*a1*a2, IdWord ℄,[ a3*a6*a5, IdWord ℄, [ a6*a5*a3, IdWord ℄, [ a5*a3*a6, IdWord ℄,[ b1*b3, IdWord ℄, [ b3*b1, IdWord ℄, [ b2*b5, IdWord ℄,[ b5*b2, IdWord ℄, [ b4*b6, IdWord ℄, [ b6*b4, IdWord ℄,[ a1*b2*a5*b3, IdWord ℄, [ a2*b4*a6*b5, IdWord ℄,25



[ a3*b6*a4*b1, IdWord ℄, [ a4*b1*a3*b6, IdWord ℄,[ a5*b3*a1*b2, IdWord ℄, [ a6*b5*a2*b4, IdWord ℄ ℄gap> KB( Rel ); ## Completed rewriting system:[ [ b1*b3, IdWord ℄, [ b2*b5, IdWord ℄, [ b3*b1, IdWord ℄,[ b4*b6, IdWord ℄, [ b5*b2, IdWord ℄, [ b6*b4, IdWord ℄,[ a1*a2*a4, IdWord ℄, [ a1*a2*b4, b1*a3 ℄, [ a1*b2*a5, b1 ℄,[ a2*a4*a1, IdWord ℄, [ a2*a4*b1, b2*a5 ℄, [ a2*b4*a6, b2 ℄,[ a3*a6*a5, IdWord ℄, [ a3*a6*b5, b3*a1 ℄, [ a3*b6*a4, b3 ℄,[ a4*a1*a2, IdWord ℄, [ a4*a1*b2, b4*a6 ℄, [ a4*b1*a3, b4 ℄,[ a5*a3*a6, IdWord ℄, [ a5*a3*b6, b5*a2 ℄, [ a5*b3*a1, b5 ℄,[ a6*a5*a3, IdWord ℄, [ a6*a5*b3, b6*a4 ℄, [ a6*b5*a2, b6 ℄,[ b1*a3*a6, a1*b2 ℄, [ b1*a3*b6, a1*a2 ℄, [ b2*a5*a3, a2*b4 ℄,[ b2*a5*b3, a2*a4 ℄, [ b3*a1*a2, a3*b6 ℄, [ b3*a1*b2, a3*a6 ℄,[ b4*a6*a5, a4*b1 ℄, [ b4*a6*b5, a4*a1 ℄, [ b5*a2*a4, a5*b3 ℄,[ b5*a2*b4, a5*a3 ℄, [ b6*a4*a1, a6*b5 ℄, [ b6*a4*b1, a6*a5 ℄ ℄It is possible from this to enumerate elements of the 
ategory. One method is to start with all theshortest arrows (a1; a2; : : : ; b6) and see whi
h ones redu
e and build indu
tively on the irredu
ible ones:Firstly we have the six identity arrows idid; idx; idy; idx2 ; idxy; idyx.Then the generators a1; a2; a3; a4; a5; a6; b1; b2; b3; b4; b5; b6 are all irredu
ible.Now 
onsider paths of length 2:a1a2; a1b2; a2a4; a2b4; a3a6; a3b6; a4a1; a4b1; a5a3; a5b3; a6a5; a6b5; b1a3; b1b3 ! idid;b2a5; b2b5 ! idx; b3a1; b3b1 ! idy; b4a6; b4b6 ! idx2 ; b5a2; b5b2 ! idxy; b6a4; b6b4 ! idyx.Building on the irredu
ible paths we get the paths of length 3: a1a2a4 ! idid; a1a2b4 ! b1a3;a1b2a5 ! b1; a1b2b5 ! a1; a2a4a1 ! idx; : : :All of them are redu
ible, and so we 
an't build any longer paths; the 
overing groupoid has 30 morphismsand 6 identity arrows and is the tree groupoid with six obje
ts.Example 2.8.2 This is a basi
 example to show how it is possible to spe
ify the arrows in an in�nitesmall 
ategory with a �nite 
omplete presentation. Let C be the 
ategory generated by the followinggraph � �A a // �Bb �� 
 // �Cd``with the relations b2
 = 
; ab2 = a. This rewriting system is 
omplete, and so we 
an determine whethertwo arrows in the free 
ategory P� are equivalent in C. An automaton 
an be drawn (see 
hapter 3),and from this we 
an spe
ify the language whi
h is the set of normal forms. It is in fa
ta(
d(a
d) � ab+ b
d(a
d) � ab) + by + 
d(a
d)�ab+ d(a
d)�ab(and the three identity arrows) where (a
d)� is used to denote the set of elements of fa
dg� (similarly by),so d(a
d)�, for example, denotes the set fd; da
d; da
da
d; da
da
da
d; : : : g, + denotes the union and �the di�eren
e of sets. This is the standard notation of languages and regular expressions.2.8.3 Coset systems and Congruen
esORIGINAL PROBLEM: Given a �nitely presented group G and a �nitely generated subgroup H �nd aset of normal forms for the 
oset representatives of G with respe
t to H.KAN INPUT DATA: Let � be the one obje
t graph � with arrows labelled by the subgroup generators.Let X� be a one point set on whi
h the arrows of � a
t trivially. Let B be the 
ategory generated by the26



one obje
t graph � with arrows labelled by the group generators, with the relations RelB of B being thegroup relations. Let F be de�ned on � by in
lusion of the subgroup elements to the group.KAN EXTENSION: The Kan extension presented by kanh�j�jRelBjXjF i is su
h that the set K� is aset of representatives for the 
osets, Kb de�nes the a
tion of the group on the 
osets Hg 7! Hgb and"� maps the single element of X� to the representative for H in K�. Therefore it follows that the Kanextension de�ned is 
omputable if and only if the 
oset system is 
omputable.In the monoidal 
ase F is the in
lusion of the submonoid A of the monoid B, and the a
tion is trivial asbefore. The Kan extension of this a
tion gives the quotient of B by the right 
ongruen
e generated by A,namely the equivalen
e relation generated by ab � b for all a 2 A; b 2 B, with the indu
ed right a
tion of B.It is appropriate to give a 
al
ulated example here. The example is in�nite so standard Todd-Coxetermethods will not terminate, but the Kan extension / rewriting pro
edures enable the 
omplete spe
i�-
ation of the 
oset system.Example 2.8.3 Let B represent the in�nite group presented bygrpha; b; 
 j a2b = ba; a2
 = 
a; 
3b = ab
; 
a
a = biand let A represent the subgroup generated by f
2g.We obtain one initial "-rule (be
ause A has one generating arrow) i.e. Hj
2 ! Hjid:We also have four initial K-rules 
orresponding to the relations of B:a2b! ba; a2
! 
a; 
3b! ab
; 
a
a! b:Note: On 
ompletion of this rewriting system for the group, we �nd 24 rules and for all n 2 N both anand 
n are irredu
ibles with respe
t to this system (one way to prove that the group is in�nite).The �ve rules are 
ombined and an in�nite 
omplete system for the Kan extension of the a
tion is easilyfound (using Knuth-Bendix with the length-lex order). The following is the GAP output of the set of 32rules:[ [ H*b, H*a ℄, [ H*a^2, H*a ℄, [ H*a*b, H*a ℄, [ H*
*a, H*a*
 ℄,[ H*
*b, H*a*
 ℄, [ H*
^2, H ℄, [ a^2*b, b*a ℄, [ a^2*
, 
*a ℄,[ a*b^2, b^2 ℄, [ a*b*
, 
*b ℄, [ a*
*b, 
*b ℄, [ b*a^2, b*a ℄,[ b*a*b, b^2 ℄, [ b*a*
, 
*b ℄, [ b^2*a, b^2 ℄, [ b*
*a, 
*b ℄,[ b*
*b, b^2*
 ℄, [ 
*a*b, 
*b ℄, [ 
*b*a, 
*b ℄, [ 
*b^2, b^2*
 ℄,[ 
*b*
, b^2 ℄, [ 
^2*b, b^2 ℄, [ H*a*
*a, H*a*
 ℄, [ H*a*
^2, H*a ℄,[ b^4, b^2 ℄, [ b^3*
, 
*b ℄, [ b^2*
^2, b^3 ℄, [ b*
^2*a, b^2 ℄,[ 
*a*
*a, b ℄, [ 
^2*a^2, b*a ℄, [ 
^3*a, 
*b ℄, [ 
*a*
^2*a, 
*b ℄ ℄Note that the rules without H i.e. the two-sided rules, 
onstitute a 
omplete rewriting system for thegroup. The set KB (re
all that there is only one obje
t B of B) is in�nite. It is the set of (right) 
osetsof the subgroup in the group. Examples of these 
osets in
lude:H;Ha;H
;Ha2;Ha
;Ha3;Ha4;Ha5; : : :A regular expression for the 
oset representatives is:a� + 
+ a
:Alternatively 
onsider the subgroup generated by b. Add the rule Hb ! H and the 
omplete systembelow is obtained: 27



[ [ H*a, H ℄, [ H*b, H ℄, [ H*
*a, H*
 ℄, [ H*
*b, H*
 ℄, [ H*
^2, H ℄,[ a^2*b, b*a ℄, [ a^2*
, 
*a ℄, [ a*b^2, b^2 ℄, [ a*b*
, 
*b ℄,[ a*
*b, 
*b ℄, [ b*a^2, b*a ℄, [ b*a*b, b^2 ℄, [ b*a*
, 
*b ℄,[ b^2*a, b^2 ℄, [ b*
*a, 
*b ℄, [ b*
*b, b^2*
 ℄, [ 
*a*b, 
*b ℄,[ 
*b*a, 
*b ℄, [ 
*b^2, b^2*
 ℄, [ 
*b*
, b^2 ℄, [ 
^2*b, b^2 ℄,[ b^4, b^2 ℄, [ b^3*
, 
*b ℄, [ b^2*
^2, b^3 ℄, [ b*
^2*a, b^2 ℄,[ 
*a*
*a, b ℄, [ 
^2*a^2, b*a ℄, [ 
^3*a, 
*b ℄, [ 
*a*
^2*a, 
*b ℄ ℄Again, the two-sided rules are the rewriting system for the group. This time the subgroup has index 2,and the 
oset representatives are id and 
.2.8.4 Equivalen
e Relations and Equivariant Equivalen
e RelationsORIGINAL PROBLEM: Given a set 
 and a relation Rel on 
. Find a set of representatives for theequivalen
e 
lasses of the set 
 under the equivalen
e relation generated by Rel.KAN INPUT DATA: Let � be the graph with obje
t set 
 and generating arrows a : A1 ! A2 if(A1; A2) 2 Rel. Let XA := fAg for all A 2 
. The arrows of � a
t a

ording to the relation, sosr
(a) � a = tgt(a). Let � be the graph with one obje
t and no arrows so that B is the trivial 
ategorywith no relations. Let F be the null fun
tor.KAN EXTENSION: The Kan extension presented by kanh�j�jRelBjXjF i is su
h that K� := 
= �$Relis a set of representatives for the equivalen
e 
lasses of the set 
 under the equivalen
e relation generatedby Rel.Alternatively let 
 be a set with a group or monoid M a
ting on it. Let Rel be a relation on 
. De�ne� to have obje
t set 
 and generating arrows a : A1 ! A2 if (A1; A2) 2 Rel or if A1 �m = A2 Again,XA := fAg for A 2 Ob� and the arrows a
t as in the 
ase above. Let � be the one obje
t graph witharrows labelled by generators of M and for B let RelB be the set of monoid relations. Let F be the nullfun
tor. The Kan extension gives the a
tion of M on the quotient of X by theM -equivariant equivalen
erelation generated by Rel. This example illustrates the advantage of working in 
ategories, sin
e this isa 
oprodu
t of 
ategories whi
h is a fairly simple 
onstru
tion.2.8.5 Orbits of A
tionsORIGINAL PROBLEM: Given a group G whi
h a
ts on a set 
, �nd a set KB of representatives forthe orbits of the a
tion of A on 
.KAN INPUT DATA: Let � be the one obje
t graph with arrows labelled by the generators of the group.Let X� := 
. Let � be the one obje
t, zero arrow graph generating the trivial 
ategory B with RelBempty. Let F be the null fun
tor.KAN EXTENSION: The Kan extension presented by kanh�j�jRelBjXjF i is su
h that K� is a set ofrepresentatives for the orbits of the a
tion of the group on 
.We present a short example to demonstrate the pro
edure in this 
ase.Example 2.8.4 Let A be the symmetri
 group on three letters with presentationmonha; bja3; b2; ababi and let X be the set fv; w; x; y; zg. Let A a
t on X by giving a the e�e
t of thepermutation (v w x) and b the e�e
t of (v w)(y z).In this 
al
ulation we have a number of "-rules and no K-rules. The "-rules just list the a
tion, namely(trivial a
tions omitted):v ! w; w! x; x! v; v ! w; w ! v; y ! z; z ! y:The system of rules is 
omplete and redu
es to fw ! v; x ! v; z ! yg. Enumeration is simple:v; w ! v; x! v; y; z ! y, so there are two orbits of 
 represented by v and y.28



This is a small example. With large examples the idea of having a minimal element (normal form) inea
h orbit to a
t as an an
hor or point of 
omparison makes a lot of sense. This situation serves asanother illustration of rewriting in the framework of a Kan extension, showing not only that rewritinggives a result, but that it is the pro
edure one uses naturally to do the 
al
ulation.One variation of this is if 
 is the set of elements of the group and the a
tion is 
onjugation: xa := a�1xa.Then the orbits are the 
onjuga
y 
lasses of the group.Example 2.8.5 Consider the quarternion group, presented by ha; b j a4; b4; abab�1; a2b2i and 
 =fid; a; b; a2; ab; ba; a3; a2bg { enumerating the elements of the group using the method des
ribed inExample 3. Constru
t the Kan extension as above, where the a
tions of a and b are by 
onjugation onelements of A.There are 16 "-rules whi
h redu
e to fa3 ! a; a2b! b; ba! abg. The 
onjuga
y 
lasses are enumeratedby applying these rules to the elements of A. The irredu
ibles are fid; a; b; a2; abg, and these arerepresentatives of the �ve 
onjuga
y 
lasses.2.8.6 Colimits of Diagrams of SetsORIGINAL PROBLEM: Given a presentation of a 
ategory a
tion a
th�jXi �nd the 
olimit of the dia-gram in Sets on whi
h the 
ategory a
tion is de�ned.KAN INPUT DATA: Let � and X be those given by the a
tion presentation. Let � be the graph withone obje
t and no arrows that generates the trivial 
ategory B with RelB empty. Let F be the nullfun
tor.KAN EXTENSION: The Kan extension presented by kanh�j�jRelBjXjF i is su
h that K� is the 
olimitobje
t, and " is the set of 
olimit fun
tions of the fun
tor X : A! Sets.Parti
ular examples of this are when A has two obje
ts A1 and A2, and two non-identity arrows a1 anda2 from A1 to A2, and Xa1 and Xa2 are fun
tions from the set XA1 to the set XA2 (
oequaliser ofa1 and a2 in Sets); A has three obje
ts A1, A2 and A3 and two non-identity arrows a1 : A1 ! A2 anda2 : A1 ! A3. XA1, XA2 and XA2 are sets, and Xa1 and Xa2 are fun
tions between these sets (pushoutof a1 and a2 in Sets). The following example is in
luded not as an illustration of rewriting but to showanother situation where presentations of Kan extensions 
an be used to express a problem naturally.Example 2.8.6 Suppose we have two sets fx1; x2; x3g and fy1; y2; y3; y4g, with two fun
tions from the�rst to the se
ond given by (x1 7! y1; x2 7! y2; x3 7! y3) and (x1 7! y1; x2 7! y1; x3 7! y3).Then we 
an 
al
ulate the 
oequaliser. We have a number of "-rulesy1jid� ! x1jid�; y2jid� ! x2jid�; y3jid� ! x3jid�; y1jid� ! x1jid�; y2jid� ! x1jid�; y3jid� ! x3jid�:There is just one overlap, between (y2jid� ! x1jid�) and (y2jid� ! x2jid�): to resolve the 
riti
al pair weadd the rule (x2jid� ! x1jid�), and the system is 
omplete:fy1jid� ! x1jid�; y2jid� ! x1jid�; y3jid� ! x3jid�; x2jid� ! x1jid�g:The elements of the set K� are easily enumerated:x1jid�; x2jid� ! x1jid�; x3jid�; y1jid� ! x1jid�; y2jid� ! x1jid�; y3jid� ! x3jid�; y4jid�:So the 
oequalising set is K� = fx1jid�; x3jid�; y4jid�g;and the 
oequaliser fun
tion to it from XA2 is given by yi 7! yijid� for i = 1; : : : ; 4 followed by redu
tionde�ned by ! to an element of K�. 29



2.8.7 Indu
ed Permutation RepresentationsLet A and B be groups and let F : A! B be a morphism of groups. Let A a
t on the set XA. The Kanextension of this a
tion along F is known as the a
tion of B indu
ed from that of A by F , and is writtenF�(XA). It 
an be 
onstru
ted simply as the set X � B fa
tored by the equivalen
e relation generatedby (xa; b) � (x; F (a)b) for all x 2 XA; a 2 A; b 2 B. The natural transformation " is given by x 7! [x; 1℄,where [x; b℄ denotes the equivalen
e 
lass of (x; b) under the equivalen
e relation �. The morphism F 
anbe fa
tored as an epimorphism followed by a monomorphism, and there are other des
riptions of F�(XA)in these 
ases, as follows.Suppose �rst that F is an epimorphism with kernel N . Then we 
an take as a representative of F�(XA)the orbit set X=N with the indu
ed a
tion of B.Suppose next that F is a monomorphism, whi
h we suppose is an in
lusion. Choose a set T of represen-tatives of the right 
osets of A in B, so that 1 2 T . Then the indu
ed representation 
an be taken to beXA� T with " given by x 7! (x; 1) and the a
tion given by (x; t)b = (xa; u) where t; u 2 T; b 2 B; a 2 Aand tb = au.On the other hand, in pra
ti
al 
ases, this fa
torisation of F may not be a 
onvenient way of determiningthe indu
ed representation. In the 
ase A;B are monoids, so that XA is a transformation representa-tion of A on the set XA, we have in general no 
onvenient des
ription of the indu
ed transformationrepresentation ex
ept by one form or another of the 
onstru
tion of the Kan extension.
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Chapter 3Non
ommutative Gr�obner Bases(over �elds)The results and methods that will be dis
ussed in this 
hapter use, or are related to, the non
ommutativeversion of Gr�obner bases. The �rst se
tion therefore 
ontains a very brief introdu
tion to the area of
omputer algebra known as Gr�obner basis theory.Se
tion 2 des
ribes expli
itly the relation between Gr�obner bases and string rewriting. It is well known[56℄ that Bu
hberger's algorithm 
an be applied to rewriting problems, a 
omplete rewrite system beingequivalent to a Gr�obner basis, and observations have been made on the similarities between the Knuth-Bendix and Bu
hberger algorithms in this 
ase. However, the exa
t relation of the algorithms (i.e. thatKnuth-Bendix is a spe
ial 
ase of Bu
hberger's algorithm) is not widely re
ognised. This se
tion makesthe 
orresponden
e expli
it.Se
tion 3 builds on the results dis
ussed previously. One-sided rewriting systems and their relationsto the 
al
ulation of one-sided ideals are 
onsidered. The results are as follows:- A 
omplete one-sidedrewrite system for a right 
ongruen
e on a semigroup S is equivalent to a Gr�obner basis for a right idealin an algebra K[S℄ (to some extent, this is already known). In addition, the one-sided Knuth-Bendixalgorithm is a spe
ial 
ase of the Bu
hberger algorithm (new). The se
tion 
on
ludes with an originalappli
ation of the one-sided Bu
hberger algorithm to 
omputing Green's relations for a 
ouple of monoids.This method for 
omputing Green's relations dire
tly from a presentation has 
ertain advantages of 
on-venien
e and eÆ
ien
y over 
onventional methods (using transformation representations), and 
an alsodeal with in�nite problems.Se
tion 4 begins by showing how Gr�obner basis te
hniques may be applied to K-
ategory presentations.It then rounds o� the 
hapter by pla
ing the Gr�obner basis te
hniques for non
ommutative polynomialalgebras in terms of Kan extensions. This begins to give a new perspe
tive on non
ommutative Gr�obnerbases and relates them more strongly to 
ategory theory.3.1 Histori
al Introdu
tion to Gr�obner BasesIn 1926 Hermann posed a question [38℄ whi
h has sin
e arisen in di�erent forms in various areas and hasbe
ome known as the ideal membership problem. The problem is usually des
ribed in the followingway. Let X := fx1; : : : ; xng be a set of 
ommuting variables and let K be a �eld. Then de�ne K[X℄ to bethe polynomial ring, whose monomials are power produ
ts of the xi and whose 
oeÆ
ients are from K.Given a set F of polynomials f1; : : : ; fk 2 K[X℄ let hF i denote the ideal generated by F . Given anotherpolynomial f 2 K[X℄, the problem is to determine whether f is a member of hF i. This is equivalent to31



asking whether there are polynomials h1; : : : ; hk 2 K[X℄ su
h that f = h1f1 + � � �+ hkfk.In 1965 Bruno Bu
hberger devised a solution [22℄ to this problem. His invention, Gr�obner bases (namedfor his supervisor), are spe
ial generating sets for ideals in polynomial rings. Typi
ally, one uses anordering on the monomials of the polynomial ring K[X℄ to work on a generating set F for the ideal hF i,
omputing (using Bu
hberger's algorithm) a Gr�obner basis for the ideal.It took about ten years before the 
on
ept be
ame known to resear
h 
ommunities in Mathemati
s andTheoreti
al Computer S
ien
e. It is now well re
ognised at least that Gr�obner basis te
hniques enableus to answer questions of algebrai
 interest:i) The Ideal Des
ription Problem: does every ideal I 2 K[X℄ have a �nite generating set?ii) The Ideal Membership Problem: does a parti
ular polynomial f lie in an ideal hF i?iii) The Problem of Solving Polynomial Equations: �nd all 
ommon solutions in Kn of a system ofpolynomial equations in n variables.iv) Equality problem: are two polynomials f , f 0 equal in the quotient ring K[X℄=hF i (this is equivalentto asking whether f � f 0 is a member of hF i)?v) Interse
tion Problem: What is the interse
tion in K[X℄ of two ideals hF i and hF 0i?The problem we will be 
on
entrating on is the membership problem. The others are looked at in moredetail in [29℄.Gr�obner basis theory has sin
e be
ome an important part of 
omputational algebra; in the 
ommutative
ase it is in
luded in all major symboli
 
omputation program systems and is applied in a wide varietyof seemingly unrelated resear
h areas. To name a few: appli
ations have been found in roboti
s, 
om-putational geometry, statisti
al analysis and geometri
 theorem proving. Further appli
ations to surfa
emodelling and 
ryptography are under investigation. It is thought [9℄ \inevitable that like Galois theory,Bu
hberger theory will be
ome a tool used by pure mathemati
ians in proofs". For the moment it isused to 
ompute spe
i�
 examples.Sin
e Bu
hberger introdu
ed Gr�obner bases for ideals in 
ommutative polynomial rings over �elds, a num-ber of authors have extended and generalised the theory to other algebrai
 obje
ts. In 1978 Bergmanextended the notion of Gr�obner bases to the 
ase where the variables of X do not 
ommute [5℄. He alsoattempted to generalize Bu
hberger's algorithm for 
omputing the bases, but this was mu
h improvedby F.Mora in 1986 [55℄ who gives a variant of the Bu
hberger's algorithm whi
h is guaranteed to halt,returning a �nite Gr�obner basis of the �nitely generated ideal (with respe
t to a �xed ordering) if andonly if su
h a basis exists. This pro
edure is des
ribed and illustrated later, I have implemented it inGAP (the program is grobner:g).The pro
edure has 
ertain disadvantages 
ompared with the 
ommutative method:i) Termination: the pro
edure will not ne
essarily terminate. When running the pro
edure, unless ita
tually does terminate, we 
annot tell whether or not it is going to at some point. Some judgementmust therefore be made, to say that if it has not 
ompleted after a 
ertain amount of time or a
ertain number of passes in the program, it may be 
onsidered to have failed { this is referred to as\for
ing termination".ii) Orderings: the orderings used have to be more 
ompli
ated, be
ause the order of the generators isimportant. This means that most orderings will use the lexi
ographi
 order at some point.32



iii) If an attempt is 
onsidered to have failed (see(i)), there is still the possibility that a di�erent orderingmay the pro
edure may be su

essful. There are in�nitely many orderings on a free semigroup andso the pro
edure may in general be attempted in�nitely many times before a Gr�obner basis is found.iv) In the 
ommutative 
ase there is a pro
edure known as the Gr�obner walk, whereby you 
an 
onverta basis with respe
t to one order to a basis with respe
t to a new order [2℄. This does not workin the non
ommutative 
ase be
ause it may be that there is no Gr�obner basis with respe
t to these
ond order.In summary, one has an in�nite number of orderings to try, and also a small problem of knowing whento stop trying one ordering and 
onsider another. T. Mora points out that as there are in�nitely manyorders, the 
han
es of �nding the 
orre
t one in �nitely many attempts 
ould be zero. Hen
e the idea oftrying many possible orderings in parallel: T. Mora was not put o� by the idea of running many possiblesystems simultaneously, ea
h new polynomial 
reating as many new systems as there are ways of 
hoosingits leading term in a way 
ompatible with the original system. This may be a nightmare 
omputationally,but does produ
e an algorithm whi
h is guaranteed to halt if and only if I has a �nite Gr�obner basis withrespe
t to some ordering (whi
h satis�es a 
ertain property FDR). This method is theoreti
ally powerful,being limited only by the ability to produ
e orderings satisfying the FDR property (there are in�nitelymany su
h orderings). However, we still have the problem that failure to terminate within a 
ertain timeproves nothing, and also that the 
omputations get very big very qui
kly, and in terms of implementationin GAP, my program whi
h attempts 
ompletion of a single system using one ordering 
an be quite slowenough...The other method of extending Bu
hberger's theory was to keep the 
ommuting variables the same and
hange the stru
ture of the �eld of 
oeÆ
ients. In 1978 Za
harius 
onsidered 
ommutative polynomialrings with 
oeÆ
ients in 
ommutative, unital rings, satisfying some 
omputability requirements [80℄.More re
ently (1989) M�oller worked on the same problem [54℄. We �nd motivation for this dire
tion inChapter Five.My main referen
e and starting point was T.Mora's paper [56℄. Two useful introdu
tory books are thoseby Cox, Little and O'Shea [29℄ and Adams and Lousannau [1℄.Gr�obner basis theory 
ontinues to develop and generates \in
reasing interest be
ause of its usefulness inproviding 
omputational tools whi
h are appli
able to a wide range of problems in mathemati
s, s
ien
eand engineering" [1℄. A 
onferen
e marking 33 years of Gr�obner bases was re
ently held at R.I.S.C. inLinz, and the pro
eedings [23℄ 
ontain papers on many di�erent aspe
ts of Gr�obner bases (in
luding afew on the non
ommutative 
ase) whi
h are 
urrently being resear
hed. (There were plans to 
ompile adatabase of all the Gr�obner basis material, to be a

essible through the R.I.S.C. internet site.)3.1.1 Algebra PresentationsLet K be a �eld. A K-algebra is a set A with a unique element 0, two binary operations + and � anda s
alar multipli
ation of elements of A by elements of K satisfying the following properties.i) a+ (b+ 
) = (a+ b) + 
, ii) a+ 0 = 0 + a = a,iii) 9 � a 2 A : a+ (�a) = 0, iv) a+ b = b+ a,v) k(a+ b) = ka+ kb, vi) (k + h)a = ka+ ha,vii) (kh)a = k(ha), viii) (0)a = 0,ix) a � (b � 
) = (a � b) � 
, x) a � (b+ 
) = (a � b) + (b � 
),xi) (b+ 
) � d = (b � d) + (
 � d), xii) (ka) � b = k(a � b) = a � (kb),for all k; h 2 K and a; b; 
; d 2 A. 33



