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Introduction

The motivation for this work came from attempting to use groupoids to obtain a normal

form for elements of the trefoil group. In fact a normal form theorem using groupoids

had already been achieved by P. Higgins [17] in a little known paper The fundamental

Groupoid of a Graph of Groups. Higgins paper includes well known results on the

fundamental group of a graph of groups as given by Serre [23] as consequences of the

fundamental groupoid of a graph of groups.

The groupoid approach seems more natural than a group only approach and suits

computation better by splitting the reduction processes of words into smaller manage-

able pieces.

The aim of this thesis is to obtain a free crossed resolution of a fundamental groupoid

of a graph of groups by adapting results on graphs of CW-complexes. We highlight

results on computations used to obtain normal forms for words in graphs of groups and

the construction of free crossed resolutions. The categories of groupoids and of crossed

complexes are the natural setting for this work.

We use a combination of the graph theory and algebra of groupoids. The graph

theory shows clearly how elements of a groupoid can be composed using paths in the

underlying graph of the groupoid, and the idea of “passing elements along edges” of

a graph of groups is developed in determining a normal form for the fundamental

groupoid of a graph of groups. A crossed complex is a sequence of groupoids and mor-

phisms satisfying certain conditions and can hold information about the presentation

of a groupoid. An important example of a crossed complex is induced by a filtered

space. The connection between crossed complexes and filtered spaces is the key to

obtaining a free crossed resolution of a graph of groups.

We begin this thesis by defining a groupoid and using its underlying graph to define
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groupoid words. We give groupoid constructions that are analogous to standard group

theory structures and aim to show that groupoids are a better setting to work in than

groups in this context. We exploit groupoid techniques to convince group theorists

that groupoids is the setting to work in. For a comprehensive overview of the history

of groupoids and examples in different applications refer to R. Brown’s survey, From

Groups to Groupoids [4].

The groupoids that will play an important role in this thesis are called unit, free,

universal and fundamental. The unit groupoid models the unit interval and will be

used to define total groupoids. Free groupoids are defined on a graph and a word in

a free groupoid is given by a path in the graph the groupoid is defined on. A normal

form theorem exists for words in an universal groupoid, and this is further developed to

obtain a normal form for an element of a fundamental groupoid of a graph of groups.

We develop P. J. Higgins paper, The fundamental groupoid of a graph of groups

in which using a graph of groups a normal form for for an arrow of the fundamental

groupoid of a graph of groups is obtained and a reduction process of a graph of groups

word to a unique normal form is given. Higgins’ paper is expanded upon and a new

proof of his normal form theorem using techniques in common with rewriting algo-

rithms. From Higgins’ normal form theorem a normal form for elements of the trefoil

group can be obtained and the general normal form coincides with the general normal

form for free products with amalgamation as given in the group theory literature.

Using graphs of groups to achieve a normal form the process of reduction is split into

smaller reduction processes. The group elements at the groups associated to the ver-

tices are reduced using Knuth-Bendix methods and then linked by the graph structure

and the group isomorphisms associated to the edges of the graph. Implementing the

representation of a graph of groups and the reduction process has enabled a reduction

of a graph of groups word to a unique normal form.

We link the fundamental groupoid of a graph of groups to a total groupoid for a

graph of groups. The key to this work is cylinders and we give full details of groupoids

obtained using mapping and double mapping cylinders. The main example is the

double mapping cylinder which can be used to model free products with amalgamation

and HNN-extensions. We give details of the homotopy equivalence of the fundamental

groupoid of a graph of groups and the total groupoid of the same graph of groups.
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We continue by defining graphs of spaces and the total space of a graph of spaces

which is constructed using cylinders. The spaces that we restrict to are CW-complexes

and by applying the homotopy crossed complex we have a connection between aspher-

ical spaces and free crossed resolutions. The key result due to Scott and Wall [22] that

given a graph of aspherical spaces, the total space is aspherical is used to prove the

main result of this thesis that given a graph of free crossed resolutions the total crossed

complex is a free crossed resolution.

Free crossed resolutions of a group contain information about the presentation of

a group and we give calculations using free crossed resolutions to obtain free crossed

resolutions for free products with amalgamation and HNN-extensions and give full

details of the generators and boundary relations of the free crossed resolution of the

trefoil group.
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Chapter 1

Groupoids

The structure of a groupoid combines geometry and algebra. Geometrically a groupoid

can be thought of in terms of objects and arrows: a directed arrow with two objects

(source and target), and two arrows can be composed together if the target of the first

is the source of the second. Algebraically we can impose conditions of associativity,

left and right identities and inverses.

This chapter begins with a section on the construction of a category and a groupoid

from a graph and continues with a section on groupoids with motivating examples.

The construction of groupoids and analogous group structures in groupoid theory is

developed to adapt group techniques on normal forms.

1.1 Graphs, Categories, and Groupoids

This section defines graphs, categories and groupoids using graphs. Graph theory

has two roles in this exposition; firstly graphs are used to define graphs of groups,

spaces and crossed complexes, and secondly, free structures for groupoids are defined

on graphs.

Categories and groupoids have an underlying graph structure and many of the

terms from graph theory are used to describe the related attributes and properties in

category and groupoid theory.

Category theory provides a general framework which we can then apply to specific

mathematical structures such as groups, groupoids and spaces.
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1.1.1 Graphs

Graph theory is used in this chapter to define categories and groupoids. In later

chapters we use graphs to construct graphs of groups, groupoids, CW -complexes and

crossed complexes. We begin by defining a graph, its attributes and properties.

Definition 1.1.1 A directed graph Γ consists of a set of vertices V (Γ), a set of edges

E(Γ), and two maps s and t, (source and target) from E(Γ) to V (Γ).

We denote the edge e from s(e) = u to t(e) = v as e : u // v or u e // v . We

write Γ(u, v) for the set of edges from u to v. For the purposes of this exposition we

abbreviate a “directed graph” to “graph.”

A subgraph of Γ is a graph whose vertices and edges are subsets of the vertices and

edges of Γ.

If we have two graphs Γ1 and Γ2 a graph map φ : Γ1 → Γ2 is a pair of maps

φV : V (Γ1) → V (Γ2) and φE : E(Γ1) → E(Γ2) such that sφE(e) = φV s(e) and

tφE(e) = φV t(e) for all e ∈ E(Γ1).

A directed path in a graph Γ is either an ordered set p = (e1, . . . , en) for some n > 1

of edges ei such that t(ei) = s(ei+1) for i = 1, . . . n− 1 or an empty path at v ∈ V (Γ),

denoted ()v.

If p = (e1, . . . , en) and q = (e′1, . . . , e
′
m) are directed paths in Γ then pq = (e1, . . . , en, e

′
1, . . . , e

′
m)

is a directed path from s(e1) to t(e′m) if t(en) = s(e′1), and () acts as an identity. This

defines a multiplication of paths

−→
Γ (u, v)×

−→
Γ (v, w)→

−→
Γ (u, w)

where
−→
Γ (u, v) denotes the set of all directed paths from u to v.

An involution of a graph Γ is a map E(Γ) → E(Γ) which sends each edge e to an

edge e where s(e) = t(e), t(e) = s(e) and e = e for all e ∈ E(Γ).

To each graph Γ we can associate a graph Γ with involution. Let Γ′ be a graph

anti-isomorphic to Γ where each edge e of Γ corresponds to an edge e of Γ′ which

is involutary to e. We assume that Γ and Γ′ have no edges in common. We define

the graph with involution Γ to be the graph with vertices V (Γ) := V (Γ) and edges

Γ(v, v′) := Γ(v, v′) ∪ Γ′(v, v′) for all v, v′ ∈ V (Γ).
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We define a path in Γ to be a directed path in the graph Γ with involution. A path

p = (e1, . . . , en) such that s(e1) = t(en) is called a circuit and a path of length 1 which

is a circuit is called a loop.

Given a path p = (e1, . . . , en) and s(e1) = v and t(en) = v′ then the path is said

to connect vertices v and v′. Connected vertices determines an equivalence relation on

the vertices of Γ defined by v ≡ v′ if and only if there is a path in Γ that connects v

and v′. The equivalence classes partition the graph into connected components. If the

graph has one connected component it is called connected.

A graph without circuits is called acyclic. A graph is a tree if it is acyclic and

connected. A spanning tree in a connected graph Γ is a subgraph which is a tree and

has the same vertex set as Γ.

In categories and groupoids we will use the terms object and arrow to describe

elements of the vertex and edge sets respectively of their underlying graphs.

1.1.2 Categories and Groupoids

Category theory is the abstraction of the study of structures and structure preserving

maps. We will use two approaches to category theory, categories of structures and a

category as an algebraic object. The mathematical structures that we will study are

groupoids, groups, topological spaces and crossed complexes. The structure preserv-

ing maps are called functors and are tools that allow comparison between different

mathematical structures. We will use functors to translate results from one category

to another.

We refer the reader to MacLane’s Categories for the Working Mathematician [20]

for a full account of category theory, and Higgins’ Categories and Groupoids [16] which

combines the theory and algebra.

Since groupoids are a special case of category theory we give the definition of a

groupoid in this subsection. The theory of groupoids is developed in Section 1.2.

This subsection begins with the definition of a category and a functor and then gives

examples of categories of structures. We then give details of the coproduct, coequaliser

and colimit constructions. We end this subsection with a brief account of a category

as an algebraic object in which we describe elements of a category of directed paths.
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Definition 1.1.2 A category C consists of a class of objects Ob(C) and a set of arrows

Arr(C) with an underlying graph ΓC where Ob(C) := V (ΓC) and Arr(C) := E(ΓC)

together with a family of multiplications:

Arr(u, v)× Arr(v, w) → Arr(u, w)

(a, b) 7→ ab

satisfying the following axioms.

1. If a : u→ v, b : v → w and c : w → x then (ab)c = a(bc).

2. For all v ∈ Ob(C) there is an element 1v ∈ Arr(v, v) such that 1vb = b and

a1v = a whenever these multiplications are defined.

We use the notation C(u, v) to denote the set of arrows Arr(u, v) in C. A small

category C is category where the objects of C form a set. (A set is a class which is a

member of some other class.)

Definition 1.1.3 A groupoid G is a small category in which every arrow has an inverse:

for all u, v ∈ Ob(G) and a : u→ v there is an element a−1 : v → u such that aa−1 = 1u

and a−1a = 1v.

If C is a category we define its opposite category Cop as follows. The objects uop of Cop

are in one-to-one correspondence with the objects u of C, the arrows aop ∈ Cop(uop, vop)

are in one-to-one correspondence with arrows a ∈ C(v, u) and composition is defined

by aopbop = (ba)op. We note that (Cop)op = C and Γ′C = ΓCop where Γ′ is the anti-

isomorphic graph of Γ as described in Subsection 1.1.

Let X be any construction of a category C, then the dual of X is the construction

defined for the category C by defining X in Cop and reversing all the arrows.

Given two categories C and D we define their product C × D to be the category

whose objects are ordered pairs (c, d) of objects c ∈ Ob(C), d ∈ Ob(D) and arrows

(c, d) → (c′, d′) are pairs (f, g) where f ∈ C(c, c′), g ∈ D(d, d′) with composition

defined by (f, g)(f ′, g′) = (ff ′, gg′).

Definition 1.1.4 If C and D are categories, then a functor F : C → D assigns to

each object u of C an object F (u) of D, and to each arrow g ∈ C(u, v) an arrow
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F (g) ∈ D(F (u), F (v)), in such a way that F (1u) = 1F (u) for each u ∈ Ob(C) and

F (gh) = F (g)F (h) whenever gh is defined. The functor F is called a covariant functor.

We note that a functor is a graph map which preserves products and identity

elements. In contrast we also have a contravariant functor F : C → D which assigns

to each object u of C an object F (u) of D, and to each arrow g ∈ C(u, v) an arrow

F (g) ∈ D(F (v), F (u)), in such a way that F (1u) = 1F (u) for each u ∈ Ob(C) and

F (gh) = F (h)F (g) whenever gh is defined. We can define a contravariant functor as a

covariant functor Cop → D.

The identity functor 1C : C → C is defined to be the identity map on objects and

arrows.

An important class of functors are forgetful functors. We obtain forgetful functors

from a groupoid to a category to a graph, G → C → ΓC, by thinking of a groupoid as

a category and a category as a graph.

We now give examples of categories in which the objects are structures and the

arrows are mappings between them. Composition is given by composition of mappings

and the identity arrows are given by the identity maps.

The category of groups, which we denote Gp has as objects all groups and as arrows

all homomorphisms of groups. We also note that a group G can be thought of as a

category with one object whose arrows are the elements of G.

The category of graphs, Gph, has as objects all graphs and arrows all graph maps.

Composition is given by composing the object and arrow maps in the obvious way.

The identity arrow for each object Γ is the identity graph map on Ob(Γ) and Arr(Γ).

Similarly we can define the categories Set, T op, Gpd, and Crs of sets, topological

spaces, groupoids and crossed complexes respectively.

We also have functors between categories of structures which translate one structure

to another. The fundamental groupoid is a functor from the category of topological

spaces to the category of groupoids. We define the fundamental groupoid of a graph

in subsection 1.2.2 and the fundamental groupoid of a space in Subsection 3.2.1.

We now define coproducts and coequalisers which are used to construct pushouts

and colimits.
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Definition 1.1.5 The coproduct of a pair of objects A and B in a category C is an

object of C denoted A ⊔ B together with morphisms iA : A → A ⊔ B and iB : B →

A ⊔ B with the following universal property: given any object C of C and morphisms

i′A : A → C and i′B : B → C there is a unique morphism φ : A ⊔ B → C such that

φiA = i′A and φiB = i′B.

A
iA //

i′A ##G
GGGGGGGG A ⊔ B

φ

��

B
iBoo

i′B{{wwwwwwwww

C

The coproduct of objects in the categories of Set , T op, Gp and Gpd are disjoint

union of sets, disjoint union of spaces, free product of groups and disjoint union of

groupoids.

Definition 1.1.6 A coequaliser of a pair of arrows f, g : A→ B in a category C is an

arrow u : B → C such that uf = ug and whenever h : B → E satisfies hf = hg then

h = h′u for a unique arrow h′ : C → E.

A
f //
g

// B
u //

h   @
@@

@@
@@

C

h′

��
E

In Set the coequaliser of two functions f, g : X → Y is the projection p : Y →

Y/E on the quotient set of Y by the least equivalence relation E ⊂ Y × Y which

contains all pairs (fx, gx) for x ∈ X. A similar construction for topological spaces

gives the coequaliser in T op. The coequaliser of two groupoid morphisms is given in

Subsection 1.2.6.

Definition 1.1.7 A pushout of a pair of arrows, f : A → B and g : A → C with

common source, is a commutative square

A
f //

g

��

B

i
��

C
j

// P
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such that to every other commutative square built on f and g

A
f //

g

��

B

i′

��
C

j′
// P ′

there is a unique morphism u : P → P ′ with ui = i′ and uj = j′.

In the category Set elements of pushouts are sets of equivalence classes. Similarly

for topological spaces. An interesting class of pushouts in T op are adjunction spaces.

In Chapter 3 we use a type of adjunction space called a “mapping cylinder” which is

used to model a groupoid mapping cylinder.

The motivating example of this thesis, the free product with amalgamation of

groups is given by a pushout of injective maps of groups. In Subsection 1.2.6 we

will give details on free products of groups and HNN-extensions using pushouts of

groupoids.

The dual construction of a pushout is called a pullback.

We now construct a structure that builds a category from a graph. Let C be a

category and Γ a non-empty graph. A Γ-diagram D in C is a graph map D : Γ→ C. If

Γ has vertex set V and edge set E, then the diagram D consists of {Di}i∈V of objects

of C and a family {αe}e∈E of arrows in C, where αe ∈ D(Di, Dj) if e is an edge from i

to j.

If D′ is another Γ-diagram in C with objects D′
i and arrows α′

e then a diagram map

f : D→ D′ is a family f = {fi}i∈V of morphisms fi : Di → D′
i in C, such that for every

edge e of Γ from i to j, fiα
′
e = αefj.

A constant Γ-diagram in C is one in which all the vertices of V (Γ) are mapped to

the same object D and all edges are mapped to the identity arrow on D. There is up

to isomorphism just one such diagram for each object D of C, and we denote it k(D).

We now define a colimit.

Definition 1.1.8 Suppose we are given a Γ-diagram D in C, an object L of C and a

diagram map f : D → k(L). We say that f is a colimit of the diagram D if it has the

following property: for every object C of C and every diagram map g : D→ k(C) there

10



is a unique morphism γ : L→ C in C such that the following diagram commutes

D
f //

g

��?
??

??
??

??
??

k(L)

k(γ)

��
k(C)

where k(γ) is the diagram map k(L)→ k(C).

If Γ is a graph with no edges, the Γ-diagram in a category C is a family of objects

{Dv}v∈V (Γ). If the colimit exists it is the coproduct of the objects Dv. The colimit (if

it exists) of the Γ-diagram D1 D0
α1oo α2 //D3 is the pushout of α1 and α2.

The following theorem is used to show that the category of groupoids admits colimits

in Subsection 1.2.6.

Theorem 1.1.9 For categories J and C, if C has coequalisers for all pairs of arrows

and all coproducts indexed by the sets Ob(J) and Arr(J) then C has a colimit for every

functor F : J → C.

Proof The result follows by dualising the proof of Theorem 1, MacLane [20] �

MacLane restates the theorem in terms of a coequaliser of two morphisms of co-

products on arrows and objects.

Theorem 1.1.10 The colimit of F : J → C is the coequaliser of

⊔
a
Fs(a)

f //
g

// ⊔
u
Fu

for u ∈ Ob(J) and a ∈ Arr(J), where fia = is(a) and gia = it(a)Fa.

We now apply this to pushouts. Hence a pushout of the following diagram in a

category A C
β //αoo C can be given as the following coequaliser.

C ⊔ C
α //

β
// A ⊔ C ⊔B

We recall that a category can be viewed as an algebraic object. In Section 1.2 we will

be studying groupoids as algebraic objects and considering the notions of generators,

11



relations, free groupoids and word problems. For words in a groupoid we need the

following category.

The set of directed paths in a graph Γ defines a category of directed paths PΓ where

Ob(PΓ) := V (Γ), Arr(PΓ)(u, v) :=
−→
Γ (u, v) and identities are empty paths.

1.2 Groups to Groupoids

In this section we define groupoid structures that model group structures. We use

groupoids because the algebra is closer to the geometry; a word in a groupoid corre-

sponds to a path in the underlying graph of the groupoid.

The category of groupoids also provide an algebraic analogue of the unit interval

which will be used to construct cylinders and mapping cylinders for groupoids and

crossed complexes in Chapter 3.

We refer the reader to Higgin’s [16] and Brown’s Topology [4] for full accounts on

groupoids and applications of groupoids.

This section gives examples of groupoids that will be used throughout this expo-

sition, and details of how group concepts of free groups, normal subgroups, quotient

groups, cosets and presentations are modelled in groupoid theory. We also give the

construction of the universal groupoid which enables free products with amalgamation

and HNN-extensions to be defined as pushouts of groupoids.

1.2.1 Examples and Properties of Groupoids

Groupoids are a generalisation of groups. A group is a groupoid since it is a category

where every arrow has an inverse. It it is profitable to study groups in the context of

groupoids. In Chapter 2 we construct the fundamental groupoid of a graph of groups

which shows how more complicated groups can be constructed from less complicated

groups in the context of groupoids.

The unit groupoid acts as the unit interval in the theory of groupoids and will be

used to construct mapping cylinders and total crossed complexes in this thesis.

Example 1.2.1 Unit Groupoid

12



The unit groupoid I has two objects; 0 and 1, two non-identity arrows; ι and ι−1 which

are inverse to each other and the following underlying graph. ♦

010 99

ι
((
1 11ee

ι−1

hh

Figure 1.1: Unit Groupoid

An important family of groupoids are tree groupoids In. The unit groupoid is

isomorphic to I2.

Example 1.2.2 Tree Groupoids

The groupoid In has objects {0, ..., n− 1} and arrows {(i, j) : 0 6 i, j 6 n− 1}. The

source of (i, j) is i, and the target j. Composition is defined by (i, j)(j, k) = (i, k).

Identities 1i := (i, i) and inverses (i, j)−1 = (j, i) exist for all i, j. ♦

Any set of arrows forming a tree is a generating set X (In) for In, and we usually

choose X (In) = {(0, i) : 1 6 i 6 n − 1} called the star of 0 in In. For an arbitrary

groupoid G the star of u in G is the union of sets G(u, v) for all objects v of G. We

denote the star of u in G by StG(u).

We now combine the groupoids; group and a tree groupoid to form a new groupoid.