An ideal I in a K-algebra A is a sub-K-algebra I (
losed under +, �, � and s
alar multipli
ation) su
hthat for all f 2 I and a; b 2 A, a � f � b 2 I.Re
all that Xy denotes the free semigroup of all nonempty strings of elements on the set X. A set ofrelations on the free semigroup is a set R � Xy �Xy. A set of relations R generates a 
ongruen
e =Ron the free semigroup. The fa
tor semigroup Xy==R is the semigroup of 
ongruen
e 
lasses of Xy under=R. A semigroup presentation is a pair sgphXjRi where X is a set and R is a set of relations on Xy.The semigroup it presents is the fa
tor semigroup Xy==R. This de�nition will be used in a later theorem.Let S be a semigroup and let K be a �eld. The free K-algebra K[S℄ on S 
onsists of all the polyno-mials (formal sums) k1m1 + � � � + ktmt where k1; : : : ; kt 2 K, m1; : : : ;mt 2 S. Addition of polynomialsis de�ned using the formal sums (+ is 
ommutative). The zero element of the algebra is denoted 0.Multipli
ation of polynomials is de�ned in the usual way: �ikimi � �jhjnj = �i;jkihjminj. When thesemigroup S has an identity element id the algebra K[S℄ has a multipli
ative identity also denoted id.Let K[S℄ be the free K-algebra on a semigroup S, where K is a �eld. Elements (polynomials) may bewritten f = k1m1 + � � � + ktmt as a sum of terms kimi, where the mi 2 S are monomials and ki 2 Kare 
oeÆ
ients.Let F := ff1; : : : ; fng be a set of polynomials in K[S℄. The ideal generated by F is denoted hF i andde�ned to have as elements all sums of multiples of elements of F :hF i := fp1f1q1 + � � �+ pnfnqnjpi; qi 2 K[S℄g:Given K[S℄ and F the ideal membership problem is:INPUT: f 2 K[S℄ (a polynomial of the free algebra),QUESTION: f 2 hF i? (is it in the ideal?)i.e. are there polynomials p1; : : : ; pn; q1; : : : ; qn 2 K[S℄ so that f = p1f1q1 + � � �+ pnfnqn?The ideal determines a 
ongruen
e =F on K[S℄ wheref =F h, f � h 2 hF i:The proof is straightforward (if f =F h then p(f � h)q 2 hF i so pfq =F phq for all p; q 2 K[S℄).The fa
tor algebra K[S℄==F is the algebra whose elements are 
ongruen
e 
lasses [f ℄ of elements ofK[S℄ with respe
t to =F . Addition is de�ned by [f ℄ + [h℄ := [f + h℄ and multipli
ation by [f ℄[h℄ = [fh℄for all f; h 2 K[S℄. S
alar multipli
ation is also preserved, so k[f ℄ = [kf ℄, for k 2 K; f 2 K[S℄. It 
an beveri�ed that this is an algebra by 
he
king the axioms i to xii.A K-algebra presentation is a pair alghSjF i where S is a semigroup and F � K[S℄. The algebra Athat it presents is the fa
tor algebra K[S℄==F .The equality problem for a K-algebra presentation alghSjF i is as follows:INPUT: f; h 2 K[S℄ (two polynomials of K[S℄).QUESTION: f =F h? (are they equivalent under =F ?)This problem is the same as the problem of determining ideal membership of f � h (by de�nition of=F ). Therefore the equality problem asks whether there are p1; : : : ; pn; q1; : : : ; qn 2 K[S℄ su
h thatf � h = p1f1q1 + � � � + pnfnq1. Re
all that a set of normal forms for =F 
ontains exa
tly one element34



from ea
h 
ongruen
e 
lass and a normal form fun
tion N : K[S℄! K[S℄ is su
h that N(K[S℄) is a setof normal forms, and for all p 2 K[S℄; p =F N(p).The approa
h is to 
onstru
t a redu
tion relation !F on K[S℄, that is 
ompatible with a well-ordering(so !F is Noetherian) and to attempt to make this redu
tion relation 
on
uent by 
hanging the set Fthat generates it without 
hanging the 
ongruen
e �$F .Let > be an admissible well-ordering on the semigroup S (i.e. a well-ordering > su
h that m > n )umv > unv for all u; v 2 S).The leading term of a polynomial is the term with the largest monomial with respe
t to the 
hosenordering on S. The leading monomial is the monomial of the leading term, and the leading 
oeÆ
ientis the 
oeÆ
ient of the leading term. We will assume all polynomials to be moni
, as we are working overa �eld, and 
an therefore divide all polynomials by their leading 
oeÆ
ient. The fun
tion LM is used toextra
t the leading monomial of a polynomial. The remainder rem of a polynomial f satis�esf = LM(f)� rem(f):We use the notions of leading monomials to de�ne a Noetherian redu
tion relation.De�nition 3.1.1 Redu
tion of a polynomial h = k1m1 + � � � + ktmt where k1; : : : ; kt 2 K andm1; : : : mt 2 S with respe
t to a basis F = ff1; : : : ; fng is possible if any of the monomials mj of his a multiple of a leading monomial of any fi 2 F . Suppose fi = li� ri (leading monomial li and remain-der ri) and that mj is a monomial in h su
h that m = uliv for some u; v 2 S. Then m redu
es to uriv,and h redu
es to k1m1 + � � �+ kjuriv + � � � + ktst i.e.h! h� kju(fi)v:If none of the leading terms of any of the polynomials in F is a subword of any of the monomials of h,then h is said to be irredu
ible.Lemma 3.1.2 The redu
tion relation !F is Noetherian.Proof For a proof by 
ontradi
tion, suppose that!F is not Noetherian. Then there exists some in�nitesequen
e of redu
tions h1 !F h2 !F h3 !F � � � . This implies that there is an in�nite sequen
e ofmonomials m1 > m2 > m3 > � � � . This is not the 
ase as > is a well-ordering, therefore there is noin�nite sequen
e of redu
tions and !F is Noetherian. 2The re
exive, symmetri
, transitive 
losure of !F is denoted �$F .Lemma 3.1.3 Let F = ff1; : : : ; fng be a basis for an ideal on the free K-algebra K[S℄ on a semigroupS. Then �$F and =F 
oin
ide.Proof Suppose f �$F h. Then f � h = kulv � kurv = ku(l � r)v for some k 2 K; u; v 2 S; p 2 K[S℄and (l � r) 2 F . Therefore f � h 2 hF i. Hen
e �$F is 
ontained in =F .For the 
onverse, suppose f =F h. Then by de�nition f � h 2 hF i. Therefore there exist p1; : : : ; pn,q1; : : : ; qn 2 K[S℄ su
h that f � h = p1f1q1 + � � � + pnfnqn. Now we 
an write pifiqi = k1iu1ifiv1i +� � �+ktiutifivti for some k1i ; : : : ; kti 2 K, u1i ; : : : ; uti , v1i ; : : : ; vti 2 S. Consider the sequen
e of one stepredu
tions f !F f�k11u11f1v11 !F f�k11u11f1v11�k21u21f1v21 !F � � � . The result will follow if h$Fh�kjujfjvj for all h 2 K[S℄; uj ; vj 2 S; kj 2 K. Now either h 
ontains a term kjujljvj where lf = LM(fj)in whi
h 
ase h!F h� kjujfjvj or else it does not, and h� kjujfjvj ! (h� kjujfjvj) + kjujfjvj = h.Either way h$F h� kjujfjvj , and so =F is 
ontained in �$F . Hen
e we have proved that =F 
oin
ideswith �$F . 235



De�nition 3.1.4 A Gr�obner basis G for an ideal I of K[S℄ is a basis for I that generates a 
ompleteredu
tion relation !F (with respe
t to an admissible well-ordering on S) on K[S℄.Equivalent 
onditions for a basis being a Gr�obner basis are that an element h 2 K[S℄ is an element of Iif and only if it redu
es to zero by !G. Or [55℄, a set G � I of polynomials is a Gr�obner basis for I ifthe ideal generated (in S) by the leading monomials of G is equal to the ideal generated by the leadingmonomials of I. A basis F is not a Gr�obner basis with respe
t to an order > if! is not lo
ally 
on
uent.(Lo
al 
on
uen
e and 
on
uen
e are equivalent for a Noetherian redu
tion relation). If it is not 
on
uentthen there is a 
riti
al pair of polynomials, obtained by redu
ing one polynomial in two di�erent ways.De�nition 3.1.5 Let K[S℄ be a K-algebra and let F � K[S℄. An S-polynomial o

urs when a polyno-mial h 2 K[S℄ may be redu
ed in two distin
t ways h !F h1 and h !F h2, h1 6= h2 for h1; h2 2 K[S℄.The S-polynomial is de�ned to be the di�eren
e h1 � h2 between the redu
ed polynomials. When anS-polynomial 
an be redu
ed to zero we say that it 
an be resolved.If the distin
t redu
tions apply to di�erent terms of the polynomial then it is 
lear that further redu
tionwill yield a polynomial res so that h1 !F res and h2 !F res. In other words, the S-polynomial h1 � h2
an be resolved. Similarly, if the redu
tions apply to the same term but do not overlap, the S-polymomialwill resolve. The interesting 
ases o

ur when the redu
tions overlap on a monomial. All these 
ases aremultiples of the following situation.Let F := ff1; : : : ; fng � K[S℄. A pair of polynomials fi; fj is said to have a mat
h if their leadingmonomials overlap. Suppose fi; fj are a pair of polynomials whose leading monomials li; lj overlap. Letri; rj denote the remainders of fi and fj respe
tively. The overlap is one of four types: uilivi = lj ,li = ujljvj, uili = ljvj or livi = ujlj .In any 
ase it is possible to write uilivi = ujljvj.where ui; uj ; vi; vj 2 S + id. The S-polynomial resultingfrom the overlap is uifivi � ujfjuj whi
h simpli�es to ujrjvj � uirivi.If all S-polynomials resulting from an overlaps of polynomials in F resolve, then F is a Gr�obner basis.If an S-polynomial does not resolve then it 
an be added to F without 
hanging hF i. This is essentiallyBu
hberger's algorithm; all the S-polynomials of a set of polynomials F are found, and are redu
ed as faras possible with respe
t to F . Any non-zero remainders are then added to F , and the pro
ess is repeated.The 
ow 
hart on the next page des
ribes Bu
hberger's algorithm more pre
isely.Example 3.1.6 The following example is an appli
ation of non
ommutative Gr�obner bases to the fourthHe
ke algebraH4. This problem (with other mu
h more 
omplex ones { for the string algebras) was kindlysuggested to me by Bru
e Westbury (Warwi
k) to test my 
omputer program grobner:g. The algebraH4 has presentation Q [fe1 ; e2; e3g℄==P where P is the set of polynomialsfe1e1 � e1; e2e2� e2; e3e3� e3; e3e1 � e1e3; e2e1e2� e1e2e1 + 29e2 � 29e1; e3e2e3� e2e3e2 + 29e3 � 29e2g:We apply the algorithm to P . The �rst overlap is between the lead monomials e2e2 and e2e1e2. Theunredu
ed S-polynomial resulting from the overlap in e2e1e2e2 is (e2e1e2) � (e1e2e1e2 � 29e2e1 + 29e1e2).The remainder of this polynomial modulo P is zero, so it is resolved. In the same way, the S-polynomialsresulting from the overlaps in the words e2e2e1e1; e3e2e3e3 and e3e3e2e3 also resolve. The other over-lap is between the leading monomials e3e1 and e3e2e3. Redu
tion of e3e2e3e1 gives us an irredu
ibleS-polynomial (e3e2e1e3) � (e2e3e2e1 � 29e2e1 + 29e1e3) whi
h we add to P . In fa
t P is now a Gr�obnerbasis { any other S-polynomials redu
e to zero.This He
ke algebra has dimension 20, whi
h we 
an prove by using the Gr�obner basis to enumerate theirredu
ible monomials in a 
atalogue, mu
h like the rewrite situation:36



id,e1; e2; e3,e1e2; e1e3; e2e1; e2e3; e3e2,e1e2e1; e1e2e3; e1e3e2; e2e1e3 ; e2e3e2; e3e2e1,e1e2e1e3; e1e2e3e2; e1e3e2e1; e2e1e3e2; e2e3e2e1:Any irredu
ible polynomial will be a sum of Q-multiples of these monomials, any element of H4 isrepresentable by exa
tly one of these polynomials.3.2 Gr�obner Bases and Rewrite SystemsSimilarities between the two 
riti
al pair 
ompletion methods (Knuth-Bendix and Bu
hberger's algo-rithm) have often been pointed out. Good (re
ent) referen
es for this are [75, 70℄. In parti
ular itis well known that the 
ommutative Bu
hberger algorithm may be applied to presentations of abeliangroups to obtain a 
omplete rewrite system. Possibly further similarities were not re
ognised earlier asnon
ommutative Gr�obner bases were some time in developing. Teo Mora [56℄ re
orded that a 
ompleterewrite system for a semigroup S presented by sgphXjReli is equivalent to a non
ommutative Gr�obnerbasis for the ideal spe
i�ed by the 
ongruen
e =R on Xy in the algebra K[Xy℄ where K is a �eld. Theideal is equivalent to S. In fa
t, we show that step for step, the algorithms in this 
ase are equivalent,and so the Knuth-Bendix algorithm is a spe
ial 
ase of Bu
hberger's algorithm. It is a

epted that thework in this se
tion may already be known in some form, though it seems standard to talk in terms ofgroup and monoid rings and apply Bu
hberger's algorithm to solving the word problem in groups withoutre
ognising the restri
ted algorithm as the Knuth-Bendix algorithm { for re
ent examples see [8℄ [57℄ and[3℄. The following lemma is a variation of a result of [56℄.Lemma 3.2.1 Let K be a �eld and let S be a semigroup with presentation sgphXjRi. Then the algebraK[S℄ is isomorphi
 to the fa
tor algebra K[Xy℄==F where F is the basis fli � ri) : (li; ri) 2 Rg.Proof De�ne � : K[Xy℄! K[S℄ by �(k1w1 + � � � + ktwt) := k1[w1℄R + � � � + kt[wt℄R for k1; : : : ; kt 2 K,w1; : : : ; wt 2 Xy. De�ne a homomorphism �0 : K[Xy℄==F! K[S℄ by �0([p℄F ) := �(p). It is inje
tivesin
e �0[p℄F = �[q℄F if and only if [p℄F = [q℄F (using the de�nitions �(p) = �(q) , p =F q). It is alsosurje
tive. Let f 2 K[S℄. Then f = k1m1 + � � � + ktmt for some k1; : : : ; kt 2 K, m1; : : : ;mt 2 S. Sin
eS is presented by sgphXjRi there exist w1; : : : ; wt 2 Xy su
h that [wi℄R = mi for i = 1; : : : ; t. Thereforelet p = k1w1 + � � �+ ktwt. Clearly p 2 K[Xy℄ and also �0[p℄F = f . Hen
e �0 is an isomorphism. 2Theorem 3.2.2 Let K be a �eld, let S be a semigroup presented by sgphXjRi and let A be the K-algebra presented by alghXjF i where F := fl � r : (l; r) 2 Rg. Then the Knuth-Bendix 
riti
al pair
ompletion pro
edure for R 
orresponds step-by-step to the non
ommutative Bu
hberger algorithm for�nding a Gr�obner basis for the ideal generated by F .Proof Both the Knuth-Bendix and the Bu
hberger algorithm begin by spe
ifying a monomial orderingon Xy whi
h we denote >. Our proof 
onsiders the two pro
edures in turn, identifying the 
orresponding
omponents by indexing them (i)-(xii).In terms of rewriting we 
onsider the rewrite system (i) R whi
h 
onsists of a set of rules (ii) of the form(l; r) orientated so that l > r. A word (iii) w 2 Xy may be redu
ed (iv) with respe
t to R if it 
ontainsthe left hand side (v) l of a rule (l; r) as a subword (vi) i.e. if w = ulv for some u; v 2 X�. To redu
ew = ulv using the rule (l; r) we repla
e l by the right hand side (vii) r of the rule, and write ulv !R urv.The Knuth-Bendix algorithm looks for overlaps between rules (viii). Given a pair of rules (l1; r1), (l2; r2)37



G := ALL

The Non
ommutative Bu
hberger Algorithm
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there are four possible ways in whi
h an overlap 
an o

ur: l1 = u2l2v2, u1l1v1 = l2, l1v1 = u2l2 andu1l1 = l2v2. The 
riti
al pair (xi) resulting from an overlap is the pair of words resulting from applyingea
h rule to the smallest word on whi
h the overlap o

urs. The 
riti
al pairs resulting from ea
h of thefour overlaps are: (r1; u2r2v2), (u1r1v1; r2), (r1v1; u2r2) and (u1r1; r2v2) respe
tively (see diagram).In one pass the 
ompletion pro
edure �nds all the 
riti
al pairs resulting from overlaps of rules of R.Both sides of ea
h of the 
riti
al pairs are redu
ed as far as possible with respe
t to R to obtain a redu
ed
riti
al pair (x) (
1; 
2). The original pair is said to resolve (xi) if 
1 = 
2. The redu
ed pairs that havenot resolved are orientated, so that 
1 > 
2, and added to R forming R1. The pro
edure is then repeatedfor the rewrite system R1, to obtain R2 and so on. When all the 
riti
al pairs of a system Rn resolve (i.e.Rn+1 = Rn) then Rn is a 
omplete rewrite system (xii).In terms of Gr�obner basis theory applied to this spe
ial 
ase we 
onsider the basis (i) F whi
h 
onsistsof a set of two-term polynomials (ii) of the form l � r multiplied by �1 so that l > r. A monomial (iii)m 2 Xy may be redu
ed (iv) with respe
t to F if it 
ontains the leading monomial (v) l of a polynomiall� r as a submonomial (vi) i.e. if m = ulv for some u; v 2 X�. To redu
e m = ulv using the polynomiall � r we repla
e l by the remainder (vii) r of the polynomial, and write ulv !F urv.The Bu
hberger algorithm looks for mat
hes between polynomials (viii). Given a pair of polynomialsl1 � r1, l2 � r2 there are four possible ways in whi
h an mat
h 
an o

ur: l1 = u2l2v2, u1l1v1 = l2,l1v1 = u2l2 and u1l1 = l2v2. The S-polynomial (xi) resulting from a mat
h is the di�eren
e betweenthe pair of monomials resulting from applying ea
h two-term polynomial to the smallest monomial onwhi
h the mat
h o

urs. The S-polynomials resulting from ea
h of the four mat
hes are: r1 � u2r2v2,u1r1 � v1; r2, r1v1 � u2r2 and u1r1 � r2v2 respe
tively (see diagram).In one pass the 
ompletion pro
edure �nds all the S-polynomials resulting from mat
hes of polynomialsof F . The S-polynomials are redu
ed as far as possible with respe
t to F to obtain a redu
ed S-polynomial(x) 
1 � 
2. Note that redu
tion 
an only repla
e one term with another so the redu
ed S-ploynomialwill have two terms unless the two terms redu
e to the same thing 
1 = 
2 in whi
h 
ase the originalS-polynomial is said to redu
e to zero (xi). The redu
ed S-polynomials that have not been redu
ed tozero are multiplied by �1, so that 
1 > 
2, and added to F forming F1. The pro
edure is then repeatedfor the basis F1, to obtain F2 and so on. When all the S-polynomials of a basis Fn redu
e to zero (i.e.Fn+1 = Fn) then Fn is a Gr�obner basis (xii).A 
riti
al pair in R will o

ur if and only if a 
orresponding S-polynomial o

urs in F . Redu
tion of thepair by R is equivalent to redu
tion of the S-polynomial by F . Therefore at any stage any new rules
orrespond to the new two-term polynomials and Fi := fl � r : (l; r) 2 Rig. Therefore the 
ompletionpro
edures as applied to R and F 
orrespond to ea
h other at every step. 2The following pi
tures illustrate the four 
ases in whi
h overlaps / mat
hes and 
riti
al pairs / S-polynomials arise, showing their 
orresponden
e, as des
ribed in the proof above.possible overlaps possible mat
hesof rules of polynomialsl1 ! r1 and l2 ! r2 l1 � r1 and l2 � r2l1 = u2l2v2 r1u2 r2l2 v2 l1 = u2l2v2(r1; u2r2v2) u2r2v2 � r1
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l2 = u1l1v1 r2u1 r1l1 v1 l2 = u1l1v1(u1r1v1; r2) r2 � u1r1v1
l1v1 = u2l2 r1u2 r2 v1 l1v1 = u2l2(r1v1; u2r2) u2r2 � r1v1
u1l1 = l2v2 r2u1 r1 v2 u1l1 = l2v2(u1r1; r2v2) r2v2 � u1v1Remark 3.2.3 The main 
on
lusion to be drawn from this result is that there is no need for spe
ialKnuth-Bendix programs: the non
ommutative Bu
hberger algorithm applied to a rewrite system (setof two-term polynomials with 
oeÆ
ients 1 and -1) is the Knuth-Bendix algorithm. All of the work inChapter Two is in fa
t about the appli
ation of a spe
ial 
ase of the Gr�obner basis pro
edure; even Kanextensions are 
al
ulated using Gr�obner bases.Corollary 3.2.4 Abelian semigroups have 
omplete rewriting systems.Proof It is known that Bu
hberger's algorithm always terminates in the 
ommutative 
ase, and so itfollows that presentations of abelian semigroups will have 
omplete rewriting systems, whi
h 
an be foundby using the 
ommutative Bu
hberger algorithm. 23.3 One-sided IdealsIn this se
tion we des
ribe Gr�obner basis theory for one-sided ideals in non
ommutative polynomial alge-bras. The �rst result shows how to use the standard non
ommutative Bu
hberger algorithm to 
omputea Gr�obner basis for a one-sided ideal. Then we make expli
it the 
orrelation between the Gr�obner basistheory for one-sided ideals and standard one-sided rewriting systems.Let K be a �eld and let S be a semigroup. Let F = ff1; : : : ; fng be a subset of polynomials (a basis foran ideal) in K[S℄. We will assume that the fi are all moni
. Let hF ir denote the right ideal generated inK[S℄ by F i.e. hF ir := ff1q1 + � � �+ fnqn : q1; : : : ; qn 2 K[S℄g:A right 
ongruen
e on an algebra A is an equivalen
e relation =r su
h that for all q 2 Af =r h) f + q =r h+ q and fq =r hq:
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Lemma 3.3.1 Let K[S℄ be the free K-algebra on S. Let F = ff1; : : : ; fng be a subset of K[S℄. Then�$rF de�nes a right 
ongruen
e on K[S℄ wheref !rF f � kfivif LM(fi)v o

urs in f with 
oeÆ
ient k for fi 2 F , v 2 S and k 2 K. Furthermoref �$rF h, f � h 2 hF ir:Proof Suppose that f �$rF h in n steps. The hypothesis is that f =rF h and the proof is by indu
tionon n. For the base step set n = 0. Then f = h so f � h = 0 is in the ideal i.e. f =rF h. Assumethe hypothesis is true for n � 1 and suppose f �$rF h in n steps. There exists f 0 su
h that f �$rF f 0 inn � 1 steps and f 0 $rF h. By the indu
tion hypothesis f � f 0 is in the ideal Now either f 0 ! h andh = f 0 � kifivi or h! f 0 and f 0 = h � kifivi for some fi 2 F; ki 2 K and ui 2 S. So h = f 0 � kifivi orf 0 = h� kifivi whi
h means that f � h = f � f 0 � kifivi whi
h is 
learly in the ideal. So f =rF h.Conversely, suppose that f =rF h. Then we 
an write f�h = k1f1v1+� � �+knfnvn for some fi 2 F; ki 2 Kand ui 2 S. The hypothesis is that f �$rF h and the proof is by indu
tion on n. For the base step putn = 0. Then f = h so f �$rF h by re
exivity. For the indu
tion step assume the hypothesis holds forn� 1 and 
onsider f � h = k1f1v1+ � � �+ knfnvn. By the indu
tion hypothesis f �$rF h. There are three
ases to 
onsider.In the �rst 
ase LT(fn) does not o

ur in h and so h+ knfnvn !rF h.In the se
ond 
ase LT(fn) does not o

ur in f and so f � knfnvn !rF f and sin
e f � knfnvn =h+ k1f1v1 + � � �+ kn�1fn�1vn�1 we have f � knfnvn �$rF h by the indu
tion hypothesis.In the third 
ase let 
1 6= 0 be the 
oeÆ
ient of LM(fn) in h+ knfnvn and let 
2 6= 0 be the 
oeÆ
ient ofLM(fn) in h. Then h+ knfnvn !rfn h+ knfnvn � 
1fnvn = h� (
1 � kn)fnvn;eliminating the o

uran
e of LM(fn) in h + knfnvn. Now 
2 = 
1 � kn so h !rfn h � (
1 � kn)fnvn soh+ knfnvn and h are joinable. 2We introdu
e a tagging notation whi
h will allow the use of the two- sided Bu
hberger algorithm to
ompute a Gr�obner basis whi
h will allow us to solve the ideal membership problem for hF ir.De�nition 3.3.2 Let K[S℄ be the free K-algebra on a semigroup S. Let a be a symbol. Let tag : K[S℄!K[fag t S℄ be the morphism indu
ed by tag(m) :=am for all m 2 S. So for f = k1m1 + � � � + knmnwhere k1; : : : ; kn 2 K and m1; : : : ;mn 2 S, a f := k1 am1 + � � � + kn amn 2 K[aS℄. Therefore tag iswell-de�ned. The inverse fun
tion tag�1, removing the tag, is similarly well- de�ned.We may refer to tagged and untagged polynomials. Let S be a semigroup given by a presentationhXjRi. Let �F be a set of polynomials f �f1; : : : �fmg, a basis for the one-sided ideal h �F ir in K[S℄. De�neH := fli � rij(li; ri) 2 Rg. De�ne a se
tion � of the fa
tor morphism � : K[Xy℄ ! K[S℄, denoted by�( �fi) := fi and let F := �( �F ). Let > be an admissible well-ordering on Xy.De�nition 3.3.3 De�ne the redu
tion relation !aFtH on K[aXy℄ byaf !aFtHaf � k afivwhenever LM(fi)v o

urs in f with 
oeÆ
ient k for f 2 K[Xy℄; v 2 S; fi 2 F and byaf !aFtHaf � k auhivwhenever uLM(hi)v o

urs in f with 
oeÆ
ient k for f 2 K[Xy℄; u; v 2 S; hi 2 H.41



This 
orresponds to the fun
tion Redu
ePoly in the program. The re
exive, symmetri
, transitive 
losurewill be denoted �$aFtH .Note how the redu
tion of f requires that we �nd a monomial of af that is some multiple of a leadingmonomial from aF or H. This de�nition of redu
tion will allow the appli
ation of the standard Bu
h-berger algorithm to aF tH to attempt to 
ompute a Gr�obner basis for the one-sided ideal h �F ir in K[S℄.First we require the following results.Proposition 3.3.4 The relation !aFtH is Noetherian on K[aXy℄. It is 
omplete if and only if it isalso lo
ally 
on
uent.Proof Any Noetherian redu
tion relation is 
omplete if and only if it is lo
ally 
on
uent (see ChapterOne). Suppose there exists an in�nite sequen
e of redu
tions p1 !aFtH p2 !aFtH � � � of polynomialsp1; p2; : : : 2 K[aXy℄. This implies the existen
e of an in�nite sequen
e m1 > m2 > � � � of monomialsm1;m2; : : : 2 Xy be
ause the de�nition of redu
tion repla
es one term with terms whi
h are smaller withrespe
t to >. The ordereing > is Noetherian, therefore the sequen
e 
annot exist, proving that !aFtHis Noetherian. 2Theorem 3.3.5 (Simulation of Right Redu
tion in a Monoid Ring)K[S℄=r�F �= K[aXy℄�$aFtHProof Let � represent the quotient morphism Xy ! S. Extend � to �0 : K[Xy℄! K[S℄.De�ne � : K[a Xy℄ ! K[S℄ by �(a f) := �0(f). De�ne �0 : K[a Xy℄= �$raFtH! K[S℄= =r�F by�0[a f ℄aFtH := [�(a f)℄r�F . We require to prove that �0 is well-de�ned, i.e. that � preserves the 
on-gruen
e 
lasses of �$raFtH on K[a Xy℄. It is suÆ
ient to prove that �(a f) =r�F �(a f � k a fiv) and�(af) =r�F �(af � k auhiv whenever either fiv o

urs in f with 
oeÆ
ient k for some u; v 2 Xy, fi 2 F ,hi 2 H.Now �(a f � k a fiv) = �0(f) � �0(kfiv). Re
all that fi = �( �fi) where � is the extension of a se
tion of�. It follows that k �fi�(v) 2 h �F i therefore �0(f) =r�F �0(f) � k �fi�(v) as required. For the other 
ase lethi 2 H, f 2 K[Xy℄. Then �(a f � k a uhiv) = �0(f) � �0(kuhiv). Re
all the de�nitions of � and H so�0(kuhiv) = 0 and so �0(f) =r�F �0(f)� �0(kuhiv). Hen
e � is well-de�ned.We now prove that �0 is surje
tive. Let �f 2 K[S℄. Then the extension of � uniquely de�nes f 2 K[Xy℄and �0(f) = �f . Thus we have af 2 K[aXy℄ su
h that �0[af ℄aFtH = [ �f ℄r�F .Finally, we prove that �0 is inje
tive. Let f; h 2 K[Xy℄ su
h that �0[a f ℄aFtH = �0[a h℄aFtH . Thenimmediately [�0(f)℄r�F = [�0(h)℄r�F . Therefore �f � �h is a member of the right ideal generated by �F . It 
anbe veri�ed, using the de�nitions, that this implies that f �$aFtH h. Therefore �0 is a bije
tion. 2Re
all that a pair of monomials is 
onsidered to have a mat
h if there is some overlap between them.Lemma 3.3.6 Let ! be a redu
tion relation on K[aXy℄. Let ap be a polynomial whi
h redu
es in twopossible ways ap!ap1 and ap!ap2. If the S-polynomial ap1� ap2 redu
es to zero then there exists apolynomial aq su
h that ap1 �!aq and ap2 !aq.Proof Let p; p1; p2 2 K[Xy℄ su
h that a p !a p1 and a p !a p2 and a p1� a p2 �! 0. then there exist�1; : : : ; �t with �i = kihivi or �i = kiuifivi for some ui; vi 2 X�, ki 2 K, fi 2 F , hi 2 �(H) su
h that42



ap1� ap2 !ap1� ap2� a�1 ! � � � !ap1� ap2� a�1�� � � � a�t = 0. Consider the �rst redu
tion. Theleading monomial of �1 o

urs in p1 with 
oeÆ
ient k1;1 and in p2 with 
oeÆ
ient k2;1 for k1;1; k2;1 2 K su
hthat k1;1+k2;1 = 1. Therefore ap1 !ap1�k1;1 a�1 and ap2 !ap2+k2;1 a�1. Repeating this pro
edurefor �2; : : : ; �t we obtain ap1 �!ap1 � k1;1 a�1 � � � � � k1;t a�t and ap2 �!ap2 + k2;1 a�1 + � � �+ k2;t a�t.Now (ap1� k1;1 a�1� � � � � k1;t a �t)� (ap2 + k2;1 a�1 + � � �+ k2;t a �t) = 0. Therefore ap1 and ap2 areredu
ed to the same term. 2Lemma 3.3.7 The redu
tion relation ! generated by aF tH is 
on
uent on K[aXy℄ if and only if allS-polynomials resulting from mat
hes of aF tH redu
e to zero by !.Proof Let all S-polynomials resulting from mat
hes of aF tH redu
e to zero by!. Let ap be a 
riti
alterm of (K[aXy℄;!). If the redu
tions apply to di�erent terms of a p or to disjoint parts of the sameterm then it is 
lear that the S-polynomial will redu
e to zero immediately (by applying the same tworedu
tions again). If the redu
tions apply to the same term of a p and are not disjoint then there arethree possibilities.For the �rst 
ase both rules 
ome from aF . So let ap!ap� k afivi and ap!ap� k afjvj for somefi; fj 2 F , vi; vj 2 X� su
h that livi = ljvj are monomials of p with 
oeÆ
ient k where li := LM(fi) andlj := LM(fj). Then there is an overlap su
h that (without loss of generality) a liv =a lj for some v 2 X�.The S-polynomial resulting from this overlap is a rj� a riv where ri := rem(fi) and rj := rem(fj). Nowarj� ariv =afiv� afj ! 0, therefore (ap� k afivi)� (ap� k afjvj)! 0. Therefore by Lemma 3.3.6there exists a q 2 K[aXy℄ su
h that a p � k a fivi �!a q and a p � k a fjvj �!a q. So the 
riti
al pair(ap� k ahivi;ap� k a hjvj) resolves.For the se
ond 
ase one rule is from a F and one is from H. So let a p !a p � k a fivi and a p !ap� k aujhjvj for some fi 2 F , hj 2 H, vi; uj ; vj 2 X� su
h that livi = ujljvj are monomials of p with
oeÆ
ient k where li := LM(fi) and lj := LM(hj). Then there are two possibilities for the overlap.For the �rst a liv =aulj for some u; v 2 X�. The S-polynomial resulting from this overlap is aurj� a rivwhere ri := rem(fi) and rj := rem(hj). Now a urj� a riv =a fiv� a uhj ! 0, therefore (a p � k afivi)� (ap� k aujhjvj)! 0.For the se
ond a li =a uljv for some u; v 2 X�. The S-polynomial resulting from this overlap is aurjv� a ri where ri := rem(fi) and rj := rem(hj). Now a urjv� a ri =a fi� a uhjv ! 0, therefore(ap� k afivi)� (ap� k aujhjvj)! 0.In either 
ase by Lemma 3.3.6 there exists a q 2 K[a Xy℄ su
h that a p � k a fivi �!a q andap� k aujhjvj �!aq. So the 
riti
al pair (ap� k afivi;ap� k aujhjvj) resolves.For the �nal 
ase, both rules 
ome from H. So let a p !a p� k auihivi and a p !a p� k aujhjvj forsome hi; hj 2 H, ui; vi; uj ; vj 2 X� su
h that uilivi = ujljvj are monomials of p with 
oeÆ
ient k whereli := LM(hi) and lj := LM(hj). Then there are two possibilities for the overlap.For the �rst liv = ulj for some u; v 2 X�. The S-polynomial resulting from this overlap is urj�riv whereri := rem(hi) and rj := rem(fj). Now urj � riv = hiv� uhj ! 0, therefore (ap� k auihivi)� (ap� k aujhjvj)! 0.For the se
ond li = uljv for some u; v 2 X�. The S-polynomial resulting from this overlap is urjv � riwhere ri := rem(hi) and rj := rem(hj). Now urjv � ri = hi � uhjv ! 0, therefore (ap� k auihivi)� (ap� k aujhjvj)! 0.In either 
ase by Lemma 3.3.6 there exists a q 2 K[a Xy℄ su
h that a p � k a uifivi �!a q andap� k aujfjvj �!aq. So the 
riti
al pair (ap� k auifivi;ap� k aujfjvj) resolves.43



This proves that however the 
riti
al pair arises, it is a 
onsequen
e of some mat
h between polynomialsand 
an be resolved. Therefore ! is 
on
uent.The 
onverse is easily 
he
ked. Suppose that! is 
on
uent. Then any S-polynomial arising from a mat
hbetween polynomials is the result of redu
ing one monomial in two di�erent ways i.e. ap!ap1 and ap2for some p; p1; p2 2 K[Xy℄. The S-polynomial is equal to ap1� ap2. The relation ! is lo
ally 
on
uentand so there exists aq 2 K[aXy℄ su
h that ap1 !a q and ap2 !aq. Therefore ap1� ap2 �!aq� aq = 0as required. 2We have now proved the following theorem.Theorem 3.3.8 The Bu
hberger algorithm may be applied dire
tly to a set 
ontaining tagged polynomialsand non-tagged (two-term) polynomials to attempt to 
ompute a Gr�obner basis for a one-sided ideal in afree algebra on a �nitely presented semigroup.This widens the s
ope of the Gr�obner basis program grobner:g without modifying it. The program 
annow attempt to 
ompute bases for one sided ideals.3.3.1 Gr�obner Bases for Coset SystemsA tagged Gr�obner basis 
orresponds to a tagged 
omplete rewrite system in that spe
ial 
ase (two-termpolynomials and no rewriting tags).Lemma 3.3.9 Let G be a group and K be a �eld. Let F := ff1; : : : ; fng � K[G℄ where the polynomialsin F ea
h have only two terms, the larger of whi
h has 
oeÆ
ient 1, the other having 
oeÆ
ient �1.Then the right ideal of F de�nes a subgroup of G.Proof De�ne H to be the set of elements m in G su
h that m =rF id.H := fm j m 2 G and m� id 2 hF irgWe prove that H is a subgroup of G. Firstly, H � G, so 
omposition is asso
iative.Let m1;m2 2 H, then m1 � id,m2 � id 2 hF ir by de�nition, and m1m2 � id = m1(m2 � id) + (m1 � id).Thereforem1m2 2 H, so H is 
losed under multipli
ation. Clearly id�id = 0 2 hF ir be
ause 0(fi) 2 hF irfor fi 2 F sin
e 0 2 K, so id 2 H. Finally, for any m 2 H, we have m � id 2 hF ir so m�1 � id =�m�1(m� id) 2 hF ir, so m�1 2 H.Therefore we have shown that hF ir de�nes a subgroup of G. 2Corollary 3.3.10 A 
omplete right 
oset rewriting system for the �nitely generated subgroup H of a�nitely presented group G may be 
omputed by �nding a Gr�obner basis for a parti
ular right ideal over aparti
ular algebra, when the Bu
hberger algorithm terminates.We will now apply the pro
edures that have been des
ribed to 
al
ulating some relations in �nitelypresented semigroups.3.3.2 Example: Computing Green's Relations for SemigroupsSemigroups are often des
ribed using Green's relations, spe
ifying their L-
lasses R-
lasses, D-
lasses andH-
lasses. Eggbox diagrams depi
t the partitions of a semigroup into these 
lasses. We 
an determinethe 
lasses by using Gr�obner bases applied dire
tly to the presentation. The examples show that thereis also the possibility of dealing with in�nite semigroups having in�nitely many H-
lasses, L-
lasses or44



R-
lasses. First we re
all some de�nitions [45℄.A nonempty subset A of a semigroup S is a right ideal of S if AS � A. It is a left ideal of S if SA � A.If x is an element of S then the smallest right ideal of S 
ontaining x is xS [ fxg, we denote this hxir asit is 
alled the right ideal generated by x. Similarly the left ideal generated by x is Sx [ fxg andis denoted hxil.Green's RelationsLet S be a semigroup and let s and t be elements of S. We say that s and t are L-related if the leftideal generated by s in S is equal to the left ideal generated by t:s �L t, hsil = htil:Similarly they are R-related if the right ideals are the same:s �R t, hsir = htir:The L-relation is a right 
ongruen
e on S and the R-relation is a left 
ongruen
e on S. (The right a
tionof S on itself is preserved by the mapping to the L-
lasses - so [xy℄�L = [xy℄�L = [x℄y�L , similarly forthe left a
tion and R-
lasses.) The elements s and t are said to be H-related if they are both L-relatedand R-related, and are D-related if they are either L-related or R-related.To determine whether s and t are R (or L)-related we 
an 
ompute the appropriate Gr�obner bases and
ompare them. First let K be (any) �eld. Let S have presentation sgphXjReli Let F be a Gr�obnerbasis for K[S℄ { so K[Xy℄==F is isomorphi
 to K[S℄. We would add the polynomial as to the Gr�obnerbasis system for K[S℄ and 
ompute the Gr�obner basis, and see whether this was equivalent to the basisobtained for a t.Example 3.3.11 (Symmetri
 Monoid)The following example is for the �nite semigroup Sym(2) with monoid presentationmonhe; s; idje2 = e; s2 = id; sese = ese; eses = esei:The Gr�obner basis equivalent to the rewrite system isH := fe2 � e; s2 � id; eses� ese; sese� eseg:The elements are fid; e; s; es; se; ese; sesg. We 
al
ulate Gr�obner bases for the right and left ideals forea
h of the elements. The results are displayed in the table below. In detail a Gr�obner basis for hsesirin K[S℄ is 
al
ulated in K[aX�℄ by adding a ses to the set of polynomials H. A mat
h a sess betweens2� id and ases. This results in the S-polynomial ase(id)� (0)s whi
h simpli�es to ase. Another mat
ha seses o

urs between eses � ese and a ses. This results in the S-polynomial a s(ese) � (0)es whi
hredu
es to a ese. Any further mat
hes result in S-polynomials whi
h redu
e to zero. The polynomialswe add to H to obtain a Gr�obner basis are fa se;a eseg (note that a ses is a multiple of a se so it isnot required in the Gr�obner basis). The table lists the polynomials whi
h, together with H, will give theGr�obner bases for the right and left ideals generated by single elements.element right ideal left idealid a id id`e ae e`s a id id`es ae es`; ese`se ase;aese e`ese aese ese`ses ase;aese es`; ese`45



Two elements whose right ideals are generated by the same Gr�obner basis have the same right ideal(similarly left), and so it is immediately dedu
ible that the R-
lasses are fid; sg; fe; esg; fse; sesg andfeseg, the L-
lasses are fid; sg; fe; seg; fes; sesg and feseg, the H-
lasses are fid; sg; feg; fseg; fesg; fsesgand feseg and the D-
lasses are fid; sg; fe; es; se; sesg and feseg.The eggbox diagram is as follows where L 
lasses are 
olumns, R-
lasses are rows, D 
lasses are diagonalboxes and H 
lasses are the small boxes:id; s see seses eseThis example 
ould have been 
al
ulated by enumerating the elements of ea
h of the fourteen ideals(whi
h takes longer).Example 3.3.12 (Bi
y
li
 Monoid)The next example is the Bi
y
li
 monoid whi
h is in�nite and has monoid presentationmonhp; q j pq = idi:This means that the equivalent Gr�obner basis de�ned on the free monoid algebra K[fp; qg�℄ is fpq� idg.We begin the table as before: element right ideal left idealid a id. id`.p a id. p`.q aq. q`.p2 a id. p2`.qp aq. p`.q2 aq2. id`.� � � � � � � � �qnpm aqn. pm`.It 
an be seen that there are in�nitely many L-
lasses and in�nitely many R-
lasses. Representatives forthe L-
lasses are q� be
ause qnpm`!l qn` { using the S-polynomial resulting from pn(qnpm`)!l pn`with (pnqn)pm `!l pm `. Similarly p� is a set of representatives for the R-
lasses. All elements areD-related and none of them are H-related. So the eggbox diagram would be an in�nitely large box of
ells, with one element in ea
h 
ell, this means that the monoid is bisimple.Example 3.3.13 (Poly
y
li
 Monoid)Now 
onsider the Poly
y
li
 monoid Pn whi
h has presentationmonhx1; : : : ; xn; y1; : : : ; yn; o j oxi=xio=oyi=yio=o; xiyi= id; xiyj=o for i; j=1; : : : ; n�1; i 6=jiand therefore the Gr�obner basis for K[Pn℄, where K is a �eld, isfxiyi � id; xiyj � 0for i; j = 1; : : : ; n� 1; i 6= jg:As might be expe
ted Green's relations for Pn are similar to those for the Bi
y
li
 monoid. The L-
lassesare represented by sequen
es of yi's and the R-
lasses are represented by sequen
es of xi's.46



To verify this let X = xi1 � � � xik be a general word in the xi's, and let Y be yj1 � � � yjl a general word inthe yj's. Then we 
an show that Y X �L X. To do this we 
onsider the ideals hY X `i and hX `i. To�nd a Gr�obner basis for hY X `i 
onsider the mat
h xjl � � � xj1yj1 � � � yjlxi1 � � � xik `. This results in theS-polynomial (id)xi1 � � � xik ` �xjl � � � xj1(0) whi
h simpli�es to xi1 � � � xik `= X `. This is a Gr�obner basisfor hY X `i, and so hY X `i = hX `i. Similarly ha Y Xi = ha Y i so Y X �R X for any Y = yj1 � � � yjl ,X = xi1 � � � xik .The eggbox diagram is drawn below. As before the L 
lasses are the 
olumns and the R-
lasses the rows,H-
lasses are the 
ells, and there is just one D-
lass other than the one 
ontaining the zero. This provesthat the poly
y
li
 monoids are bisimple. The diagram is more 
onventional than the previous one, as
lasses are listed but not individual elements, instead the number of elements in ea
h 
ell is indi
ated.

[X℄
[x1x2℄[x12℄[x2℄[x1℄[id℄[0℄ [0℄ [id℄ [y1℄ [y2℄ [y12℄ [y1y2℄ [Y ℄1 11111

1

11111
1

11111
1

11111
1

11111
1

11111
1This illustrates the fa
t that Gr�obner bases 
an be used to 
ompute Green's relations for (in�nite) semi-groups whi
h have �nite 
omplete presentations. In parti
ularH-
lasses have groups 
alled S
h�utzenbergergroups asso
iated with them. It is known thatH-
lasses in the sameD-
lass have the same S
h�utzenbergergroup [50℄.Previous methods for 
al
ulating minimal ideals from presentations of semigroups have been variationson the 
lassi
al Todd-Coxeter enumeration pro
edure [24℄. The one-sided Gr�obner basis methods havelimitations in that a 
omplete rewrite system with respe
t to the 
hosen order might not be found, butthey do give the possibility of 
al
ulating the stru
ture of in�nite semigroups.3.4 K-
ategoriesA K-
ategory is a 
ategory whose hom-sets (a hom-set is the set of all morphisms between a givenpair of obje
ts) are K-modules. A morphism of K-
ategories or K-fun
tor F preserves the K-modulestru
ture of the hom-sets so F (a + b) = F (a) + F (b); F (ka) = kF (a) for all arrows a; b su
h that a+ bis de�ned and s
alars k in K. 47



The free K-
ategory on a graph � is the 
ategory whose obje
ts are obje
ts of � and whose ar-rows ArrPK� are all polynomials of the form p = k1m1 + k2m2 + � � � + knmn where k1; : : : ; kn 2 K,m1; : : : ;mn 2 P�(A1; A2) for some A1; A2 2 Ob�. The fun
tions sr
 and tgt are preserved.The relations of a K-
ategory 
ould be of the form l = r where ea
h side has the same sour
e andtarget. They 
an be written l�r and so we assume that the relations are set of polynomials R � ArrPK�.If R = fr1; : : : ; rng is su
h a set of relations on PK� then the 
ongruen
e generated by R is de�nedas follows: f =R h if and only if f =h +k1p1r1q1 + � � �+ knpnrnqnfor some k1; : : : ; kn inK, p1; : : : ; pn; q1; : : : ; qn 2 ArrPK� where sr
(f) = sr
(h) = sr
(p1) = � � � =sr
(pn) and tgt(f) = tgt(h) = tgt(q1) = � � � = tgt(qn) and p1r1q1; : : : ; pnrnqn are de�ned in ArrPK�.The K-
ategory PK�==R whose elements are the 
ongruen
e 
lasses of ArrPK� with respe
t to R is thefa
tor K-
ategory.De�nition 3.4.1 Let K be a �eld. A K-
ategory presentation is a pair 
atKh�jRi where � is a graphand R � ArrPK��ArrPK�. The K-
ategory it presents is the fa
tor 
ategory PK�==R.The easiest example is of the free K-
ategory generated by a graph with one vertex and no arrows (ex
eptthe identity). The arrows of the trivial K-
ategory are simply the elements of K. If the graph now has aset of arrows X from the obje
t to itself, then the arrows of the free K-
ategory are the elements of thenon
ommutative algebra K[X℄. It is possible to use Bu
hberger's algorithm to 
ompute Gr�obner baseswhi
h enable the spe
i�
ation of the morphisms of a general K-
ategory presented in this way.Let > be an admissible well-ordering on ArrP�. De�ne the leading monomial of a polynomial f tobe the monomial o

urring in f whi
h is the greatest path in � with respe
t to > and denote it LM(f).De�ne a redu
tion relation !R on ArrPK� by f ! f � kiuirivi when ui(LM(ri))vi o

urs in f with
oeÆ
ient ki 2 K for ui; vi 2 ArrP�, ri 2 R. If the redu
tion relation generated by R is 
omplete (i.e.Noetherian and lo
ally 
on
uent), then we say that R is a Gr�obner basis.Lemma 3.4.2 ArrPK�=R �= ArrPK��$RProof It is 
lear from the de�nitions that the equivalen
e relation �$R is 
ontained in =R. Forthe 
onverse, suppose f =R h. Then there exist p1; : : : ; pn; q1; : : : ; qn 2 PK�, su
h that f = h +p1r1q1 + � � � + pnrnqn. By splitting pi and qi into their 
omponent terms for i = 1; : : : ; n we obtainf = h+ k1u1r1v1+ � � �+ kjujrivj + � � �+ ktutrnvt for some k1; : : : ; kt 2 K, u1; : : : ; ut; v1; : : : ; vt 2 P�. Itfollows immediately from this that f �$R h. 2Proposition 3.4.3 The relation !R is Noetherian on ArrPK�.Proof Let f1 !R f2 !R f3 !R � � � be an in�nite redu
tion sequen
e. This implies the existen
e of anin�nite sequen
e of terms m1;m2;m3; : : : 2 ArrP� su
h that m1 > m2 > m3 > � � � . This 
annot existbe
ause > is Noetherian on ArrP�. 2Lemma 3.4.4 If all S-polynomials resulting from mat
hes of R redu
e to zero by !R then !R is lo
ally
on
uent on ArrPK�. 48



Proof Let all S-polynomials resulting from mat
hes of R redu
e to zero by !R. We require to provethat !R is lo
ally 
on
uent.Let f 2 ArrPK� su
h that f !R f � k1u1r1v1 and f !R f � k2u2r2v2 i.e. k1u1r1v1 � k2u2r2v2 is anS-polynomial.For the �rst 
ase the polynomials do not overlap on their leading terms then the 
riti
al pair redu
esimmediately to p� p1 � p2.For the se
ond 
ase the polynomials overlap on their leading terms l1; l2, here we 
an assume k1 = k2and u1l1v1 = u2l2v2 for some u1; u2; v1; v2 2 ArrP�. The S-polynomial is u2r2v2 � u1r1v1, and itredu
es to zero by assumption. The S-polynomial is in fa
t equal to u1f1v1 � u2f2v2. Thereforep � k1u1f1v1 � (p � k2u2f2v2) �!R 0 and by Lemma 3.3.6 this implies that there exists q su
h thatp� k1u1f1v1 �!F q and p� k2u2f2v2 �!F q. Hen
e !R is lo
ally 
on
uent and therefore 
on
uent.For the 
onverse suppose that all 
riti
al pairs of !R resolve. Then it follows by by the usual argumentthat all S-polynomials of !F redu
e to zero by !R. 2Bu
hberger's algorithm 
al
ulates the S-polynomials of a system R and attempts to redu
e them to zeroby !R. If an S-polynomial 
annot be redu
ed it is added to the system. The S-polynomials of themodi�ed system R0are then 
omputed { the pro
ess looping until a system is found whose S-polynomials
an all be redu
ed to zero.Theorem 3.4.5 Bu
hberger's algorithm, applied to (R;>) will return a Gr�obner basis for =R on ArrPK�.Proof All that remains to be veri�ed is that S-polynomials resulting from mat
hes found in R 
an beadded to R without altering �$R. We assume all polynomials in R to be moni
 (possible sin
e K is a�eld). Now S-polynomials result from two types of overlap.For the �rst 
ase let r1; r2 be polynomials in R su
h that uLM(r1) = LM(r2)v for some u; v 2 ArrP�.Then the S-polynomial is s := rem(r2)v � urem(r1) where rem(ri) := ri � LM(ri) for i = 1; 2. Nowrem(r2)v � urem(r1) = ur1 � r2v therefore s = rem(r2)v � urem(r1) =R 0, and hen
e the 
ongruen
egenerated by R0 := R [ fsg 
oin
ides with =R.For the se
ond 
ase let r1; r2 be polynomials in R su
h that uLM(r1)v = LM(r2) for some u; v 2 ArrP�.Then the S-polynomial is s := rem(r2) � urem(r1)v. Now rem(r2) � urem(r1)v = ur1v � r2 therefores = rem(r2) � u(r1)v =R 0, and hen
e the 
ongruen
e generated by R0 := R [ fsg 
oin
ides with =R.2Example 3.4.6 The free Q-
ategory generated by the graph below has arrows of the form kidA1 ; kidA2and k1a1 + k2a2 for k; k1; k2 2 Q. A1 a1 **a2 44 A2If we fa
tor this set of arrows by the relation 2a1 = a2 then we have a well-de�ned Q-
ategory whosemorphisms are 
ompletely represented by fkidA1 j k 2 Qg [ fkidA2 j k 2 Qg [ fka1 j k 2 Qg.3.5 Kan ExtensionsIn the last 
hapter we showed that a number of 
ombinatorial problems soluble by rewriting methods
ould be expressed in terms of the problem of 
omputing a parti
ular Kan extension over the 
ategory ofsets. In this se
tion, we investigate the Gr�obner basis analogue to this by expressing the presentation ofa non-
ommutative polynomial algebra as a problem of 
omputing a Kan extension over framed modules49



Mods (modules over a �xed �eld or ring).AsK is traditionally used to represent the �eld in Gr�obner basis 
al
ulations, and to di�erentiate betweenKan extensions over Sets, the notation (E; ") will be used to denote the Kan extension.Theorem 3.5.1 Let K be a �eld. Let A be the trivial K-
ategory generated by the graph with one obje
tA and the identity arrow 1A, and let B be the K-
ategory with one obje
t B, arrows generated by a setX and polynomial relations P . Let M : A! Mods be the K-fun
tor that maps A to the K-module K[1℄and let F : A! B be the K-fun
tor mapping A to B.Let � : K[Xy℄ ! K[Xy℄=hP i be the homomorphism mapping polynomials f of the free algebra to idealshP i + f in the quotient algebra. Let the dimension of the algebra be n and let f�(m1); : : : ; �(mn)g be amonomial basis.Then the Kan extension of M along F is the pair (E; "), where E : B ! Mods is the K-fun
tor de�nedby E(B) = K[�(m1); : : : ; �(mn)℄; E(f) is de�ned by E(f)(�(mi)) = �(mi)�(f) and " : M ! EF is givenby "A(1) = �(id).Proof It is required to verify that E as de�ned above, is a K-fun
tor, " is a natural transformation ofK-fun
tors, and that for any other su
h pair (E0; "0) there is a unique natural transformation � : E ! E0.First we verify that E is well-de�ned:E(f)(�(mi)) = �(mi)�(f) = �(mif) 2 EB be
ause f�(m1); : : : ; �(mn)g is a basis for �(K[X�℄).Also, E is a fun
tor preserving the K multipli
ation:E(f1f2)(�(mi)) = �(mif1f2) = E(f2)�(mif1) = E(f2)(E(f1)�(mi)) = E(f1) Æ E(f2)(�(mi)),E(kf)(�(mi)) = �(mi)�(fk) = �(mif)k = k�(mif) = kE(f)(�(mi)) andE(f1 + f2)(�(mi)) = �(mi(f1 + f2)) = �(mif1 +mif2)) = �(mif1) + �(mif2)= E(f1)(�(mi)) +E(f2)(�(mi)).Now we prove that " is a natural transformation: there is one generating arrow 1A in A and, for allk 2 K, we have "A(M(1A)(k)) = "(k) = k id and EF (1A)("A(k)) = E1B(k id) = k id.The universal property follows from the fa
t that EB is essentially the K-algebra B as a K-module,but we verify the property for 
ompleteness. Let (E0; "0) be a pair su
h that E0 is a K-fun
tor fromB! KMods and "0 is a natural transformation of K-fun
tors.Any natural transformation of K-fun
tors � : E ! E0 su
h that " Æ � = "0 must satisfy the 
ommutativediagram: M(A) "A //