Example 1.2.3 Direct Product of a Group and a Tree Groupoid

If G is a group and In a tree groupoid, the direct product G× In is a groupoid. The

objects of G× In are {(·, i) : · ∈ Ob(G), i ∈ Ob(In), 0 6 i 6 n− 1} and the arrows

of G × In are (g, (i, j)) : (·, i) → (·, j) where g is an arrow in G and (i, j) an arrow

in In. Composition is defined by (g1, (i, j))(g2, (j, k)) = (g1g2, (i, k)) for all g1, g2 ∈ G

and (i, j), (j, k) ∈ In. The identity arrows are (e, (i, i)) and the inverse of (g, (i, j)) is

(g−1, (j, i)). ♦

The groupoid G×In has generating set X (G)×X (In) where X (G) is a generating

set of G.

A subgroupoid H of a groupoid G is a groupoid with Ob(H) ⊆ Ob(G), Arr(H) ⊆

Arr(G) and induced multiplication on H. A subgroupoid is full if for any two objects
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u, v of H the two sets of arrows H(u, v) and G(u, v) are equal. The full subgroupoid

G(u, u) is a group called the vertex group at u which we denote G(u).

As groupoids have an underlying graph structure we use graph theory language to

describe different properties and attributes of groupoids. A groupoid is connected if

for any objects u, v of G there is a path in G from u to v or, equivalently, G(u, v) 6= ∅.

The components of a groupoid G are the full connected subgroupoids of G. If the

components are all vertex groups, then G is totally disconnected. A subgroupoid H of

G is wide if Ob(G) = Ob(H). A groupoid G is discrete if G is totally disconnected and

for each object u of G, the vertex group G(u) is the identity group.

The proof of the following proposition appears in 6.3.1 of [4].

Proposition 1.2.4 The vertex groups of a connected groupoid are all isomorphic.

Proof If u and v are objects of a connected groupoid G then G(u, v) 6= ∅. For any

g ∈ G(u, v) the map h 7→ g−1hg is an isomorphism G(u, u)→ G(v, v). �

Every connected groupoid with a finite number of vertices is determined up to

isomorphism by a vertex group and object set. This result will be restated as Propo-

sition 1.2.20 a result of free products of groupoids.

A groupoid morphism f : G → H is a functor of groupoids. As for groups we have

the notions of injections, surjections and isomorphisms.

A morphism f : G → H is injective (surjective) if both f(Ob(G)) and f(Arr(G))

are injections (surjections). A morphism f of groupoids is an isomorphism if and only

if f is both an injection and a surjection.

A groupoid morphism f : G → H is faithful (or an embedding) when to every pair

u, v of objects of G and to every pair of arrows g1, g2 : u → v of G the equality

fg1 = fg2 : fu→ fv implies f1 = f2.

The kernel of f , Kerf , is the set of arrows of g ∈ G such that f(g) is an identity of

H and the image of f , Imf , is the set of arrows f(g) ∈ H, g ∈ G.

If f : G → H is a groupoid morphism the image of f need not be a subgroupoid of

H. For example, let φ : I → A where A is the free group on one generator a. We define

φ(10) = φ(11) = 1, φ(ι) = a and φ(ι−1) = a−1. The image of φ has three elements and

hence is not a subgroupoid of A.

14



The proof of the next result is taken from 8.3.2 of [4].

Proposition 1.2.5 If f : G → H is a faithful morphism of groupoids, the image of f

is a subgroupoid of H.

Proof We need to show that if c, d ∈ Im(f) and d−1c ∈ H then d−1c ∈ Im(f).

Suppose c = f(a), d = f(b) where a ∈ G(u, v), b ∈ G(v, w). Since d−1c is defined

f(v) = f(w) which implies since Ob(f) is injective that v = w. Hence b−1a is defined

and d−1c = f(b−1a) which belongs to Imf . �

A morphism f : G → H of groupoids is said to kill a subgraph Γ of ΓG if f(Γ) is a

discrete groupoid of H.

A homotopy h : f ≃ g of a pair of groupoid morphisms f, g : G → H is a functor

G × I → H in Gpd such that hi0(G) ≃ f and hi1(G) ≃ g where i0 and i1 are the

inclusions of G into G ×I. A groupoid morphism ρ : G → H where H is a subgroupoid

of G with inclusion map µ : H → G is a deformation retract if and only if ρµ = 1H and

µρ ≃ 1G where 1H and 1G are identity functors.

1.2.2 Free Groupoid and Words

Free groupoid and words will be used extensively in Chapter 2 to obtain groupoid

normal forms.

We define categories and groupoids by adding structure to a graph. We can also

recover a graph from a category or a groupoid by using forgetful functors. We can

think of a groupoid as a category and then think of a category as a graph. We move

from graphs to groupoids and vice versa when constructing groupoid words.

Free groupoids are used to present groupoids in terms of generators and relations;

and provide a groupoid setting for words and normal forms. Whereas free groups are

defined on sets, free groupoids are defined on graphs.

Definition 1.2.6 Let X be a graph in the underlying graph ΓG of a groupoid G. We

say G is free on X if X is wide in G and for any groupoid H, any graph morphism

γ : X → ΓH extends uniquely to a groupoid morphism G → H. If such an X exists

we say G is a free groupoid on X.
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The techniques used here for groupoid words are similar to the techniques used in

group theory. We refer the reader to Cohen’s Combinatorial Group Theory [11]. The

following account for groupoids is adapted from Chapter 4 of [16].

Let p = (e1, . . . , en) be a path in a graph Γ i.e. a directed path in Γ ∪ Γop. If

for some i, ei = ei+1 or ei = ei+1 then the path p reduces to (e1, . . . , ei−1, ei+2, . . . , en)

which is also a path in Γ. This is called a simple reduction of p. The simple reduction

of p = (e, e) is the empty word () at s(e).

We write p ≡ p′ if there is a finite sequence of paths p = p0, . . . , pk = p′ (k > 0)

such that for r = 0, 1, . . . , k − 1; pr is a simple reduction of pr+1 or vice versa. This

defines an equivalence relation on the paths and we write [p] for the equivalence class

containing p. Equivalent paths have the same source and target so we can assign these

as the source and target of the equivalence class.

The equivalence classes form a groupoid. The objects are the vertices of Γ and

arrows equivalence classes. Composition is defined by [p][q] = [pq] whenever pq is

defined in PΓ the category of paths in a graph. The identity elements are the classes

[()u] where ()u is the empty path at u. For any path p = (e1, . . . , en) we also have a path

p = (en, . . . e1) where s(p) = t(p) and t(p) = s(p). Hence pp and pp are equivalent to

empty paths, so [p] is inverse to [p]. This groupoid is called the fundamental groupoid

of the graph Γ which we denote F(Γ). We note that this groupoid is also the free

groupoid on Γ.

If p = (e1, . . . , en) is a path in Γ then the product [e1] . . . [en] is defined in F(Γ)

and we call it the value of p in F(Γ); the value of the empty word at u is the identity

element 1u of F(Γ).

To decide whether two paths have the same image in F(Γ) we consider words which

are called reduced words.

Definition 1.2.7 A path p = (y1, . . . , yn) where yi = ei or ei+1 is a reduced path or

reduced word in Γ if yi+1 6= yi for i = 1, 2, . . . , n− 1; or if p = ()u.

Proposition 1.2.8 Each equivalence class of paths in a graph Γ contains exactly one

reduced path.
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Proof We refer the reader to Corollary 1.2.18 on page 23. �

Since every path is equivalent to one reduced word two paths have the same value

in F(Γ) if they reduce to the same reduced word. Hence every arrow of F(Γ) is either

an identity arrow or is uniquely expressed as a product [e1] . . . [en] where ei is an edge

of Γ and [ei+1] 6= [ei] for i = 1, . . . , n− 1.

1.2.3 Normal Subgroupoids and Quotient Groupoids

We use quotient groupoids to obtain the fundamental groupoid of a graph of groups

in Chapter 2. To construct a quotient groupoid we factor a groupoid by a normal

subgroupoid.

Definition 1.2.9 A subgroupoid N of G is called normal if Ob(N ) = Ob(G) and for

u, v ∈ Ob(G) and a ∈ G(u, v), a−1N (u)a ⊆ N (v).

We define a quotient groupoid for two cases; where the normal subgroupoid is

totally disconnected and for arbitrary normal subgroupoids.

If the normal subgroupoid is totally disconnected the quotient groupoid G�N con-

sists of objects Ob(G�N ) = Ob(G) and for arrows, if u, v ∈ Ob(G) and a ∈ G(u, v)

we define (G�N )(u, v) to be the cosets N (u)a. If a ∈ G(u, v) and b ∈ G(v, w) then

normality gives (N (u)a)(N (v)b) = N (u)a(a−1N (u)a)b = N (u)ab which defines multi-

plication of cosets. The identity elements of (G�N ) are N (u) for u ∈ Ob(G) and the

inverse of N (u)a is N (v)a−1.

Given an arbitrary normal subgroupoid the quotient groupoid G�N consists of

objects which are equivalence classes determined by the connected components of N .

The classes form a partition of Ob(G) and we write u for the class containing u.

Similarly the arrows are determined by equivalence classes of elements of Arr(G). If

a, b ∈ Arr(G) the equivalence is given by a ≡ b if a = xby for some x, y ∈ Arr(N ). For

more details we refer the reader to Chapter 12 of [16].

The special case where N is totally disconnected follows from this more general

construction. In the special case if a = xby, then y ∈ N (v) and byb−1 = x′ ∈ N (u) so

a ≡ b implies a = xx′b ∈ N (u)b.
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1.2.4 Groupoid Cosets and Transversals

In the above subsection on normal subgroupoids we have introduced sets of arrows

N (u)a called cosets for totally disconnected normal subgroupoids. In this subsection

we define cosets for a wide subgroupoid of a groupoid.

Features of group cosets that we want to capture in groupoid cosets are that the

cosets partition the groupoid and the elements of the groupoid can be written uniquely

as a product of a coset representative and an element of the subgroupoid.

We use groupoid cosets and transversals in Subsection 2.1.6 to give a normal form

theorem for graphs of groupoids words.

Theorem 1.2.10 Let H denote a wide subgroupoid of a groupoid G, and define a

relation ≡ on G as follows g ≡ g′ if and only if g = g′h for some h ∈ H. Then ≡ is an

equivalence relation.

Proof

Reflexive If g ∈ G then g ≡ g because g = g1t(g) and H contains all the identity

elements of G.

Symmetric If g ≡ g′ then g = g′h for some h ∈ H. Since H is a groupoid h−1 ∈ H and

gh−1 = g′. Hence g′ ≡ g.

Transitive If g1 ≡ g2 and g2 ≡ g3 then g1 = g2h and g2 = g3h
′ for some h and h′ in H.

Since t(g2) = s(h) = t(h′) we have g1 = g2h = g3h
′h. As composition is closed in H,

h′h ∈ H and g1 ≡ g3. �

We call the equivalence classes cosets which we can define as sets of arrows in G

gH = {gh : h ∈ H, t(g) = s(h)}.

The left coset containing g is denoted gH. We note that the stars are all cosets,

gH = {g StH(t(g))} and H itself does not form a coset. As in group theory we can

choose a set of coset representatives called a transversal. For each left coset choose a

coset representative.

Proposition 1.2.11 If H is a wide subgroupoid of a groupoid G and l, k ∈ G then

l ∈ kH if and only if k ∈ lH which implies kH = lH.
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Proof Consider the following diagram of arrows in G.

· k //

l ��?
??

??
??

? ·

h

��

h′′ //

•

h1

VV

h′
//

If l ∈ kH then l = kh for some h ∈ H. Rearranging we get k = lh−1. Hence k ∈ lH

since h−1 ∈ H. Similarly, if k ∈ lH then k = lh1 for some h1 ∈ H. Therefore kh1
−1 = l

and l ∈ kH.

Since lh′ = khh′, lh′ ∈ lH and khh′ ∈ kH then lH = kH. Similarly, since kh′′ =

lh1h
′′, kh′′ ∈ kH and lh1h

′′ ∈ lH then kH = lH. �

Since the cosets partition the groupoid and any element of a coset can be written

as lh where l is a coset representative and h a subgroupoid element then any element

of the groupoid G can be written uniquely as lh.

Similarly we can define right cosets by Hg := {hg : h ∈ H, t(h) = s(g)} and choose

suitable right transversals. For work on graphs of groupoids in Subsection 2.1.6 we will

restrict to the use of left cosets and left transversals.

Example 1.2.12 Left Cosets and Transversal

Suppose we are given the groupoid G = C2 × I3 (where the group C2 is given by the

presentation 〈x | x2 = 1〉, and the subgroupoid H = {(1, (0, 0), (1, (0, 1)), (1, (1, 0))

(1, (1, 1)), (1, (2, 2), (x, (2, 2))}. We then have the following left cosets:

(1, (0, 0))H = {(1, (0, 0)), (1, (0, 1))} (x, (0, 0))H = {(x, (0, 0)), (x, (0, 1))}

(1, (1, 1))H = {(1, (1, 0)), (1, (1, 1))} (x, (1, 1))H = {(x, (1, 0)), (x, (1, 1))}

(1, (1, 2))H = {(1, (1, 2)), (1, (1, 2))} (1, (2, 1))H = {(1, (2, 1)), (1, (2, 0))}

(x, (2, 1))H = {(x, (2, 1)), (x, (2, 0))} (e, (0, 2))H = {(1, (0, 2)), (x, (0, 2))}

(1, (2, 2))H = {(1, (2, 2)), (x, (2, 2))}

We choose the following left transversal.

L = {(1, (0, 0)), (1, (1, 1)), (1, (2, 2)), (x, (0, 0)), (x, (1, 1)),

(1, (1, 2)), (1, (2, 1)), (x, (2, 1)), (1, (0, 2))}
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which allows elements of C2 × I3 to have a unique decomposition of a transversal and

subgroup element. ♦

We now give an example that illustrates that groupoid cosets do not have necessarily

have the same cardinality.

Example 1.2.13 Coset Sizes

Let G := S3 × I where S3 be the group with presentation 〈a, b | a3 = b2 = abab = 1〉.

If H = {(1, 10), (a, 10), (a
2, 10), (1, 11), (b, 11)} then we have the following left cosets:

(1, 10)H = {(1, 10), (a, 10), (a
2, 10)} (1, ι−1)H = {(1, ι−1), (a, ι−1), (a2, ι−1)}

(b, 10)H = {(b, 10), (ab, 10), (a
2b, 10)} (b, ι−1)H = {(b, ι−1), (ab, ι−1), (a2b, ι−1)}

(1, 11)H = {(1, 11), (b, 11)} (1, ι)H = {(1, ι), (b, ι)}

(a, 11)H = {(a, 11), (a
2b, 11)} (a, ι)H = {(a, ι), (a2b, ι)}

(a2, 11)H = {(a2, 11), (ab, 11)} (a2, ι)H = {(a2, ι), (ab, ι)}.

The cosets are of size 2 and 3. ♦

If G is a connected groupoid and H a totally disconnected subgroupoid of G with

subgroups Hv ⊆ G(v) and t(g) = v then |gH| = {G : Hv}.

1.2.5 Universal Groupoids

The universal groupoid is a special case of a colimit for groupoids and is a method used

to obtain a new groupoid from an old groupoid by making identifications on objects

and arrows. Free groupoids and free products of groups can be obtained using universal

groupoid methods. A key result is that the word problem can be solved for universal

groupoids and we use this result to solve the word problem for graphs of groups in

Chapter 2.

Given a groupoid G and an object mapping from Ob(G) to a set X, considered as a

groupoid, we can construct a groupoid on X which is generated by G under the object

mapping. We will use this construction in Chapter 2 to construct the universal group

of the fundamental groupoid of a graph of groups.
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Definition 1.2.14 Given a groupoid G with object set Ob(G), a set X and a mapping

σ : Ob(G) → X, there exists a groupoid U = Uσ(G), which we call the universal

groupoid, with object set X and a morphism of groupoids σ∗ : G → U with object

mapping σ such that:

1. σ∗(G) generates U as a groupoid with object set X, and

2. given any groupoid H with object set X and any morphism of groupoids θ : G →

H with object mapping σ, there is a morphism of groupoids θ∗ : U → H where

Ob(U) = Ob(H) and θ is the identity object mapping, with σ∗θ∗ = θ.

If X consists of one element we obtain the universal group of the groupoid G. Since

free groupoids are a special case of universal groupoids (see proof of Corollary 1.2.18)

it is clear that the following construction of groupoids words is more general than the

groupoid words of subsection 1.2.2.

The following account of constructing an universal groupoid is based on Chapter

10 of [16]. Let G be a groupoid and σ : Ob(G) → X a map. We view G as a

graph ΓG and form the graph Gσ as follows. Let V (Gσ) = X, E(Gσ) = E(ΓG) and

s, t : E(Gσ) → V (Gσ) are defined by s(eσ) = φs′(e) and t(eσ) = φt′(e) where s′, t′ are

the source and target maps of ΓG. The identity map on E(ΓG) and σ give a graph

map G → Gσ.

We also have the category of directed paths PGσ in Gσ. If g is an arrow of G we

let gσ denote the corresponding edge of Gσ. We note that if g1g2 = g3 in G then gσ1 g
σ
2

is defined in PGσ and is a path of length 2 so it cannot be equal to gσ3 which is a path

of length 1. We therefore replace PGσ by a groupoid where the elements gσ1 g
σ
2 and gσ3

become equal. If iσ = j where i ∈ Ob(G) and j ∈ X then 1σi = 1j .

Let p = (gσ1 , g
σ
2 , . . . , g

σ
n) be an arrow of PGσ, that is a path of length n in Gσ from

u = s(gσ1 ) to v = t(gσn), say. If for some i in 1 6 i < n the product gigi+1 is defined in

G and has the value g, then (gσ1 , . . . , g
σ
i−1, g

σ, gσi+2, . . . , g
σ
n) is a path from u to v. Also

if some gi is an identity element of G then (gσ1 , . . . , g
σ
i−1, g

σ
i+1, . . . , g

σ
n) is a path from

u to v. If n = 1 this is the empty path at u. We call these two reduced processes

elementary reductions of p, and we write p ≡ p′ if there exists a finite sequence of

paths p = p0, . . . , pk = p′ (k > 0) such that for r = 1, . . . , k − 1; pr is an elementary
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reduction of pr+1 or vice versa. We say that a path in Gσ is σ-reduced if it has no

elementary reductions. This defines an equivalence relation on PGσ and we write [p]

for the equivalence class containing p. Equivalent paths have the same source and

target so we can assign these as the source and target of the equivalence class.

The equivalence classes form a graph with vertex set X. We denote this graph by

Uσ(G). The objects are the elements of X and arrows are equivalence classes. If p ≡ p′

and q ≡ q′ and pq is defined in PGσ, then p′q′ is defined and pq ≡ p′q′, so Uσ(G) is

a groupoid with multiplication [p][q] = [pq], the identity elements are the classes [()u]

where ()u is the empty path at u and [p] is inverse to [p].

We now identify edges of G with their images in Gσ to simplify notation. A path

p in Gσ is either one of the empty paths ()u or is of the form (g1, g2, . . . , gn) where

the gi are arrows of G satisfying source and target relations σ(t(gi)) = σ(s(gi+1)) for

i = 1, . . . , n− 1.

Definition 1.2.15 A σ-reduced word is either the empty path ()u for u ∈ X or a

path (g1, g2, . . . , gn) for n > 1 where the gi are non-identity edges of G satisfying

σ(t(gi)) = σ(s(gi+1)) for i = 1, . . . , n− 1 but the products gigi+1 are not defined in G.

t(gi)
�

σ

  A
AA

AA
AA

A
s(gi+1)

gi+1

$$J
JJJJJJJJ:

σ

||zz
zz

zz
zz

z

s(gi)

gi

<<xxxxxxxx

• t(gi+1)

The following theorem, corollaries and proofs in this subsection appear in Chapter

10 of [16] and are used in Section 2.1.4 of this exposition to obtain normal forms for

elements of the fundamental groupoid of a graph of groups.

Theorem 1.2.16 Each arrow of Uσ(G) is represented by exactly one σ-reduced path.

Proof The proof is given on page 74 of [16]. The proof of theorem 2.1.7 on page 35 of

this exposition could also be modified to prove the above theorem. �

Corollary 1.2.17 If two distinct arrows of G have the same image in Uσ(G) then they

are identity elements at vertices v, v′ such that σ(v) = σ(v′). �
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Corollary 1.2.18 If G is the free groupoid on a graph Γ then

(i) Ob(G) = V (Γ),

(ii) Γ is embedded in G,

(iii) every non-identity of G is uniquely expressible in the form gε11 g
ε2
2 . . . gεn

n for n > 1

where gi are edges of Γ, the εi are ±1, and no adjacent pairs gg−1 or g−1g occur,

and

(iv) the identities of G are not expressible in the above form.