"0A
%%EF (A) �FA //E(mi)

��

E0F (A)E0mi
��EF (A) �FA // E0F (A)whi
h allows the unique de�nition �(mi) = E0(mi)("0(1A)) for i = 1; : : : ; n. Hen
e (E; ") is universal. 2In Gr�obner basis 
omputations the set fm1; : : : ;mng is the set of irredu
ible monomials of the algebrawith respe
t to the ideal hP i, and so by using Gr�obner bases to 
al
ulate this set we 
al
ulate the Kanextension. 50



3.6 Con
luding RemarksIn relating Gr�obner bases to rewriting systems we have 
ome as far as expressing the presentation ofa non
ommutative polynomial algebra in the 
ategori
al terms of a Kan extension. It is not 
laimedthat this result is parti
ularly deep or diÆ
ult, but it illustrates the possibility of using Gr�obner basesto 
ompute di�erent types of Kan extensions. The result proves that the Kan extension 
an be used topresent a K-algebra, and so that there is a kind of Kan extension, (beyond the rewriting ones over sets)to whi
h Gr�obner basis methods of 
omputation may be applied.Expressing a presentation of a K-
ategory as a Kan extension 
auses more problems. The reason for thisis that the K-
ategory B presented may have arrows from di�erent sour
es leading into one target B. Inthis 
ase the 
olle
tion of irredu
ible monomial arrows with target B (whi
h we might expe
t to be EB)
annot be a K-module (more like a union of K-modules), as addition a
ross the hom-sets is not de�ned.Open questions remain, therefore, as to how to express the other algebra presentations in terms of Kanextensions, whi
h would be likely to yield methods for using Gr�obner bases to 
ompute a greater rangeof Kan extensions.
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Chapter 4Redu
tion and Ma
hinesIn the �rst se
tion automata are 
onsidered in the standard way, as a

eptors, but applied to the Kanextensions of Chapter 2. We show how to 
onstru
t automata whi
h a

ept the unique normal formsof the elements of ea
h set KB for B 2 Ob�. Creating a

epting automata for su
h stru
tures is new,and we des
ribe their 
onstru
tion from the 
omplete rewriting systems as well as showing how to applystandard automata theory [41℄ to obtain a regular expression for the language whi
h is the set of irre-du
ible elements. Further, we extend the ideas to algebras. It appears that some work is being done inthis line [60℄ (monomial a

eptors) but it is still appropriate to in
lude it here, to relate the 
on
epts.In the se
ond se
tion we move on to 
onsider a more useful 
lass of automata { those with output. Thesema
hines not restri
ted to a

epting or reje
ting strings, but 
an redu
e them into the unique irredu
iblerepresentative forms. The best known example of this is the use of the Cayley Graph to work out mul-tipli
ation of group elements. The use of the Cayley Graph as a redu
tion ma
hine is the �rst thingto be des
ribed. Rewriting systems for Kan extensions 
an be translated into redu
tion ma
hines forKan extensions. These ma
hines are de�ned as Moore ma
hines. The next 
onsideration is of redu
tionma
hines for algebras, whi
h are 
onstru
ted from the Gr�obner bases. I believe this to be a new idea.The 
onstru
tion and operation of the \Gr�obner ma
hines" is explained, using a small He
ke Algebra asan example.The �nal se
tion introdu
es a third type of ma
hine: a Petri net. There are many di�erent 
lasses of Petrinets, and we show how to 
onsider the \Gr�obner ma
hine" of the previous se
tion as a Petri net. Wealso show how 
ommutative Gr�obner bases may be applied to su

essfully solve the standard problemsposed for reversible Petri nets. This small se
tion spe
ulates on the relation between Petri nets andGr�obner bases and does not prove any results. It is hoped that it provides a starting point for furtherinvestigations into the relation between Petri nets and Gr�obner bases.4.1 Normal Forms A

eptors4.1.1 De�nitions and NotationFor a detailed introdu
tion to automata theory refer to [28℄ or [41℄. This se
tion only outlines the essen-tial ideas we use.A (�nite) deterministi
 automaton is a 5-tuple A = (S;�; s0; Æ;Q) where S is a �nite set of states (rep-resented by 
ir
les), s0 2 S is the initial state (marked with an arrow), � is a �nite alphabet, Æ : S��! Sis the transition, Q � S is the set of terminal states (represented by double 
ir
les). A deterministi
automaton A is 
omplete if Æ is a fun
tion, and in
omplete if it is only a partial fun
tion. If A isin
omplete, then when Æ(s; a) is unde�ned, the automaton is said to 
rash.52



The extended state transition Æ� is the extension of Æ to ��. It is de�ned by Æ�(s; id) := s,Æ�(s; a) := Æ(s; a), Æ�(s; aw) := Æ�(Æ(s; a); w) where s 2 S, a 2 � and w is a string in ��. We areinterested in the �nal state Æ�(s0; w) of the ma
hine after a string w has been 
ompletely read. If thema
hine 
rashes or ends up at a non-terminal state then the string is said to have been reje
ted. If itends up at a terminal state then we say the string is a

epted.A language over a given alphabet � is a subset L of ��. The set L(A) of all a

eptable strings isthe language a

epted by the automaton A. A language L is a re
ognisable if it is a

epted bysome automaton A. Two automata are equivalent if their languages are equal. The 
omplement ofa 
omplete, deterministi
 automaton is found by making non-terminal states terminal and vi
e versa. Ifthe language a

epted by an automaton is L, then the language a

epted by its 
omplement is �� � L.Lemma 4.1.1 ([28℄) Let A = (S;�; s0; Æ;Q) be an in
omplete deterministi
 automaton. Then thereexists a 
omplete deterministi
 automaton ACP su
h that L(A) = L(ACP ).Outline proof De�ne ACP = (S t d;�; s0; Æ1; Q) where the transition Æ1 : S � � ! S is de�ned byÆ1(s; a) := Æ(s; a) if Æ(s; a) is de�ned, otherwise Æ1(s; a) := d, and Æ1(d; a) := d. 2Diagrammati
ally this means that automata may be 
ompleted by adding one further non-terminal(dump) state d and adding in all the missing arrows so that they point to this state.A non-deterministi
 automaton is a 5-tuple A = (S;�; S0; Æ;Q) where S is a �nite set of states,S0 � S is a set of initial states, � is a �nite alphabet, Q � S is the set of terminal states and Æ : S��!P(S) is the transition mapping where P(S) is the power set.Lemma 4.1.2 ([28℄) Let A = (S;�; S0; Æ1; Q) be a non-deterministi
 automaton. Then there exists adeterministi
 automaton Ad su
h that L(Ad) = L(A).Outline proof De�ne Ad := (Sd;�; S0d; Æd; Qd) where Sd := P(S) then S0d = S0 2 Sd, Qd := fU 2P(S)jU \Q 6= ;g. De�ne Æd(U; a) := Su2U Æ(u; a) for a 2 �. It 
an be veri�ed that L(Ad) = L(A). 2In pra
ti
e a non-deterministi
 automaton may be made deterministi
 by drawing a transition tree andthen 
onverting the tree into an automaton; for details of this see [28℄.Let � be a set (alphabet). The following notation is standard when working with languages. The emptyword will be denoted id. If x 2 �� then we will write x for fxg. If A;B 2 P�� then A + B := A [ B,A�B := A=B. Therefore, for example (x+ y)� + z = fx; yg� [ fzg.A regular expression over � is a string of symbols formed by the rulesi) a1 � � � an is regular for a1; : : : ; an 2 �,ii) ; is regular,iii) id is regular,iv) if x and y are regular then xy is regular,v) if x and y are regular then x+ y is regular,vi) if x is regular then x� is regular.A right linear language equation over � is an expression X = AX +E where A;X;E � ��.53



Theorem 4.1.3 (Arden's Theorem [28℄) Let A;X;E � �� su
h that X = AX +E where A and Eare known and X is unknown. Theni) A�E is a solution,ii) if Y is any solution then A�E 2 Y ,iii) if id 62 A then A�E is the unique solution.Theorem 4.1.4 ([28℄) A system of right linear language equations:X0 = A0;0X0 + � � � + A0;n�1Xn�1 + E0,X1 = A1;0X0 + � � � + A1;n�1Xn�1 + E1,� � � � � � � � � � � � � � � � � � � � � � � �Xn�1 = An�1;0X0 + � � � + An�1;n�1Xn�1 + En�1.where Ai;j; Ei 2 (��) and id 62 Ai;j for i; j = 0; : : : ; n� 1, has a unique solution.Outline proof Begin with the last equation. By assumption id 62 An�1;n�1. So by Arden's theo-rem Xn�1 = A�n�1;n�1(An�1;0X0 + � � � + An�1;n�2Xn�2 + En�1). Substitute this value for Xn�1 intothe remaining n� 1 equations and repeat the pro
edure. Eventually an equation in X0 only will be ob-tained whi
h 
an be solved expli
itly. The ba
k-substitution will give expli
it values of X1; : : : ;Xn�1. 2Theorem 4.1.5 ([28℄) Let A be a (non)-deterministi
 automaton. Then L(A) is regular.Outline proof (for the deterministi
 
ase)Let A := (S;�; s0; Æ;Q) where S = fs0; : : : ; sn�1g. De�ne Xi := fz 2 �� : Æ(si; z) 2 Qg for i =0; : : : ; n � 1. It is 
lear that L(A) = X0. De�ne Ei := ; if si 62 Q and Ei := fidg if si 2 Q fori = 0; : : : ; n� 1. De�ne Ai;j := fa 2 � : Æ(si; a) = sjg for i; j = 0; : : : ; n� 1. Form the following system:X0 = A0;0X0 + � � � + A0;n�1Xn�1 + E0,X1 = A1;0X0 + � � � + A1;n�1Xn�1 + E1,� � � � � � � � � � � � � � � � � � � � � � � �Xn�1 = An�1;0X0 + � � � + An�1;n�1Xn�1 + En�1.This system of n right linear equations in n unknowns satis�es the 
onditions of the previous theorem andtherefore has a unique solution. Moreover, the solution 
an easily be 
onverted into regular expressions.2So every non-deterministi
 automaton gives rise to a system of language equations from whose solutionsa des
ription of the language may be obtained.Theorem 4.1.6 (Kleene's Theorem [28℄) A language L is regular if and only if it is re
ognisable.4.1.2 A

eptors for Kan ExtensionsThroughout this se
tion we will use the notation introdu
ed in Chapter Two. Re
all that a presentationof a Kan extension (K; ") is a quintuple P := kanh�j�jRelBjXjF i where � and � are graphs, RelB isa set of relations on P := P�, while X : �! Sets and F : �! P are graph morphisms. Elements of theset T := GB2Ob� GA2Ob�XA� P(FA;B)54



are written t = xjb1 � � � bn with x 2 XA, and b1; : : : ; bn 2 Arr� are 
omposable with sr
(b1) = FA. Thefun
tion � : T ! Ob� is de�ned by �(xjb1 � � � bn) := tgt(bn) and the a
tion of P on T , written t � p fort 2 T , p 2 ArrP, is de�ned when �(t) = sr
(p).In Chapter Two we de�ned an initial rewriting system Rinit := (R"; RK) on T , and gave a pro
edure forattempting to 
omplete this system. We will be assuming that the pro
edure has terminated, returninga 
omplete rewriting system R = (RT ; RP ) on T . In this se
tion automata will be used to �nd regularexpressions for ea
h of the sets KB for B 2 Ob�.Re
all that tXA is the union of the images under X of all the obje
ts of � and tKB is the union ofthe images under K of all the obje
ts of �. In general the automaton for the irredu
ible terms whi
hare a

epted as members of tKB is the 
omplement of the ma
hine whi
h a

epts any string 
ontainingunde�ned 
ompositions of arrows of B, any string not 
ontaining a single xi on the left-most end, andany string 
ontaining the left-hand side of a rule. This essentially uses a semigroup presentation of theKan extension.Lemma 4.1.7 Let P present the Kan extension (K; "). Then the set tKB may be identi�ed with thenon-zero elements of the semigroup having the presentation with generating setU := (tXA) tArr� t 0and relations0u = u0 = 0 for all u 2 U ,ux = 0 for all u 2 U; x 2 tXA,xb = 0 for all x 2 XA; A 2 Ob�; b 2 Arr� su
h that sr
(b) 6= FA,b1b2 = 0 for all b1; b2 2 Arr� su
h that sr
(b2) 6= tgt(b1)x(Fa) = (x � a) for all x 2 XA; a 2 ArrA su
h that sr
(a) = A,l = r for all (l; r) 2 RelB.Proof The semigroup de�ned is the set of equivalen
e 
lasses of T with respe
t to the se
ond tworelations (i.e. the Kan extension rules R" and RK) with a zero adjoined and multipli
ation of any two
lasses of T de�ned to be zero. 2Lemma 4.1.8 Let P be a presentation of a Kan extension (K; "). Then T is a regular language overthe alphabet � := (tXA) tArr�.Proof To prove that T is regular over � we de�ne an automaton with input alphabet � whi
h re
ognisesT � ��. De�ne A := (S;�; s0; Æ;Q) where S := Ob� t s0 t d, Q := Ob� and Æ is de�ned as follows:Æ(s0; u) :=� FA for u 2 XA;A 2 Ob�d otherwise.for B 2 Ob�; Æ(B; u) :=� tgt(u) for u 2 Arr�; sr
(u) = Bd otherwise.Æ(d; u) := d for all u 2 �:It is 
lear from the de�nitions that the extended state transition Æ� is su
h that Æ�(so; t) 2 Ob� if andonly if t 2 T . Hen
e L(A) = T . 2Theorem 4.1.9 Let P be a presentation of a Kan extension (K; "). Let R be a �nite rewriting systemon T . Then the set of elements IRR(!R) � T whi
h are irredu
ible with respe
t to !R is a regularlanguage over the alphabet � := tXA tArr�. 55



Proof We de�ne an in
omplete non-deterministi
 automaton A with input alphabet �, and language�� � IRR(!R) i.e. that reje
ts only the irredu
ible elements of T and a

epts all redu
ible and unde-�ned elements. This is suÆ
ient proof for the theorem, sin
e a language re
ognised by an in
ompletenon-deterministi
 automaton A is re
ognisable and therefore regular. The 
omplement of �� � IRR(R)is IRR(R) and therefore if �� � IRR(R) is regular then IRR(R) is regular.Begin by de�ning L(RT ) and L(RP ) to be the sets of left hand sides of rules of RT and RP respe
tively.Then de�ne PL(RT ) and PL(RP ) to be the sets of all pre�xes of elements of L(RT ) and L(RP ) and de�nePPL(RT ) and PPL(RP ) to be the sets of all proper pre�xes of elements of L(RT ) and L(RP ). The properpre�xes of a term xjb1 � � � bn are the terms xjb1; : : : ; xjbn�1. Note that ea
h x has its own state and wedo not require that xjid is a pre�x. Similarly the proper pre�xes of a path b1 � � � bn are the elementsb1; : : : b1 � � � bn�1. The di�eren
e between proper pre�xes and pre�xes is that xjb1 � � � bn is 
onsidered tobe a pre�x of itself (but not a proper one), similarly for b1 � � � bn. Note PPL(RT ) [ L(RT ) = PL(RT ),similarly for RP .De�ne A := (S;�; s0; Æ;Q) where S := s0 t (Ob� [ (tXA) [ PPL(RT ) [ PPL(RP )) tD, Q := s0 tD.Let x; b 2 � so that x 2 tXA and b 2 Arr�. Let x1 2 tXA, B 2 Ob�, u 2 PPL(RP ) and p 2 PPL(RP ).De�ne the transition Æ : S � �! P(S) by:Æ(s0; x) := � fxg if x 62 L(RT );fDg if x 2 L(RT );Æ(s0; b) := fDg;Æ(y; x) := fDg;Æ(y; b) := 8>><>>: fx1jb; tgt(b)g if x1jb 2 PPL(RT );ftgt(b)g if �(y) = sr
(b); yjb 62 PL(RT );fDg if x1jb 2 L(RT );fDg if �(y) 6= sr
(b);Æ(B; x) := fDg;Æ(B; b) := 8>><>>: fb; tgt(b)g if sr
(b) = B; b 2 PPL(RP );ftgt(b)g if sr
(b) = B; b 62 PL(RP );fDg if sr
(b) = B; b 2 L(RP );fDg if sr
(b) 6= B;Æ(u; x) := fDg;Æ(u; b) := 8>><>>: fu � b; tgt(b)g if u � b 2 PPL(RT );ftgt(b)g if �(u) = sr
(b); u � b 62 PL(RT );fDg if u � b 2 L(RT );fDg if �(u) 6= sr
(b);Æ(p; x) := fDg;Æ(p; b) := 8>><>>: fpb; tgt(b)g if pb 2 PPL(RP );ftgt(b)g if tgt(p) = sr
(b); pb 62 PL(RP );fDg if pb 2 L(RP );fDg if tgt(p) 6= sr
(b);Æ(D;x) := fDg;Æ(D; b) := fDg:It follows from these de�nitions that the extended state transition fun
tion Æ� is su
h that Æ�(s0; t)\Q 6= ;if and only if t is in �� � T or if some part of t is the left-hand side of a rule of R (i.e. if t is redu
ible).Therefore �� � IRR(R) is regular, hen
e IRR(R) is regular. 256



Corollary 4.1.10 Let R be a �nite 
omplete rewriting system for a Kan extension (K; "). Then regularexpressions for the sets KB of the extended a
tion K 
an be 
al
ulated.Outline proof This follows from the pre
eding results. The automaton A of the theorem 
an be 
on-stru
ted using the spe
i�
ations in the proof. By the results quoted in the introdu
tion to this 
haptera 
omplete deterministi
 automaton that re
ognises the same language 
an be de�ned. The 
omplementof this has a language that 
an be identi�ed with tKB. Language equations for this automaton 
an bewritten down and Arden's theorem may be applied to �nd a solution, whi
h gives the language of theautomaton as a regular expression. 2The following example illustrates the 
al
ulations outlined above.Example 4.1.11 We 
onstru
t simple automata whi
h a

ept the terms whi
h represent elements ofsome set KB for B 2 ObB for the general example of a Kan extension 2.7. Re
all that the graphs wereA1 a1 ** A2a2jj B1b4 )) b1 //b5 ''

B2b2~~||||||||B3b3``BBBBBBBBThe relations are RelB = fb1b2b3 = b4g, X was de�ned by XA1 = fx1; x2; x3g;XA2 = fy1; y2g withXa1 : XA1 ! XA2 : x1 7! y1; x2 7! y2; x3 7! y1, Xa2 : XA1 ! XA2 : y1 7! x1; y2 7! x2; and F wasde�ned by FA1 = B1, FA2 = B2, Fa1 = b1 and Fa2 = b2b3.The 
ompleted rewriting system was:x1jb1 ! y1jidB2 , x2jb1 ! y2jidB2 , x3jb1 ! y1jidB2 , y1jb2b3 ! x1jidB1 ,y2jb2b3 ! x2jidB1 , x1jb4 ! x1jidB1 , x2jb4 ! x2jidB1 , x3jb4 ! x1jidB1 ,b1b2b3 ! b4.The proper pre�x sets are PPL(RT ) := fy1jb2; y2jb2g and PPL(RP ) := fb1; b1b2g. The following tablede�nes the in
omplete non-deterministi
 automaton whi
h reje
ts only the terms of T that are irredu
iblewith respe
t to the 
ompleted relation !. The alphabet over whi
h the automaton is de�ned is � :=fx1; x2; x3; y1; y2; b1; b2; b3; b4; b5g.state/letter x1 x2 x3 y1 y2 b1 b2 b3 b4 b5s0 x1 x2 x3 y1 y2 D D D D Dx1 D D D D D D D D D B3x2 D D D D D D D D D B3x3 D D D D D D D D D B3y1 D D D D D D y1jb2; B3 D D Dy2 D D D D D D y2jb2; B3 D D Dy1jb2 D D D D D D D D D Dy2jb2 D D D D D D D D D DB1 D D D D D b1; B2 D D B1 B3B2 D D D D D D B3 D D DB3 D D D D D D D B1 D Db1 D D D D D D b1b2; B3 D D Db1b2 D D D D D D D D D DD D D D D D D D D D D57



By 
onstru
ting the transition tree for this automaton, we will make it deterministi
. The next pi
tureis of the partial transition tree { the arrows to the node marked fDg are omitted.s0x1hhhhhhhhhhhh

sshhhhhhhhhhh x2pppppp

wwppppp x3
��

y1QQQQQQQ

((QQQQQQ y2XXXXXXXXXXXXXXX

++XXXXXXXXXXXXXXfx1gb5
��

fx2gb5
��

fx3gb5
��

fy1gb2
��

fy2gb2
��fB3gb3

��

fB3g fB3g fy1jb2; B3gb3
��

fy2jb2; B3gb3
��fB1gb1

��
b4KKKK

%%KKKK

b5 // fB3g fD;B1gb1nnnnn

wwnnnnn b4
��

b5OOOOO

''OOOOO

fD;B1gfb1; B2gb2
��

fB1g fD; b1; B2gb2
��

fD;B1g fD;B3gb3
��fb1b2; B3gb3

��

fD; b1b2; B3gb3
��

fD;B1gfD;B1g fD;B1gThe tree is 
onstru
ted with stri
t observation of the order on tXA and Arr�, all arrows are drawnfrom fs0g and then arrows from ea
h new state 
reated, in turn. When a label e.g. fB3g o

urs thatbran
h of the tree is 
ontinued only if that state has not been de�ned previously. Eventually the stage isrea
hed where no new states are de�ned, all the bran
hes have ended. The tree is then 
onverted into anautomaton by `gluing' all states of the same label. The initial state is fs0g and a state is terminal if itslabel 
ontains a terminal state from the original automaton. The automaton 
an often be made smaller,for example, here all the terminal states may be glued together. One possibility is drawn below:
��
?>=<89:;765401230x1;x2;x3����

������
y1;y2>>>>

��>>>>

?>=<89:;1b5
��

?>=<89:;2b2
��

?>=<89:;3 b3 // ?>=<89:;4b5oo b4 TT b1����

@@����

?>=<89:;5Here the state S1 is labelled 1 and 
orresponds to the glueing together of fx1g, fx2g and fx3g to formfx1; x2; x3g and the state S2 is fy1; y2; b1; B2g. States S3 and S4 represent fB3g and fB1g respe
tivelyand state S5 is fy1jb2; y2jb2; B3; b1b2g. The 
omplement of this automaton a

epts all irredu
ible elementsof tKB. When S1 and S4 are terminal the language a

epted is KB1. When S2 is terminal the languagea

epted is KB2. When S3 and S5 are terminal the language a

epted is KB3. The language equationsfrom the automaton for KB1 are:
58



X0 = (x1 + x2 + x3)X1 + (y1 + y2)X2;X1 = b5X3 + idB1 ;X2 = b2X5;X3 = b3X4;X4 = b1X2 + b4X4 + b5X3 + idB1 ;X5 = ;:Putting X2 = ; and eliminating X1 and X3 by substitution givesX0 = (x1 + x2 + x3)(b5b3X4 + idB1);X4 = (b4 + b5b3)X4 + idB1 :Finally, applying Arden's Theorem to X4 we obtain the regular expressionX0 = (x1 + x2 + x3)j(b5b3(b4 + b5b3)� + idB1):The separator \j" may be added at this point. Similarly, we 
an obtain regular expressions for KB2 andKB3. For KB2 we haveX0 = (x1 + x2 + x3)jb5b3(b4 + b5b3)�b1 + (y1 + y2)jidB2 :For KB3 the expression isX0 = (x1 + x2 + x3)j(b5b3(b4 + b5b3)�(b1b2 + b5) + b5) + (y1 + y2)jb2:4.1.3 A

epting Automata for AlgebrasWe have dis
ussed automata for rewriting systems whi
h a

ept only irredu
ible words. The 
on
ept willnow be generalised to Gr�obner bases. The irredu
ibles of an algebra K[S℄=hP i in whi
h we are interestedare the irredu
ible monomials; redu
ibility of a polynomial is determined by redu
ibility of the monomialsit 
ontains. Therefore the automaton we draw is over the alphabetX, the generators of S and the languageit a

epts is the set of irredu
ible monomials. The automaton below is for the in�nite dimensional algebraQ [fa; bgy ℄ fa
tored by the ideal generated by the Gr�obner basis fa3 � b+ 2; ba2b� 2b2 + 4ag.
/.-,()*+�������� a //b
��

/.-,()*+�������� a????

��????b�������

���������
///.-,()*+

a����

??����b????

��????