Conversely, if G satisfies (i), (iii), and (iv) for a subgraph Γ, then Γ generates G freely.

�

Proof The free groupoid on Γ can be constructed as Uσ(G′) where G′ is the disjoint

union of unit groupoids, I, one for each edge of Γ and σ is determined by the source

and target maps of Γ. We denote the non-identity arrows of I (associated to each edge

g of Γ) by g and g−1. Then the only products of non-identity edges which are defined

in G′ are the products gg−1 and g−1g, so the σ-reduced paths are the empty paths and

the paths gε11 g
ε2
2 . . . gεn

n as described above. The corollary follows from the theorem. �

We use universal groupoids to construct free products of groupoids.

Example 1.2.19 Free Product of Groupoids

Let i1 : G1 → H and i2 : G2 → H be groupoid morphisms with object maps ρ1 :

Ob(G1)→ Ob(H) and ρ2 : Ob(G2)→ Ob(H). We call H = G1 ∗ G2 the free product of

groupoids G1 and G2 with respect to the morphisms i1 and i2 if the following universal

property holds: for j1 : G1 → K and j2 : G2 → K whose object maps are of the form

θρ1 and θρ2 where θ : Ob(H) → Ob(K) there is a unique morphism φ : H → K such

that φi1 = j1 and φi2 = j2.

To construct H explicitly we take X = Ob(G1)∪Ob(G2) and let Ob(G1)⊔Ob(G2)→
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X be the natural map. Then

G1
i1 //

j1 $$H
HH

HH
HH

HH
H G1 ⊔ G2

σ∗

��

G2
i2oo

j2zzvvv
vv

vv
vv

v

H

where i1 and i2 are the injections of the coproduct, H = Uσ(G1 ⊔ G2), j1 = σ∗i1 and

j2 = σ∗i2. ♦

The above example can be generalised to give the free product of more than two

groupoids.

We use the free product in the following proposition and the proof is taken from

Brown [4]. We include the proof as it shows how an element of a connected groupoid

can be written uniquely as a conjugate of a vertex group element and an element of a

spanning tree.

Proposition 1.2.20 If G is a connected groupoid and T a spanning tree in G then

G ≃ G ∗ F where G is an arbitrary vertex group and F is the free groupoid generated

by T .

Proof Let i1 : G(u)→ G for some u ∈ Ob(G) and i2 : T → G be inclusion maps. Every

element of G(x, y) can be written uniquely as tya
′t−1
x for a′ ∈ G(u) and tx, ty ∈ T where

tx is the unique element of T (u, x).

The morphisms f1 : G(u)→ K and f2 : T → K which agree on u define a morphism

f : G → K by f(a) = f2(ty)f1(a
′)f2(t

−1
x ) and f is the only morphism such that fi1 = f1

and fi2 = f2. �

1.2.6 Groupoid Pushouts and Presentations

In this subsection we will show how group constructions such as free products with

amalgamation can be constructed using universal groupoids and pushouts.

The following construction is taken from Higgins [16] and shows that coequalisers

exist in the category of groupoids. This construction is used to construct pushouts of

groupoids.
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Let θ, φ : G → H be groupoid morphisms with object maps θOb, φOb : Ob(G) →

Ob(H), and let σOb : Ob(G) → X be the coequaliser of θOb and φOb in the category

Set . Then σOb induces a universal groupoid morphism σ : H → H′ = UσOb
(H), and if

γ : H → K is any groupoid morphism such that γθ = γφ, then γ has the form γ = γ∗σ

where γ∗ : UσOb
(H)→ K is the groupoid morphisms uniquely determined by γ.

The groupoid morphism γ is the coequaliser in Gpd of θ and φ if and only if γ∗ is

the coequaliser of θ′ = σθ and σ′ = σφ; this follows from the definition of a coequaliser.

If g is any arrow of G, the arrows θ′(g) = φ′(g) of H′ have the same source and

target. For arrows p and q of H′ we write p ∼ q whenever p = h1(θ
′g)h2, q = h1(φ

′g)h2

for some g ∈ G and h1, h2 ∈ H′. This relation on H′ generates an equivalence relation

≡ and the equivalence classes form a graph Γ with the same vertex set K as H′.

Since p ≡ q implies hp ≡ hq, it is clear p ≡ q implies hp ≡ hq and ph ≡ qh.

Hence pp′ ≡ qp′ ≡ qq′ whenever pp′ is defined. Thus Γ inherits a groupoid structure

from H′ and the canonical map π : H′ → Γ is the coequaliser in Gpd of θ′ and φ′. It

follows that θ′ and φ′ have coequaliser πσ : H → Γ. Thus Gpd admits coequalisers. By

Proposition 1.1.9 since the category of groupoids admits coproducts and coequalisers,

the category of groupoids admits colimits.

The presentation of groupoids by generators and relations is a special case of the

above. Since free groupoids are defined on graphs a groupoid presentation is given by

a graph and relations.

Suppose we are given a graph X, and a set R whose elements are ordered pairs of

arrows (r1, r2) where r1, r2 ∈ F(X). Let D be the disjoint union of unit groupoids one

for each element of R. Then there are unique groupoid morphisms θ1, θ2 : D → F(X)

given by θ1(r1, r2) = r1 and θ2(r1, r2) = r2.

If φ : F(X)→ G is the coequaliser in Gpd of θ1, θ2 we write G = 〈X | R〉 and say G

is the groupoid with generators X and relations r1 = r2 where (r1, r2) ∈ R. The triple

(X,R, φX) where φ : X → G is the restriction of φ on X is a presentation of G in the

category Gpd .

To construct pushouts of groupoids explicitly we use universal groupoids. Consider
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the following pushout of groupoids:

C
α //

β

��

A

i

��
B

j
// P.

To obtain P we first form the pushout of object sets to obtain the objects of P.

Ob(C) α //

β

��

Ob(A)

i
��

Ob(B)
j

// Ob(P).

We recall from subsection 1.1.2 that a pushout in the category Set is a set of

equivalence classes. Hence

Ob(P) = (Ob(A) ⊔Ob(B))�(α(v) ≡ β(v))

where v ∈ Ob(C). We then use the universal groupoid methods to get the following

pushout:

Ob(A) ⊔Ob(B)
σ //

��

Ob(P)

��
A ⊔ B

σ′
// Uσ(A ⊔ B).

The groupoid Uσ(A ⊔ B) has the correct object set for P but no identifications have

been made on the arrows. The arrows of P are given by the coequaliser

C
α′

//

β′

// Uσ(A ⊔ B)

as explained above.

We now show how this construction of a pushout of groupoids can be applied to

the trefoil group.

Example 1.2.21 Trefoil Group Pushout

The trefoil group can be given by the pushout of groups

C
α //

β

��

A

��
B // T
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where C, A and B are free groups on one generator c, a and b respectively and α(c) = a3

and β(c) = b2.

We first form the pushout of object sets. Since C, A and B are all groups they each

have one object which we denote ·C , ·A and ·B respectively. Hence T has one object

which we denote ·T

We then construct the pushout

{·A, ·B}
σ //

i

��

{·T}

i′

��
A ⊔ B

σ′
// Uσ(A ⊔ B).

Let U := Uσ(A ⊔ B). The maps i and i′ are the identity maps on objects and σ maps

·A and ·B to ·T . The groupoid map σ′ is σ on objects and σ′(g) = g ∈ U(σ(sg), σ(tg)).

The groupoid U consists of words of elements which are not composable in A ⊔ B.

Hence U = A ∗B which is the coproduct of A and B.

To obtain the pushout of A C
αoo β // B we need to construct the coequaliser

of

C
α′

//

β′

// U

where α′ = σ′α and β ′ = σ′β.

We give some examples of words which are equivalent. From the construction of

the coequaliser at the beginning of this subsection arrows p and q of U are related if

p = h1α(c)h2 and q = h1β(c)h2 for some c ∈ C and h1, h2 ∈ U .

If c = cj, h1 = ai and h2 = bk then h1α(c)h2 = aia3jbk = ai+3jbk and h1β(c)h2 =

aib2jbk = aib2j+k. Hence ai+3jbk ∼ aib2j+k. If i = 0, j = 1 and k = −2 then a3b−2 ∼ e

where e is the identity element of U .

If c = cj and h1, h2 are word in A ∗ B then h1a
3jh2 ∼ h1b

2jh2. Hence a3j ∼ b2j

which we expect since the trefoil group has relation a3 = b2.

The elements of T are words in A∗B where no a3b−2 occurs. We pick a representative

from each class and these representatives are the elements of T . ♦

We now give the general construction of an HNN-extension of groups using pushouts

in the category of groupoids.
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Example 1.2.22 HNN-extension Pushout

Let A and B be subgroups of a group C and φ : A → B be an isomorphism, then C

is a subgroup of C∗φ (the HNN-extension of C)with an extra generator t so that φ is

given by conjugation by t.

C∗φ = (C ∗ 〈t〉)�{t−1at = φa} | a ∈ A}

This HNN-extension can be obtained by the following pushout of groupoids.

A ⊔ A
(i,φ) //

��

C

��
A× I // C∗φ
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Chapter 2

Graphs of Groups and Normal

Forms

In this chapter graphs of groups, fundamental groupoids and normal forms are con-

sidered. This work is based upon Higgins’ paper, The Fundamental Groupoid of a

Graph of Groups [16] which is a modification of the work of Serre in Trees [23] on the

fundamental group of a graph of groups. Higgins’ work establishes a normal form for

elements of the fundamental groupoid of a graph of groups.

In the first section we use the material of Higgins and Serre and apply the theory

to the motivating examples of this exposition. We also give a different proof of the

uniqueness of the normal form using a diamond lemma type argument.

The second section includes Knuth-Bendix methods which are used to formulate a

GAP4 [14] program showing how the normal form of elements can be computed.

2.1 Fundamental Groupoid of a Graph of Groups

In this section we define a graph of groups for computational purposes, the fundamental

groupoid of a graph of groups and hence the fundamental group of a graph of groups.

We show how Higgins’ work on the fundamental groupoid gives Serre’s classical

results on fundamental groups of graphs of groups.

A normal form theorem using the fundamental groupoid of a graph of groups is
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given and applied to free products with amalgamation, HNN-extensions and a group

which combines free products and HNN-extensions.

2.1.1 Graph of Groups

Graphs of groups are most widely used in Bass-Serre theory which provides connections

between trees and amalgams. For a full account we refer the reader to Serre [23] where

Bass-Serre theory first appeared.

Serre shows how a fundamental group of a graph of groups can be obtained by

choosing a vertex or a tree in the graph.

Haataja et al [15] in Bass-Serre Theory for Groupoids and the Structure of Full

Regular Semigroup Amalgams apply Bass-Serre theory to groupoids to obtain results on

semigroups. This paper also includes results on normal forms for graphs of groupoids.

Scott and Wall [22] in Topological Methods in Group Theory replace graphs of groups

by graphs of spaces and relate the two by the fundamental group. We use results from

this paper in Chapter 3 which will then apply to graphs of free crossed resolutions and

the fundamental groupoid of a graph of free crossed resolutions.

A graph of groups is classically defined in Serre [23], for computational purposes of

this chapter we will give an equivalent definition.

Definition 2.1.1 A Graph of Groups ΓG := (Γ,G,H,Φ) consists of the following:

1. a graph Γ with involution,

2. a family of groups: G := {Gu | u ∈ V (Γ)};

3. a family of subgroups H := {Hy ⊆ Gs(y) | y ∈ E(Γ)}; and

4. a family of isomorphisms Φ := {φy : Hy → Hy | y ∈ E(Γ)} such that φy
−1 = φy.

Since the normal form is established for elements of the fundamental groupoid we

aim to construct graphs of groups whose fundamental groupoid contains the group(oid)

we are interested in.

We give for completeness the definition of a graph of groups morphism.
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Definition 2.1.2 A graph of groups morphism g : ΓG → Γ′
G′ is given by a 4-tuple

(γ, g, h, ψ):

1. γ is a graph map which preserves the involution:γy = γy;

2. g is a family of group homomorphisms gv : Gv → G′
γ(v);

3. h is a family of group homomorphisms hy : Hy → H ′
γ(y); namely the restrictions

hy = gs(y)|Hy

such that the following diagram commutes for each y ∈ E(Γ).

Gsy

gsy

��

Hy

hy

��

1oo φy // Hy

hy

��

1 // Gty

gty

��
G′
γsy H ′

γy1
oo

φγy

// H ′
y 1

// Gγty

We refer the reader to page 534 of [3] for details of complexes of groups which are a

generalisation of graphs of groups, morphisms of complexes of groups and homotopies

of complexes of groups morphisms.

2.1.2 Fundamental Groupoid

In Chapter 1 we defined the free groupoid of a graph and constructed universal groupoids.

We now combine these two types of groupoids to obtain the fundamental groupoid of

a graph of groups.

Let ΓG := (Γ,G,H,Φ) be a graph of groups and let F(Γ) be the free groupoid on

the underlying graph UΓ with no involution with the relations y−1 = y for all y ∈ E(Γ).

We use the same letters y and y for elements of E(Γ) and the corresponding elements

of F(Γ).

Let G be the disjoint union of the groups Gu for all u ∈ V (Γ). If we consider V (Γ)

as a discrete groupoid then we can set V (Γ) = Ob(F(Γ)) = Ob(G).

Let A(ΓG) be the free product groupoid F(Γ) ∗ G of the graph of groups amal-

gamated over V (Γ) which is given by the universal groupoid construction where ρ1 :
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V (Γ)→ Ob(G) and ρ2 : V (Γ)→ Ob(F(Γ)), namely the pushout groupoid

V (Γ)
ρ1 //

ρ2

��

G

��
F(Γ) // A(ΓG).

An element of A(ΓG) which we call a graph of groups word is represented either by

()u where u ∈ V (Γ) or by a word

w = (g1, y1, g2, . . . , gn, yn, gn+1)

•

g1

�� y1 // •

g2

�� y2 // •

g3

��
//___ •

gn−1

�� yn−1 // •

gn

�� yn // • gn+1ee

where yi ∈ E(Γ), v1 = s(y1), vi = s(yi) = t(yi−1) for 1 < i < n, vn+1 = t(yn) and

gi ∈ Gvi
for i = 1, . . . , n + 1. Such a word is said to be of type p = (y1, . . . , yn), where

p is a directed path in Γ, and represents an element of F(Γ). The length of a word

of type p is n. A subword of w = (w1, . . . , w2n−1) is (wi, . . . wi+j) where i > 1, j > 0

and i + j 6 2n − 1. A normal form exists for words of the groupoid A(ΓG) given by

theorem 1.2.16.

The fundamental groupoid π1(ΓG) of a graph of groups ΓG is the quotient of the

groupoid A(ΓG) by the relations φy(h) = yhy (or equivalently, hy = yφy(h)), for all

y ∈ E(Γ) and h ∈ Hy.

The π1-value of a word w = (g1, y1, g2, . . . , gn, yn, gn+1) is the element |w| = g1y1g2 . . . gnyngn+1

of π1(ΓG), where we use the same letters gi and yj for elements of E(Γ) and G respec-

tively and their projections into π1(ΓG).

We now construct a normal form for elements of the fundamental groupoid of a

graph of groups. For each edge y ∈ E(Γ) we choose a left transversal Ty of Hy in

Gs(y), containing the identity element 1Gs(y)
of Gs(y). Thus each g ∈ Gs(y) can be

written uniquely as τy(g)hy(g) where τy(g) ∈ Ty, hy(g) ∈ Hy and when g ∈ Hy,

τy(g) = 1 ∈ Gs(y), hy(g) = g.

The normal form of a graph of groups word w is the π1-value of the π-reduced word

of w.

Definition 2.1.3 A word w = (g1, y1, g2, . . . gn, yn, gn+1) is a π-reduced word if
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(i) gi ∈ Tyi
for i = 1, . . . , n and gn+1 ∈ Gt(yn), and

(ii) if yi = yi−1 for some 2 6 i 6 n then gi 6= 1Gs(y)
.

We define the reduction of words by using the relation φy(h) = yhy. We have two

types of reduction: coset and length.

Definition 2.1.4 If u = (g, y, g′) is a subword of a word w ∈ A(ΓG) then the coset

reduction (u, w) is the word obtained from w by replacing u by v = (τy(g), y, g
′′) where

g′′ := φy(hy(g))g
′.

•

g

�� y // •

g′

��
7→ •

τy(g)

�� y // •

g′′

��

Definition 2.1.5 If u = (y, 1Gt(y)
, y) is a subword of a word w ∈ A(ΓG) then the length

reduction (u, w) is the word obtained from u by replacing u by 1Gs(y)
. The length of

the word is decreased by two.

•
y // •

1Gt(y)

�� y // • 7→ •

1Gs(y)

��

Hence a π-reduced word is a word in which no coset and length reductions can be

applied. The reduction process removes subwords (y, 1, y) of words and moves h in τh

to the right.

To show that after a finite number of steps reduction will produce a π-reduced word

we outline an algorithm of the process.

Algorithm 2.1.6 Reduction algorithm

Given a word w = (g1, y1, g2, . . . gn, yn, gn+1) ∈ A(ΓG) we relabel the ith letter wk.

Set k := 1, len := n+ 1.

If len = 1 return w := (w1).

While k < len do

33



ck := (w2k−1, w2k, w2k+1)

w := CosetReduction(ck, w)

While (1 < k < len) and (w2k = 1Gt(y2k−2)) and (w2k−2 = w−1
2k ) do

lk := (w2k−2, w2k−1, w2k+1)

w := LengthReduction(lk, w)

od

od

return w.

In Section 2.2 the algorithm will be used to compute the normal form of a graph of

groups word using GAP4.

2.1.3 Fundamental Group

In this subsection we give details of Serre’s fundamental groups of a graph of groups

and how they relate to Higgins’ fundamental groupoid of a graph of groups. Serre [23]

defines the fundamental group of a graph of groups in two ways, by a vertex and by

a tree, whereas Higgins’ [16] fundamental groupoid of a graph of groups involves no

choices.

We begin by defining Serre’s fundamental groups of a graph of groups, then show

how these fundamental groups can be obtained from the fundamental groupoid.

Let F (Γ,G) be the quotient of the free product of groupsGu and F (Γ) the free group

on the edge set E(Γ) by the normal subgroup generated by elements yy and yφy(a)y
−1a

for all a ∈ Hy and y ∈ E(Γ). Elements of G(ΓG) are words g1y1g2 . . . gnyngn+1 where

yi ∈ E(Γ), gi ∈ Hy, gn+1 ∈ Gt(yn) and s(yi−1) = t(yi) for i = 1, . . . , n.

The fundamental group π1(Γ,G)(u) at a vertex u is the set of elements of F (Γ,G)

where s(y1) = t(yn) = u, this set forms a subgroup of F (Γ,G).

The fundamental group π1(Γ,G)(T ) of a graph of groups at a maximal tree T of Γ

is the quotient of F (Γ,G) by the normal subgroup generated by elements y of E(T ). If

gy denotes the image of y in π1(Γ,G)(T ) the group π1(Γ,G)(T ) is generated by groups

Gu and elements gy subject to the relations a = g−1
y φy(a)gy, gy = gy

−1 if y ∈ E(Γ),

a ∈ Gs(y) and gy = 1 if y ∈ E(T ).

By taking the universal group U(π1(ΓG)) of Higgins’ fundamental groupoid π1(ΓG)
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we obtain F (Γ,G). The group π1(Γ,G)(u) is identified with the image of the vertex

group π1(ΓG)(u) under the canonical morphism π1(ΓG) → U(π1(ΓG)). We note that

all vertex groups are embedded in U(π1(ΓG)) by this morphism.

By proposition 1.2.20 π1(ΓG) is the free product of the vertex group π1(ΓG)(u)

and the free groupoid generated by T . Hence U(π1(ΓG)) is the free product of the

isomorphic image of π1(ΓG)(u) and a free group generated by the image of T .

The group obtained from Uσ(π1(ΓG) by adding extra relations to kill the image of

T is isomorphic with π1(Γ,G)(u).

We will use these relationships between fundamental groups and the fundamental

groupoid to state corollaries to theorem 2.1.7.

In this work we will use the fundamental groupoid as it involves no choices whereas

with fundamental groups we are working with a fundamental group given by a vertex

or a tree.

2.1.4 Normal Form

In this subsection we give an alternative proof of Higgins’ normal form theorem [16].

Higgins uses van der Waerden’s method in proving the normal form for graph of groups.

In this exposition we use Cohen’s account of normal forms and the diamond lemma

method in Combinatorial Group Theory[11] to prove the uniqueness of the normal

form. The diamond lemma approach is also used in Knuth-Bendix proofs as shown in

subsection 2.2.1.

Theorem 2.1.7 Normal Form Theorem (P.J. Higgins 1976)

The π-reduced form of a word w is unique.

Proof We use a diamond lemma type argument to show that distinct π-reduced words

have distinct π1-values. To show this we prove that if two π-reduced words have the

same π1-value then they are equal.

We look at two different sequences of reduction for a word w. We assume that the

first steps in the sequences are different. If the two reductions in the first steps occur

to disjoint parts of the word w (the non-overlapping case) it is clear from the diagram

below that the resulting words w′ and w′′ can by a sequence of reductions be reduced
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to a common π-reduced word w∗.

Given a word w = (α, β, γ, δ, ε) where β, δ are subwords and α, γ and ε are

substrings we can reduce w by reduction r1 which reduces β to β ′ and by reduction r2

which reduces δ to δ′. The reductions r1 and r2 are the four combinations of coset and

length reductions. We get the following commutative diamond.

w = (α, β, γ, δ, ε)
r1

ttjjjjjjjjjjjjjjjj
r2

**TTTTTTTTTTTTTTTT

w′ = (α, β ′, γ, δ, ε)

r2 **TTTTTTTTTTTTTTTT
w′′ = (α, β, γ, δ′, ε)

r1ttjjjjjjjjjjjjjjjj

w∗ = (α, β ′, γ, δ′, ε)

Now we consider two reductions in the first steps of the sequence to occur to the

same part of a word w. When a part of a word can be reduced in two ways we call this

an overlap. There are four possible types of overlap.

We denote the coset reduction (g, y, g′) 7→ (τ, y, φy(h)g
′)) by cy and the length

reduction (y, 1Gv , y) 7→ (1Gv) by ly in the following diagrams.

(1) If w = (α, g, y, 1Gv, y, τh, y
′, g′ε) we can use coset and length reduction on w to get

w′ and w′′ respectively.

w = (α, g, y, 1Gv, y, τh, y
′, g′, ε)

ly

xxrrrrrrrrrr cy′

))SSSSSSSSSSSSSS

w′ = (α, gτh, y′, g′, ε)

=1

��

w′′ = (α, g, y, 1Gv, y, τ, y
′, φy′(h)g

′, ε)

ly
��

(α, τ ′′h′′h, y′, g′, ε)

cy′

��1
11

11
11

11
11

11
11

11
11

11
11

11
(α, gτ, y′, φy′(h)g

′, ε)

=1

��
(α, τ ′′h′′, y′, φy′(h)g

′, ε)

cy′

��
(α, τ ′′, y′, φy′(h

′′)φy′(h)g
′, ε)

=2uukkkkkkkkkkkkkk

w∗ = (α, τ ′′, y′, φy′(h
′′h)g′, ε)
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(2) If w = (α, τh, y, 1Gv , y, g
′ε) we can use coset and length reduction on w to get w′

and w′′ respectively.

w = (α, τh, y, 1Gv , y, g
′, ε)
ly

((QQQQQQQQQQQQQ
cy

ttjjjjjjjjjjjjjjjj

w′ = (α, τ, y, φy(h), y, g
′, ε)

cy

��

w′′ = (α, τhg′, ε)

=

����
��

��
��

��
��

��
��

��
��

��
��

��
��

(α, τ, y, 1Gv, y, φy(φy(h))g
′, ε)

=

��
(α, τ, y, 1Gv, y, hg

′, ε)

ly **UUUUUUUUUUUUUUUU

w∗ = (α, τhg′, ε)

(3) If w = (α, τh, y, τ ′h′, y′, g′, ε) we can use two coset reductions to get w′ and w′′.

w = (α, τh, y, τ ′h′, y′, g′, ε)
cy

vvmmmmmmmmmmmmm cy′

))RRRRRRRRRRRRR

w′ = (α, τ, y, φy(h)τ
′h′, y′, g′, ε)

=1

��

w′′ = (α, τh, y, τ ′, y′, φy′(h
′)g′, ε)

cy

��
(α, τ, y, τ ′′h′′, y′, g′, ε)

cy′

��

(α, τ, y, φy(h)τ
′, y′, φy′(h

′)g′, ε)

=2

��
(α, τ, y, τ ′′, y′, φy′(h

′′)g′, ε)

=

!!D
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
(α, τ, y, τ ′′′h′′′, y′, φy′(h

′)g′, ε)

cy′

��
(α, τ, y, τ ′′′, y′, φy′(h

′′′)φy′(h
′)g′, ε)

=3vvlllllllllllll

w∗ = (α, τ, y, τ ′′, y′, φy′(h
′′)g′, ε)

To show that (α, τ, y, τ ′′′, y′, φy′(h
′′′)φy(h

′)g′, ε) =3 w
∗ we need to verify that τ ′′ = τ ′′′

and φy′(h
′′) = φy′(h

′′′)φy′(h
′). We use the equalities =1 and =2 to obtain φy(h)τ

′h′ =

τ ′′h′′ and φy(h)τ
′ = τ ′′′h′′′. Substituting the second equation into the first gives

(τ ′′′h′′′)h′ = τ ′′h′′. Hence τ ′′′ = τ ′′ and h′′′h′ = h′′ which gives the result.
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(4) If w = (α, g, y, 1Gv, y, 1Gu , y, g
′, ε) then we can use two length reductions on the

overlapping part to obtain w′ and w′′.

w = (α, g, y, 1Gv, y, 1Gu, y, g
′, ε)

ly

uulllllllllllll
ly

((QQQQQQQQQQQQ

w′ = (α, g, 1Gu, y, g
′ε)

=
))RRRRRRRRRRRRR

w′′ = (α, g, y, g′, ε)

=
vvmmmmmmmmmmmm

w∗ = (α, g, y, g′ε)

Now take two equivalent words w and w′ and consider a list w1, . . . , wn such that

w1 = w and wn = w′ and for each i, one of wi+1 and wi comes from simple reduction

from the other. Suppose there is some r such that wi+1 comes by simple reduction

from wi for i < r and wi comes by simple reduction from both wi+1 for i > r. Then

wr comes form both w and w′ by reduction.

If there is no such r then there must be some k such that both wk−1 and wk+1 come

from wk by simple reduction. We then obtain a new list which shows the equivalence

of w and w′ by deleting wk and wk+1 or by replacing wk by a word w⋆ such that both

wk−1 and wk+1 reduce to w⋆.

Since the length of the list decreases there must be a word w∗ that comes from w

and w′ by reduction. �

Remark 2.1.8 From the sequences of reduction we get relations of reductions which

correspond to braid relations. Given n-strings from a lower to an upper bar a general

n-braid is constructed iteratively by applying bi to i = 1, . . . , n − 1. The application

of bi switches the lower endpoints of the ith and (i+ 1)th strings keeping their upper

endpoints fixed with the (i + 1)th string brought over the ith string. If the (i + 1)th

string passes below the ith string it is denoted b−1
i . Topological equivalence of a braid

word generated by bi for i = 1, . . . , n− 1 is given by the following relations

bjbk = bkbj for 1 6 j < k − 1 < n− 1

bibjbi = bj+1bibj+1 for 1 6 j 6 n− 1.

We can compare these braid relations with the relations of reductions. In case 3 of

the above proof we have c′ycy = c′ycyc
′
y. Applying cy to the left hand side does not

38



affect the reduction so we get cyc
′
ycy = c′ycyc

′
y. From the non-overlapping case we get

cyi
cyj

= cyj
cyi

. The operation bi of passing the ith string over corresponds to mapping

an element hi “over” yi to φyi
(hi) by the coset reduction ci in a graph of groups word.

The scheme of the above proof is similar to methods used in Subsection 2.2.1 on

Knuth-Bendix procedures which try to create a set of rules to reduce algebraic expres-

sions to a normal form. In many results the set of rules needs to be Noetherian and

confluent to obtain a normal form. Noetherian is a finiteness condition similar to the

condition that a word can be reduced to a π-reduced word. Confluent means if there

are two rules that can be applied to an algebraic expression it will still lead to the same

unique normal form. This can be shown by Newmans’ lemma [2] page 176 which is

similar to the diamond lemma [11] page 6.

The following corollaries and proofs are taken from Higgins [17].

Corollary 2.1.9 The maps Gu → π1(ΓG) are injective.

Proof If w and w′ are distinct elements of Gu then they are distinct reduced words.

Hence they lie in different equivalence classes. �

Corollary 2.1.10 The elements of the fundamental group π1(ΓG)(x0) at x0 are

uniquely expressible as values of π-reduced words w with s(w) = t(w) = x0

Proof This result is a special case of theorem 2.1.7. �

The HNN-extension is such a case and is given below as example 2.1.17.

Corollary 2.1.11 Each non-identity element of the universal group

U = U(π1(ΓG)) is uniquely represented by a π-reduced word.

Proof The universal group U of π1(ΓG) is obtained under the mapping that identifies

all the objects of π1(ΓG) to a single object. Recall that each edge of a universal

groupoid is represented by exactly one σ-reduced path by theorem 1.2.16 and that if two

distinct edges of the groupoid G have exactly the same image in the universal groupoid

Uσ(G) then they are identity elements at vertices v and v′ such that σ(v) = σ(v′) by

corollary 1.2.17. So combining these two results, if two arrows have the same image
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under the map π1(ΓG) → Uσ(G) then they are both identities of π1(ΓG) giving the

result. �

Corollary 2.1.12 The generating set E(Γ) ∪ G is embedded in the groupoid π1(ΓG);

hence the set E(Γ) ∪ G∗ is embedded in the group U = U(π1(ΓG)), where G∗ denotes

the disjoint union of the vertex groups with all the identity elements removed.

Proof The elements of E(Γ) ∪ G are distinct π-reduced words, so represent distinct

elements of π1(ΓG). The elements of E(Γ) ∪G∗ remain distinct in U . �

Corollary 2.1.13 Let Γ be connected and choose a vertex v and a spanning tree T .

Let ρ : π1(ΓG)→ π1(ΓG)(v) be the morphism obtained by killing T . Then each Gu for

u ∈ V (Γ) is embedded in π1(ΓG)(v) by ρ.

Proof The group Gu can be identified with a subgroup of the vertex group of π1(ΓG)

at u, by corollary 2.1.12. The morphism ρ is a deformation retraction by theorem 6(ii),

page 92 in [16] and therefore maps Gu isomorphically to a conjugate subgroup of the

vertex group at v. �

For a graph of groups word w = (g1, y1, . . . , gn, yn, gn+1) to be reduced in the sense

of Serre, if n = 0 then g1 6= 1 and if n > 0 and yi = yi−1 for some i then gi /∈ Hyi
.

Corollary 2.1.14 Let w be any word which is reduced in the sense of Serre [23]. Then

the π-value of w is not an identity arrow in π1(ΓG).

Proof We show that the normal form of w is of length exactly n and therefore its value

is not an identity.

The case n = 0 is trivial, so suppose that n > 1 and define τ1, . . . τn, h1, . . . , hn

inductively by the equations

g1 = τ1h1, τ1 ∈ Ty1 , h1 ∈ Gsy1

higi+1 = τi+1hi+1, τi+1 ∈ Tyi+1
, hi+1 ∈ Gsyi+1

Then w = (τ1, y1, . . . , τn, yn, s) where τi ∈ Tyi
and s ∈ Gt(yn). If yi = yi−1 for some i =

2, 3, . . . , n then hi−1 and hi lie inHyi
that is τi 6= 1. This shows that (τ1, y1, . . . , τn, yn, s)
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is a normal word. �

The last corollary contains theorem 11 of Serre [23] and Britton’s Lemma see corol-

lary 2.1.15 below.

Let G∗ := 〈G, y | y−1ay = φ(a) for all a ∈ A〉 be an HNN-extension, the letter gi

will denote an element of G and ε = ±1. A sequence (g0, y
ε, g1, . . . gn, y

ε, gn) for n > 0

is said to be reduced if there is no consecutive sequence (y−1, gi, y) with gi ∈ A or

(y, gj, y
−1) with gj ∈ B.

Corollary 2.1.15 Britton’s Lemma

If the sequence (g0y
εg1 . . . gn−1y

εgn) is reduced and n > 1 then

(g0y
εg1 . . . gn−1y

εgn) 6= 1 in G∗.

Proof Britton’s Lemma is a special case of corollary 2.1.14 where Γ has only one vertex.

�

2.1.5 Examples

In this subsection we give examples of graphs of groups and normal forms for free

products with or without amalgamation, HNN-extensions and groups which combine

free products and HNN-extensions. Normal forms already exist for free products and

HNN-extensions, we refer the reader to Lyndon and Schupp’s Combinatorial Group

Theory [19].

We aim to show that the fundamental groupoid of a graph of groups is a more

powerful method for obtaining normal forms as it allows smaller rewriting processes

at the vertices. This process of obtaining a larger process from small processes is an

example of local to global methods. In the following example we use graphs of groups

to obtain a normal form for the trefoil group, the motivating example of this work.

Example 2.1.16 Normal Form for the Trefoil Groupoid

If Γ := u
y // v
y

oo we can assign two groups Gu and Gv having subgroups Hy and

Hy respectively and isomorphisms φy : Hy → Hy and φy : Hy → Hy to the vertices

and edges of Γ. This graph of groups will provide a model for the free product with

amalgamation Gu ∗φy Gv.
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For the trefoil groupoid let Gu := 〈a〉 and Gv := 〈b〉 having subgroups Hy := 〈a3〉

and Hy := 〈b2〉. The isomorphisms are given by φy(a
3) = b2 and φy = φy

−1.

We choose left transversals Ty = {1, a, a2} of Hy and Ty = {1, b} of Hy. To calculate

the normal form in the fundamental groupoid we use the relation (a3) = (y, φy(a
3), y) to

obtain the following reductions: (a3i, y) reduces to (y, b2i) and (b2i, y) reduces to (y, a3i)

by coset reductions and (y, 1Gv , y) reduces to (1Gu) by length reduction. If we consider

the subword (a7, y, b−5) then a7 = aa6 as a product of a coset and subgroup element.

By coset reduction, (a7, y, b−5) reduces to (a, y, φy(a
6)b−5) = (a, y, b4, b−5) = (a, y, b−1).

If w = (a7, y, b−6, y, a−11, y, b9, y, a7) then using algorithm 2.1.6 we have the follow-

ing sequence of reductions:

w = (a7, y, b−6, y, a−11, y, b9, y, a7)

= (a, y, b−2, y, a−11, y, b9, y, a7) by coset reduction on (a7, y, b2)

= (a, y, 1, y, a−14, y, b9, y, a7) by coset reduction (b−2, y, a−11)

= (a−13, y, b9, y, a7) by length reduction (y, 1, y)

= (a2, y, b−1, y, a7) by coset reduction (a−13, y, b9)

= (a2, y, b, y, a4) by coset reduction (b−1, y, a7).

The result is a π-reduced word w = (a2, y, b, y, a4).

In the trefoil groupoid we have two isomorphic vertex groups π1(ΓG)(u) and π1(ΓG)(v).

The first is generated by (a) and (y, b, y) with (a3) = (y, b2, y). If we relabel (y, b2, y) by

(c) then we obtain the familiar trefoil group presentation 〈a, c | a3 = c2〉. The normal

form (a2, y, b, y, a4) above becomes a2ca4 in the trefoil group.

A π-reduced word w = (g1, y1, . . . , gn, yn, gn+1) in the trefoil groupoid is reduced if

for i = 1, . . . , n, gi ∈ τy or τy, gn+1 ∈ Gt(yn) and if yi = yi+1 then gi+1 6= 1. ♦

More generally, if we have the free product with amalgamation 〈a, b | an = bm〉, we

obtain a graph of groups as defined in the above example but with subgroups Hy = 〈an〉

and Hy = 〈bm〉 and isomorphisms φy(a
n) = bm and φy = φ−1

y .

Using the normal form theorem, a normal word in a graph of groups is a π-reduced

word. A π-reduced word of π(ΓG)(u) is a word (τ1, y, . . . , τn, y, r) where τi ∈ Ty for i

odd, τi ∈ Ty for i even, r ∈ Gu and if yi = yi for some i then τi 6= 1.
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Relabelling (y, τi, y) by (τi) then we obtain a normal form (τ1, . . . , τn, r) where

τi ∈ Ty or Ty, r ∈ Gu and no τi is in the same transversal as τi+1.

Hence the normal form of an element of the group π1(ΓG)(u) with relabelling for

a free product with amalgamation graph of groups corresponds to the normal form

theorems for free products with amalgamation as given in Lyndon and Schupp [19].

We now use graph of groups to obtain a normal form for an HNN-extension.

Example 2.1.17 Normal Form for an HNN-extension

Let ΓG be the graph of groups given by the graph Γ := u zeez 99 and assigning a

group Gu and two isomorphic subgroups Hz and Hz of Gu.

Let Gu := 〈a, b〉 be the free group on two generators having subgroups Hz := 〈a3〉

and Hz := 〈b2〉. We have isomorphisms φz(a
3) = b2 and φz = φz

−1.

We choose the left transversal Tz of Hz to contain all freely reduced words on a and

b which do not end with a power of a except possibly a and a2 and the left transversal

Tz of Hz contains all freely reduced words which do not end in powers of b except

possibly b1.

To calculate the normal form we use the relation (z, b2, z) = (a3) to obtain the

reductions (b2i, z) reduces to (z, a3i) and (z, a3i) reduces to (z, b2i) by coset reductions.

If w = (a3b2, z, aba, z, b9, z, a3b) we have the reductions;

w = (a3b2, z, aba, z, b9, z, a3b)

= (a3.b2, z, aba, z, b9, z, a3b) by writing g1 as τ1.h1

= (a3, z, a4ba, z, b9, z, a3b) by coset reduction

= (a3, z, a4ba, z, b.b8, z, a3b) the element a4ba is in Tz so move to g3

= (a3, z, a4ba, z, b, z, a15b) by coset reduction.

to obtain the normal word (a3, z, a4ba, z, b, z, a15b).

Since the fundamental groupoid of ΓG for this example has one vertex it is a

fundamental group with generators a, b and z and relations φz(h) = zhz for each

h ∈ Hz. If we relabel z by z−1 then we have a normal form for elements of the group

〈a, b, z | φz(h) = z−1hz for all h ∈ Hz〉 which is a HNN-extension of the group Gu. The

letter z is called a stable letter in the literature and acts as a conjugator. ♦
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We now use graphs of groups to define free products of groups.

Example 2.1.18 Free Product

Let ΓG be the graph of groups given by the graph Γ;

Γ := u
y // v
y

oo
z // x
z

oo

groups Gu := 〈a〉, Gv := 〈b〉 and Gx := 〈c〉; subgroups the identity subgroups of the

respective groups and the isomorphisms are given by the identity maps of the identity

elements.

The transversals contain all the freely reduced elements of the respective groups,

for example Tz of Hz is {bi | i ∈ Z}.

A π-reduced word starting and finishing at v has the form

(bβ1, k1, b
β2 , k2, . . . , b

βn , kn, b
r)

where ki = (y, ap, y) or (z, cq, z), p, q, βi ∈ Z and r ∈ Z.

If we relabel (y, bp, y) by (bp) and (z, cq, z) by (cq) we get words which are combi-

nations of powers of a, b and c. The fundamental group at v with this relabelling is

a group with generators a, b and c and no relations which is the free product of the

groups Gu, Gv and Gx. Since the groups Gu, Gv and Gx are each free on one generator

the fundamental group at v is the free group on three generators. ♦

We now consider a graph of groups for a free product of three groups and amalgamations

of their subgroups to obtain the group with presentation 〈b,m, n | b2 = m3 = n5〉.

Example 2.1.19 Free Product with Amalgamation

Given the graph Γ, groups Gu := 〈a〉, Gv := 〈b〉 and Gx := 〈c〉.

Γ := u
y // v
y

oo
z // x
z

oo

We choose subgroups Hy := 〈a3〉, Hy := 〈b2〉, Hz := 〈b2〉 and Hz := 〈c5〉, and isomor-

phisms φy(a
3) = b2, φz(b

2) = c5 where φy and φz are the respective inverse isomor-

phisms.
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We have the following left transversals:

Ty = {1, a, a2} Ty = {1, b}

Tz = {1, b} Tz = {1, c2, c3, c4}.

The reduction relations are (y, b2, y) = (a3) and (z, c5, z) = (b2). If we consider the

group π1(ΓG)(v) and relabel (y, a, y) by m and (z, c, z) by n we obtain the group with

presentation 〈b,m, n | b2 = m3 = n5〉. ♦

We now combine graphs of groups of free products with amalgamation and HNN-

extensions to construct a group which we will call a “mixed amalgam.”