/.-,()*+ a;bee

/.-,()*+�������� a //b YY /.-,()*+�������� a //boo /.-,()*+��������
a;bOOThe point of drawing a

eptor automata is to �nd ni
e expressions for the sets of irredu
ibles. If analgebra is �nite then the number of irredu
ible monomials it has is the dimension of the algebra. In thein�nite example above we 
an at least �nd a regular expression for the set of irredu
ible monomials.It is: (a2b+ ab+ b)(ab+ b)�(a2 + a+ id) + (a2 + a)Any element of the algebra is then uniquely expressible as a sum of K-multiples of these monomials.59



It is possible to adapt the automaton so that it a

epts polynomials by allowing + and � to be elementsof the input alphabet, with transitions (from ea
h state) labelled by + and � going to the initial state,and by adding k for k 2 K as a loop at the initial state. In this way it may be possible to de�neautomati
 algebras. One diÆ
ulty to su
h a de�nition is the fa
t that a multiplier/equality re
ogniserhas to re
ognise that two polynomials are equal though the terms may be input in a di�erent order (b+a2and a2 + b). There is not the option, as with the a

eptor, of working only with monomials. The reasonfor this is that the normal form of a monomial w multiplied by a generator x (as if to de�ne the multiplierautomaton) may well not be a monomial. We mention these issues in passing, only here being 
on
ernedwith the a

eptors and with the redu
tion ma
hines (next se
tion).4.2 Redu
tion Ma
hines4.2.1 Cayley GraphsThe Cayley graph � of a group G with generating set X, and quotient morphism � : F (X) ! G isthe graph with vertex set Ob� := G and edge set Arr� := G �X with sr
[g; x℄ = g, tgt[g; x℄ = g�(x).The Cayley graph is a representation of the whole multipli
ation table for the group. In this se
tion weindi
ate how to use the Cayley graph of a group to help with rewriting pro
edures. The results are notsurprising, but formalise 
ertain pro
edures whi
h may sometimes be useful.Proposition 4.2.1 Let G be the group given by the �nite presentation grphXjReli. Let � be the Cayleygraph of G. Let � : F (X) ! G be the quotient map. Let > be the length-lex order on X� indu
ed by alinear order on X. Then > spe
i�es a tree in the Cayley graph and a vertex labelling V � X� where forall w1 2 V , w2 2 F (X) su
h that �(w1) = �(w2) it is the 
ase that w2 > w1 or w2 = w1.Proof Sin
e G is �nite the inverse of any generator 
an be represented by a positive power. So for anyword r 2 F (X) there is a word r+ obtained by repla
ing ea
h x�1 with xOrder(x)�1, with �(r) = �(r+).Therefore we 
onsider the presentation monhXjRi where R := f(r+; id) : r 2 Relg of G. Let T := ;,V := ;. Start at vertex id and add this label to V . Go through the elements of X in order, adding theedge [id; x℄ to T whenever it will not 
reate a 
y
le in the graph. When an edge [id; x℄ is added to T thetarget vertex label x should be added to V . Clearly, if xi 2 V and �(xi) = �(xj) for some xj in X thenxj > xi and xj 62 V or else xj = xi.Now repeat the following step until all the verti
es of the graph are represented in V ; that is until�(V ) = G. Choose the vertex with least label w of V in the graph and go through the elements of X inorder adding edges [w; x℄ to T whenever �(wx) 62 �(V ). This is the 
ondition that to add that edge willnot 
reate a 
y
le. For ea
h new edge [w; x℄ added to T , add the vertex label wx to V .It is immediate from the indu
tive 
onstru
tion that the set of vertex labels V is least in the sense thatfor any w in V , w is the least element of F (X) with respe
t to > with image �(w). Furthermore, sin
e� is 
onne
ted and edges are 
hosen so as not to 
reate 
y
les, T de�nes a spanning tree of � with edges[�(w); x℄. 2Corollary 4.2.2 The set of vertex labels V is a set of unique normal forms for G in F (X) and the treeT de�nes a normal form fun
tion N : F (X)! V .Proof It is immediate from the last result that V is a set of unique normal forms for R on X�. The nor-mal form fun
tion is de�ned by using the Cayley graph as a redu
tion ma
hine operating on F (X). Letx"00 x"11 � � � x"mm be an input word where "i := �1 and xi 2 X. Start at the vertex with label id and followthe path [id; x"00 ℄[�(x"00 ); x"11 ℄ � � � [�(x"00 � � � x"m�1m�1 ); x"mm ℄. The label of the target vertex �(x"00 x"11 � � � x"mm ) isthe least element w 2 F (X) su
h that �(w) = �(x"00 x"11 � � � x"mm ). This de�nes a normal form fun
tion N .60



2Example 4.2.3 Consider the Cayley graph for the dihedral group D8 whi
h is presented bygrpha; bja4; b2; ababi. The Cayley graph is depi
ted below, with the verti
es labelled a

ording to theordering indu
ed by a < b. a3
a
��

b@@@

  @@@@
a2aks b||||

||||

z� ||||||ba a //
b@@@@

``@@@ a2ba
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abaoo bCCCC

!!CCCCid a +3
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a
KS
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CCCConsider the word aba3b. Beginning at id follow the path to a. Read b and go to vertex ab. Read a andso go to vertex b. When the �nal b is read, it takes us to the vertex with label a2, hen
e N(aba3b) = a2.4.2.2 Redu
tion Ma
hines for Kan ExtensionsWe now generalise the redu
tion ma
hine idea to Kan extensions. Formally, standard output automataare de�ned in two ways, as Moore ma
hines or Mealy ma
hines (see [41℄). The redu
tion ma
hines hereare Moore ma
hines.A Moore ma
hine is a six-tuple M := (S;�; s0; Æ; �;�) where S is the set of states with an initial states0, � is the input alphabet, � is the output alphabet, Æ is the transition fun
tion from S � �! S and� : S ! � is a mapping whi
h gives the output asso
iated with ea
h state. (All states are \terminal".)As before Æ� denotes the extended state transition fun
tion.We 
ontinue with the assumption that P := kanh�j�jRelBjXjF i is the �nite presentation of the Kanextension (K; ") and R = (RT ; RP ) is a �nite 
omplete rewriting system on the P-set T given by P. Wewill only work with �nite ma
hines, so for the rest of this 
hapter the Kan extensions will be assumed tobe �nite i.e. tKB is �nite.Proposition 4.2.4 Let P be a presentation of a �nite Kan extension, with 
omplete rewriting systemR. Then there exists a Moore ma
hine M = (S;�; s0; Æ; �;�) su
h that �(Æ(w)) is the irredu
ible formof w with respe
t to !R on T .Proof De�ne a Moore ma
hine M in the following way. Let S := (T= �$R) t s0 t d, � := XA t Arr�,and � := T t 0. Let s0 be the initial state. De�ne Æ : S � T ! S by Æ(s0; x) := [xjidFA℄ andÆ([t℄; x) = Æ(d; x) := d for all x 2 XA;A 2 Ob� and t 2 T ; and Æ([t℄; b) := [t � b℄ for all t 2 T; b 2 Arr�su
h that �(t) = sr
(b) and Æ([t℄; b) = Æ(s; b) = Æ(d; b) := d otherwise. Then de�ne � : S ! � by�(s) = �(d) = 0 and �([t℄) := N(t). It is 
lear from these de�nitions that �(Æ(s; t)) = N(t) for all t 2 T .261



Example 4.2.5 We 
on
lude this subse
tion with an example of a redu
tion ma
hine for a Kan exten-sion. Let P be a Kan extension where � and � are as follows:A1 a1
��a2 CCA2 B1 b1 // B2 b2 // b4 99B3b5 �� b3 // B4The relations of B are RelB := f(b2b5b3; b4); (b25; b5)g. The fun
tors F and X are de�ned by:- FA1 := B1,FA2 := B4, Fa1 := b1b2b3, Fa2 := b1b4 and XA1 := fx1; x2; x3g; XA2 := fy1; y2g, Xa1 : XA1 ! XA2 :x1 7! y1; x2 7! y1; x3 7! y2, Xa2 : XA1 ! XA2 : x1 7! y1; x2 7! y2; x3 7! y2. The initial rewritingsystem is in fa
t 
omplete. It isfx1jb1b2b3 ! y1jidB4; x2jb1b2b3 ! y1jidB4; x3jb1b2b3 ! y2jidB4; x1jb1b4 ! y1jidB4;x2jb1b4 ! y2jidB4; x3jb1b4 ! y2jidB4; b2b5b3 ! b4; b25 ! b5g:Following the dire
tions in the proof above we 
onstru
t the Moore ma
hine. There are 14 states [t℄ 2 Sand also the initial state s and the dump state d whi
h reje
ts any terms that are not de�ned in T .�(S) := fd; x1jidB1; x2jidB1; x3jidB1; y1jidB4; y2jidB4;x1jb1; x2jb1; x3jb1; x1jb1b2; x2jb1b2; x3jb1b2; x1jb1b2b5; x2jb1b2b5; x3jb1b2b5g:The non-trivial part of the transition fun
tion is as follows:Æ(s; x1) = [x1jidB1℄ Æ(s; x2) = [x2jidB1℄ Æ(s; x3) = [x3jidB1℄Æ(s; y1) = [y1jidB4℄ Æ(s; y2) = [y2jidB4℄ Æ([x1jidB1℄; b1) = [x1jb1℄Æ([x2jidB1℄; b1) = [x2jb1℄ Æ([x3jidB1℄; b1) = [x1jb1℄ Æ([x1jb1℄; b2) = [x1jb1b2℄Æ([x1jb1℄; b4) = [y1jidB4℄ Æ([x2jb1℄; b2) = [x2jb1b2℄ Æ([x2jb1℄; b4) = [y2jidB4℄Æ([x3jb1℄; b2) = [x3jb1b2℄ Æ([x3jb1℄; b4) = [y2jidB4℄ Æ([x1jb1b2℄; b3) = [y1jb1℄Æ([x1jb1b2℄; b5) = [y1jb2℄ Æ([x2jb1b2℄; b3) = [y2jb1℄ Æ([x2jb1b2℄; b5) = [y2jb2℄Æ([x3jb1b2℄; b3) = [y1jb1℄ Æ([x3jb1b2℄; b5) = [y2jb2℄The ma
hine 
an be represented by a diagram { states have not been 
ir
led as the labels are too long,and the state d whi
h reje
ts anything not de�ned is not drawn.

��s0x1hhhhhhhhhhhh
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LL
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RR

b5 UU x3jb1b2b5b3
RR

b5 UUThis example serves to illustrate the prin
iple of 
onverting a 
omplete rewriting system R on T for whi
hthere are a �nite number of irredu
ibles into a ma
hine whi
h a

epts terms of T (whi
h may be in�nite)and gives as output their irredu
ible form i.e. representatives of elements of tKB.62



4.2.3 Redu
tion Ma
hines for AlgebrasWe have shown how to use general rewriting systems to 
onstru
t automata. In a similar way Gr�obnerbases may be used to 
onstru
t redu
tion ma
hines for �nite dimensional algebras. The 
on
epts of re-du
tion ma
hines for the previous stru
tures were new but based on standard automata for semigroups.The Gr�obner redu
tion ma
hines for algebras are di�erent from basi
 output automata.Let K be a �eld and let X be a set. Let !R be a redu
tion relation on K[Xy℄. We de�ne a redu
tionma
hine M to be a marked graph whose verti
es V are labelled by monomials of X� that are irre-du
ible with respe
t to !R. (The monoid identity id represents the algebra identity 1.) Edges havethe form (
; x) with 
 2 K, x 2 X and from every vertex m there will be at least one edge (
; x) forea
h x 2 X. The targets of these edges are the monomials of the redu
ed form of mx with respe
t to!R.A state of the ma
hine 
an be represented by a ve
tor in K[Xy℄n, where n is the number of verti
es. Thevalue at ea
h vertex represents the unpro
essed input. When the Cayley graph ma
hines were 
onsideredin this way, the state of a ma
hine was essentially a fun
tion V ! F (X). Thus it seems reasonable thatthe state of a Gr�obner ma
hine should be represented by a fun
tion V ! K[Xy℄. Essentially the state ofa ma
hine is the spe
i�
ation of a value v 2 K[Xy℄ for ea
h vertex m.The ma
hine a
ts by reading the �rst letter x1 2 X of a monomial x1 � � � xn of the value v at a vertex mand moves to a new state determined by all the edges leaving m that are labelled (
i; x1) and have targetmi. The value at m is de
reased by kx1 � � � xm where k is the 
oeÆ
ient of x1 � � � xn in v and the valueat ea
h mi 2 S is in
reased by 
ix2 � � � xn. The vital di�eren
e between these ma
hines and earlier onesis that monomials 
an redu
e to polynomials, and so there may be more than one arrow with the sameletter label 
oming from a vertex. This be
omes 
learer on examination of an example.Example 4.2.6 The third He
ke algebra is Q [fe1 ; e2g�℄=hP i whereP := fe21 � e1; e22 � e2; e2e1e2 � e1e2e1 + 2=9 e2 � 2=9 e1g:In fa
t P is a Gr�obner basis for this algebra. The algebra has dimension 6, the irredu
ible monomialsbeing id; e1; e2; e1e2; e2e1; e1e2e1. We draw a ma
hine whi
h a
ts to redu
e polynomials in Q [fe1 ; e2g�℄The edges have two labels; a generator e1 or e2 and a 
oeÆ
ient from Q , (1 where unmarked). Forexample e1e2e1e2 redu
es to e1e2e1 � 29e1e2 + 29e1 so there are three arrows with letter label e2 
omingout of the vertex e1e2e1.The following diagram shows the \Gr�obner ma
hine" for the He
ke algebra de�ned above.ide1uuuuu

zzuuuu e2IIIII

$$IIIIe1e1 '' e2
��

e2 e2wwe1
��e1e2 e1JJJJ

$$JJJJ

e2 (( e2e1 e1vv
e2TTTTTTTTT

29jjTTTTTTTTTT e2tttt

zztttt

e2� 29 OO

e1e2e1e2� 29PP e1vv

e2 29aa

e2EEThe ma
hine operates to redu
e monomials, for example: e1e2e1e2e1. Start with the value e1e2e1e2e1 atvertex id. Read e1 and the new state of the ma
hine is given by the value e2e1e2e1 at e1 and 0 elsewhere.63



Read e2 and the state is now given by the value e1e2e1 at e1e2 and 0 elsewhere. Read e1 and the state ofthe ma
hine is e2e1 at e1e2e1 and 0 elsewhere. Read e2 and the new state is given by e1 at e1e2e1, �2=9e1at e1e2 and 2=9e1 at e1 with 0 elsewhere. At vertex e1e2e1 read e1 and the new state of the ma
hine is 1at e1e2e1 and the values of the other verti
es un
hanged. At vertex e1e2 read �2=9e1 and the new stateof the ma
hine is given by 7=9 at e1e2e1 and 2=9e1 at e1 and 0 elsewhere. To �nish, read 2=9e1 at e1,and the �nal state of the ma
hine is given by the values of 7=9 at state e1e2e1, 2=9 at e1 and 0 elsewhere.The output polynomial is therefore 7=9e1e2e1 + 2=9e1, this is the irredu
ible form of e1e2e1e2e1.The \Gr�obner Ma
hines" des
ribed are really no more than \pi
tures" of the Gr�obner bases. We willformalise the ideas of redu
tion ma
hines for algebras, for the general 
ase, by using Petri nets.4.3 Petri netsThis se
tion introdu
es Petri nets and formalises the \Gr�obner ma
hines" devised in the previous se
tionin terms of these well-de�ned stru
tures.4.3.1 Introdu
tion to Petri netsPetri nets are a graphi
al and mathemati
al modelling tool appli
able to many systems. They maybe used for spe
ifying information pro
essing systems that are 
on
urrent, asyn
hronous, distributed,parallel, non-deterministi
, and/or sto
hasti
. Graphi
ally, Petri nets are useful for illustrating and de-s
ribing systems, and tokens 
an simulate the dynami
 and 
on
urrent a
tivities. Mathemati
ally, it ispossible to set up models su
h as state equations and algebrai
 equations whi
h govern the behaviour ofsystems. Petri nets are understood by pra
titioners and theoreti
ians and so provide a powerful link of
ommuni
ation between them. For example engineers 
an show mathemati
ians how to make pra
ti
aland realisti
 models, and mathemati
ians may be able to produ
e theories to make the systems moremethodi
al or eÆ
ient. A good introdu
tion to the ideas of Petri nets is [58℄.An integer-valued Petri net is a kind of dire
ted graph together with an initial state (
alled an initialmarking M0). The underlying graph of a Petri net is a dire
ted, weighted bipartite graph. The twokinds of verti
es are pla
es (represented by 
ir
les) and transitions (represented by re
tangles). Edgesgo between pla
es and transitions and are labelled with their weights. A marking assigns a non-negativeinteger to ea
h pla
e. If a pla
e p is assigned k in a marking then we say p has k tokens (representedby bla
k dots). In modelling, pla
es represent 
onditions and transitions represent events. A transitionhas input and output pla
es, whi
h represent pre
onditions and post
onditions (respe
tively) of the event.A Petri net (without spe
i�
 initial marking) is a 4-tuple N = (P; T;F ; w) where:P = fp1; : : : ; pmg is a �nite set { the pla
es,T = ft1; : : : ; tng is a �nite set { the transitions,F � (P � T ) [ (T � P ) is a set of edges { the 
ow relation,w : F ! N is a weight fun
tion,and P \ T = ;, P [ T 6= ;.The state of a Petri net is represented by a marking. A marking is a fun
tion M : P ! N + f0g. LetN be a Petri net where ea
h pla
e is given a distin
t label pi. To every marking M we will asso
iate apolynomial pol(M) := �P pM(p) that is the formal sum of terms where M(p) is a non-negative integerand p is a pla
e label.The behaviour of dynami
 systems may be des
ribed in terms of system states and 
hanges. A markingof a Petri net is 
hanged a

ording to the �ring rule:64



i) A transition t is enabled if ea
h input pla
e p of t is marked with at least w(p; t) tokens wherew(p; t) is the weight of the edge from p to t.ii) An enabled transition may or may not �re { depending on whether or not the relevant event o

urs.iii) Firing of an enabled transition t removes w(p; t) tokens from ea
h input pla
e p of t and adds w(t; q)tokens to ea
h output pla
e q of t where w(t; q) is the weight of the edge from t to q.Example 4.3.1 The markings of the nets below are given by the polynomials H2+2O2 and 2H2+2O2respe
tively. The transition t is enabled in the se
ond 
ase and not in the �rst:
?>=<89:;� H22 ��????????
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~~}}}}}}}}
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~~}}}}}}}}
O2t tEa
h transition t has an asso
iated polynomial pol(t) := �P pw(p; t)��P pw(t; p), that is the sum of theweights of tokens that a �ring of transition t takes from ea
h input pla
e minus the sum of weights of tokensthat it adds to ea
h output pla
e. A �ring/o

urren
e sequen
e is denoted by M0 t1! M1 t2! � � � tn! Mnwhere theMi are markings and the ti are transitions (events) transformingMi�1 intoMi. For i = 1; : : : ; nit follows from the de�nitions that pol(Mi) = pol(Mi�1) � pol(ti). Therefore the above �ring sequen
egives the information pol(Mn) = pol(M0)� pol(t1)� pol(t2)� � � � � pol(tn).Example 4.3.2 The formula 2H2 +O2 = 2H2O is represented by the transition in the diagrams below,the left diagram shows the initial marking and the right shows the marking after the transition has �red.
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/.-,()*+ H2O ?>=<89:;��H2OThe polynomial for the transition is 2H2 +O2 � 2H2O and the �ring sequen
e would be denoted 2H2 +2O2 t! O2 + 2H2O.One of the main problems in Petri net theory is rea
hability (see [32℄ for some examples). A marking Mis said to be rea
hable from a marking M0 in a net N , if there is a sequen
e of �rings that transformsM0 to M .De�nition 4.3.3 The rea
hability problem for a Petri net N is as follows:INPUT: M1, M2, two markings of M ,QUESTION: is M2 rea
hable from M1?Often a Petri net 
omes with a spe
i�ed initial markingM0. Then the rea
hability refers to rea
habilityfrom M0 and the rea
hability problem refers to de
iding whether a marking M is rea
hable from M0.Note: For the type of Petri nets de�ned so far rea
hability is de
idable [58℄ (in exponential time and spa
e).A Petri net N is 
alled reversible if a marking M2 is rea
hable from another marking M1 implies thatM1 is rea
hable from M2. A Petri net with initial marking may be 
alled reversible if there is alwaysa �ring sequen
e of events that will transform the net from any rea
hable marking ba
k to the initialmarking. 65



Proposition 4.3.4 Let N be a reversible Petri net. De�ne F := fpol(t) : t 2 Tg and let hF i be the idealgenerated by F in Z[P ℄. Let M and M 0 be two markings of N . Then M 0 is rea
hable from M only ifpol(M)� pol(M 0) 2 hF i.Proof From the de�nitions above, if M 0 is rea
hable from M then there is a �ring sequen
e M =M0 t1! M1 t2! � � � tn! Mn = M 0 so that pol(M 0) = pol(M) � pol(t1) � � � � � pol(tn). This implies thatpol(M)� pol(M 0) = pol(t1) + � � �+ pol(tn) 2 hF i. 2Example 4.3.5 Let N be the reversible Petri net given by the marked graph below:
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2
���������� 1

��???????? /.-,()*+d1
����������t1 2 ��???????? t21���������� 2 ��???????? t34����������

/.-,()*+e /.-,()*+fThe pla
es are P := fa; b; 
; d; e; fg and the polynomials de�ned by the transitions are t1 := a+ b � 2e,t2 := 2b+ 2
� e� 2f and t3 := 
+ d� 4f . A Gr�obner basis (using the order f > e > d > 
 > b > a) forthe ideal generated in Q [P ℄ isF := fd� 3
� 3b+ a; e� 12a� 12b; f + 14a� 34b� 
g:For any marking M the polynomial pol(M) may be redu
ed, using the relation !F de�ned by theGr�obner basis, to an irredu
ible form irr(M) 2 Q>0 [fa; b; 
g�℄. Here are three examples.pol(M0) = 2a+ 2b+ 3
+ d!F 2a+ 2b+ 3
� (�3
� 3b+ a) = a+ 5b+ 6
pol(M1) = 4e+ 2
+ 4f !F 4(12a+ 12b) + 2
+ 4(�14a+ 34b+ 
) = a+ 5b+ 6
pol(M2) = a+ d+ 3e+ 5f !F a+ (3
+ 3b� a) + 3(12a+ 12b) + 5(�14a+ 34b+ 
) = 14a+ 334 b+ 8
So M2 is not rea
hable from M0 be
ause the 
orresponding polynomials do not redu
e to the same form.It is here the 
ase that M1 is rea
hable from M0 but this result does not ne
essarily follow from theredu
ed polynomials for these markings being the same.Remark 4.3.6 We 
an draw a rational-valued Petri net that is equivalent to the original net N butwhose transition polynomials are the Gr�obner basis and whose markings are a fun
tion P ! Q>0 . Thisis 
onstru
ted by drawing a state for ea
h letter and a transition for ea
h polynomial. The ar
s into atransition 
ome from the letters with positive 
oeÆ
ient and are weighted with that 
oeÆ
ient. Similarlythe ar
s leaving a transition 
orrespond to the negative terms in the polynomial.4.3.2 Gr�obner Ma
hines as Petri-NetsThe Gr�obner ma
hine for redu
ing polynomials whi
h was des
ribed at the end of Se
tion 4.2 
an beexpressed quite ni
ely as a Petri net.Theorem 4.3.7 Let K be a �eld, let X be a set and let F � K[Xy℄ be a Gr�obner basis for the ideal hF i.Then there is a Petri net N whi
h 
an be marked with a polynomial f 2 K[Xy℄ so that any resultingsequen
e of �rings 
an be extended to a �nite sequen
e of �rings that terminates with a unique non-livestate. All states rea
hable from the initial marking may be identi�ed with polynomials that are equivalentunder =F to f . 66



Proof We will de�ne a type of Petri net and �ring rule from the Gr�obner basis. Let N := (P; T;F ; w).The set of pla
es P is the set of monomialsm of K[Xy℄ whi
h are irredu
ible with respe
t to!F , togetherwith an `initial' pla
e labelled id. The set of transitions T is identi�ed with P �X.The 
ow relation F is des
ribed as follows. The transition (m;x) has a single input edge from m withweight x. If mx 2 P then (m;x) has a single output edge to mx with weight 1. If mx 62 P then mx isthe leading monomial of some f = mx��ni=1kimi in F . In this 
ase there is an output edge from (m;x)to ea
h non-leading term in f , the edge to mi having weight ki.The Petri net just de�ned di�ers from the standard type in that the weight fun
tion returns elementsof K or elements of X rather than just integers. So w : F ! K[Xy℄. Similarly a marking is a fun
tionM : P ! K[Xy℄ and is identi�ed with the polynomial pol(M) := �P mM(m)Let M1 be a marking, with M1(m) 2 K[Xy℄ for ea
h m 2 P . Let (m;x) be an enabled transition, sothat M1(m) 
ontains a term kxv for some k 2 K, v 2 X�. If mx is irredu
ible, then when (m;x) �res,the term kxv is removed from m while mx gains a term kv, so the resulting marking M2 is su
h thatpol(M2) := �PmM2(m) = �PmM1(m)�m(kxv) +mx(kv) = pol(M1):Alternatively, when f = mx� �ni=1kimi 2 F and (m;x) �res, M2 is su
h thatpol(M2) = pol(M1)�m(kxv) + �ni=1mi(kkiv) = pol(M1)� kfv;and so pol(M1)!F pol(M2).Thus a �ring represents a single step redu
tion by !F . The relation is 
omplete, sin
e F is a Gr�obnerbasis, and therefore there exists a unique non-live marking (irredu
ible polynomial) whi
h may be rea
hedwithin a �nite �ring sequen
e (sequen
e of redu
tions). 2Example 4.3.8 The pi
ture for the third He
ke Algebra Petri net (whose Grobner ma
hine was Example4.2.6) is as follows (with ea
h transition label (m;x) written mx):e21 1
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��e1e22 1OO e1e2e1 1 // 76540123e1e2e1e2OO e1 //e1e2e211oo e2e211OOThe states of the Petri net are labelled by the irredu
ible monomials. To redu
e a polynomial p takethe initial marking M0 to be su
h that M0(id) = p and M0(m) = 0 for all other m 2 P . A transition isenabled if the input states to it hold terms whi
h are right multiples of the weight on their input ar
s.Firing of a transition transforms the input and all output states simultaneously. For example, if in the67



situation illustrated here the state s holds tokens to a value of e2v for some string v then the transitiont is enabled (to the value of v).
/.-,()*+
s e2 //

t 29 ///.-,()*+
s0If transition t then �res, the output state s0 re
eives tokens to the value of 29v, whi
h is added to the tokenvalue it already holds. The marking remaining on the net when all enabled transitions have �red and thenet is no-longer live (this happens due to the Noetherian property of the Gr�obner basis), represents theirredu
ible form of the polynomial given by the initial marking. This polynomial is extra
ted from thePetri net by adding the token multiples of the states, i.e. if there are 9 tokens at state e1 and 53 tokensat state e1e2 then the polynomial is 9e1 + 53e1e2.Remark 4.3.9 The nature of Petri nets is to allow for 
on
urrent operations, and this ties in well withthe di�erent ways in whi
h a polynomial may be redu
ed by a set of other polynomials. A Petri net 
anbe used to model redu
tion by a set of non-
ommutative polynomials. It is only in those sets whi
h areGr�obner bases, however, that the non-live state eventually rea
hed is entirely determined by the initialmarking.4.4 RemarksThe main theme of Chapter Four was the relation between rewrite systems / Gr�obner bases and varioustypes of ma
hine.Automata 
an be useful for determining whether or not a stru
ture is �nite (has a �nite number ofelements). The automaton is drawn dire
tly from the 
omplete rewriting system, the equations for it (see[28℄) 
an be solved (Arden's theorem) to obtain a regular expression for the language (i.e. the set of nor-mal forms of the elements) whi
h will be in�nite if the free monoid (Kleene star) of some sub-expressiono

urs. Beyond a

eptan
e or reje
tion of words, these automata have no output. It is more helpful to
onsider the type of ma
hines (\Cayley ma
hines") whi
h take any word as input and output its redu
edform. We introdu
ed su
h Cayley ma
hines (or \Gr�obner ma
hines") for algebras. Input is a polynomialand the unique irredu
ible form of that algebra element is the output. These ma
hines 
an be seen astypes of automata with output or { as illustrated for the polynomial ring 
ase { as Petri nets.The main result of the se
ond se
tion was the de�nition of redu
tion ma
hines for �nite Kan extensions.The �nal se
tion of this 
hapter on ma
hines introdu
ed Petri nets. It is of interest to model Gr�obnerbases with Petri nets, be
ause it would be extremely useful to �nd some equivalen
es between them,so that Petri nets 
ould be analysed using Gr�obner bases. With this aim in mind we showed how the\Gr�obner ma
hine" for an algebra is a type of Petri net. An example of an appli
ation of 
ommutativeGr�obner bases to the rea
hability problem in reversible Petri nets is also given. There is mu
h s
ope forfurther work in this area.
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Chapter 5Identities Among RelationsThere is a large number of papers on 
omputing resolutions of groups, in the usual sense of homologi
alalgebra. Many of these 
omputations are for parti
ular 
lasses of groups (e.g. p-groups, nilpotent groups)and some of these 
ompute only resolutions mod p. In general, they do not 
ompute modules of identitiesamong relations be
ause they are not spe
i�
 to a presentation.This problem 
an be put more generally as that of extending a partial resolution of a group. That is, weare given an exa
t sequen
e of free ZG-modules Cn ! Cn�1 ! � � � ! C1, and we are asked to extend itby further stages. For the identities among relations for a presentation P = grphXjRi, the initial 
ase isn = 2 with the boundary given by the Whitehead-Fox derivative�2 = (�r=�x) : (ZG)R ! (ZG)X:The problem is to extend this by one or two more stages { the boundaries of the free generators of C3then give generators for the module of identities. If also we �nd C4 and the boundary to C3, then wehave a module presentation of the module of identities.This problem is usually expressed as `
hoose generators for the kernel of �2'. However, it is not 
lear howthis 
an be done algorithmi
ally. The main result of Brown/Razak [17℄ relates this problem to the 
on-stru
tion of a partial 
ontra
ting homotopy for a partial free 
rossed resolution of the universal 
overinggroupoid of the group G. This 
ontra
ting homotopy is related to 
hoi
es of what are often 
alled 0- and1-
ombings of the Cayley graph.The main results of this 
hapter show how to de�ne an \extra information rewriting system" or EIRSand how to use this to 
onstru
t the homotopy h1. The EIRS re
ords the steps that have been takenin rewriting. The `re
ord' is a sequen
e of elements of the free 
rossed module of the presentation. Thisshows that the normal form fun
tion of a 
omplete rewriting system for a group presentation determines(up to some 
hoi
es) a set of free generators for the part C3 of a resolution, together with the boundaryto C2. In fa
t the generators of C3 are in one to one 
orresponden
e with the elements of G � R, butthe boundary depends on the 
hoi
e of 
omplete EIRS. This method of 
omputing h1 means that the
omputation of a set of generators for the module of identities among relations is 
ompletely algorithmi
.This work was done with the help of Chris Wensley. The 
omputer program idrels:g implements thepro
edure.The next problem is that of redu
ing the generating set of the jRj � jGj identities 
omputed. When thegroup is small (e.g. S3) this 
an be done by trial and error. In fa
t S3 is a Coxeter group, and for theseit has already been proven [68, 67℄ that the standard presentation yields a minimum of 4 generators forthe module of identities. The methods of these papers do not, however, produ
e relations among thesemodule generators. 69