Example 2.1.20 Mixed Amalgam

Consider the graph Γ which is a combination of the graphs given in examples 2.1.16

and 2.1.17.

Γ := u

z

��

z

DD
y // v
y

oo

Let the graph of groups have graph Γ as above and groups Gu := 〈a〉 and Gv := 〈b〉.

For the pair of edges {y, y} we have the same subgroups and isomorphisms as for the

trefoil groupoid; let Hy := 〈a3〉, Hy := 〈b2〉 with φy(a
3) = b2 and φy = φ−1

y . For the

pair of edges {z, z} we associate subgroups Hz := 〈a7〉, Hz := 〈a5〉 and isomorphisms

φz(a
7) = a5 and φz = φ−1

z .

We choose left transversals

Ty = {1, a−1, a−2} Ty = {1, b−1}

Tz = {1, a−1, a−2, a−3, a−4, a−5, a−6} Tz = {1, a−1, a−2, a−3, a−4}.

To calculate the normal form of elements we use the following relations (a3) = (y, φy(a
3), y)

and (a7) = (z, φz(a
7), z) to obtain the reductions (a3i, y) = (y, b2i) and (a7i, z) = (z, a5i)

by coset reductions.

If w = (a5, y, b4, y, a2, z, a4, z, a, y, b, y, a) then by applying the reduction algorithm
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we get the following sequence of reductions.

w = (a−1, y, b8, y, a2, z, a4, z, a, y, b, y, a) by (a5, y) = (a−1, y, φy(a
6))

= (a−1, y, 1, y, a14, z, a4, z, a, y, b, y, a) by (b8, y) = (1, y, φy(b
8))

= (a13, z, a4, z, a, y, b, y, a) since (y, 1, y) = (1)

= (a−1, z, a14, z, a, y, b, y, a) by (a13, z) = (a−1, z, φz(a
14))

= (a−1, z, a−1, z, a22, y, b, y, a) by (a14, z) = (a−1, z, φz(a
15))

= (a−1, z, a−1, z, a−2, y, b17, y, a) by (a22, y) = (a−2, y, φy(a
24))

= (a−1, z, a−1, z, a−2, y, b−1, ya28) by (b17, y) = (b−1, y, φy(b
18)).

If we relabel (y, b, y) by m and z by z−1 we obtain the group, π1(ΓG)(u) with presen-

tation

〈a,m, z | a3 = m2, a7 = za5z−1〉.

In subsection 2.2.2 we give output from a GAP4 session for the above group. ♦

Example 2.1.21 Identity Graphs of Groups

If we choose graphs of groups where the groups, subgroups and isomorphisms are all

identity groups and identity morphisms then we get the following four particular cases.

1. When Γ := u
y // v
y

oo then graph of groups words have the following forms

(1, y, 1, y, 1, . . . , 1, y, 1, y, 1) ∈ A(ΓG)(u)

(1, y, 1, y, 1, . . . , 1, y, 1, y, 1) ∈ A(ΓG)(u, v)

(1, y, 1, y, 1, . . . , 1, y, 1, y, 1) ∈ A(ΓG)(u, v)

(1, y, 1, y, 1, . . . , 1, y, 1, y, 1) ∈ A(ΓG)(v)

Since we have length reductions (y, 1, y) = (1) and (y, 1, y) = (1), elements

of the fundamental groupoid of a graph of groups have the following forms

{1u, 1uy1v, 1vy1u, 1v}. Hence the fundamental groupoid is isomorphic to the unit

groupoid.

2. When Γ := u zeez 99 then graph of groups words have the form

(1, zε, 1, zε, 1, . . . , 1, zε, 1, zε, 1) ∈ A(ΓG)(u) where ε = ±.
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We have length reductions (z, 1, z−1) = (1) and (z−1, 1, z) = (1), so elements of

the fundamental groupoid are {1, 1z1z . . . 1z1, 1z−11z−1 . . . 1z−11}. The funda-

mental groupoid is isomorphic to the free group on one generator.

3. If Γ has one vertex and 2n loops {zi, z
−1
i | 1 6 i 6 n} then the fundamental

groupoid of the graph of groups is isomorphic to the free group on n generators.

4. Let T be an undirected tree and let Γ be obtained from T by adding an identity

loop at each vertex and replacing each edge by a pair of directed edges {yi, yi}.

The fundamental groupoid of the graph of groups is the connected groupoid on

V (Γ) with trivial object groups. ♦

The methods used in the examples above can be adapted easily to obtain normal

forms for groups obtained from graphs with more edges and loops and normal forms

can be computed in GAP4.

2.1.6 Graph of Groupoids

In this subsection we define graphs of groupoids, and graphs of groupoids words. We

then give a normal form theorem for graphs of groupoids words and an example of a

groupoid HNN-extension as a graph of groupoids.

Haataja et al [15] study an analogue of Bass-Serre theory for groupoids. In their

paper a normal form theorem is given for a free product of groupoids with amalgama-

tion. The normal form theorem we give in this subsection is more general and includes

the free product with amalgamation as a special case.

A Graph of Groupoids ΓG := (Γ,G,H,Φ) consists of the following: a directed

graph Γ with involution; a family of groupoids G = {Gu | u ∈ V (Γ)}; a family of

wide subgroupoids H := {Hy ⊆ Gs(y) | y ∈ E(Γ)}; and a family of isomorphisms

Φ := {φy : Hy →Hy | y ∈ E(Γ)} such that φy
−1 = φy.

We impose the condition that the subgroupoids are wide so we can write the

groupoid elements as products of a transversal and subgroupoid element.

For each edge y ∈ E(Γ) we choose a left transversal Ty of Hy in Gs(y), containing the

identity elements of Gs(y). Thus each g ∈ Gs(y) can be written uniquely as τy(g)hy(g)

where τy(g) ∈ Ty, hy(g) ∈ Hy.
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We adapt the ideas for graphs of groups and let ΓG be a graph of groupoids and

F(Γ) be the free groupoid on the graph Γ as defined for graph of groups. Let G be

the disjoint union of the groupoids Gu for all u ∈ V (Γ). Let A(ΓG) be the free product

F(Γ) ∗G of groupoids. The normal form follows by adapting the methods of graphs of

groups in Subsection 2.1.2.

An element of A(ΓG) called a graph of groupoids word is represented either by ()u

where u ∈ V (Γ) or by

w = (g1, y1, g2, . . . , gn, yn, gn+1)

where yi ∈ E(Γ), v1 = s(y1), vi = s(yi) = t(yi−1) for 1 < i < n, vn+1 = t(yn) and

gi ∈ Gvi
for i = 1, . . . , n+1 and subwords (gi, yi, gi+1) = (τihi, yi, τi+1hi+1) must satisfy

t(φyi
(hi)) = s(τi+1) for i = 1, . . . n.

Definition 2.1.22 A graph of groupoids word w = (g1, y1, g2, . . . gn, yn, gn+1) is π-

reduced word if

(i) gi ∈ Tyi
for i = 1, . . . , n and gn+1 ∈ Gt(yn);

(ii) if yi−1 = yi for some 2 6 i 6 n then gi 6= 1.

We define the reduction of words using the relation φy(h) = yhy and have two types

of reduction: coset and length as for graphs of groups.

Adapting the proof of Theorem 2.1.7 to groupoids we obtain the following result.

Theorem 2.1.23 The π-reduced form of a graph of groupoids word is unique. �

We now give an example of a groupoid HNN-extension.

Example 2.1.24 Groupoid HNN-extension

Let an HNN-extension graph of groupoids be given by the graph Γ := u zeez 99 . We

assign the groupoid Gu := S3×I where S3 has presentation 〈a, b | a3 = b2 = abab = 1〉

to the vertex u, and subgroupoids Hz and Hz to the edges z and z. The subgroupoid

Hz has elements {(1, 10), (a, 10), (a
2, 10), (1, 11), (b, 11)} and Hz is an isomorphic sub-

groupoid toHz with elements {(1, 10), (b, 10), (1, 11), (a, 11), (a
2, 11)}. The isomorphism

φz is defined by

φz(g, 1i) =

{
(g, 11) if i = 0

(g, 10) if i = 1
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and φz = φ−1
z .

We choose left transversals Tz and Tz in Hz and Hz respectively.

Tz := {(1, 10), (1, ι
−1), (b, 10), (b, ι

−1), (1, 11), (a, 11), (a
2, 11), (1, ι), (a, ι), (a

2, ι)}

Tz := {(1, 10), (1, ι
−1), (a, 10), (a, ι

−1), (a2, 10), (a
2, ι−1), (1, 11), (b, 11), (1, ι), (b, ι)}

If we apply the reduction algorithm to the graph of groupoids word w := ((1, 11), z, (b, 10), z, (a, ι
−1)

then we get the following sequence of reductions:

w = (1, 11), z, (1, 10)(b, 10), z, (a, ι
−1), z, (a, 11) by (b, 10) = (1, 10)(b, 10)

= (1, 11), z, (1, 10), z, (b, 11)(a, ι
−1), z, (a, 11) by φz((b, 10)) = (b, 11)

= (1, 11), z, (1, 10), z, (ba, ι
−1), z, (a, 11) by (b, 10)(a, ι

−1) = (ba, ι−1)

= (ba, ι−1), z, (a, 11) by (z, (1, 10), z) = (1, 11)

= (a2, ι−1)(b, 10), z, (a, 11) by (ba, ι−1) = (a2, ι−1)(b, 10)

= (a2, ι−1), z, (b, 11)(a, 11) by φz((b, 10)) = (b, 11)

= (a2, ι−1), z, (a2b, 11) by (b, 11)(a, 11) = (a2b, 11)

to obtain the reduced graph of groupoids word (a2, ι−1), z, (a2b, 11).

This HNN-groupoid HNN has groupoid presentation

HNN = 〈(a, 10), (b, 10), (1, ι) | zφz(h)z = h : for h ∈ Hz〉

with three generators and five relations. ♦

2.2 Implementation

In this section we give details of the implementation of graphs of groups and the

reduction process of a graph of groups word in GAP4.

To obtain a function that returns a unique normal form for a graph of groups word

we need: a normal form function for elements of the groups associated to the vertices

of the graph of the graph of groups; a representation for the structure of a graph of

groups and the reduction process for a graph of groups word.
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2.2.1 Normal Form and Knuth Bendix Methods

The normal form of a group element can be obtained using Knuth-Bendix methods

which is a procedure that attempts to obtain a set of rules to reduce elements to a

normal form. For more details refer to Epstein et al Word Processing in Groups [12]

and Becker and Weispfenning Gröbner Bases [2].

We give details here as the Knuth-Bendix methods model the scheme of the proof

of theorem 2.1.7.

For computational purposes it is more convenient to use semigroups. Given a group

G with presentation 〈A | R〉 we can obtain a semigroup presentation 〈A′ | R′〉 of G.

The set of semigroup generators A′ is obtained from A by adding formal inverses. The

set of semigroup relations R′ contains pairs (ε, w) where w ∈ R is a word of A and

pairs (ε, aa−1) and (ε, a−1a) for all a ∈ A.

A group presentation is given by a quotient of a free group by a normal subgroup.

For semigroup presentations we have free semigroups factored by congruences.

Let S be a semigroup and R a symmetric relation on S. The quotient of S by R

is the set of equivalence classes of S under the equivalence relation generated by the

equivalences s1as2 ∼ s1bs2 for all a, b, s1, s2 ∈ S with (a, b) ∈ R.

To obtain unique normal forms we use ordering of elements. There are many dif-

ferent orders that can be used, the most common is length-lexicographic order. Lexi-

cographic order ranks the set A∗ of strings over the set A′ by comparing the letters in

the first position where the strings differ. In length-lexicographic order w < w′ if and

only if w is shorter than w′ or they both have the same length and w comes before w′

in lexicographic order.

We use ordering to determine reduction rules. Given a set A′, a reduction rule

over A′ is denoted l → r where l and r are strings over A and l > r in the length-

lexicographic order. We call l and r the left and right hand sides of the rule.

Let R be a set of reduction rules over A′. Let a and b be strings over A′. We

write a −→
R

b if there exists strings w1 and w2 over A and a rule l → r in R such that

a = w1lw2 and b = w1rw2.

We let
t
−→

R

denote the transitive closure (a
t
−→

R

b if and only if b can be obtained

from a by repeated application of rules in R) of −→
R

. Let
∗
←→

R

denote the reflexive,
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symmetric and transitive closure of R. The set of equivalence classes can be identified

with the semigroup 〈A′ | R〉 where R is the set of unordered pairs (l, r). The set R is

a rewrite system for the group G on A if G ≃ A′/
∗
←→

R

.

All sequences of reduction in length-lexicographic order terminate. A string w is

either irreducible or can be reduced to some irreducible string w′ which cannot be

reduced further. We say that w′ is a R-residue of w. The set of irreducible strings

under R is denoted IrrR.

A set of reduction rules R is complete if all strings have unique R-residues and

k-complete if all strings of length at most k have unique R-residues. A necessary and

sufficient condition for completeness is that if u→ v and u→ v′ then there is a w such

that v
t.r
←→

R

and v′
t.r
←→

R

w where
t.r
−→

R

denotes the transitive, reflexive closure of −→
R

.

This is called confluence of the rules.

Lemma 2.2.1 If R is a complete set of rules, the set IrrR is a semigroup with mul-

tiplication defined by concatenation followed by taking the residues. The map IrrR→

(A′/R) is a semigroup isomorphism.

Proof We refer the reader to the proof of lemma 6.2.1 in [12]. �

The confluence of the rules ensures that the normal form of a word w is the same

even if there are two different reduction rules that can be applied.

The proof of the following lemma is taken from Lemma 6.2.4 [12] and uses a diamond

lemma type argument. We note the similarities to the proof of theorem 2.1.7.

Lemma 2.2.2 Let k be a positive integer or infinity, and let R be a set of rules over

A′. Then R is k-complete if and only if, for all a, b, c ∈ A∗ with |abc| 6 k (where |abc|

denotes the length of the string abc) the following conditions are satisfied:

(i) Suppose that b 6= ε and that ab −→ a′ and bc −→ c′ are reduction rules of R. Then

there exists a string s and reductions abc −→ ac′
t.r
−→

R

s and abc −→ a′c
t.r
−→

R

s .

(ii) Let b −→ b′ and abc −→ b′′ be reduction rules of R. Then there exists a string t

and reductions abc −→ ab′c
t.r
−→

R

t and abc −→ b′′
t.r
−→

R

t.
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Proof The two conditions are implied by k-completeness. Conversely, if the two condi-

tions are satisfied, we prove by induction on the ordering that each string has a unique

residue.

We look at two different sequences of reduction. We assume that the first steps in

the sequences of reduction are different. If the two reductions in the first steps occur

to disjoint parts of the word w it is clear that the resulting word words w′ and w′′ can

be reduced to a common word s.

w = αaβcε
a→a′

vvmmmmmmmmmmmmm
c→c′

((QQQQQQQQQQQQQ

w′ = αa′βcε

c→c′ ((QQQQQQQQQQQQ
w′′ = αaβc′ε

a→a′vvmmmmmmmmmmmmm

w∗ = αa′βc′ε

The word w∗ is either irreducible or can be reduced to an irreducible word.

There are two overlapping cases where two different reductions can be applied to

the same part of a word. The first overlapping case uses the first condition of the

lemma.

w = αabcε
ab→a′

vvnnnnnnnnnnnn
bc→c′

((QQQQQQQQQQQQ

w′ = αa′cε

a′c→t ((PPPPPPPPPPPP w′′ = αac′ε

ac′→tvvmmmmmmmmmmmm

w∗ = αtε

The second overlap case uses the reduction rules of the second condition.

w = αabcε
b→b′

vvmmmmmmmmmmmm
abc→b′′

((PPPPPPPPPPPP

w′ = αab′cε

ab′c→t ((QQQQQQQQQQQQ w′′ = αb′′ε

b′′→tvvnnnnnnnnnnnn

w∗ = αtε

Again both words are either irreducible or can be reduced to an irreducible word

by repeated application of reduction rules. �

The lemma checks that all pairs of reduction rules and their overlaps will reduce
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to irreducible strings s and s′. If the strings are the same then R is complete. If not

then R is not complete but the lemma gives a method to make R complete. If s and

s′ as described above are not the same irreducible word then we adjoin to R the rule

s→ s′ or s′ → s depending on the length-lexicographic order. We keep repeating this

process until there are no non-confluent rules.

We can now give the Knuth-Bendix algorithm. For full details refer to [12].

Algorithm 2.2.3 Knuth-Bendix Algorithm

Let S be a semigroup and A′ a finite ordered set of generators. Given a finite set R0 of

reduction rules for S, we construct a sequence of finite sets of rules Ri for each i > 0

by induction. To obtain Ri+1 from Ri we add rules to make up for failures of the two

confluence conditions of lemma 2.2.2.

The algorithm can be refined more by omitting redundant rules which are rules that

are reductions of rules.

All the results in this section hold for semigroups and groups. We now give an

example.

Example 2.2.4 Normal Form on S3 using Knuth-Bendix

Given the symmetric group S3 on three symbols with presentation 〈x, y | x3 = y2 =

xyxy = 1〉 we have the following relations:

R0 := {x3 → 1, y2 → 1, xyxy → 1}.

Now we look for overlaps with these rules. The dashed arrows denote the reduction

rule determined by the length-lexicographic ordering.

xxxyxy
x3→1

yytttt
tt

tt
tt xyxy→1

$$I
IIIIIIII

yxy //__________ x2

xyxyy
xyxy→1

{{xxx
xx

xx
xx

y2→1

$$I
IIIIIIII

y xyxoo_ _ _ _ _ _ _ _ _

We add these rules to R0

R1 := {x3 → 1, y2 → 1, xyxy → 1, yxy → x2, xyx→ y}
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and repeat the process of checking for overlapping cases.

yxyy
yxy→x2

{{xxxxxxxx
y2→1

""E
EE

EE
EE

EE

x2y //________ yx

yyxy
y2→1

||yy
yy

yy
yy

y
yxy→x2

##F
FFFFFFF

xy yx2oo_ _ _ _ _ _ _ _

We add these rules to R1 to get

R2 := {x3 → 1, y2 → 1, xyxy → 1, yxy → x2, xyx→ y, x2y → yx, yx2 → xy}.

Checking for overlaps all the pairs now resolve to the same word. The rule xyxy → 1

is the only redundant rule.

xyxy
xyx→y

||yy
yy

yy
yy

y
yxy→x2

""E
EE

EE
EE

EE

y2

y2→1 ""E
EE

EE
EE

EE
x3

x3→1||yy
yy

yy
yy

y

1

So we omit xyxy → 1 from R2 to obtain a rewrite system R for S3. If we enumerate

elements w of the free group on x and y under the rules R we get elements wR:

w wR

1

x

y

x2

xy

yx

y2 1

x3 1

x2y yx

xyx y

xy2 x

yx2 xy

yxy x2

y2x x

y3 y

All words of length 3 reduce so all elements of length greater than 3 reduce so the

rewrite system is 3-complete. The group has elements {1, x, y, x2, xy, yx} which are

unique normal forms. ♦

We now have a method for obtaining normal forms for elements of groups and

semigroups.

2.2.2 Implementation and GAP4 Output

GAP4 [14] is a computational discrete algebra program in which new structures may be

implemented as objects with attributes and properties. We have developed a collection
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of GAP4 functions to implement graphs of groups and reduction of words to normal

forms. The input data for a graph of groups is a weighted graph with involution Γ

given by the ordered sets vertices V (Γ) := {v1, . . . , vn} and edges E(Γ) := {y1, . . . , ym}

where yi := [s(yi), yi, t(yi)]; an ordered list of groups G := {Gv1 , . . . , Gvn} where Gvi
is

the group associated to the vertex vi; an ordered list of subgroups H := {Hy1, . . . , Hym}

whereHyi
is a subgroup ofGs(yi); and an ordered list of isomorphisms Φ : {φy1, . . . , φym}

where φyi
is the isomorphism from Hs(yi) → Ht(yi).

The weighted graph with involution, FpWeightedDigraph is given by two lists;

vertices and edges. The edges are triples [s(y), y, t(y)] where s(y) and t(y) are vertices

and y the edge. We choose the edge y to be represented in GAP4 by a generator of a

free group so that for an edge [s(y), y, t(y)] the involution edge is [t(y), y−1, s(y)].

We implement a graph of groups ΓG as an object GraphOfGroups with representa-

tion having attributes:

DigraphOfGraphOfGroups, the weighted directed graph with involution

GroupsOfGraphOfGroups, the family of groups

SubgroupsOfGraphOfGroups, the family of subgroups

IsomorphismsOfGraphOfGroups, the family of isomorphisms.

A graph of groups word is given by a triple (ΓG, v, w) and is implemented as an

object GraphOfGroupsWord whose representation has attributes:

GraphOfGroupsOfWord, the graph of groups ΓG

Source, the source vertex v of the word w

WordOfGraphOfGroupsWord, the word in A(ΓG).

For a graph of groups word we write the position of the edge in the list of edges

instead of the weighted label of the edge. This relabelling simplifies the code and

computation.

Example 2.2.5 Let Γ have V = {5, 6} and E = {{5, y, 6}, {6, y−1, 5}}, with G =

{G5 = 〈a〉, G6 = 〈b〉}, H = {Hy = 〈a3〉, Hy−1 = 〈b3〉} and Φ = {φy, φy−1}

where φy(a
3) = b2. Then the word (b, y−1, a, y, b, y−1, a) is represented by the list

[b, 2, a, 1, b, 2, a]. ♦
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The operation ReducedGraphOfGroupsWord determines the reduced word of a graph

of groups word using Algorithm 2.1.6. The operations IsGraphOfGroups, IsGraphOfGroupsWord

and IsReducedGraphOfGroupsWord are used to test that an object is a graph of groups,

a graph of groups word or a reduced graph of groups word respectively.

When calculating the reduced word of a graph of groups word we use the functions

NormalFormKBRWS and LeftTransversalsOfGraphOfGroups which we outline below.

NormalFormKBRWS is a function that gives a normal form for a group element. It

uses standard Knuth-Bendix rewriting techniques on semigroups. Given a group G =

〈X | R〉 and a word w in the free group on X, the function NormalFormKBRWS first

constructs the free semigroup S on X, then creates a Knuth-Bendix rewriting system

KBRWS which is confluent on S. We then map w to its corresponding element w′ in

S, using KBRWS we get the reduced word rw′. We then map rw′ to the group G to

obtain the normal form of the group element.

GAP4 has a function that determines the right cosets of a subgroup in a group.

In RightTransversalsOfGraphOfGroups, right cosets for the subgroups Hy in the

group Gs(y) are determined and a coset representative is chosen by the representative

function in GAP4. We then apply NormalFormKBRWS to get the normal form of the

coset representatives.

The function LeftTransversalsOfGraphOfGroups is used to obtain left coset rep-

resentatives. For each coset representative t in the right transversals the function

LeftTransversalsOfGraphOfGroups computes NormalFormKBRWS of t−1 in the appro-

priate group.

Given a graph of groups ΓG := (Γ,G,H,Φ) a word w = (g1, y1, . . . , gn, yn, gn+1) and

the vertex v of the group Gv to which the element g1 belongs, a normal form can be

obtained in GAP4.

We now give an example of the implementation of graphs of groups in GAP4. Let

ΓG be the graph of groups as defined for the trefoil group in Example 2.1.16 on page 41.

Example 2.2.6 Trefoil Groupoid implemented in GAP4

With GAP4 running the package is accessed in the usual way..

gap> RequirePackage("xres");
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#I ---------- The XRES share package -----------

#I -- For graphs of groups and crossed resolutions --

true

We first define the graph G1 with 2 vertices and 2 edges.

gap> f1 := FreeGroup("y");; y := GeneratorsOfGroup(f1)[1];;

gap> V1 := [5,6];;

gap> E1 := [ [5,y,6], [6,y^-1,5] ];;

gap> G1 := FpWeightedDigraph( V1, E1 );;

We now define the lists of groups, subgroups and isomorphisms.

gap> za := FreeGroup( 1, "a" );; gza := GeneratorsOfGroup( za );;

gap> SetName( za, "za" );; a := gza[1];;

gap> hy := Subgroup( za, [a^3] );;

gap> zb := FreeGroup( 1, "b" );; gzb := GeneratorsOfGroup( zb );;

gap> SetName( zb, "zb" );; b := gzb[1];;

gap> hybar := Subgroup( zb, [b^2] );;

gap> homy := GroupHomomorphismByImagesNC(hy,hybar,[a^3],[b^2]);;

gap> homybar := GroupHomomorphismByImagesNC(hybar,hy,[b^2],[a^3]);;

gap> gps := [ za, zb ];;

gap> sgps := [ hy, hybar ];;

gap> isos := [ homy, homybar ];;

We then combine the lists to form a graph of groups GG1.

gap> GG1 := GraphOfGroups( G1, gps, sgps, isos );

Graph of Groups: 2 vertices; 2 edges; groups [ za, zb ]

A graph of groups word in GG1 is a triple (G1,v,w) where w is a word with source v.

gap> L1 := [ a^7, 1, b^-6, 2, a^-11, 1, b^9, 2,a^7 ];;

gap> gw1 := GraphOfGroupsWord( GG1, 5, L1 );

(5)a1^7.z.b1^-6.z^-1.a1^-11.z.b1^9.z^-1.a1^7(5)

To calculate the normal form we use ReducedGraphOfGroupsWord.
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gap> ReducedGraphOfGroupsWord(gw1);

(5)a1^-1.z.b1^-1.z^-1.a1^10(5)

We note that this reduced word is different from the reduced word in Example 2.1.16

since the set of transversal elements are not those we made in the example.

gap> LeftTransversalsOfGraphOfGroups( GG1 );

[ [ <identity ...>, a1^-1, a1^-2 ], [ <identity ...>, b1^-1 ] ]

The following are interesting examples of normal forms for graph of groups words for

the trefoil group as a free product with amalgamation. If we set the InfoLevel to 2

the steps in the reduction process are printed.

gap> SetInfoLevel( InfoXRes, 2 );

gap> L2 := [ b^6, 2, a, 1, b, 2, a ];;

gap> gw2 := GraphOfGroupsWord( GG1, 6, L2 );

(6)b1^6.z^-1.a1.z.b1.z^-1.a1(5)

gap> ReducedGraphOfGroupsWord( gw2 );

#I w = [ <identity ...>, 2, a1^10, 1, b1, 2, a1 ]

#I w = [ <identity ...>, 2, a1^-2, 1, b1^9, 2, a1 ]

#I w = [ <identity ...>, 2, a1^-2, 1, b1^-1, 2, a1^16 ]

(6)<identity ...>.z^-1.a1^-2.z.b1^-1.z^-1.a1^16(5)

gap> L3:=[ a^3, 1, b^-2 ];;

gap> gw3 := GraphOfGroupsWord( GG1, 5, L3 );

(5)a1^3.z.b1^-2(6)

gap> ReducedGraphOfGroupsWord( gw3 );

#I w = [ <identity ...>, 1, <identity ...> ]

(5)<identity ...>.z.<identity ...>(6)

The following reduction of a graph of groups word illustrates length reduction.

L5 := [ b^2, 2, a^0, 1, b^0, 2, a^0, 1, b^0, 2, a^0 ];

[ b1^2, 2, <identity ...>, 1, <identity ...>, 2, <identity ...>, 1,

<identity ...>, 2, <identity ...> ]
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gap> gw5:=GraphOfGroupsWord(GG1,6,L5);

(6)b1^2.z^-1.<identity ...>.z.<identity ...>.z^

-1.<identity ...>.z.<identity ...>.z^-1.<identity ...>(5)

gap> ReducedGraphOfGroupsWord(gw5);

#I w = [ <identity ...>, 2, a1^3, 1, <identity ...>, 2,

<identity ...>, 1, <identity ...>, 2, <identity ...> ]

#I w = [ <identity ...>, 2, <identity ...>, 1, b1^2, 2,

<identity ...>, 1, <identity ...>, 2, <identity ...> ]

#I shorter w = [ <identity ...>, 2, a1^3, 1, <identity ...>, 2,

<identity ...> ]

#I w = [ <identity ...>, 2, <identity ...>, 1, b1^2, 2,

<identity ...> ]

#I shorter w = [ <identity ...>, 2, a1^3 ]

(6)<identity ...>.z^-1.a1^3(5) ♦

Example 2.2.7 Mixed Amalgam implemented in GAP4

We now define the graph of groups for the mixed amalgam of groups in example 2.1.20

and apply the reduction of the graph of groups word.

gap> GG2;

Graph of Groups: 2 vertices; 4 edges; groups [ za, zb ]

gap> Display(GG2);

Graph of Groups with :-

vertices: [ 5, 6 ]

edges: [ [ 5, z, 5 ], [ 5, z^-1, 5 ], [ 5, y, 6 ],

[ 6, y^-1, 5 ] ]

groups: [ za, zb ]

subgroups: [ Group( [ a1^7 ] ), Group( [ a1^5 ] ),

Group( [ a1^3 ] ), Group( [ b1^2 ] ) ]

isomorphisms: [ GroupHomomorphismByImages( Group( [ a1^7 ] ),

Group( [ a1^5 ] ), [ a1^7 ], [ a1^5 ] ),

GroupHomomorphismByImages( Group( [ a1^5 ] ),
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Group( [ a1^7 ] ), [ a1^5 ], [ a1^7 ] ),

GroupHomomorphismByImages( Group( [ a1^3 ] ),

Group( [ b1^2 ] ), [ a1^3 ], [ b1^2 ] ),

GroupHomomorphismByImages( Group( [ b1^2 ] ),

Group( [ a1^3 ] ), [ b1^2 ], [ a1^3 ] ) ]

Apply the reduction algorithm to the word w as given in Example 2.1.20.

gap> w := [ a^2, 3, b^6, 4, a^2, 1, a^4, 2, a, 3, b, 4, a ];;

gap> gw:=GraphOfGroupsWord(GG2,5,L);

(5)a1^2.y.b1^6.y^-1.a1^2.z.a1^4.z^-1.a1.y.b1.y^-1.a1(5)

gap> ReducedGraphOfGroupsWord(gw);

#I w = [ a1^-1, 3, b1^8, 4, a1^2, 1, a1^4, 2, a1, 3, b1, 4, a1 ]

#I w = [ a1^-1, 3, <identity ...>, 4, a1^14, 1, a1^4, 2, a1, 3,

b1, 4, a1 ]

#I shorter w = [ a1^-1, 1, a1^14, 2, a1, 3, b1, 4, a1 ]

#I w = [ a1^-1, 1, a1^-1, 2, a1^22, 3, b1, 4, a1 ]

#I w = [ a1^-1, 1, a1^-1, 2, a1^-2, 3, b1^17, 4, a1 ]

#I w = [ a1^-1, 1, a1^-1, 2, a1^-2, 3, b1^-1, 4, a1^28 ]

(5)a1^-1.z.a1^-1.z^-1.a1^-2.y.b1^-1.y^-1.a1^28(5)

The word of the reduced graph of group word has the same normal form as given in

example 2.1.20 with the following transversal.

gap> LeftTransversalsOfGraphOfGroups( GG2 );

[ [ <identity ...>, a1^-1, a1^-2, a1^-3, a1^-4, a1^-5, a1^-6 ],

[ <identity ...>, a1^-1, a1^-2, a1^-3, a1^-4 ],

[ <identity ...>, a1^-1, a1^-2 ], [ <identity ...>, b1^-1 ] ] ♦
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Chapter 3

Total Groupoids and Total Spaces

In the first section of this chapter we consider graphs of groups and how they relate to

cylinder constructions in the category of groupoids. We define the total groupoid for

a graph of groups and show how this relates to the fundamental groupoid of a graph

of groups.

The second section defines CW-complexes and graphs of CW-complexes which will

then be adapted to graphs of crossed complexes in Chapter 4. Given a group we

can construct a CW-complex such that the fundamental group of the CW-complex is

isomorphic to the group, this isomorphism provides the connection between graphs of

groups and graphs of CW-complexes.

3.1 Cylinders

This section involves graphs of groups and techniques used to fit it into a groupoid set-

ting involving cylinders from abstract homotopy theory. The notion of a total groupoid

of a graph of groups is explored and its connection to the fundamental groupoid of a

graph of groups.

We refer the reader to Kamps and Porter, Abstract Homotopy Theory and Simple

Homotopy Theory [18] which derives abstract homotopy theory from the structure of

cylinders.
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3.1.1 Mapping Cylinders

In this subsection we define mapping cylinders which will be used later in this section

to define total groupoids for graphs of groups and give examples of mapping cylin-

der constructions in the category of groupoids which will model free products with

amalgamations of groups.

We begin by defining a cylinder which is given by a functor, mapping cylinders and

double mapping cylinders which are objects in a small category.

Definition 3.1.1 A cylinder, M = (M, i0, i1, σ), in a category C consists of a functor,

M : C → C called the cylinder functor, together with three natural transformations

i0, i1 : IdC → M

σ : M → IdC

such that σi0 = σi1 = IdC.

If we apply the cylinder functor M of M to an object C of C we write M(C) for the

cylinder. As the name “cylinder” suggests we can represent a cylinder by the following

picture.
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Figure 3.1: Cylinder

We now give examples of cylinders in the categories of topological spaces and

groupoids which will be used to define the total space of a graph of spaces of a graph

of spaces and to obtain total groupoids for graphs of groups respectively.

Example 3.1.2 Topological Space Cylinder

A cylinder on the category of topological spaces can be given by a cylinder functor

M : X → X × [0, 1]
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where X is a topological space and [0, 1] the unit interval, together with the three

natural transformations

i0 : X → X × [0, 1] i0(x) = (x, 0)

i1 : X → X × [0, 1] i1(x) = (x, 1)

σ : X × [0, 1]→ X σ(x, t) = x

where t ∈ [0, 1]. ♦

Example 3.1.3 Groupoid Cylinder

A cylinder on Gpd can be defined by a cylinder functor

M : G → G × I

where G is a groupoid, I is the unit groupoid, together with the natural transformations

i0 : G → G × I i0(g) = (g, 10)

i1 : G → G × I i1(g) = (g, 11)

and σ : G × I → G is the projection onto G. ♦

The above examples are the canonical cylinders for the respective categories and

throughout this exposition the term cylinder will refer to the canonical cylinder.

In Subsection 1.2.1 we defined homotopy of two groupoid morphisms. We use

cylinders to define homotopies of arrows in arbitrary categories.

Definition 3.1.4 A homotopy between arrows f, g : X → Y of C exists if there is an

arrow φ : M(X)→ Y where M is a cylinder of C such that φi0 = f and φi1 = g.

If a homotopy X → Y exists, then we say X and Y are homotopy equivalent (or of

the same homotopy type). A map from X → Y is nullhomotopic if it is homotopic to

some constant map.

We now define mapping cylinders and double mapping cylinders which can be

thought of pictorially as gluing objects of a category to the ends of a cylinder.
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Definition 3.1.5 A mapping cylinder of f , Mf , where f : C → A is an arrow in C is

given by a pushout in C

C
i0 //

f

��

M(C)

kf

��
A

jf

//Mf

where M(C) is a cylinder in C.

A mapping cylinder can be represented by the following picture where A is “glued”

to one end of a cylinder M(C).
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Figure 3.2: Mapping Cylinder

We now define a double mapping cylinder of two arrows f and g of a category C

as a colimit. We relate this construction to a total groupoid of a graph of groups with

one pair of involutary edges in Subsection 3.1.3.

Definition 3.1.6 A double mapping cylinder of arrows f : C → A and g : C → B in

a category C is the colimit of the diagram

C
f

����
��

��
�� i0

""E
EE

EE
EE

EE
C

i1

||yy
yy

yy
yy

y
g

��@
@@

@@
@@

@

A M(C) B.
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This means we have a diagram

C
f

����
��

��
�� i0

""E
EE

EE
EE

EE
C

i1

||yy
yy

yy
yy

y
g

��>
>>

>>
>>

>

A

jA

""E
EE

EE
EE

EE
EE

EE
EE

EE
EE

M(C)

k

��

B

jB

||yy
yy

yy
yy

yy
yy

yy
yy

yy
y

Mf,g

such that the following universal property holds:

(i) jAf = ki0 and jBg = ki1

(ii) If j′A : A → D, j′B : B → D and k′ : M(C) → D are any maps such that

j′Af = k′i0 and j′Bg = k′i1 then there exists a unique map l : Mf,g → D such that

ljA = j′A, ljB = j′B and lk = k′.

The colimit of the above diagram can be constructed by repeated pushouts.

C
g //

i1

��

B

jg

��

C
i0 //

f

��

M(C)

kf

��

kg //M ′
g

��
A

jf

//Mf
//Mf,g

We can construct the double mapping cylinder as a two stage pushout where we

construct a pushout of a mapping cylinder which itself is a pushout. Given a mapping

cylinder

C
i0 //

f

��

M(C)

kf

��
A

jf

//Mf
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we construct the pushout

C
g //

if
��

B

jB
��

Mf
g′

//Mf,g

where we define if = kf i1 : C → Mf . Then Mf,g is a double mapping cylinder with

jA = g′jf , k = g′kf and jB. We note that the above pushout is the composite of the

top right and bottom right pushout squares in the repeated pushout construction.

We can represent a double mapping cylinder by the following picture.
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Figure 3.3: Double Mapping Cylinder

The double mapping cylinder is also a homotopy colimit of the diagram

A C
foo g // B

since Mf,g is a colimit and k is a homotopy k : jAf ≃ jBg.

We now give a definition and result which hold in the categories T op, Gpd and

FCrs , the category of free crossed complexes. We refer the reader to Kamps and

Porter [18] for further detail and more general results.

Definition 3.1.7 An arrow i : A→ X of C is a cofibration if and only if the diagram

A
i0(A)//

i

��

M(A)

i×I
��

X
i0(X)

//M(X)

is a pushout.
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The following result is used to give an explicit construction of a mapping cylinder

in the category Gpd . We refer the reader to the proof of Proposition 7.4 in [18].

Proposition 3.1.8 Let

A
f //

i

��

B

j

��
X g

// Y

be a pushout in which i is a cofibration and f is a homotopy equivalence. Then g is a

homotopy equivalence.

3.1.2 Groupoid Mapping Cylinders

In this subsection we use the cylinder functor for groupoids to construct mapping

cylinders and double mapping cylinders in the category of groupoids.

Let f : G → H, g : G → K be morphisms of groupoids and suppose we have pushout

diagrams

G
i0 //

f

��

G × I

kf

��
H

jf

//Mf

G
kf i1 //

g

��

Mf

��
K //Mf,g

where Mf is a mapping cylinder of f and Mf,g is a double mapping cylinder of f and

g in the category of groupoids.

We now give examples of a mapping and a double mapping cylinder which are used

to model the trefoil group.

Example 3.1.9 Trefoil Double Mapping Cylinder

The trefoil mapping cylinder is given by the pushout of groupoids

C
i0 //

f

��

C × I

kf

��
A

jf

//Mf

where C and A are free groups on one generator c and a respectively and f(c) = a3

and i0(c) = (c, 10).
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By proposition 3.1.8 the groupoid morphism A → Mf is a homotopy equivalence

and the fundamental groups of Mf are homotopy equivalent to A.

Mf (0) = {an : n ∈ Z} Mf (0, 1) = {anι : n ∈ Z}

Mf (1) = {ι−1anι : n ∈ Z} Mf (1, 0) = {ι−1an : n ∈ Z}

where ι is abbreviated from (1, ι).

The group C “disappears” although there is a groupoid presentation of Mf with C

present.

〈a, (c, 10), (1, ι) | (c, 10) = a3〉

We use this presentation since C needs to be present for “gluing” at the other end

of the cylinder.

Let B be the free group on b and define the maps g : C → B by g(c) = b and

if : C → Mf by composition of two maps kf and i1. This map takes an arrow of C

and maps it to the end of the cylinder where no identifications have been made.

We construct the following pushout.

C
if //

g

��

Mf

��
B //Mf,g

So if = kf i1 : C → Mf gives c 7→ (c, 11) and g : C → B is defined to be the

injective map g(c) = b2.

Using the construction of pushouts in Subsection 1.2.6 Mf,g can be given by a

universal groupoid factored by an equivalence relation. Hence Mf,g is a groupoid with

presentation

〈a, b, ι | a3 = ιb2ι−1〉.

which is also the presentation of the trefoil groupoid of Example 2.1.16. ♦

A double mapping cylinder for the diagram A C
foo g // B where A, B and C

have group presentations 〈X|R〉, 〈Y |S〉 and 〈Z|T 〉 respectively is a two object groupoid

with presentation

〈X, Y, Z, ι | f(c) = ιg(c)ι−1 : for all c ∈ C〉.
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3.1.3 Total Groupoids for Graphs of Groups

In this subsection we use ideas from abstract homotopy theory and apply it to graphs

of groups using cylinder constructions.

Definition 3.1.10 A graph of groups ΓG consists of a graph Γ with involution, a group

Gv for each vertex v ∈ V (Γ) and a group Gy for each edge y ∈ E(Γ) such that Gy = Gy

together with an injective homomorphism µy : Gy → Gt(y).