The example of S3 is used to demonstrate how redu
ed sets of generators at one level determine theidentities at the next level, and the way in whi
h the redu
ible elements are expressed in terms of theirredu
ibles allows the 
al
ulation of these new identities. The example is a good illustration be
ause itis small enough to be done by hand, whilst illustrating that the 
rossed resolution for even a small groupgiven by a familiar presentation may be quite 
omplex.The �nal part of the 
hapter identi�es why the problem of redu
ing the set of generators is diÆ
ult, andexpresses it in terms of a Gr�obner basis problem (the submodule problem).The 
rossed 
omplex 
onstru
tion of [17℄, together with an enhan
ed rewriting pro
edure and non
om-mutative Gr�obner basis theory over rings are brought together to indi
ate an algorithmi
 method for
onstru
ting a free 
rossed resolution of a group. This is an area that will require mu
h further develop-ment.5.1 Ba
kgroundThere are strong geometri
al and algebrai
 reasons for studying the module of identities among relations[15, 63℄. The following exposition gives some of the topologi
al ba
kground.We assume the usual notion of a presentation P := grphXjRi of a group G, where X is a set generatingG and R � F (X) is 
alled the set of relators. To allow for repeated relators we 
an also 
onsider presen-tations of the form grphX;R; wi where w : R ! F (X) is a fun
tion su
h that w(R) = R.From P we form the 
ell-
omplex K = K(P) of the presentation. This is a 2-dimensional 
omplex. Its1-skeleton K1 is Wx2X S1x, a wedge of dire
ted 
ir
les - one for ea
h generator x 2 X:�x1 �� x2eex3DDThis topologi
al spa
e has fundamental group �1(K1; �) isomorphi
 to the free group F (X) on the setX. Now K is formed as K = K1 [ffrg fe2rg;by atta
hing to K1 a 2-
ell by a map fr : S1r ! K1 
hosen in the homotopy 
lass w(r) 2 F (X) = �1(K1)for ea
h r 2 R. The homotopy type of K is independent of the 
hoi
e of fr in its homotopy 
lass.In the next se
tion we shall de�ne the free 
rossed module (Æ2 : C(w) ! F (X)) on a fun
tion w : R !F (X). Whitehead [77, 78, 79℄ proved that (�2(K2;K1; �) ! �1(K1; �)) is the free 
rossed module onw : R ! �1(K1; �) = F (X), and so is isomorphi
 to (C(w) ! F (X)). In parti
ular kerÆ2 �= �2(K; �),the se
ond homotopy group of the geometri
al model of the presentation, and so this homotopy group isalso 
alled the module of identities among relations for the group presentation.Example 5.1.1 The torus T = S1�S1 has a 
ell stru
ture (S1_S1)[fr fe2rg and its fundamental groupis presented by P := grpha; b j aba�1b�1i. In this 
ase �2(T ) = 0, sin
e �2(S1) = 0, but it is not soobvious that ker Æ2 = 0.More ba
kground to these topologi
al ideas may be found in [11℄. There have been many papers writtenon �2(K2; �) = ker(C(R) ! F (X)) (some examples are [4, 12, 14, 77, 78, 79, 36, 37℄). The methodsoften use a geometri
al notion of \pi
tures" [6, 63, 64, 65, 66, 67℄ to work with identities among relations.Although the 
omputation of �2(K2; �) is redu
ed to an algebrai
 problem on 
rossed modules, this has70



not previously helped the 
omputation. We shall follow the paper [17℄ in developing algorithmi
 methodsfor this 
omputation. For this, we need the language of free 
rossed modules.Let P := grphXjRi be a group presentation. An identity among relations is a spe
i�ed produ
t of
onjugates of relations � = (r1"1)u1(r2"2)u2 � � � (rn"n)unwhere ri 2 R; "i = �1; ui 2 F (X) su
h that � equals the identity in F (X).Example 5.1.2 Let grphXjRi be a group presentation. Then for any elements r; s 2 R we have theidentities r�1s�1rsr = id,rs�1r�1sr�1 = id.When a group has a Cayley graph whi
h forms a simply 
onne
ted region 
omprised of 
ells whoseboundaries 
orrespond to relators, an identity � may be obtained by the following pro
edure:� Order the 
ells as 
1; : : : ; 
m in su
h a way that for all i = 1; : : : ;m the �rst i 
ells form a simply
onne
ted sub-region �i.� Choose to transverse ea
h 
ell in an anti-
lo
kwise dire
tion.� Form a produ
t of of 
onjugates of relators v1 � � � vm where vi is determined as 
ell 
i is added to �i�1.To add 
i, start from the vertex id and move 
lo
kwise around the boundary of �i�1 until a suitablestart vertex on the boundary of 
i is rea
hed. A start vertex is su
h that the word formed by theanti-
lo
kwise boundary of 
i starting at that vertex is either the relator ri or the inverse r�1i of therelator label 
orresponding 
i. Let ui be the word given by the path from id to the start vertex. Thenthe required term is vi := (r"ii )u�1i .� Finally set � := v1 � � � vmr"bb where r"bb is the relator asso
iated to the boundary.Example 5.1.3 In the 
ase of a spe
i�
 group presentation, S3 = grphx; y jx3; y2; xyxyi, label therelators in S3 as r; s; t respe
tively, and order the 
ells of the Cayley graph as shown below:�
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tt
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��
6� x //

y 44 �
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yTTHere 
ells 1,4,7 (traversed in an anti-
lo
kwise dire
tion) 
orrespond to t; 
ells 2,5,6 
orrespond to s�1while 
ell 3 and the outer boundary (
onsidered as the boundary of the \outside 
ell") 
orrespond to r�1.We obtain� := t(s�1)(r�1)y�1ty�1(s�1)x(s�1)x�1y�1xty�1xr�1:71



We 
an verify algebrai
ally that � is an identity:7! (xyxy)(y�2)(x�3)y�1(xyxy)y�1(y�2)x(y�2)x�1y�1x(xyxy)y�1xx�3= (xyxy)(y�2)(yx�3y�1)(yxyxyy�1)(x�1y�2x)(x�1yxy�2x�1y�1x)(x�1yxyxyy�1x)(x�3)= id:5.2 The Module of Identities Among RelationsTo dis
uss relations among generators of G we use free groups. To dis
uss identities among the relationsof G we need free 
rossed modules. The pre
ise idea of a 
onsequen
e of the relations, and in parti
ularof an identity is similar to that of spe
ifying a relator as an element of the free group, but takes thea
tion of F into a

ount.Pei�er and Reidemeister were the �rst to detail the 
onstru
tion in [61, 69℄ in 1949. Reidemeister setsup the ne
essary group a
tion by asso
iating ea
h element of a �rst group with an automorphism ofa se
ond group, de�ning a homomorphism between the two groups, requiring that it ful�lls CM1. Helooks at the 
lass of Pei�er relations of the kernel of this homomorphism, and fa
tors the �rst group bythe 
ongruen
e generated by the Pei�er relations. The 
onstru
tion is the same as that detailed below,but he does not mention the terms \group a
tion" or \
rossed module". Given that \
rossed mod-ule" had only been de�ned by Whitehead in 1946, this is not so surprising. It was not until 1982 thatperhaps the �rst paper [15℄ to re
ognise and name the stru
tures that Reidemeister de�ned was published.Formally, given a group F , a pre-
rossed F -module is a pair (C; Æ) where Æ : C ! F is a groupmorphism with an a
tion of F on C denoted 
u (u 2 F ) so that:CM1) Æ(
u) = u�1(Æ
)u for all 
 2 C; u 2 F:A 
rossed F -module is a pre-
rossed F -module that also satis�es the Pei�er relation:CM2) 
�1
1
 = 
Æ
1 for all 
; 
1 2 C:When (Æ; C; F ) is a 
rossed module it is also 
ommon to refer to it as the 
rossed F (X)-module (Æ; C).For more information on 
rossed modules see [18, 19, 20, 49℄.The following exposition is a 
ombination of ideas in [15, 30, 69℄. It details the 
onstru
tion of the moduleof identities among relations. The 
onstru
tion is not exa
tly the same as that in the referen
es, sin
e itis in terms of rewriting systems on a free monoid rather than normal subgroups of a free group.Let P := grphX;R; wi be a presentation of a group G whereR is a set of labels for the relators identi�edby the (not ne
essarily inje
tive fun
tion) w : R! F (X) and R := w(R).A 
rossed F (X)-module (C; Æ) is free on the fun
tion w : R ! F (X) if, given any other 
rossedF (X)-module (D; 
) with a map � : R ! D, there exists a unique morphism of 
rossed F (X)-modules� : C ! D whi
h satis�es � Æ � = �.De�ne Y := R� F (X), and write elements of Y in the form (�; u), where � 2 R; u 2 F (X).Put Y + := fy+ : y 2 Y g and Y � := fy� : y 2 Y g. Elements of the free monoid (Y + t Y �)� are 
alledY-sequen
es and have the form (�1; u1)"1 � � � (�n; un)"n :72



De�ne an a
tion of F (X) on Y by (�; u)x := (�; ux) for x 2 F (X):This indu
es an a
tion of F (X) on (Y + t Y �)�. De�ne a monoid morphism Æ : (Y + t Y �)� ! F (X) tobe that indu
ed by Æ( (�; u)") = u�1(w�)"u where " = �:De�ne RP := f(y�z+y+; z+Æy+) : y; z 2 Y g[ f(y+z�y�; z�Æy�) : y; z 2 Y g[ f(y�y+; id) : y 2 Y g[ f(y+y�; id) : y 2 Y gand de�ne !RP to be the redu
tion relation generated by RP on (Y + t Y �)�. For a; b 2 (Y + t Y �)� ifa �$RP b then a and b are said to be Pei�er Equivalent.De�nition 5.2.1 The Pei�er Problem is as follows:INPUT: a; b 2 (Y + t Y �)� two elements of the free monoid,QUESTION: a �$RP b? are they Pei�er Equivalent?The motivation for solving this Pei�er Problem 
omes from the fa
t that we wish to 
onstru
t a parti
ularfree 
rossed module, whose kernel will be the module of identities among relations. De�neC(R) := (Y + t Y �)��$RP :Lemma 5.2.2 C(R) is a group.Proof Let a; b 2 (Y + tY �)�. The 
ongruen
e �$RP preserves the 
omposition of Y-sequen
es so we de-�ne [a℄RP [b℄RP := [ab℄RP . The identity is [id℄RP , and if a = y"11 � � � y"nn for y1; : : : ; yn 2 Y , "1; : : : ; "n = �then [a℄�1RP := [y�"nn � � � y�"11 ℄RP is the inverse. 2Lemma 5.2.3 There is an a
tion of F (X) on C(R) de�ned by[a℄x := [ax℄ for x 2 F (X):Proof Let y; z 2 Y , x 2 F (X) then y = (�; u) and z = (�; v) for some u; v 2 F (X); �; � 2 R:(y�z+y+)x = (�; ux)�(�; vx)+(�; ux)+= y�1 z+1 y+1 where y1 = (�; ux); z1 = (�; vx) 2 Y�$P z1+Æy+1= (�; vx)+Æ(�;ux)+ by de�nition of y1; z1= (�; vx(x�1Æ(�; u)+x)+ by de�nition of the a
tion on (Y + t Y �)�= (�; vÆ(�; u)+x)+= ((�; v)+Æ(�;u)+ )x= (z+Æy+)x by de�nition of y; zSimilarly (y+z�y�)x �$RP (z�Æy�)x, and it is also 
lear that (y+y�)x �$RP (id)x = id and (y�y+)x �$RP(id)x = id. Therefore the a
tion of F (X) on C(R) is well-de�ned by [a℄x := [ax℄. 273



Lemma 5.2.4 There is a group homomorphism Æ2 : C(R)! F (X) de�ned byÆ2[a℄RP := Æ(a) for a 2 (Y + t Y �)�:Proof Let a; b 2 (Y + t Y �)�. We require to prove that if a �$RP b then Æ(a) = Æ(b). It is thereforesuÆ
ient to prove, for all y; z 2 Y , that Æ(y�z+y+) = Æ(z+Æy+), Æ(y+z�y�) = Æ(z�Æy� ) and Æ(y+y�) =Æ(y�y+) = idF (X). Let y = (�; u); z = (�; v) 2 Y . ThenÆ(y�z+y+) = Æ(�; u)�Æ(�; v)+Æ(�; u)+;= u�1w(�)�1uv�1w(�)vu�1w(�)u;= Æ(�; vu�1w(�)u)+;= Æ(�; vÆ(�; u)+)+;= Æ((�; v)+Æ(�;u)+ );= Æ(z+Æy+);and Æ(y+y�) = Æ(�; u)+Æ(�; u)�;= u�1w(�)uu�1w(�)�1u;= idF (X):The other two 
ases 
an be proved in the same way, therefore Æ2 is well-de�ned. 2Theorem 5.2.5 (C(R); Æ2) is the free 
rossed F (X)-module on w : R! F (X).Proof First we verify the 
rossed module axioms.CM1: Let a = (�1; u1)"1 � � � (�n; un)"n for (�1; u1); : : : ; (�n; un) 2 Y , "1; : : : ; "n = � and let x 2 F (X).Then Æ2([a℄xRP ) = Æ([(�1; u1)"1 ℄x) � � � Æ([(�n; un)"n ℄x)= x�1u�11 w(�1)"1(1)u1x � � � x�1u�1n w(�n)"n(1)unx;= x�1(u�11 w(�1)"1(1)u1 � � � u�1n w(�n)"n(1)un)x;= x�1Æ((�1; u1)"1 � � � (�n; un)"n)x;= x�1Æ2[(�1; u1)"1 � � � (�n; un)"n ℄RP x;= x�1Æ2[a℄RP x:CM2: Let y; z 2 Y . We �rst use the basi
 rules of RP to verify that y+z+y� �$RP z+Æy� andy�z�y+ �$RP z�Æy+ . z+Æy+y� �$RP (y+y�)�z+(y+y�);= y+y�z+y+y�!RP y+z+Æyy�:Therefore y+z+Æy+y� �$RP (z+Æy+)Æy� :74



So for all z1 2 Y y+z+1 y� �$RP z+Æy�1 :The other 
ase may be proved in the same way but using the basi
 rule y+z�y� !RP z�Æy� . Thereforethe Pei�er relation y�"z�y" �$RP z�Æy" holds for all y"; z� 2 (Y + t Y �)�.Let a = y"11 � � � y"nn , b = z�11 � � � z�mm . We prove that [a℄�1RP [b℄RP [a℄RP = [bÆ(a)℄RP . First note that [a℄�1RP =[y�"nn � � � y�"11 ℄RP . Nowy�"nn � � � y�"11 z�11 � � � z�mm y"11 � � � y"nn = y�"nn � � � y�"22 (y�"11 z�11 y"11 ) � � � (y�"11 z�mm y"11 )y"22 � � � y"nn ;�$RP y�"nn � � � y�"22 z�1Æy"111 � � � z�mÆy"11m y"22 � � � y"nn :Repeating the pro
edure we obtain �$RP z�1Æy"11 ���Æy"nn1 � � � z�mÆy"11 ���Æy"nnm ;= (z�11 � � � z�mm )Æ(y"11 ���y"nn ):Therefore we have veri�ed CM2:-[y"11 � � � y"nn ℄�1RP [z�11 � � � z�mm ℄RP [y"11 � � � y"nn ℄RP = [(z�11 � � � z�mm )Æ(y"11 ���y"nn )℄RP :Finally we show that (C(R); Æ2) is free on w : R! F (X). Re
all that F (X) a
ts on Y by (�; u)x = (�; ux).De�ne � : R ! C(R) by �(�) := [(�; id)℄RP . Then let (D; 
) be any other 
rossed F (X)-module with amap � : R ! D. We 
an de�ne a unique morphism of 
rossed modules � : C(R) ! D whi
h satis�es� Æ � = � by putting �([(�; u)℄RP ) := �(�).Therefore we have proved that (C(R); Æ2), as de�ned on (Y + t Y �)� using RP , is the free 
rossed F (X)-module generated by w : R! F (X). 2Remark 5.2.6 The usual method of 
onstru
tion of C(R) does not use rewriting systems but fa
torsthe free pre
rossed module (F (Y ); Æ0) by the 
ongruen
e =P generated by the set of all Pei�er relationsP on F (Y ). Detail of this 
onstru
tion are found in [15℄. It may be veri�ed that the natural map� : (Y + t Y �)� ! F (Y ) indu
es an isomorphism�0 : (Y + t Y �)��$RP �! F (Y )=P :The motivation for this se
tion is to give an exposition of the 
onstru
tion of C(R). Sin
e this thesis is
on
erned with rewriting, we've presented the exposition in terms of rewriting. It is simply an alternativeexposition of standard work that is ne
essary ba
kground for what is to follow.The Pei�er Problem that we have identi�ed is that of determining whether two Y-sequen
es representthe same element of C(R). If a 2 (Y + tY �)� and Æ2(a) = id then [a℄RP 2 kerÆ2, the module of identitiesamong relations, and a is 
alled an identity Y-sequen
e. There is a spe
ial property whi
h will allowus to 
onvert the Pei�er Problem for identity sequen
es into a Gr�obner basis problem, and this will bedis
ussed in Se
tion 6. In general there is no pro
edure for solving the Pei�er Problem. As a result theexample here is a simple one, in
luded to demonstrate the rewriting pro
edure.75



Example 5.2.7 The result of the following example is proved in [18℄.The multipli
ative 
y
li
 group Cn of order n has a presentation grphx j xni. Let r represent the relatorxn, then Y := f(r; xi) : i 2 Zg. with Æ : (Y + t Y �)� ! F (X) de�ned by Æ(r) = xn soÆ2(r; xi)+ = x�iÆ(r)xi = x�i(xn)xi = xn:Æ2(r; xi)� = x�iÆ(r)�1xi = x�i(xn)xi = x�n:The a
tion of F (X) on (Y + t Y �)� is given by(r; xi)x = (r; xi+1):The elements of Y + t Y � 
an be denoted ai; Ai i 2 Z where ai := (r; xi)+, Ai := (r; xi)�. We 
onsiderthe rewriting system RP on (Y + t Y �)� given by:f(Aiajai; aÆaij ) : i; j 2 Zg [ f(aiAjAi; AÆAij ) : i; j 2 Zg [ f(aiAi; id) : i 2 Zg [ f(Aiai; id) : i 2 ZgThe rewriting system is 
learly in�nite. Put i = j in the above rules and we obtain Aiaiai $RP ai+nand aiAiAi $RP Ai�n. So ai+n !RP ai and Ai !RP Ai�n for all i 2 Z. It follows immediately fromthese rules that fa0; : : : ; an�1; A0; : : : ; An�1g is a 
omplete set of generators for C(R) as a monoid. Thenow �nite set of relations is f(aiAi; id); (Aiai; id); (Aiajai; aj); (aiAjAi; Aj)g Therefore C(R) for Cn is thefree abelian group on n generators a0; a1; : : : ; an�1. Further, we �nd that axi = ai+1 for i = 0; : : : ; n� 1and axn�1 = a0. Thus the C(R), whi
h is a Cn-module is isomorphi
 to Z[Cn℄, the free Cn-module on onegenerator.Remark 5.2.8 The Pei�er Problem (of de
iding when two sequen
es are Pei�er equivalent) does notarise only in 
rossed modules. When a 2-
ategory is 
onstru
ted, by fa
toring a sesqui
ategory (see[74, 76℄) by the inter
hange law, the pairs arising from that inter
hange law are relations among the two
ells involving the whiskering a
tion of the 
ategory morphisms. Tim Porter identi�ed this in [62℄ 
allingthem Pei�er pairs. Thus the Pei�er Problem is not restri
ted to the 
onstru
tion of 
rossed modules.5.3 Free Crossed Resolutions of GroupsThe following exposition was 
onstru
ted with Ronnie Brown.The notion of resolution of ZG-modules for G a group is a standard part of homologi
al algebra and the
ohomology of groups [27, 10℄. It has been shown in [18, 16, 17℄ that there are 
omputational advantagesin 
onsidering free 
rossed resolutions of groups. This will be 
on�rmed by bringing these 
al
ulations intothe 
ontext of rewriting pro
edures. For this we need to give some basi
 de�nitions in the form we require.An important aspe
t of the 
al
ulation in [17℄ is the use of the Cayley graph, being seen here as data fora free 
rossed resolution of the universal 
overing groupoid eG of the group G. This groupoid 
orrespondsto the a
tion of G on itself by right multipli
ation. That is, the obje
ts of eG are the elements of G and anarrow of eG is a pair (g1; g2) : g1 ! g1g2, with the obvious 
omposition. We have the 
overing morphismof groupoids p0 : eG! G : (g1; g2) 7! g2.If X is a set of generators of the group G, we have a standard morphism � : F (X)! G. We also have astandard morphism e� : F ( eX)! eG. Herei) eX is the Cayley graph of (X;G) with arrows [g; x℄ : g ! g�(x) for x 2 X; g 2 G.76



ii) F ( eX) is the groupoid with obje
ts again the elements of G and arrows pairs [g; u℄ : g ! g(�u) forg 2 G, u 2 F (X), with 
omposition de�ned by [g; u℄[g(�u); v℄ := [g; uv℄. In fa
t F ( eX) is the freegroupoid on the graph eX , so that a morphism f from F ( eX) to a groupoid is determined by thegraph morphism f j eX .Then e� : F ( eX) ! eG is given on arrows by e�[g; u℄ := [g; �(u)℄. There is also the 
overing morphismp1 : F ( eX) ! F (X) given by p1[g; u℄ := u. This gives the 
ommutative diagram of morphisms ofgroupoids F ( eX) e� //p1
��

eGp0
��F (X) � // G (5.1)

In fa
t this diagram is a pullba
k in the 
ategory of groupoids. Also, p1 maps F ( eX)(1; 1) isomorphi
allyto ker�, and F ( eX) is the free groupoid on the graph eX.Now let P = grphXjRi be a presentation of G. As explained in the previous se
tion, this gives rise to afree 
rossed F (X)-module Æ2 : C(R)! F (X), whose kernel is �2(P), the ZG-module of identities amongrelations. The aim is to 
ompute a presentation for this module in terms of information on the Cayleygraph. For this we extend diagram 5.1 in the �rst instan
e toC( eR)p2
��

~Æ2 // F ( eX) e� //p1
��

eGp0
��C(R) Æ2 // F (X) � // G (5.2)

Here ~Æ2 : C( eR) ! F ( eX) is a free 
rossed module of groupoids. For details, we refer the reader to [17℄.All the reader needs to know for now is thati) C( eR) is a disjoint union of groups C( eR)(g) for g 2 G and ~Æ2 maps C( eR)(g) to F ( eX)(g; g).ii) for ea
h g 2 G; p2 maps the group C( eR)(g) isomorphi
ally to C(R), so that elements of C( eR)(g)are spe
i�ed by pairs [g; 
℄ where 
 2 C(R).iii) F ( eX) operates on C( eR) by [g; 
℄[g;u℄ := [g�(u); 
u℄ for g 2 G, 
 2 C(R), u 2 F (X).iv) The morphisms ~Æ2, p2 are given by ~Æ2[g; 
℄ := [g; Æ2
℄ and p2[g; 
℄ := 
.A proof that ~Æ2 : C( eR) ! F ( eX) is the free 
rossed F ( eX)-module on eR := G � R is given in [17℄. Thisimplies that morphisms and homotopies on C( eR) 
an be de�ned by their values on the elements [g; r℄ forg 2 G, r 2 R.The key feature of this 
onstru
tion is that eG is a 
ontra
tible groupoid, i.e. it is 
onne
ted and has trivialvertex groups. We are going to 
onstru
t a partial 
ontra
ting homotopy of ~Æ2 : C( eR)! F ( eX). This isa key part of the pro
edure of 
onstru
ting generators (and then relations) for �2(P). The philosophyas stated in [17℄ is to 
onstru
t a \home" for a 
ontra
ting homotopy { this will be explained later. Thepoint is that this leads to a \tautologi
al" proof that the generators 
onstru
ted do in fa
t generate �2(P).Su
h a partial 
ontra
ting homotopy 
onsists of fun
tionsh0 : G! F ( eX) and h1 : F ( eX)! C( eR)with the properties that 77



i) h0(g) : g 7! id in F ( eX), g 2 G.ii) h1 is a morphism (from a groupoid to a group).iii) ~Æ2h1[g; u℄ = (h0g)�1[g; u℄h0(g(�u)) for all [g; u℄ 2 F ( eX).We always assume that h0(id) = id 2 F ( eX)(id)Remark 5.3.1 h0 and h1 are related to what are 
ommonly 
alled 0- and 1-
ombings of the Cayleygraph [39℄. We hope to pursue this elsewhere.The 
hoi
e of h0 is equivalent to 
hoosing a se
tion � of � : F (X) ! G, i.e. a representative word forea
h element of G, by h0(g) = [g; �(g)�1℄, for g 2 G. What h1 does is provide for ea
h word u 2 F (X) arepresentation u = Æ2(pro
R(u))NR(u)where pro
(u) = p2h1[id; u℄ 2 C(R) { the pro
edure through whi
h the normal form NR(u) := (��(u))�1is rea
hed. To verify this 
onsider (iii), assuming h0(id) = id, we have~Æ2h1[id; u℄ = [id; u℄h0(�u):Then Æ2(pro
(u)) = Æ2p2h1[id; u℄= p1~Æ2h1[id; u℄= p1([id; u℄h0(�u))= up1h0(�u)Thus pro
(u) shows how to write u(NR(u))�1 2 Æ2C(R) as a 
onsequen
e of the relators R. Conversely,a rewriting pro
edure to be given later will allow us to determine h1 given h0 and a 
omplete rewritingsystem for P = grphXjRi.We 
an now stateProposition 5.3.2 Given h0, h1 as above, the module �2(P) is generated by the (separation) elementssep(g; r) := p2(h1~Æ2[g; r℄)�1r�(g)�1 (5.3)for all g 2 G, r 2 R.Outline proof The fa
t that the elements sep(g; r) of 5.3 are identities among relations is easily 
he
ked,as follows:Æ2(p2(h1~Æ2[g; r℄)�1r�(g)�1) = Æ2(p2(h1[id; Æ2(rg)℄)�1r�(g)�1)= Æ2(p2([id; 
℄)�1r�(g)�1) where 
 satis�es Æ2(
) = Æ2(r�(g)�1);= Æ2(
)�1Æ2(r�(g)�1 )= id:The important point is that these elements sep(g; r) generate the module of identities. The proof of this
an be made tautologous by taking the 
onstru
tion one step further, i.e.eC3 ~Æ3 //p3
��

C( eR)p2
��

~Æ2 // F ( eX) e� //p1
��

eGp0
��C3 Æ3 // C(R) Æ2 // F (X) � // G78



Here C3 is the free ZG-module on (g; r) 2 �R where �R := G� R { we use round bra
kets to distinguishelements of �R from those of eR. The morphism Æ3 is de�ned byÆ3(g; r) := p2((h1~Æ2[g; r℄)�1)r�(g)�1 :The de�nition is veri�ed by 
he
king that Æ2Æ3(g; r) = id i.e.Æ2Æ3(g; r) = Æ2p2((h1~Æ2[g; r℄)�1r�(g)�1)= Æ2(
�1r�(g)�1) where 
 satis�es Æ2(
) = Æ2(r�(g)�1)= id:(Mapping a free ZG-module into a free 
rossed G-module, is a

eptable be
ause the image lies in kerÆ2whi
h is a ZG-module.) In fa
t we de�ne eC3, h2 and ~Æ3 as followseC3(g) := fgg �C3;h2[g; r℄ := (id; (g; r));~Æ3(g2; [g1; r℄) := (g2; Æ3(g1; r)):We now 
he
k dire
tly that~Æ3h2[g; r℄ = [id; Æ3(g; r)℄;= [id; p2((h1~Æ2[g; r℄)�1)r�(g)�1 ℄;so that = (h1(Æ1[g; r℄))�1r�(g)�1 :In the partial resolution of eG we have, for any 
 2 C( eR),~Æh2(
) = (h1(~Æ2
))�1
h0id;sin
e this holds for all 
 = [g; r℄ 2 eR. So~Æ2(
) = 0 implies that 
 = ~Æ3((h2
)(h0id)�1 :Hen
e ker~Æ2 � im~Æ3, so ker~Æ2 = im~Æ3. Therefore kerÆ2 = imÆ3. 2To summarise: the problem of 
onstru
ting a 
rossed resolution of a group given a parti
ular presentationhas been redu
ed to the problem of 
onstru
ting a 
ontra
ting homotopy and a 
overing 
rossed 
omplexthat begins with a groupoid de�ned on the Cayley graph.5.4 Completion Pro
edure and Contra
ting HomotopiesIn this se
tion we de�ne what we 
all an \extra information 
ompletion pro
edure". The implementationmay be found in kb2:g. Input to the pro
edure is a set of relators for a group. If the pro
edure terminatesthen the output is a set of \extra information" rules. These rules will not only redu
e any word in thefree group to a unique irredu
ible but will express the a
tual redu
tion in terms of the original relators.79



De�nition 5.4.1 An extra information rewriting system for a group presentation grphXjRi is aset of triples R2 := f(l1; 
1; r1); : : : ; (ln; 
n; rn)g, where R1 := f(l1; r1); : : : ; (ln; rn)g is a rewriting systemon F (X) and 
1; : : : ; 
n 2 C(R), su
h that li = Æ2(
i)ri for i = 1; : : : ; n. We say R2 is 
omplete if R1is 
omplete.Lemma 5.4.2 Let R2 be a 
omplete EIRS for grphXjRi. Then for any w 2 F (X) there exists (
; z),
 2 C(R), z 2 F (X) su
h that z is irredu
ible with respe
t to !R1, and w = (Æ2
)z.Proof If w is irredu
ible then we take z = w and 
 = idC(R). Otherwise there is a sequen
e of redu
tionsw = u1l1v1u1r1v1 = u2l2v2� � � � � �unrnvn = zwhere n � 1, and for i = 1; : : : ; n, ui; vi 2 F (X) and there exists 
i 2 C(R) su
h that (li; 
i; ri) 2 R2.Then sin
e li = (Æ2
i) ri for i = 1; : : : ; n w = u1 (Æ2
1) r1v1u1r1v1 = u2 (Æ2
2) r2v2� � � � � �unrnvn = z:Hen
e w = ((Æ2
1)u�11 � � � (Æ2
n)u�1n )z. 2This de�nes the fun
tion Redu
eWord2, whi
h a

epts as input (w;R2) and returns as output (
; z). Wewill write w !R2 (
; z).Lemma 5.4.3 Let grphXjRi be a �nite group presentation whi
h is 
ompletable with respe
t to an or-dering >. Then there exists a pro
edure KB2 whi
h will return the 
omplete EIRS for the group.Proof De�ne R2 := f(Æ�; (�; id); id) : � 2 Rg. It is 
lear that this de�nes an EIRS sin
e Æ� = Æ2(�; id)id.If R1 is 
omplete then R2 is 
omplete. If R1 is not 
omplete then there is an overlap between a pair ofrules (l1; r1); (l2; r2) of R1 where (l1; 
1; r1); (l2; 
2; r2) 2 R2. There are two 
ases to 
onsider.For the �rst 
ase suppose u1l1v1 = l2 for some u1; v1 2 F (X). Then the 
riti
al pair resulting fromthe overlap is (u1r1v1; r2). Redu
e ea
h side of the pair using Redu
eWord2, so u1r1v1 !R2 (d1; z1) andr2 !R2 (d2; z2). Then if z1 > z2 add the extra information rule (z1; d�11 
1�u�11 
2d2; z2) or if z2 > z1 add(z2; d�12 
�12 
u�111 d1; z1).For the se
ond 
ase suppose u1l1 = l2v2 for some u1; v2 2 F (X). Then the 
riti
al pair resulting fromthe overlap is (u1r1; r2v2). Redu
e ea
h side of the pair by R2 as before, so that u1r1 !R2 (d1; z1) andr2v2 !R2 (d2; z2). Then if z1 > z2 add the extra information rule (z1; d�11 
�u�111 
2d2; z2) or if z2 > z1 add(z2; d�12 
�12 
u�111 d1; z1).It 
an be seen immediately from the above that the e�e
t on R1 is a standard 
ompletion of the rewritingsystem, and that the triples (l; 
; r) added to R2 satisfy the requirement l = Æ2(
)r, so that when the
ompletion pro
edure terminates R2 will be a 
omplete extra information rewriting system. 2This de�nes the pro
edure KB2. 80



Example 5.4.4 Q8 is presented by grpha; b j a4; b4; abab�1; a2b2i. Let r; s; t and u denote the relatorsi.e. Æ(r) = a4; Æ(s) = b3; : : : . We begin with the EIRSR2 := f(a4; r; id); (b4; s; id); (aba; t; b); (a2b2; u; id)g:As explained before, all the extra information rules are triples (l; 
; r) su
h that l = (Æ2
)r and we writel !R2 (
; r), thinking of the (
) part as the re
ord of the pro
edure by whi
h r is obtained from l usingthe original group relators. For example aba !R2 (t; b) { we have to work with a monoid presentationand 
hoose to make use of the fa
t that Q8 is �nite, rather than introdu
e generators for the inverses,whi
h is what the 
omputer program does. We look for overlaps between the left hand sides of the rules.The �rst overlap we examine is between the �rst and third rules:a4baa4!idzzz

}}zzz aba!bEEE

""EEEba a3boo_ _ _ _ _ _ _ _Without the extra information the 
riti
al pair is (a3b; ba) and the new rule is a3b ! ba. For the EIRSrule we need 
 so that a3b = Æ
(
)ba where 
 is a produ
t of 
onjugates of relators. The new EIRS ruleas de�ned in the proof (se
ond 
ase) is (a3b; t�a�3r; ba). This is 
he
ked by:a4ba = (a4)ba!R2 (r; id)ba = (r; ba) and a4ba = a3(aba)!R2 a3(t; b) = (ta�3 ; a3b):Therefore Æ2(r)ba = Æ2(ta�3)a3b, so a3b = Æ2(ta�3)�1(r)ba = Æ2(t�a�3r)ba: so 
 = t�a�3r. If we 
ontinuethis \extra information 
ompletion" for Q8 we end up with the EIRSb2 !R2 (r�1ua�2 ; a2);aba!R2 (t; b);ba2 !R2 (t�1t�a�1rb�1a�2 ; a2b);bab!R2 (r�b�1a�1b�1tb�1r�1u�a�2r; a);a4 !R2 (r; id);a3b!R2 (t�a�3r; ba):So, for example, a5ba3 redu
es to a2b and a5ba3 = Æ2(rt�a�1rb�1a�2)a2b.The \extra information" Knuth-Bendix pro
edure KB2 results in a rewriting system with information onwhere the rules 
ame from. This extra information is in no way unique.Let grphXjRi be a presentation of a group G. Let eX denote the Cayley graph. Edges of the graph arere
orded as pairs [g; x℄, where g is the group element identi�ed with the sour
e vertex, and x is a groupgenerator identi�ed with the edge label.Lemma 5.4.5 (Complete Rewriting Systems Determine h0)Let G be a �nite group, �nitely presented by grphXjRi, with quotient morphism � : F (X) ! G. Then a
omplete rewriting system R1 for the presentation determines h0 : G! F ( eX).Proof Let N be the normal form fun
tion de�ned by!R1 on F (X). De�ne h0(g) := [id;N(g)℄�1. Thenh0(g) : g ! id in F ( eX) as required. 2
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Theorem 5.4.6 (Complete EIRS's Determine h1)Let G be a �nite group, �nitely presented by grphXjRi, with quotient morphism � : F (X) ! G. Then a
omplete EIRS R2 for the presentation determines h1 : F ( eX)! C( eR)(id).Proof Re
all that eX is the Cayley graph of G. Let [g; x℄ 2 eX. De�neh1[g; x℄ := [id; Redu
eWord2(N(g)xN(g�x)�1; R2)[1℄℄:Then 
learly h1[g; x℄ 2 C( eR)(id) and ~Æ2h1[g; x℄ = [id;N(g)℄[g; x℄[id;N(g�x)℄�1 = h0(g)�1[g; x℄h0(g�x).Extending this de�nition of h1 on eX therefore gives the morphism h1 of the groupoid F ( eX) to the groupC( eR)(id) satisfying the required 
onditions. 2Corollary 5.4.7 There exists an algorithm for de�ning h0; h1 for any �nite 
ompletable group presen-tation grphXjRi.Proof Cal
ulate R2, using KB2. Let N be the normal form fun
tion de�ned by !R1 (re
all R1 is partof R2). Put h0(g) := [id;N(g)℄�1. Put h1[g; x℄ := [id; Redu
eWord2(N(g)xN(g�x)�1; R2)[1℄℄. 2Example 5.4.8 Below is the Cayley graph for Q8. The double edges indi
ate the tree de�ned by thelength-lex ordering. a3a
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QQQQQQQA typi
al relator 
y
le is [id; b℄[b; a℄[ba; a℄[a2b; a℄[ab; a℄[id; b℄�1 this is equivalent to ba4b�1 or rb�1 , the 
y
lesrepresent 
onjugates of relators in the graph.The extra information in our rewriting system may be used to express the 
y
le 
reated by adding anedge � to the tree as su
h a produ
t, or in fa
t to express its retra
tion as a produ
t of 
onjugates ofrelators. For example, add the edge [a3; a℄ and the 
y
le [id; a℄[a; a℄[a2 ; a℄[a3; a℄ is 
reated. The retra
tionis a4. We know that Æ2(r) = a4, so [id; r℄ is the 
y
le as a produ
t of relator 
y
les.That was an easy example. If we add the edge [a3; b℄ then the retra
tion is a3ba�1b�1 or a3b(a3)(a2b),(sin
e the rewriting system is de�ned on the monoid presentation we repla
e inverse elements by theirnormal forms). It is more diÆ
ult to see how this word may be written as a produ
t of 
onjugates ofrelators. In fa
t we just redu
e it using the extra information rules :a3ba5b!R2 a3ba(r; id)b!R2 a3bab(rb; id)!R2 a3((r�b�1a�1b�1tb�1r�1u�a�2r; a)(rb; id)!R2 a4(r�b�1a�1b�1tb�1r�1u�a�2r)a; id)(rb; id)!R2 (r(r�b�1a�1b�1tb�1r�1u�a�2r)arb; id)82



The order in whi
h the rules are applied does not matter for our purposes { it does a�e
t the answerbut we only wish to �nd a representation of the word as a produ
t of 
onjugates of relators, whi
hrepresentation it is is not important { though smaller ones are preferable for eÆ
ien
y reasons. The listbelow gives the 
y
les 
reated by adding in non-tree edges as produ
ts of relator 
y
les.[g; x℄ 7! h1[g; x℄[b; b℄ 7! bb(a2)�1 ! b2a�2 ! su�1,[ab; a℄ 7! ab(b)�1 ! aba2b ! t,[ab; b℄ 7! ab2(a3)�1 ! ab2a ! uar�1,[ba; a℄ 7! ba2(a2b)�1 ! ba4ba6 ! su�1uba�2s�a�2,[ba; b℄ 7! bab(a)�1 ! baba3 ! t�a�1b�1ub�1 ,[a3; a℄ 7! a4(id)�1 ! a4 ! r,[a3; b℄ 7! a3b(ba)�1 ! a3ba5b ! rt�a,[a2b; a℄ 7! a2ba(ab)�1 ! a2ba3ba3 ! ta�1 ,[a2b; b℄ 7! a2b2(id)�1 ! a2b2 ! u.This example gives 32 generators for the module of identities. In fa
t this 
an be redu
ed to 7 but theredu
tion requires methods not dealt with in this thesis.5.5 Algorithm for Computing a Set of Generators for �2Se
tion 5.3 des
ribed how the problem of spe
ifying a free 
rossed resolution of a group redu
ed to theproblem of de�ning a 
ontra
ting homotopy of a 
overing 
rossed 
omplex.The 
omputation of a 
omplete rewriting system for the group is used to de�ne the �rst part of the
ontra
ting homotopy h1 on the edges of the Cayley graph. The formulae from the de�nition of the
overing 
rossed 
omplex are used to �nd a 
omplete set of generators for the kernel of Æ2 (the identitiesamong relations). The pre-images of these elements generate C3 as a ZG-module. By redu
ing this setof generators and writing ea
h of the redu
ible generators in terms of the irredu
ible ones we de�ne h2on the generators of C2. This is made 
lear in the example, and is the part whi
h 
orresponds to theGr�obner basis 
omputation, though we do it by inspe
tion.Now the 
rossed 
omplex formulae with h2 are used to �nd a 
omplete set of generators for the kernelof Æ3 (the identities among identities). Again, we redu
e the set of identities, so that their pre-imagesfreely generate C4 as a ZG-module. The pro
ess of redu
tion of the identities de�nes the next 
ontra
tinghomotopy h3, and again we use the formulae to �nd a 
omplete set of generators for kerÆ4, and redu
tionto a set whose pre-image freely generates C5 as a ZG-module.This pro
edure may in theory be repeated as mu
h as is wished, in order to 
ompute the resolution of thegroup up to any level. The limitations are ones of pra
ti
ality: in our example the redu
tion of the setof identities is done by inspe
tion (involving a lot of trial and error) this takes time (weeks). A Gr�obnerbasis pro
edure (over the group ring) would provide a 
omputerisable method for de�ning hn, and thiswould mean that the 
omputation of the resolution was limited only by the 
omputer's 
apa
ity. The
orresponden
e between the homotopy de�nition and the Gr�obner basis 
omputation (for redu
tion) isexplained more fully in the next se
tion.5.5.1 Spe
i�
ation of the ProgramA 
olle
tion of GAP3 fun
tions has been written to perform these 
al
ulations and will be rewritten inGAP4 and submitted as a share pa
kage. The fun
tion IdRel1 a

epts as input a free group and a list of83



relators. It goes through a number of 
al
ulations, in
luding an \extra information" Knuth-Bendix 
om-pletion pro
edure and returns a 
omplete set of generators for the module of identities among relations.The stru
ture of the program idrel:g is outlined below.Preliminary fun
tions ne
essary are:Redu
eWord(word;R1): redu
es a word with respe
t to a rewriting system R1, in the standard way.Redu
eWord2(word;R2): applies an EIRS R2 to a word and redu
es it as far as possible within thatsystem. Output is a pair [
; w℄ where word = Æ2(
)w, where 
 is a Y-sequen
e.InverseYsequen
e(a): Y-sequen
es are represented by lists a = [s1; u1℄; : : : ; [sn; un℄ where ui 2 F andsi is a relator or an inverse of a relator. This fun
tion inverts su
h a sequen
e to [sn; un℄; : : : ; [s1; u1℄.This is used to invert produ
ts of 
onjugates of relators whi
h are represented as Y-sequen
es.KB2(R2): is an implementation of the \extra information" Knuth-Bendix pro
edure des
ribed in Se
tion4. The input rules are in the form of lists of length three where the middle entry represents the produ
tof 
onjugates of relators (r1; u1)"1 � � � (rn; un)"n as a Y-sequen
e [[r"11 ; u1℄; : : : ; [r"nn ; un℄℄. The output ruleswill have the same form. If [l; 
; r℄ is a rule in su
h a system then l ! r and l = Æ2(
)r.Given a presentation grphXjreltsi, de�ne F := F (X). The main fun
tion is:IdRel1(F; relts). First G is de�ned to be the quotient of the free group F by the relators relts. Let� : F ! G be the quotient morphism. It is ne
essary to keep tra
k of whether an element is in Gor F . The next step is to 
onstru
t the initial EIRS from the relators. The program uses the monoidpresentation of the group to enable it to a

ept relators 
ontaining inverses without 
hanging them. Theresulting EIRS is then 
ompleted using KB2 to obtain K2. The analogous ordinary system is K1. TheCayley graph is represented by a list of edges, whi
h are pairs [g; x℄ where g is an irredu
ible in F and xis a generator. The so-
alled alpha-edges are the edges not in the spanning tree given by the length-lexorder. The map h1 is de�ned on these alpha-edges by h1[g; x℄ := [id; Redu
eWord2(N(g)x;K2)℄ and weapply p2 immediately, so re
ording only the se
ond part of this pair. To obtain the identities amongrelations all relator 
y
les in the Cayley graph must be 
onsidered. These are re
orded as pairs [g; r℄where g is a vertex and r is a relator. The boundary ~Æ2 of the 
y
le is basi
ally found by splitting upthe relator r to obtain a list of edges. Non-alpha edges are removed sin
e h1 maps any edge of the treeto id. The remaining edges of ea
h 
y
le are identi�ed with their images under p2h1. The identities are
al
ulated by manipulating the information held so as to obtain a representation of p2(h1~Æ2[g; r℄)�1r�(g)�1for ea
h [g; r℄ pair.The output is in the form of a re
ord id1 (say) with the following �elds:id1:free the free group F ;id1:rels the relators relts;id1:elF the normal forms of the group elements;id1:K the (ordinary) 
ompleted rewriting system;id1:idents the generating set of identities among relations;id1:isIdsRe
ord true { a 
he
k that the identities generated all have the image id.A small example is printed here { others are on disk in �les idreleg1:g to idreleg3:g. If IdRelPrintLevelis set to be greater than 1 (up to 3) information on the progression through the program is printed tothe s
reen. 84



gap> Read("idrel.g");gap> IdRelPrintLevel:=1;;gap> F:=FreeGroup("a","b");;gap> a:=F.1;;b:=F.2;;gap> R:=[a^3,b^2,a*b*a*b℄;;gap> id1:=IdRel1(F,R);;gap> id1.idents;[ [ [ r1-1, IdWord ℄, [ r1^-1, IdWord ℄ ℄,[ [ r1^-1, IdWord ℄, [ r1, a^-1 ℄ ℄,[ [ r3^-1, IdWord ℄, [ r2, a^-1*b^-1*a^-1 ℄,[ r2^-1, IdWord ℄, [ r1^-1, b^-1 ℄, [ r3, a^-2*b^-1 ℄, [ r1, b^-1 ℄ ℄,[ [ r1^-1, IdWord ℄, [ r1, a^-2 ℄ ℄,[ [ r2^-1, IdWord ℄, [ r1^-1, b^-1 ℄, [ r3, a^-2*b^-1 ℄,[ r3^-1, IdWord ℄, [ r2, a^-1*b^-1*a^-1 ℄, [ r1, b^-1*a^-1 ℄ ℄,[ [ r3^-1, IdWord ℄, [ r2, a^-1*b^-1*a^-1 ℄,[ r2^-1, IdWord ℄, [ r1^-1, b^-1 ℄, [ r3, a^-2*b^-1 ℄,[ r1, a^-1*b^-1 ℄ ℄, [ [ r2^-1, IdWord ℄, [ r2, IdWord ℄ ℄,[ [ r2^-1, a^-1 ℄, [ r2, a^-1 ℄ ℄,[ [ r2^-1, IdWord ℄, [ r2, b^-1 ℄ ℄,[ [ r3^-1, a^-2 ℄, [ r1, IdWord ℄, [ r2^-1, a^-1*b^-1 ℄,[ r1^-1, IdWord ℄, [ r3, a^-2 ℄, [ r2, a^-2 ℄ ℄,[ [ r2^-1, a^-1 ℄, [ r2, b^-1*a^-1 ℄ ℄,[ [ r2^-1, a^-1*b^-1 ℄, [ r1^-1, IdWord ℄, [ r3, a^-2 ℄,[ r3^-1, a^-2 ℄, [ r1, IdWord ℄, [ r2, a^-1*b^-1 ℄ ℄,[ [ r2^-1, IdWord ℄, [ r3^-1, IdWord ℄, [ r2, a^-1*b^-1*a^-1 ℄, [ r3, IdWord ℄ ℄,[ [ r2^-1, a^-1 ℄, [ r2^-1, IdWord ℄, [ r1^-1, b^-1 ℄, [ r3, a^-2*b^-1 ℄,[ r2^-1, a^-1*b^-1 ℄, [ r1^-1, IdWord ℄, [ r3, a^-2 ℄, [ r3, a^-1 ℄ ℄,[ [ r1^-1, IdWord ℄, [ r3^-1, a^-2 ℄, [ r1, IdWord ℄, [ r3, b^-1 ℄ ℄,[ [ r3^-1, a^-2 ℄, [ r1, IdWord ℄, [ r1^-1, IdWord ℄, [ r3, a^-2 ℄ ℄,[ [ r2^-1, IdWord ℄, [ r3^-1, IdWord ℄, [ r2, a^-1*b^-1*a^-1 ℄, [ r3, b^-1*a^-1 ℄ ℄,[ [ r2^-1, a^-1*b^-1 ℄, [ r1^-1, IdWord ℄, [ r3, a^-2 ℄, [ r2^-1, a^-1 ℄,[ r2^-1, IdWord ℄, [ r1^-1, b^-1 ℄, [ r3, a^-2*b^-1 ℄, [ r3, a^-1*b^-1 ℄ ℄ ℄gap>The program returns a set of 18 generators for kerÆ2, these are the images under Æ3 of a set of generatorsfor eC3. For the output of higher stages to be useful implementation of some Gr�obner basis pro
edureswill be ne
essary. This is dis
ussed in Se
tion 6.Example 5.5.1 We now present the results obtained for S3 followed by some of the details of the
al
ulations whi
h 
an be done by hand in this 
ase, beginning with the presentationG := grphx; y j x3; y2; (xy)2i:The des
ription of the partial free 
rossed resolution is as follows. Let X = fx; yg and de�ne R to be theset of relator labels fr; s; tg whose images under w arefx3; y2; (xy)2g:C2 is the free 
rossed F (X)-module on w : R ! F (X).C3 is the free ZG-module generated by four elements f�1; : : : ; �4g whose images under Æ3 generate kerÆ2and are fr�1rx�1 ; s�1sy�1 ; t�1ty�1x�1 ; ts�xyr�ys�1txs�xr�1tx�1g:C4 is the free ZG-module generated by �ve elements f�1; : : : ; �5g whose images under Æ4 generate kerÆ3and are 85



f�1(id+x+x2); �2(id+y); �3(x+y); �4(x2� id)� �2(yx+x2)� �1(xy� id); �4(y�1)� �3(x�yx+ id)+ �2g:C5 is the free ZG-module generated by six elements f�1; : : : ; �6g whose images under Æ5 generate kerÆ4and are f�1(x� id); �2(y � id); �3(x2 � y); �4(id+ x+ x2) + �2(id + x+ x2)� �1(id� y);�5(id+ yx) + �4(x+ y) + �3 + �2(x2); �5(id+ y) + �3(id� x+ y)� �2g:C6 is the free ZG-module generated by seven elements f�1; : : : ; �7g whose images under Æ6 generate kerÆ5and are f�1(id+ x+ x2); �2(id+ y); �3(x+ y); �4(x2 � id)� �1(x2 + y);�6(id+ x+ x2)� �5(id+ y + xy) + �4(id + y)� �3(y)� �2(x2);�5(x2 � y) + �2(x)� �3; �6(yx� x)� �3(id+ x+ y)g:This de�nes the resolution of the group (C0) up to the sixth level C6. If identities among relations �i areequivalent to �rst order syzygies then the �i are like the fourth order syzygies.The 
al
ulations pro
eeded as follows:First of all we 
omputed an \extra information" 
omplete rewriting system for the group (GAP output):gap> R:=[x^3,y^2,x*y*x*y℄;[ x^3, y^2, x*y*x*y ℄gap> R2:=List( R, r -> [ r, [ [ r, IdWord ℄ ℄, IdWord ℄ );[ [ x^3, [ [ x^3, IdWord ℄ ℄, IdWord ℄, [ y^2, [ [ y^2, IdWord ℄ ℄,IdWord ℄,[ x*y*x*y, [ [ x*y*x*y, IdWord ℄ ℄, IdWord ℄ ℄gap> KB2(R2);[ [ y^2, [ [ y^2, IdWord ℄ ℄, IdWord ℄,[ x^3, [ [ x^3, IdWord ℄ ℄, IdWord ℄,[ x^2*y, [ [ y^-1*x^-1*y^-1*x^-1, x^-2 ℄,[ y^2, x^-1*y^-1*x^-3 ℄, [ x^3, IdWord ℄ ℄, y*x ℄,[ x*y*x, [ [ y^-2, x^-1*y^-1*x^-1 ℄, [ x*y*x*y, IdWord ℄ ℄, y ℄,[ y*x^2, [ [ y^-1*x^-1*y^-1*x^-1, x^-2*y^-1 ℄,[ x^3, y^-1 ℄, [ y^2, IdWord ℄ ℄, x*y ℄,[ y*x*y, [ [ x^-3, IdWord ℄, [ x*y*x*y, x^-2 ℄ ℄, x^2 ℄ ℄The six rules may be translated as follows:y2 !R2 (s; id) x3 !R2 (r; id)x2y !R2 (t�x�2sx�1y�1x�3r; yx) xyx!R2 (s�x�1y�1x�1t; y)yxy !R2 (r�1tx�2 ; x2) yx2 !R2 (t�x�2y�1ry�1s; xy)The word on the left hand side redu
es to the word at the right hand end, and is equal to the boundaryof the entry in bra
kets multiplied by that redu
ed word. N(g) denotes the normal form (unique redu
edword) in F (X) representing the element g and � is the quotient map : F (X) ! G. The homotopyh1 is de�ned on the edges [g; x℄ of the Cayley graph (G � X) by �nding produ
ts of 
onjugates of therelators (R) whose images under Æ2 are N(g)xN(g�(x))�1. (For small groups like this one it is possibleto do this quite eÆ
iently by inspe
tion.) In general one de�nes h1 algorithmi
ally by using the \extrainformation" rewriting system introdu
ed in the previous se
tion. The de�nition of h1 in this example isas follows: (I have 
hosen to use a more eÆ
ient de�nition than that suggested by the 
omputer programbe
ause it simpli�es the manual 
al
ulations to follow. The only loss by using the 
omputer generatedde�nition is that of spa
e. With groups even a little larger or more 
omplex there is no option but to usethe 
omputer generated de�nition.) 86



edge [g; x℄ h1[g; x℄ p2h1[g; x℄in eC1 in eC2 in C2[id; x℄ 1 1[id; x℄ 1 1[x; x℄ 1 1[x; y℄ 1 1[y; x℄ 1 1[y; y℄ [id; s℄ s[x2; x℄ [id; r℄ r[x2; y℄ [id; rsxt�x℄ rsxt�x[xy; x℄ [id; ts�1℄ ts�1[xy; y℄ [id; tsxyt�1℄ tsxyt�1[yx; x℄ [id; sryt�1℄ sryt�1[yx; x℄ [id; stys�1r�1℄ stys�1r�1Table 1: De�ning h1The formulae for the 
rossed 
omplex give us a 
omplete set of generators for kerÆ2.[g; r℄ ~Æ2[g; r℄ p2((h1~Æ2[g; r℄)�1[g; r℄[g;g�1℄) p3h2[g; r℄in eC2 in eC1 in C2 in C3[id; r℄ [1; x℄[x; x℄[x2; x℄ 1 0[x; r℄ [x; x℄[x2; x℄[1; x℄ r�1rx�1 �1[y; r℄ [y; x℄[yx; x℄[xy; x℄ 1 0[x2; r℄ [x2; x℄[1; x℄[x; x℄ r�1rx�2 �1(1 + x2)[xy; r℄ [xy; x℄[y; x℄[yx; x℄ r�x�1y�1x�1ry�1x�1 ��1(xy)[yx; r℄ [yx; x℄[xy; x℄[y; x℄ r�y�1rx�1y�1 �1(y)[id; s℄ [1; y℄[y; y℄ 1 0[x; s℄ [x; y℄[xy; y℄ s�y�1x�1sx�1 ��2(x2)[y; s℄ [y; y℄[1; y℄ s�1sy�1 �2[x2; s℄ [x2; y℄[yx; y℄ ty�1x�3t�x�2 ��3(x)[xy; s℄ [xy; y℄[x; y℄ 1 0[yx; s℄ [yx; y℄[x2; y℄ txs�xt�y�1s�x�1y�1 �3(y)� �2(yx)[id; t℄ [1; x℄[x; y℄[xy; x℄[y; y℄ 1 0[x; t℄ [x; x℄[x2; y℄[yx; x℄[xy; y℄ ts�xyr�ys�1txs�xr�1tx�1 �4[y; t℄ [y; x℄[yx; y℄[x2; x℄[1; y℄ 1 0[x2; t℄ [x2; x℄[1; y℄[y; x℄[yx; y℄ ty�1x�3t�x�2 ��3(x)[xy; t℄ [xy; x℄[y; y℄[1; x℄[x; y℄ t�1ty�1x�1 �3[yx; t℄ [yx; x℄[xy; y℄[x; x℄[x2; y℄ txs�xr�1ts�xyr�ys�1tx�1y�1 �4(1) � �3(yx)Table 2: Cal
ulating kerÆ2 and de�ning h2The last 
olumn shows how the other identities found may be expressed (in C3) in terms of the fourgenerating ones. The main result so far is that the module of identities among relations for this grouppresentation is generated by four elements. This result 
an be obtained by other methods. However, wenow use the results of that last 
olumn to 
al
ulate a set of generators for the module of identities amongidentities. This last 
olumn de�nes h2 on the free generators of eC2 (listed in the se
ond 
olumn of thetable) so that it annihilates the a
tion of eC1 as required.The elements p3(�h2~Æ3[g; �℄ + [g; �℄h0(g)) for [g; �℄ 2 eC3 are a generating set of identities among the iden-tities. The table below gives the identity resulting from ea
h generator [g; �℄ of eC3. These were obtained87



by �rst 
al
ulating the images under ~Æ3. This e�e
tively gives us the boundary of the generator.For example, ~Æ3[id; �1℄ is [id; r℄�1[x; r℄[x;x�1℄, This is be
ause Æ3(�1) = r�1rx�1 , and ~Æn(g; 
) := [g; Æn(
)℄ andwe then write [g; Æn(
)℄ as a produ
t of the generators of Cn�1 as a C1-module as h2 will be de�ned on thesegenerators. Similarly, ~Æ3[x2; �4℄ is [x2; t℄[y; s℄�[y;xy℄[yx; r℄�[yx;y℄[x2; s℄�1[x; t℄[x;x℄[x; s℄�[x;x℄[x2; r℄�1[id; t℄[id;x�1℄.(Re
all that the a
tion is de�ned as [g; 
℄[g;y℄ = [g�y; 
y℄.)When we have turned the [g; �℄ into su
h a produ
t of eC2 generators, we 
an 
al
ulate h2(~Æ3[g; �℄) usingthe last table. Note that a property of h2 is that it must annihilate the a
tion of eC1, it is also a morphism,in that it preserves the multipli
ation of the elements of eC2. Therefore h2~Æ3[id; �1℄ is h2[id; r℄�1 = h2[x; r℄and h2~Æ3[x2; �4℄ is h2[x2; t℄�h2[y; s℄�h2[yx; r℄�h2[x2; s℄+h2[x; t℄�h2[x; s℄�h2[x2; r℄+h2[id; t℄. We 
anread these values o� the previous table, as we have de�ned h2 on all the elements [g; r℄. So h2~Æ3[id; �1℄ is[id;�0 + �1℄ = [id; �1℄and h2~Æ3[x2; �4℄ is [id; �4 � �2 � �1(y)� (��3(x)) + �4 � (��2(x2))� �1(1 + x2) + 0℄.To obtain the identities we negate the above h2~Æ3[g; �℄'s and add [g; �℄h0(g) whi
h is e�e
tively [id; �(g)℄.We �nally proje
t this sum down to C3: p2h2~Æ3[id; �1℄ is ��1 + �1 = 0 and p2h2~Æ3[x2; �4℄ is �4(x � 1) ��2(x2 � id) + �1(id+ x2 + y).The following table gives the identities resulting from all the generators.[g; �℄ p3(�h2~Æ3[g; �℄ + [g; �℄h0(g)) p4h3[g; �℄in �C3 in C3 in C4[id; �1℄ 0 0[x; �1℄ 0 0[y; �1℄ 0 0[x2; �1℄ �1(id+ x+ x2) �1[xy; �1℄ 0 0[yx; �1℄ �1(y + xy + yx) �1(y)[id; �2℄ 0 0[x; �2℄ 0 0[y; �2℄ �2(id+ y) �2[x2; �2℄ �2(x+ yx)� �3(x+ y) �2(x)� �3[xy; �2℄ �2(x2 + xy) �2(x2)[yx; �2℄ �3(x+ y) �3[id; �3℄ 0 0[x; �3℄ �3(x2 + yx) �3(x)[y; �3℄ �3(x+ y) �3[x2; �3℄ 0 0[xy; �3℄ �3(id+ xy) �3(y)[yx; �3℄ 0 0[id; �4℄ 0 0[x; �4℄ �4(x2�id)+�3(x+y)��2(yx+x2)��1(xy�1) �4 + �3[y; �4℄ �4(y � 1)��3(x�yx+id)+�2 �5[x2; �4℄ �4(x�1) � �2(x2�id)+�1(id+x2+y) ��4(x)� �2(x2)� �1[xy; �4℄ �4(xy � 1)� �3(id�yx�y)��2(yx)��1(xy�id) �5(x2) + �4 + �3(x)[yx; �4℄ �4(yx�id)��3(id�y�yx)��2(x2+yx�id)+�1(x2+id+y) ��5(yx)� �4(x)� �2(x2) + �1Table 3: Cal
ulating kerÆ3 and de�ning h3The images of the �i generate the kernel as a ZG-module, the �i themselves provide a set of generatorsfor �C4. We use the formula p4(�h3~Æ4[g; �℄ + [g; �℄h0(g)) to 
al
ulate a generating set of 30 elements for88



kerÆ4, whi
h we 
an redu
e to six. The last table de�nes h3 (\in eC4" 
olumn) on the generators of C3([g; �℄ 
olumn).[g; �℄ p4(�h3~Æ4[g; �℄ + [g; �℄h0(g)) p5h4[g; �℄in �C4 in C4 in C5[id; �1℄ ��1 + �1 0[x; �1℄ ��1 + �1(x2) ��1(x2)[y; �1℄ ��1(y) + �1(y) 0[x2; �1℄ ��1 + �1(x) �1[xy; �1℄ ��1(y) + �1(xy) �1(y)[yx; �1℄ ��1(y) + �1(yx) ��1(yx)[id; �2℄ ��2 + �2 0[x; �2℄ ��2(x2) + �2(x2) 0[y; �2℄ ��2 + �2(y) �2[x2; �2℄ ��2(x) + �2(x) 0[xy; �2℄ ��2(x2) + �2(xy) �2(x2)[yx; �2℄ ��2(x) + �2(yx) �2(x)[id; �3℄ ��3 + �3 0[x; �3℄ ��3(y) + �3(x2) �3[y; �3℄ ��3(y) + �3(y) 0[x2; �3℄ ��3(x) + �3(x) 0[xy; �3℄ ��3(x) + �3(xy) �3(yx)[yx; �3℄ ��3 + �3(yx) �3(y)[id; �4℄ ��4 + �4 0[x; �4℄ �4(x+ id) + �2(x2 + x+ id)� �1(id� y) + �4(x2) �4[y; �4℄ �5(id+ yx) + �4(x) + �3 + �2(x2) + �4(y) �5[x2; �4℄ ��4(x) + �4(x) 0[xy; �4℄ �5(x2 + id) + �4 + �3(x� id) + �2(x+ id) + �4(xy) ��6 + �5(y)� �2(x)[yx; �4℄ ��5(x2 + yx)� �4(x+ id)� �3(x) + �1(y � id) + �4(yx) ��6(x2 + x) + �5(xy)��4 + �3(y)� �2[id; �5℄ ��5 + �5 0[x; �5℄ ��5(x2) + �5(x2) 0[y; �5℄ �5 + �3(id� x+ y)� �2 + �5(y) �6[x2; �5℄ �5(yx) + �3(x� y + id)� �2(x) + �5(x) �6(x) + �3(id+ x)[xy; �5℄ �5(x2) + �3(y � id+ x)� �2(x2) + �5(xy) �6(x) + �3(x2 � id)[yx; �5℄ ��5(yx) + �5(yx) 0Table 4: Cal
ulating kerÆ4 and de�ning h4So now we have six generators for eC5 : f�1; : : : ; �6g and their images f�1(x� id); �2(y � id); �3(x2 �y); �4(id+x+x2)+�2(id+x+x2)��1(id�y); �5(id+yx)+�4(x+y)+�3+�2(x2); �5(id+y)+�3(id�x+y)��2ggenerate the module of identities among the identities among identities (kerÆ4). The last 
olumn de�nesh4.
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[g; �℄ p5(�h4~Æ5[g; �℄ + [g; �℄h0(g)) in C6[id; �1℄ 0 0[x; �1℄ 0 0[y; �1℄ 0 0[x2; �1℄ �1(id+ x+ x2) �1[xy; �1℄ �1(y + xy + yx) �1(y)[yx; �1℄ 0 0[id; �2℄ 0 0[x; �2℄ 0 0[y; �2℄ �2(id+ y) �2[x2; �2℄ 0 0[xy; �2℄ �2(x2 + xy) �2(x2)[yx; �2℄ �2(x+ yx) �2(x)[id; �3℄ 0 0[x; �3℄ �3(xy + x2) �3(x)[y; �3℄ 0 0[x2; �3℄ �3(x+ y) �3[xy; �3℄ �3(id+ xy) �3(y)[yx; �3℄ 0 0[id; �4℄ 0 0[x; �4℄ �4(x2�id)� �1(x2+y) �4[y; �4℄ �6(id+x+x2)� �5(1+y+xy) + �4(1+y)� �3(y)� �2(x2) �5[x2; �4℄ �4(x� id) + �1(yx+ id) ��4(x)[xy; �4℄ �6(id+x+x2)� �5(1+y+xy) + �4(1+xy)� �3(y)� �2(x2) + �1(y+x2) �5 � �4(xy)[yx; �4℄ �6(id+x+x2)� �5(1+y+xy) + �4(1+yx)� �3(y)� �2(x2)� �1(yx+id) �5 + �4(y)[id; �5℄ 0 0[x; �5℄ �5(x2 � y) + �2(x)� �3 �6[y; �5℄ 0 0[x2; �5℄ ��6(x2+x+id) + �5(id+y+x)� �4(id+y)� �3(x+x2) + �2(id+x2) �6(x2)� �5+�3[xy; �5℄ ��6(x2+x+id) + �5(id+y+yx)� �4(id+y)� �3(x+x2+yx) + �2(x2) ��5 � �3(x+id)[yx; �5℄ �5(yx�id)� �3(y)� �2(x2) �6(y)� �2(x2)[id; �6℄ 0 0[x; �6℄ ��3(x2 + yx) ��3(x2)[y; �6℄ �6(y�id) + �3(yx) �7[x2; �6℄ ��3(x+ y) ��3[xy; �6℄ �6(xy�x2) + �3(y�x2+yx) + �2(x2) �7(x2) + �3(x)[yx; �6℄ �6(yx�x)� �3(x+y +id) + �2(x) �7(x)� �3(y + id)Table 5: Cal
ulating kerÆ5 and de�ning h5We 
ould 
al
ulate the identities for the next level, using the last table as a de�nition for h5, 
omputinga set of 42 generators for kerÆ6 (using p6(�h5~Æ6[g; �℄ + [g; �℄h0(g)) ) and redu
ing them as before. It doesnot get more 
ompli
ated: for n�3 Cn is a ZG-module and the expression pn(�hn�1~Æn[g; 
℄+[g; 
℄h0(g)),where 
 is a generator of Cn, gives a set of generators for Cn+1 as a ZG-module (whi
h may be redu
edover the ZG-module). It is in prin
iple possible to 
ontinue this exer
ise further, but it is not of value todo so here. The obvious 
onje
ture it that Cn will be the free ZG-module generated by n+ 1 elements.Noti
e that every time we are 
hoosing a set of independent generators for the ZG-submodule; the set isnot unique, and we do not have an algorithm for determining whi
h generator is expressible in terms of theothers or how to express it in this way. The method used is no more than inspe
tion and trial and error.The purpose of in
luding this example is that it best shows what may be a
hieved using the 
overing90



groupoids and homotopies methods, the 
omplexity of even a very small example, and thus illustrates thene
essity for a 
omputer algorithm to extra
t su
h information as was summarised at the beginning ofthis example. The next se
tion shows that these problems 
an be expressed in terms of non
ommutativeGr�obner bases over group rings. New work is being developed [52℄ on algorithms for su
h problems, andso expressing the problem of devising an algorithm for obtaining redu
ed sets of identities and higheridentities is a step forward, and until su
h Gr�obner basis algorithms be
ome available we 
annot expe
tto be able to have algorithms for redu
ing the sets of generating identities.5.6 The Submodule ProblemThe previous se
tions have shown that a variation of the non
ommutative Bu
hberger algorithm (Knuth-Bendix algorithm) may be applied to a group presentation to obtain the 
ontra
ting homotopy h1, anda set of generators for the module of identities among relations for the group presentation. This mu
hhas been implemented in the program idrel:g for GAP. The remaining problem is that of redu
ing theset of generators with respe
t to the a
tion of ZG on the module.We dis
ussed earlier the Pei�er Problem whi
h o

urs at the �rst level (identities among relations:kerÆ2 � C(R)). This problem is diÆ
ult be
ause we need to test for equality in the free 
rossed F (X)-module, in other words, to test for Pei�er equivalen
e of two sequen
es (re
all that the Pei�er rules implythat [s; v℄[r; u℄ = [r; u℄[s; vÆ(r)u℄ = [r; uÆ(s)v ℄). In this 
ase we essentially wish to be able to redu
e theset of generating identities to a set f�1; : : : ; �kg that is in some sense minimal over ZG i.e. no �j 
an bewritten as a sum of ZG-multiples of the other identities. To summarise { there are great diÆ
ulties inredu
ing the set of generators of the module of identities among relations. Furthermore, unless we 
anexpress ea
h of the original generators in terms of those in the redu
ed set it is not pra
ti
al to de�ne h2on su
h a large set.We will now use a property whi
h 
onverts the Pei�er Problem into a Gr�obner basis problem. Thisproperty is fully explained in [15℄. First, re
all that the 
rossed module is de�ned by taking the Pei�erequivalen
e 
lasses of the free group F (R � F (X)). This is the same as looking at the free monoid(Y + t Y �)� fa
tored by the relations needed for the group as well as by the Pei�er relations. Elementsof (Y + t Y �)� are 
alled Y-sequen
es.An identity Y-sequen
e is one whose image under Æ2 is the identity in F (X).The identity property uses a result on the abelianisation of C(R) to des
ribe a useful way of determiningwhether an identity Y -sequen
e (i.e. one identi�ed with an element of the kernel of Æ2, whi
h is abelian)is Pei�er equivalent to the empty sequen
e.An identity Y -sequen
e a = (r1; u1)"1 ; : : : ; (rk; uk)"1 has thePrimary Identity Property if the indexingnumbers 1; : : : ; k of the sequen
e y 
an be paired (i; j) so that ri = rj, �(uj) = �(uj) and "i = �"j .Lemma 5.6.1 ([15℄) Let a 2 (Y + t Y �)�. Then a has the Primary Identity Property if and only if itis Pei�er equivalent to the empty sequen
e.Let X be a set and let K be a ring. Re
all that the free right K-moduleK[X℄ on X has as elements allformal sums x1k1+� � �+xnkn where x1; : : : ; xn 2 X and k1; : : : ; kn 2 K. Right multipli
ation by elementsof K and addition of elements of K[X℄ are de�ned, with a zero and inverses, and (x1+x2)k = x1k+x2k.Let P := fp1; : : : ; png � K[X℄. Re
all that the sub ZG-module generated by P ishP i := fp1�1 + � � �+ pn�n : �1; : : : ; �n 2 Kg91



Let grphXjRi be a presentation of a group G. The group ring ZG is the free right Z-module on Gtogether with a 
omposition, making it an algebra over the ring Z. The free right ZG-module ZG[R℄ onthe set R has elements of the form r1�1 + � � �+ rn�n where r1; : : : ; rn 2 R and �1; : : : ; �n 2 ZG.Lemma 5.6.2 Let grphXjRi be a presentation of a group G, with quotient morphism � : F (X) ! G.Let � = (r1; u1)"1 � � � (rn; un)"n be an identity Y- sequen
e and let � denote the empty sequen
e. De�ne� : (Y + t Y �)� ! ZG[R℄ by �((r; u)") := r(�u") with �(�) = 0. Then � �$RP � if and only if �(�) = 0.Proof We verify that � preserves the G-a
tion: �(((r; u)")v) = �((r; uv)") = r(�(uv)") = (�(r; u)")�v.The result now follows immediately from the de�nition of �, the Primary Identity Property and theprevious lemma. 2Corollary 5.6.3 Let �1; �2 be identity Y-sequen
es. Then �1 �$RP �2 if and only if h�1i = h�2i in ZG[R℄.De�nition 5.6.4 Let K[X℄ be a right K-module and let a; b 2 K[X℄. The Submodule Problem isINPUT a; b 2 K[X℄ (two elements of the right K-module,)QUESTION hai = hbi? (do they generate the same submodule?)So we have shown that the Pei�er Problem for identity Y-sequen
es simpli�es to the Submodule Problem.If the Submodule Problem 
an be solved then it is possible to redu
e the set of generators of kerÆ2 to aset of generating identities f�1; : : : �tg su
h that no subset of this will generate the same sub ZG-module.This is in some sense a minimal set of generators for kerÆ2 (see later note).At the next levels, kerÆn for n � 3, the problem is simpler in that we are now working entirely inZG-modules, and do not en
ounter the Pei�er Problem. The only problem we now en
ounter is theSubmodule Problem.In the kerÆ3 
ase (Table 3) we have a set of 24 generators as elements of C2, whi
h here is the freeZG-module on f�1; : : : ; �4g. Some of these generators are zero, others are of the form �1(id+x+x2) and�2(x+yx)� �3(x+y).The problem may be phrased in the terms of a Gr�obner basis problem. This is a reasonable approa
h,be
ause methods for dealing with 
ommutative Gr�obner bases over rings exist [1℄ (essentially for Prin
i-pal Ideal Domains) and methods for non
ommutative Gr�obner bases over rings (spe
i�
ally group andmonoid rings) are being developed [52℄. Let P := fp1; : : : ; png be a set of polynomials with 
oeÆ
ientsin ZG and monomials from a set M i.e. p1; : : : ; pn are elements of the ZG-module ZG(M). The task isto �nd a set Q := fq1; : : : ; qmg that generates the same sub ZG-module, but is su
h that no qi is a sumof ZG-multiples of the other qj.Bases for modules are not in general unique or of the same rank. So it is possible that there are two su
hsets Q and Q0 and that these are of di�erent sizes. We are 
on
erned not with �nding the generating setwith smallest 
ardinality but with �nding a set whi
h 
ontains no subset whi
h would generate the samesubmodule.If Q is a Gr�obner basis for P then by de�nition hP i = hQi. If Q is a redu
ed Gr�obner basis then it is su
hthat no element qi of Q is a sum of ZG-multiples of the other elements qj of Q. This puts the problemof �nding a redu
ed set of sub-module generators in terms of a Gr�obner basis problem.
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5.7 Con
luding RemarksThe purpose of this 
hapter was to make algorithmi
 the methods given in [17℄. In fa
t we have 
om-puterised the initial part of the 
onstru
tion, using rewriting theory and the Knuth-Bendix 
ompletionpro
edure to algorithmi
ally de�ne the �rst 
ontra
ting homotopies h0 and h1. The program idrels:gwill 
ompute, from a group presentation, a 
omplete generating set for the module of identities amongrelations.Unfortunately we 
annot yet produ
e an algorithm for the minimalisation of this set of generators. Twomajor barriers to a redu
tion pro
edure have been identi�ed. Firstly, the Pei�er Problem, a parti
ularlydiÆ
ult word problem en
ountered in 
rossed modules and 2-
ategories as a result of the Pei�er rulesor inter
hange law. This has been redu
ed, using a property de�ned in [15℄ to the Submodule Problem,whi
h is also en
ountered at higher levels, and indi
ates that methods for non
ommutative Gr�obner basesover group rings are required. Methods for solving this problem are progressing, thanks to 
ollaborationwith Birgit Reinert (Kaiserslautern). A program for redu
ing the �rst generating set of identities exists.This work will 
ontinue with the aim of extending the program so that it will 
ompute minimal generatingsets for the ZG-modules Cn for any given n.Investigation of whether the 
ompletion of a monoid presentation yields something useful for the 
on-stru
tion of a resolution of the monoid would also be an interesting area of work. We do not knowwhether the 
overing groupoids methods of [17℄ might generalise to a 
overing 
ategories of monoidsmethod for 
al
ulating something 
orresponding to identities among relations for monoids. This lookslike the beginnings of a non
ommutative syzygy theory, and would de�nitely be worth investigating.
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File 1: knuth.gThe �rst program is an implementation of the standard Knuth-Bendix pro
edure whi
h may be appliedto string rewriting. A rewrite system R is input in the form of a list R of pairs of words. The importantsubroutines are:� OnePass(word; R): redu
es word (if possible) by applying one rule from R. This pro
edure involvessear
hing to see if the left side of a rule in R is a subword of word and then repla
ing that part of wordwith the right side of the rule.� Redu
eWord(word; R) redu
es word as far as possible with respe
t to R by the repeated appli
ation ofthe previous fun
tion. (Note that the redu
ed form 
an only be guaranteed to be unique if R is 
omplete.)� Criti
alPairs(R): overlaps between the left hand sides of the rules in R are found, and the resulting
riti
al pairs are found and redu
ed with respe
t to R.� OnePassKB(R): this fun
tion 
omputes the 
riti
al pairs of a rewrite system R and then resolves these
riti
al pairs by adding then to R.� SystemRedu
e(R): is an eÆ
ien
y measure rather than theoreti
ally essential. It normalises an ordinaryrewrite system by redu
ing the rules (both sides of ea
h rule are redu
ed by the other rules and the rulesimplied by other rules within the system are hen
e removed).The main fun
tion of the program is KB.� KB(R): attempts to 
omplete the rewrite system (with respe
t to the length-lex order). If it a
hievesthe 
ompletion it returns the 
omplete (redu
ed) rewrite system as a list of ordered pairs.When the rewriting system is for a monoid there are further fun
tions whi
h will enumerate the elementsof the monoid.� NextWords(F; Words): 
reates new words of length n+1 by 
omposing single generators from (the freegroup) F with irredu
ible words of length n.� Enumerate(F; R): uses the previous fun
tion and redu
e(word; R) to build up blo
ks of words of thesame length (on the irredu
ibles one unit shorter) and then to redu
e these words as far as possible.When a whole blo
k of new words is redu
ible, there are no more irredu
ible words to be found.File 2: kan.gThe main fun
tion of the program is 
alled Kan. The input, fun
tions and output are fully des
ribed inChapter Two.� InitialRules(KAN): The �rst sub-routine 
onstru
ts the initial rewrite system of mixed one-sided andtwo-sided rules. All the rules of the form (x�Fa;Xa(x)) for a 2 A are added to the relations of the
ategory B. This establishes an initial rewriting system for the group.� Kan(KAN): This 
ompletes the rewriting system with respe
t to length-lex (where possible) by 
allingknuth:g. It then enumerates the elements of the sets whi
h make up the Kan extension. The a
tion ofB on the resulting elements 
an easily be 
omputed.File 3: n
poly.gThis �le provides de�nitions and some operations for polynomials with rational 
oeÆ
ients and non-
ommutative monomials in a semigroup.
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� PolyFromTerms([[k1; m1℄; ::; [kn; mn℄℄): 
reates a (non
ommutative) polynomial from a list of terms. Apolynomial is stored as a re
ord but printed ni
ely as a polynomial k1 m1+ � � � + kn mn. There are anumber of operations:� IsNonCommPoly(poly): tests whether a re
ord is a polynomial.� LengthPoly(poly): returns the number of terms.� LeadTerm(poly): extra
ts the leading term (whi
h 
onsists of the monomial of greatest size with respe
tto the length-lex order and its 
oeÆ
ient).� LeadCoeff(poly): returns the 
oeÆ
ient of the leading term.� LeadMonom(poly): returns the monomial part of the leading term.� MakeMoni
(poly): divides a a polynomial by its leading 
oeÆ
ient to return a moni
 polynomial.� NeatenPoly(poly): adds like terms (non-destru
tive).� poly1 = poly2: equality between polynomials is well de�ned.� AreEquivPolys(poly1; poly2): polynomials are equivalent if one is a multiple of the other.� AddPoly(poly1; poly2) : returns the `neatened' sum of two `neat' polynomials.� Subtra
tPoly(poly1; poly2) : returns the `neatened' di�eren
e of two `neat' polynomials.To summarise: a polynomial re
ord poly has the following �elds: poly:IsNonComPoly is true; poly:termsis a list of terms [
; m℄ where 
 is a rational and m is a word; poly:isNeat is either true or false;poly:operations will be NonCommPolyOps; poly:lead is a term [
; m℄; poly:leadmon is poly:lead[2℄;poly:isMoni
 is either true or false.All these fun
tions are required for the non
ommutative Gr�obner basis program.File 4: grobner.gThis is a program for 
omputing the non
ommutative Gr�obner basis of a set of polynomials. It 
onsistsof a number of fun
tions:� Redu
ePoly(poly; POL): redu
es a polynomial poly by subtra
ting multiples of polynomials in POL.The redu
ed form 
an only be guaranteed to be unique with a Gr�obner basis.� OrderSystem(POL): orders a set of polynomials with respe
t to their leading monomials.� PolySystemRedu
e(POL): Removes polynomials whi
h are sums of multiples of other polynomials inthe system.� SPolys(ALL; NEW): 
ompares two lists of polynomials for mat
hes (if the lists are equal then this is thestandard pro
edure and �nds all mat
hes in the system) and 
al
ulates the resulting S-polynomials.� GB(POL): returns (where possible) a Gr�obner basis for a system of non
ommutative polynomials overthe rationals (with respe
t to the length-lex order).File 5: idrel.gThis program a

epts as input a free group and a list of relators. It goes through a number of 
al
ulations,in
luding an \extra information" Knuth-Bendix 
ompletion pro
edure and returns a 
omplete set ofgenerators for the module of identities among relations. The input, fun
tions and output are fullydes
ribed in Chapter Five, with examples.
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