The total groupoid of a graph of groups ΓG is the groupoid obtained by taking the

disjoint union of groupoids associated to the vertices and edges and then factoring by

an equivalence relation generated by relations, as follows.

Definition 3.1.11 Given a graph of groups, ΓG, the total groupoid Tot(ΓG) is defined

as the quotient of

(
⊔ {Gv : v ∈ V (Γ)}

)
⊔

(
⊔ {Gy × I : y ∈ E(Γ)}

)

by the relations

Gy × I → Gy × I by (g, ι)→ (g, ι−1)

Gy × 10 → Gt(y) by (g, 10)→ µy(g).

For the graph of groups with one pair of involutary edges the total groupoid is

homotopy equivalent to a double mapping cylinder. Hence the total groupoid for the

graph of groups for the trefoil groupoid is the double mapping cylinder of example 3.1.9

given by taking the homotopy colimit of

Gy

i0

##G
GG

GG
GG

GG
µy

}}zz
zz

zz
zz

Gy

µy

!!D
DD

DD
DD

D
i1

{{ww
ww

ww
ww

w

Gs(y) Gy × I Gt(y)

.

The following theorem provides a connection between the fundamental groupoid

and total groupoid of a graph of groups.

Theorem 3.1.12 The total groupoid of a graph of groups with one pair of involutary

edges is homotopy equivalent to the fundamental groupoid of the given graph of groups.
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In Sections 3.2 and 4.2 the total space and the total crossed complex which are

similar to the total groupoid construction are connected to the fundamental groupoid.

3.2 Graphs of CW-complexes

The study of algebraic topology is a combination of algebra and topology as the name

suggests. It is a method of assigning algebraic structures such as groups to topological

spaces and homomorphisms to continuous maps. An example of this is calculating the

fundamental group of a space which associates a group to a space with a base point. In

this exposition we associate a group to a CW-complex and use the theory of algebraic

topology to get more information about the group.

In this section we define CW-complexes, graphs of CW-complexes and give a result

proved by Scott and Wall in Topological Methods in Group Theory [22].

In Chapter 4 we associate a crossed complex to a CW-complex and adapting Scott

and Wall’s result to crossed complexes.

3.2.1 CW-complexes

An important class of spaces are CW-complexes which are spaces constructed in stages

by attaching cells. Whitehead formally defined CW-complexes by adding combinatorial

structure to spaces which provided a better understanding of homotopy groups. We

refer the reader to Fritsch and Piccinini Cellular Structures in Topology [13] for more

details.

The main result of CW-complexes is Whitehead’s Theorem 3.2.9 below. This the-

orem is the key to the results in this subsection and used to prove Proposition 3.2.19.

We begin by defining some spaces. Let Dn+1 = {x : |x| 6 1} ⊆ Rn+1 be the unit

disk and Sn its boundary.

Definition 3.2.1 A CW-complex X is a space X which is the union of an expanding

sequence of subspaces Xn such that inductively X0 is a discrete set of points and

Xn+1 is the pushout obtained from Xn by attaching disks Dn+1 along attaching maps
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jn : Sn → Xn

Jn+1 ⊔ Sn //

��

Jn+1 ×Dn+1

��
Xn // Xn+1.

Thus Xn+1 is the quotient space obtained from Xn∪(Jn+1×Dn+1) by identifying (j, x)

with j(x) for x ∈ Sn where Jn+1 is the discrete set of such attaching maps j.

Each resulting map Dn+1 → X is called a cell. The subspace Xn is called the n-

skeleton ofX. A continuous map f : X → Y of CW-complexes is cellular if f(Xn) ⊆ Y n

for all n > 0.

We define the fundamental groupoid and homotopy groups of spaces since CW-

complexes provide information on homotopy groups. We first consider fundamental

groupoids and homotopy groups which are used to define the fundamental crossed

complex of a CW-complex in Subsection 4.1.4.

We have defined the fundamental groupoid of a graph, we can also define the

fundamental groupoid of a space. Instead of paths in a graph we have paths in a space.

Let X be a space. The category of paths PX on X has object set, Ob(PX) = X

and for any x, y ∈ X the set of arrows Arr(PX) is the set of paths from x to y. The

fundamental groupoid π1(X) of a space X will be a groupoid such that π1(X)(x, y) is

the set of equivalence classes of PX(x, y). We let π1(X)(x) denote the fundamental

groupoid which has object set x and has arrows, equivalence classes of PX(x, x) paths

starting and ending at x. This fundamental groupoid is called the fundamental group

at x. We refer to [4] for more details.

We also have nth homotopy groups πn(X,A, x0). Let (X, x0) be a based space.

A based pair (X,A, x0) is a pair of spaces X, A with base point x0 in which A is

a subspace of X and contains x0. If (X,A, x0) and (Y,B, y0) are based pairs then

[(X,A, x0), (Y,B, y0)] is the set of homotopy classes of based pair maps

β : (X,A, x0) → (Y,B, y0). Let sn = (1, 0, . . . , 0) ∈ Sn be the common base point

of Sn and Dn+1 for n > 1. The nth homotopy group of a based pair (X,A, x0)

is πn(X,A, x0) = [(Dn, Sn−1, sn−1), (X,A, x0)]. We note that the based pair maps

correspond to the characteristic maps for CW-complexes.

Given a group G we can construct a CW-complex such that the fundamental group
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of the CW-complex is isomorphic to G. Let G be a group with presentation 〈A | R〉.

We can construct a CW-complex X such that π1(X) ≃ G.

LetX0 = {∗} a singleton point. Now consider the generators of the group a1, . . . , an.

We associate each ai to a 1-cell which is a map from the boundary of Dn+1 to X. The

space X1 = ∨
a∈A

S1
a is a wedge of 1-spheres based at ∗ one for each generator a ∈ A.

The fundamental group of X1 is isomorphic to the free group on A.

To each relation we associate a 2-cell which is a map from a relator circle S1
r to X1.

Then X2 is the pushout as described in Definition 3.2.1. We now have a 2-dimensional

CW-complex with fundamental group isomorphic to G. Adding cells of dimension

greater than two does not affect the fundamental group. We refer to [22] for details of

this result.

Definition 3.2.2 A filtered space X∗ is a space X which consists of a sequence of

subspaces.

X∗ : X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X.

Definition 3.2.3 A filtered space is connected if the following conditions hold for each

m > 0:

(i) φ(X∗, 0): If j > 0, the map π0 → π0X
j induced by inclusion is surjective.

(ii) φ(X∗, 0)(m > 1): If j > m and v ∈ X0, then the map πm(Xm, Xm−1, v) →

π0(X
j, Xm−1, v) induced by inclusion is surjective.

A CW-complex filtered by its skeleta is a filtered space. A CW-complex with skeleta

filtration is a connected filtered space.

We now define properties and attributes of topological spaces and hence CW-

complexes. A topological space X is contractible if it is homotopy equivalent to a

point. A topological space is simply connected if it is path connected and π1(X)(x) = 1

for some x ∈ X. Thus contractible spaces are simply connected.

A subset A of a topological space X is a retract of X if there is a continuous map

r : X → A such that ri = 1A where i : A → X is the inclusion map. The map r is

a retraction. A subset A of X is called a deformation retract if there is a retraction

r : X → A such that ir ≃ 1X where i : A→ X is the inclusion.
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Definition 3.2.4 A space is aspherical if for every n > 2 and every continuous map

f : Sn → X, there exists a continuous map g : Dn+1 → X with the restriction to the

subspace Sn equal to f .

If a CW -complex X is aspherical then we denote it K(G, 1) where G is the group

isomorphic to the fundamental group of X.

The weak topology on X is determined by {Uλ} where λ ∈ Λ is the topology whose

closed sets are those subsets V for which V ∩ Uλ is closed for every λ ∈ Λ.

We define coverings and universal coverings of spaces which we use in the proof of

Proposition 3.2.19.

Let X and X̃ be topological spaces and let p : X̃ → X be continuous. An open set

U in X is evenly covered by p if p−1(U) is a disjoint union of open sets Si in X̃, called

sheets, with p|Si
: Si → U a homeomorphism for every i.

Definition 3.2.5 An ordered pair (X̃, p) is a covering space of X where X is a topo-

logical space if

(i) X̃ is a path connected space,

(ii) p : X̃ → X is a continuous map,

(iii) each x ∈ X has an open neighbourhood Ux that is evenly covered by p.

Definition 3.2.6 A universal covering space of X is a covering space (X̃, p) with X̃

simply connected.

We state the following theorems, corollary and proposition without proof. We refer

the reader to Rotman, An Introduction to Algebraic Topology [21] for the proofs.

Theorem 3.2.7 Every connected CW-complex has a universal covering space.

Theorem 3.2.8 If (X̃, p) is a covering space of X, then p∗ : πn(X̃) → πn(X) is an

isomorphism for all n > 2.

Theorem 3.2.9 Whitehead’s Theorem

If X and Y are connected CW-complexes, and if f : X → Y is a continuous map such
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that f∗ : πn(X, x0) → πn(Y, f(x0)) is an isomorphism for all n, then f is a homotopy

equivalence (so that X and Y have the same homotopy type).

Corollary 3.2.10 A connected CW-complex is contractible if and only if πn(X) = 0

for all n.

Proposition 3.2.11 The universal covering space of a K(G, 1) space is contractible.

Pullbacks in the categories of topological spaces and groupoids induce exact se-

quences giving information on the arrows in the category. Given two maps of spaces

f : A→ X and p : Y → X the pullback of f and p

B
f

//

p

��

Y

p

��
A

f
// X

is the subspace B of A× Y given by

B = A×X Y = {(a, y) ∈ A× Y : f(a) = p(y)}.

We now state a result on induced covering maps using pullbacks and refer the reader

to result 9.7.2 page 368 of [4] for a proof.

Proposition 3.2.12 If p : Y → X is a covering map, then for any map f : A → X,

the induced map p : A ×X Y → A is also a covering map. Further if p is an n-fold

covering map, so also is p.

We also have analogous results for groupoids. Let f : L → G, p : H → G be

groupoid morphisms. The pullback of f and p

M
f

//

p

��

H

p

��
L

f
// G

is the subgroupoidM of L ×H given by

M = L ×G H = {(l, h) ∈ L ×H : f(l) = p(h)}.
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If f : L → G and p : H → G are morphisms of groupoids, and p is a covering

morphism then p : L ×G H → L is a covering morphism.

We now show how pullbacks of spaces and groupoids are linked, by the following

result. We refer the reader to result 9.7.5 page 369 of [4] for a proof.

Proposition 3.2.13 Suppose given a pullback of spaces. Then there is an induced

morphism of groupoids

θ : π(A×X Y )→ πA×πX πY

which is the identity on objects. Further, if p is a covering morphism of spaces, then θ

is an isomorphism.

The following proposition is used to prove Proposition 3.2.19.

Proposition 3.2.14 Suppose that we have a pullback of groupoids as given above and

that p is a covering morphism. Let (l, y) ∈ Ob(M), so that f(l) = p(y) = x, say. Then

there is a sequence

M(l, y) i // L(l)×H(y) ∂ // G(x) ∆ // π0L ×π0G π0H

which is exact.

For details of the exactness of the sequence refer to [4] page 370.

3.2.2 Total Spaces and Aspherical CW-complexes

We now define a graph of spaces and give the result that we will adapt to crossed

complexes to determine the asphericity of groups. We will concentrate on the case of

graphs of CW -complexes as this is sufficient for the results that we will use.

Definition 3.2.15 A graph of CW -complexes ΓX is given by a graph Γ with involution

and an assignment of CW -complexes Xv, Xy to each vertex v of V (Γ) and to each edge

y of E(Γ) respectively; and satisfying Xy = Xy, and a cellular map fy : Xy → Xt(y) for

each edge y ∈ E(Γ).

We now define the total space of a graph of CW-complexes.
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Definition 3.2.16 Given a graph of CW -complexes, ΓX, the total space Tot(ΓX) is

defined as the quotient of

(
∪ {Xv : v ∈ V (Γ)}

)
∪

(
∪ {Xy × I : y ∈ E(Γ)}

)

by the identifications

Xy × I → Xy × I by (x, t)→ (x, 1− t)

Xy × 0 → Xt(y) by (x, 0)→ fy(x).

To relate the total space and to the fundamental groupoid π1(ΓG) of a graph of

groups we recall the construction of π1(ΓG).

We have the free product groupoid A(ΓG) = ⊔
v∈V (Γ)

Gv ∗ F(Γ) which is the amalga-

mation over vertex set V (Γ) of ⊔
v∈V (Γ)

Gv and F(Γ). We then factor by an equivalence

relation to obtain π1(ΓG).

For spaces, we let A(ΓX) = ⊔
v∈V (Γ)

Xv ∗Γ where ∗ is the amalgamation of spaces over

vertices.

If (X,X0) and (Y, Y0) are spaces with base points then X∗Y is given by the pushout

X0 ⊔ Y0
//

��

X0 ∪ Y0

��
X ⊔ Y //X ∗ Y

.

For A(ΓX) we have the spaces (X, V (Γ)) where X = ⊔
v
Xv and (Γ, V (Γ)). The space

X ∗ Γ is the space amalgamated over V (Γ).

The total space Tot(ΓX) can then be given by the quotient of

A(ΓX) ∪
(
∪ {Xy × I : y ∈ E(Γ)}

)

by the identifications

Xy × I → Xy × I by (x, t)→ (x, 1− t)

Xy × 0 → Xt(y) by (x, 0)→ fy(x)

Xy × I → Γ by (1, ι)→ y.

which can be thought of as “gluing” cylinders onto A(ΓX).

76



We choose spaces such that π1(X, V (Γ)) ≃ G and π1(Γ, V (Γ)) ≃ F(Γ).

The following example relates to the free product with amalgamation of groups.

Example 3.2.17 If given a graph Γ := u
y // v
y

oo then the total space Tot(ΓX ) is

given by the disjoint union of the spaces Xu, Xv, Xy× I and Xy × I associated to the

vertices and edges of Γ and the following identifications;

Xy × I → Xy × I by (xy, t)→ (xy, 1− t)

Xy × 0 → Xv by (xy, 0)→ fy(xy) = xv

Xy × 0 → Xu by (xy, 0)→ fy(xy) = xu

where the suffix of x denotes what space the element belongs to. We then have the

following classes of elements;

[xv, (xy, 0), (xy, 1)]

[xu, (xy, 0), (xy, 1)]

[(xy, t), (xy, 1− t)] for t 6= 0, 1

We note that these identifications are related to adjunction mappings and mapping

cylinders. ♦

Graphs of groups, CW -complexes and aspherical CW -complexes are used in this

thesis to determine whether a group has an aspherical presentation. We need a con-

nection between these structures.

Given a graph of groups ΓG (defined classically), we can associate connected 2-

dimensional CW -complexes Xy and Xv to the vertex and edge groups with π1(Xv, ∗) ≃

Gv and π1(Xy, ∗) ≃ Gy. The injective group homomorphisms iy : Gy → Gt(y) induce a

homomorphism π1(Xy, ∗)→ π1(Xt(y), ∗) and a continuous map (Xy, ∗)→ (Xt(y), ∗) by

the following result.

Lemma 3.2.18 For any homomorphism φ : π1(X
2, x) → π1(Y, y) there is a map

α : X → Y with α∗ = φ (where α∗ is the induced morphism of fundamental groups.

Proof The cells of X2 give a presentation π1(X
2) = 〈a1, . . . , an | r1, . . . , rm〉 = 〈A | R〉.

The image of the generator ai by φ is an element of π1(Y ) represented by a map

77



(S1, x) → (Y, y). The family of maps for all ai is used to define α1 : X1 → Y and α1
∗

is the map of fundamental groups induced by α1.

We then have the following diagram.

F (A) ≃ π1(X
1, x)

��

α1
∗ // π1(Y, y)

〈A | R〉 ≃ π1(X
2, x)

φ

44iiiiiiiiiiiiiiiii

which commutes, by construction of α1. Hence α1
∗(rj) = 1. For each 2-cell of X, with

characteristic map χ : (D2, S1) → (X2, X1, x) the class of χ|S1 is rj and the class of

α1 ·χ|S1 is α1
∗(rj) = 1. Thus α1 ·χj is nullhomotopic, so there is a continuous extension

ψj : D2 → Y with ψ|S1 = α1 · (χj|S1). By definition of X as an identification space,

the diagram

X1 ∪ (j
∪
(D2 × j))

inc ∪{χj}

��

α1∪{ψj} // Y

X2

66llllllllllllllllllll

defines a map α : X → Y such that α|X1 = α1 and α · χj = ψj . Since π1(X, x) is a

quotient of π1(X
1, x) it follows that α∗ = φ. �

So we can now define a graph of CW -complexes where we can recover the original

graph of groups. For any graph of two dimensional CW -complexes we can attach cells

greater than or equal to three to each Xv and Xy to obtain aspherical CW -complexes

Kv and Ky with the same fundamental groups. Adding cells of dimension greater than

two does not affect the fundamental groups.

The map fy : Xy → Xt(y) extends to a map ky : Ky → Kt(y) so we have a graph

of aspherical CW -complexes still inducing ΓG. The total space Tot(ΓK) is obtained

from ΓX by adding cells of dimension greater than or equal to three so it has the same

fundamental group.

The aspherical CW -complex Kv is a space of type K(Gv, 1) its homotopy type is

determined by Gv (similarly K(Gy, 1)). Also the map ky is determined up to homotopy

by iy : Gy → Gt(y). Thus ΓK is determined up to homotopy, and its fundamental group

is unique up to isomorphism.
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Proposition 3.2.19 Scott and Wall (1979)

(i) If ΓG is a graph of groups, each map Gv to the fundamental group of ΓG is injective.

(ii) If ΓK is a graph of aspherical spaces, the total space Tot(ΓK) is aspherical.

Proof Given a graph of aspherical spaces, for each vertex v of Γ, the space

Lv = Kv ∪ { ∪
t(y)=v

Ky × I}

admits Kv as a deformation retract as the cylinders Ky × I glued to Kv collapse down

to Kv. Hence Lv is a contractible space.

By the results that every connected CW-complex has a universal cover and if the

CW-complex is aspherical then its universal cover is aspherical, the universal cover L̃v

of Lv is contractible.

Further as Gy → Gv is injective the sequence induced by the pullback of spaces

K̃y
//

��

K̃v

��
Ky

iy
// Kv

where iy is injective on π1 of Ky and Kv shows that K̃y is the universal covering space

of Ky and hence contractible. So L̃v can be obtained by attaching copies of K̃y × I to

K̃v.

We now construct a space Y = ∪Y n by induction. Choose any vertex v0 of Γ and

set L̃v0 . For any n > 1, the space Y n−1 will have had a number of copies of K̃y × I

attached each along K̃y × 0 for various edges y.

We define Y n to be the union of Y n−1 with a copy of L̃t(y) for each such copy of

K̃y × I in Y n−1 identified along K̃y × I. For Y 1 we glue the L̃v’s to Y 0 for those v of

the form t(y) = v for y in L̃v0 .

Since we are attaching contractible sets along contractible subsets each Y n−1 is

contractible.

We set Y = ∪Y n with the weak topology then Y is also contractible. There is

a projection Y → Tot(ΓK). By construction of Y , Tot(ΓK) is evenly covered by Y

which proves (ii). Since for each Kv ⊂ Tot(ΓK) the induced covering of Kv contains
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the universal covering by the sequence obtained from the pullback of spaces

K̃v
//

��

Y

��
Kv

// Tot(ΓK)

and π1(Kv, x)→ π1(Tot(ΓK)) is injective. �

We note that we have already proved part (i) of proposition 3.2.19 by theorem 2.1.7.

In the above proposition π1(ΓG) is defined as the fundamental group of the total space

of the graph of groups and hence different methods are employed.
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Chapter 4

Crossed Complexes

This chapter defines crossed complexes of groupoids which are analogous to chain

complexes but contain non-abelian information in dimensions 1 and 2. The motivating

example of a crossed complex is obtained by applying the fundamental crossed complex

functor to a filtered space. This connection between filtered spaces and crossed com-

plexes allows modelling topological proofs with crossed complexes. The fundamental

crossed complex provides an algebraic model of a filtered space in which we can carry

out calculations.

After defining a crossed complex, we show how to construct a free crossed resolution

of a finite cyclic group and we define the tensor product of crossed complexes. In

Section 4.2 we will apply these resolutions to the results on crossed complexes obtained

from CW-complexes.

For the motivation and history of crossed complexes we refer the reader to Brown

and Higgins, Crossed Complexes and Non-Abelian Extensions [5].

4.1 Crossed Complexes over Groupoids

This section gives the definitions of different types of crossed complex; explicit examples

and morphisms of small free crossed resolutions. We then show how CW-complexes

and crossed complexes are related by the fundamental crossed complex functor.
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4.1.1 Groupoid Modules and Crossed Modules

In this subsection we define groupoid actions, groupoid modules and crossed

groupoid modules, which are used to define crossed complexes over groupoids in sub-

section 4.1.2.

A right action of a group H on a set S is a function S ×H → X, (s, h) 7→ sh such

that s1 = s and (sh)h
′

= s(hh′) for all h, h′ ∈ H . The set S is called a H-Set. The

right action of a group on a set is the same as a contravariant functor F : H → Sets

where H is viewed as a groupoid with one object denoted ∗, and F (∗) = S for some S

in Sets, the value of F (h) is a bijection of S, and sh = F (h)(s).

We can adapt the idea of H-Sets to H-Sets where H is a groupoid. A right action

of a groupoid on sets is equivalent to a contravariant functor F : H → Sets. So if

h ∈ H(u, v), F (u) = Xu and F (v) = Xv, then F (h) is a bijection from Xu to Xv

u h // v h′ // w ∈ H F (u)
F (h) // F (v)

F (h′) // F (w) ∈ Sets.

For x ∈ Xu, (xh)
h′

= xhh
′

provided h, h′ are composable in H. For each object group

H(u) of H, F restricts to an action of π1(H, u) on Xu = F (u).

Further, we extend the notion of H-Sets to H-Gpds. A right action of H on

groupoids is a contravariant functor F : H → Gpds where for u ∈ Ob(H), F (u) = Xu a

groupoid, F (1u) is the identity morphism on Xu and for h ∈ H(u, v), F (h) : Xu → Xv

is a groupoid isomorphism and we write gh for F (h)(g). The action of u h // v ∈ H

on x
g // y ∈ F (u) is xh

gh

// yh ∈ F (v). For each object u of H, F restricts to an

action of π1(H, u) on F (u). We shall only be interested in groupoid actions on totally

disconnected groupoids, since these actions occur for crossed modules of groupoids.

Definition 4.1.1 Suppose G and H are groupoids over the same object set and G is

totally disconnected. Then a groupoid action of H on G is given by a partially defined

function

Arr(G)× Arr(H) → Arr(G)

(g, h) 7→ gh

which satisfies, for all g ∈ G(u), h ∈ H(u, v) and h1 ∈ H(v, w),
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(i) gh ∈ G(v), and (1u)
h = 1v,

(ii) (gg1)
h = ghg1

h, and

(iii) g(hh1) = (gh)h1 and g1 = g.

u

g

��
g1

rr v

gh

��
gh
1

qq w

(gg1)hh1

��

u h // v
h1 // w

Figure 4.1: Action of H on G

We call a groupoid action of H on G an H-action on G. The following two examples

are well known group actions and are used to construct a free crossed resolution of a

group.

Example 4.1.2 Given a group G and subgroup H of G the trivial action of H on G

is given by the function (g, h) 7→ g. ♦

Example 4.1.3 Given a normal subgroup H of a group G, the conjugation action of

H on G is given by the function (g, h) 7→ h−1gh. ♦

The following example is the corresponding conjugation action for groupoids.

Example 4.1.4 If G is the largest totally disconnected subgroupoid of a groupoid H

then H acts on G by gh = h−1gh. ♦

We now define H-modules and free H-modules which we will use to construct a free

crossed resolution.

Definition 4.1.5 An H-module (M,H) is a pair of groupoids, where M is a family

of abelian groupsM(u), u ∈ Ob(H), together with a specified action of H onM.

A morphism of groupoid modules is a pair (θ, φ) : (M,H) → (N ,K) where φ :

H → K is a morphism of groupoids and θ is a family of morphisms of abelian groups
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θ(u) := M(u) → N(φ(u)) preserving the actions, that is θ(v)(mh) = (θ(u)(m))φ(h)

when m ∈ M(u) and h ∈ H(u, v).

Definition 4.1.6 An H-module (F ,H) is free on generators X(u), u ∈ Ob(H) if there

exists a map X(u)→ F(u) for all u and given any H-module (M,H) and maps f(u) :

X(u)→M(u) for all u ∈ Ob(H) there exists a unique morphism (F ,H)→ (M,H).

The following example is used in subsection 4.1.3 to give a free crossed resolution

of finite cyclic groups.

Example 4.1.7 If Cr is a cyclic group of order r with generator x then a free Cr-

module (F,Cr) is a free abelian group of rank r. If F is a free group with generator y

then (F,Cr) is additively generated by y · 1, y · x, . . . , y · xr−1. We say that (F,Cr) is

free on one generator y together with a circular Cr-action. ♦

We recall that for any group G, the set Z[G] denotes all formal sums of the form
∑
g∈G

agg where ag ∈ Z and only finitely many of the ag are non-zero. The set Z[G] has a

natural structure of a free abelian group with basis the set |G| of elements of G. Right

multiplication gives an action of G on Z[G]: (
∑
agg) · g′ =

∑
ag(gg

′). We show there

is an isomorphism between a free Cr-module and Z[Cr].

Proposition 4.1.8 A free Cr-module (F , Cr), given by a Cr-action on a free group F

on one generator where y is the free generator of (F , Cr), is isomorphic to Z[Cr].

Proof The isomorphism (F , Cr) ≃ Z[Cr] is determined by
r−1∑
i=0

aiy · xi 7→
r−1∑
i=0

aix
i. �

We now define two special types of groupoid module, crossed modules and free

crossed modules. For more details on free crossed modules and their construction see

Brown and Huebschmann, Identities among relations [9].

Definition 4.1.9 A crossed module X = (µ : G → H) consists of an H-action on G

and a morphism of groupoids µ : G → H, satisfying

(i) µ(gh) = h−1(µg)h,

(ii) gµg1 = g1
−1gg1
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for all g, g1 ∈ G, h ∈ H whenever the terms are defined.

Definition 4.1.10 A morphism of crossed modules X1 = (µ1 : G1 → H1) to X2 =

(µ2 : G2 →H2) is a pair of groupoid morphisms (θ : G1 → G2, φ : H1 →H2) such that

φµ1 = µ2θ and the actions are preserved, θ(gh) = θ(g)φ(h)

Crossed modules allow for free models of the inclusion map N → F of a normal

subgroup of a group and give non-abelian information. We now give examples of crossed

modules for groups and groupoids.

Example 4.1.11 There is a crossed module of groups (∂ : F → Cr) where F is the

free group on the generator y, ∂ is given by ∂(y) = x, and the action of Cr on F is the

trivial action yx = y. More generally, any morphism of abelian groups (µ : A → A′)

can be regarded as a crossed module where the action of A on A′ is trivial. ♦

Example 4.1.12 A conjugation crossed module of groups (i : N → G) is given by N

a normal subgroup of a group G, i the inclusion map, and ng = g−1ng.

This generalises as follows. Suppose H is a connected groupoid and N is a totally

disconnected normal subgroupoid of H. Then the inclusion map i : N → H and the

action nh = h−1nh gives a crossed module of groupoids. ♦

We now define a free crossed module using graphs and a universal property.

Definition 4.1.13 Let H be a groupoid, and Γ a totally disconnected graph where

V (Γ) = Ob(H). The path groupoid PΓ is a totally disconnected union of free groups

and the rank of PΓ(u) is the number of loops at u in Γ. A graph morphism γ : Γ→ ΓH

which is the identity on vertices determines an unique groupoid morphism γ : PΓ→H

which is the identity on objects. We define the free crossed H-module on γ to be a

crossed module X(γ) = (∂ : C(γ)→H), together with a groupoid morphism γ : PΓ→

C(γ) such that

(i) ∂γ = γ,

(ii) if X = (µ : G → H) is a crossed module and f : PΓ→ G is a groupoid morphism

which is the identity on objects such that µf = γ, then there is a unique morphism
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(f ′, 1) : (X)(γ)→ X of crossed H-modules such that f ′γ = f .

C(γ)

∂

��/
//

//
//

//
//

//
//

//
//

//

f ′ // G

µ

����
��
��
��
��
��
��
��
��
��
�

PΓ

f

??�����������

γ

__???????????

γ

��
H

We now give examples of free crossed modules for groups and groupoids.

Example 4.1.14 If H is a free group on Y then the identity crossed module (1 : H →

H) is a free crossed module on Y . The action is essentially conjugation. ♦

Example 4.1.15 If (δ : F → G) is a free crossed G-module on X → G where G is a

group then (δ′ : F ×{0, 1} → G×I) is a free crossed G×I-module on X×Γ→ G×I

where Γ consists of two identity loops. ♦

Example 4.1.16 If 〈X : R〉 presents the group G then we get a free crossed F (X)-

module (δ2 : C(R) → F (X)). The group C(R) is generated as an F (X)-group by

the set R and its elements are of the form c =
n∏
i=1

(rεi

i )ui where n > 0, ri ∈ R, and

ε = {+,−}. The morphism δ2 is defined by δ2(r
ε)u = u−1φ(rε)u subject to the crossed

module rule cδ2(c1) = c−1
1 cc1 for c, c1 ∈ C(R). ♦

The following result is used in Subsection 4.1.3 defining a small free crossed reso-

lution which then makes computations neater.

Lemma 4.1.17 If (µ : M → P ) is a free crossed P -module on one generator m and

P is abelian, then M is also abelian and is acted on trivially by µ(M).

Proof As a group, M is generated by elements mp for all p ∈ P . But mpmq = m(p+q) =

m(q+p) = mqmp. Hence M is abelian. So if n ∈M , then mµ(n) = n−1mn = m and µ(n)

acts trivially on m and so on M . �
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4.1.2 Crossed Complexes

Crossed complexes are similar to chain complexes but can hold non-abelian information.

The concepts of morphisms and homotopies of crossed complexes are modelled on the

chain complex analogues. For more details on connections between chain and crossed

complexes we refer the reader to Brown and Higgins, Crossed Complexes and Chain

Complexes with Operators [7].

In this subsection we give the definition of a crossed complex and properties of

crossed complexes. We also define the tensor product of crossed complexes which will

be used in for constructing the total crossed complex of a graph of crossed complexes

in section 4.2.

Definition 4.1.18 A crossed complex (C, χ) (over a groupoid) is a sequence

· · ·
χn+1 // Cn

χn // Cn−1
χn−1 // · · ·

χ3 // C2
χ2 // C1

s //
t

// C0

given by

1. a crossed module of groupoids (χ2 : C2 → C1) with object set C0, and

2. for n > 3, C1-modules Cn such that the image of χ2 acts trivially on Cn, and

3. for n > 3 the C1-morphisms χn : Cn → Cn−1 are C1-operator morphisms which

satisfy χn−1χn = 0.

The arrows of the groupoid Cn are said to be in dimension n and we write χ for χn

when the dimension is clear.

For n > 2, Cn is a family of groups {Cn(u)}u∈C0 and for n > 3 the groups Cn(u) are

abelian. We use additive notation for all groups Cn(u) and the groupoid C1 and denote

the action of h ∈ C1 on g ∈ Cn by gh.

A morphism of crossed complexes f : (C, χ) → (D, δ) is a family of morphisms of

groupoids fn : Cn → Dn for n > 0, compatible with the C1− and D1− morphisms and

the C1, D1 actions: δnfn = fn−1χn and fn(g
h
n) = fn(gn)

f1(h).

The category of crossed complexes, Crs, has objects all crossed complexes and

arrows all morphisms of crossed complexes.
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An m-truncated crossed complex (C, χ) consists of all the structure for a crossed

complex but only for n 6 m. An m-truncated crossed complex for m = 0, 1 and 2 is

a set, a groupoid, and a crossed module respectively. To turn an m-truncated crossed

complex into a crossed complex we let Cn be a trivial C1-module for n > m.

As for groupoids we have an unit interval object in the category of crossed complexes

which we will use to define a cylinder in the category of crossed complexes.

Example 4.1.19 The unit interval crossed complex I := (I, i) is determined by the

groupoid I in dimensions 0 and 1 and In for n > 2 consists of two objects and their

identity arrows. The morphisms in for n > 2 are identity morphisms. ♦

The fundamental groupoid π1(C, χ) of a crossed complex (C, χ) is the quotient of

the groupoid C1 by the normal totally disconnected subgroupoid χ2C2. By definition

of a crossed complex, Cn for n > 3 has the induced structure of a π1(C, χ)-module.

A crossed complex is free if C1 is a free groupoid on some graph Γ1, C2 is a free

crossed C1-module for some γ : Γ2 → C1, and for n > 3, Cn is a free π1C-module on

some graph Γn. A crossed complex (C, χ) is exact if for n > 2, Ker(χn) = Im(χn+1).

If (C, χ) is exact and G is a groupoid, then (C, χ) together with an isomorphism

π1(C, χ)→ G is called a crossed resolution of G. It is called a free crossed resolution of

G if (C, χ) is also free.

We now define the tensor product of crossed complexes constructed by Brown and

Higgins [6].

Definition 4.1.20 If (A, α) and (B, β) are crossed complexes, then

(C, χ) = (A, α)⊗(B, β) is the crossed complex generated by elements a⊗b in dimension

m+ n, where a ∈ Am, b ∈ Bn, with the following defining relations:

1. ta⊗ tb = t(a⊗ b).

2. (a⊗ b)ta⊗b1 = a⊗ bb1 if m > 0, n > 2, b1 ∈ B1.

3. aa1 ⊗ b = (a⊗ b)a1⊗tb if m > 2, n > 0, a1 ∈ A1.

4. If b+ b′ is defined in Bn, then

a⊗ (b+ b′) =

{
a⊗ b+ a⊗ b′ if m = 0, n > 1 or if m > 1, n > 2

(a⊗ b)ta⊗b
′

+ a⊗ b′ if m > 1, n = 1.
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5. If a + a′ is defined in Am, then

(a+ a′)⊗ b =

{
a⊗ b+ a′ ⊗ b if m > 1, n = 0 or if m > 2, n > 1

a′ ⊗ b+ (a⊗ b)a
′⊗tb if m = 1, n > 1.

(The reversal of addition is significant only when m = n = 1.)

6. χ(a⊗ b) =






αa⊗ b+ (−1)m(a⊗ βb) if m > 2, n > 2,

−(a⊗ βb)− (ta⊗ b) + (sa⊗ b)a⊗tb if m = 1, n > 2,

(−1)m+1(a⊗ tb) + (−1)m(a⊗ sb)ta⊗b + αa⊗ b if m > 2, n = 1,

−ta⊗ b− a⊗ sb+ sa⊗ b+ a⊗ tb if m = 1, n = 1,

a⊗ βb if m = 0, n > 2,

αa⊗ b if m > 2, n = 0

s(a⊗ b) =

{
a⊗ sb if m = 0, n = 1,

sa⊗ b if m = 1, n = 0

t(a⊗ b) =

{
a⊗ tb if m = 0, n = 1,

ta⊗ b if m = 1, n = 0.

We now give an example of a tensor product of crossed complexes which we will

use to define a cylinder and homotopy of crossed complexes.

Example 4.1.21 The crossed complex A⊗I := (A, α)⊗(I, i) is generated by elements

an−1⊗ ι, an⊗0 and an⊗1 in dimension n. The morphisms δn : (A⊗I)n → (A⊗I)n−1

are defined as follows:

δn(an ⊗ 0) = αnan ⊗ 0

δn(an ⊗ 1) = αnan ⊗ 1

δn(a⊗ ι) =





an−1 ⊗ 1− an−1 ⊗ 0 if n = 2

−an−1 ⊗ 1 + (an−1 ⊗ 0)∗A⊗ι + αn−1an−1 ⊗ ι if n odd

an−1 ⊗ 1− (an−1 ⊗ 0)∗A⊗ι + αn−1an−1 ⊗ ι if n > 2 and even

♦
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For work on graphs of crossed complexes we need a crossed complex cylinder C⊗I,

and I in the category of crossed complexes is used to denote the crossed complex of

the unit groupoid I see Example 4.1.19.

Definition 4.1.22 A cylinder in the category of crossed complexes can be defined by

the functor

M(C) : C 7→ C ⊗ I

together with the natural transformations

i0 : C → C ⊗ I i0(c) = (c, 0)

i1 : C → C ⊗ I i1(c) = (c, 1)

and σ : C × I → C is the projection onto C.

We recall from Chapter 3 that homotopies of morphisms is defined using cylinders.

Definition 4.1.23 A homotopy h : f ≃ g of crossed complex morphisms f, g :

(C, χ) → (D, δ) is given by a crossed complex morphism h : (C, χ) ⊗ (I, i) → (D, δ)

such that the following diagram commutes.

C, χ)
i0

wwppppppppppp
f

$$H
HH

HH
HH

HH

(C, χ)⊗ (I, i) h // (D, δ)

(C, χ)

i1

::vvvvvvvvv
g

ggNNNNNNNNNNN

Proposition 4.1.24 Specifying a homotopy h : f ∼ g is equivalent to specifying the

morphism g together with a map φn : Cn → Dn+1 which satisfies the following.

(i) t(φ0c0) = gc0

(ii) t(φncn) = t(gcn) for n > 1

(iii) φn(cn · c1) = (φncn) · gc1 for n > 2
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(iv) φ1(c1 + c′1) = (φ1c1) · gc1 + φ1c
′
1

(v) φn(c1 + c′n) = φncn) + φnc
′
n for n > 2.

The morphism f is then completely determined by

s(φ0c0) = fc0

δ2(φ1c1) = (gc1)
−1 + (φ0sc1)

−1 + fc1 + φ0tc1

δn+1(φncn) = (gcn)
−1 + (fcn) · φ0tcn + (φn−1δncn)

−1 for n > 2

Definition 4.1.25 Two crossed complexes are homotopy equivalent if there exists

crossed complex morphisms f : (C, χ) → (D, δ) and g : (D, δ) → (C, χ) together

with homotopies h : fg ≃ IdC and k : gh ≃ IdD.

Proposition 4.1.26 Given free crossed resolutions (C, χ) and (D, δ) of two groups G

and H, the tensor product (C, χ)⊗ (D, δ) gives a free crossed resolution of their product

G×H.

We refer the reader to the proof of Theorem 3.1.5.Theory and Application of Crossed

Complexes [24] for the proof.

4.1.3 Free Crossed Resolutions

In this subsection we will give a small free crossed resolution FCr of the cyclic group

Cr of order r. We will then consider a corresponding free crossed resolution FCrl
of the

cyclic group of order rl and construct a morphism of crossed complexes from FCr to

FCrl
. The aim of this subsection is to move away from the abstract definitions and to

exploit the computational features of crossed complexes.

We give a free crossed resolution (F , φ) over a group G = 〈X | R〉 by considering

the following diagram of a morphism of a free crossed resolution to a crossed complex.

We omit the object set C0 of a crossed complex when working with groups.

· · ·
δ6 // F5

φ5 //

0

��

F4
φ4 //

0

��

F3
φ3 //

0

��

F2
φ2 //

0

��

F1

φ∗

��
· · · 1 // 1

1 // 1
1 // 1

1 // 1
1 // G
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We let F1 be the free group on the set of generators of G and φ∗ is the identity on

generators. We choose φ2 : F2 → F1 to be the free crossed module of the presentation

and we can recover the group G from the top resolution by the quotient F1/φ2(F2)

which is isomorphic to G.

Given free crossed resolutions FG and FH of groups G and H and a group homo-

morphism f : G→ H , then f can be lifted to a morphism f : FG → FH which is unique

up to homotopy. The following result is well known but given for completeness.

Theorem 4.1.27 Let (C, χ) be a free crossed complex of the group G, let (D, δ) be an

exact crossed complex of the group H, and let α : G → H be a group homomorphism.

Then there exists a morphism of crossed complexes k : (C, χ) → (D, δ) such that

δ∗k1 = αχ∗ where δ∗ : D1 → H and χ∗ : C1 → G and any two such morphisms of

crossed complexes is unique up to homotopy.

Proof We first define k1 : C1 → D1. The group C1 is free on X1 say and χ∗ is

surjective, so for each x ∈ X1 choose k1(x) such that δ∗k1(x) = αχ∗(x). Then extend

to a morphism.

The group C2 is a free crossed C1-module on χ2
′ : X2 → C1. If x ∈ X2 then

δ∗k1χ2(x) = αχ∗χ2(x) = 1. By exactness k1χ2(x) ∈ Imδ2.

We choose k2(x) ∈ D2 such that δ2k2(x) = k1χ2(x). Since δ2 : D2 → D1 is a crossed

module and C2 → C1 is free on X2 then we extend k2 on X2 uniquely to a morphism

k2 : C2 → D2 such that δ2k2 = k1χ2.

For n > 2 we consider the following diagram.

Cn+1
χn+1 //

kn+1

��

Cn
χn //

kn

��

Cn−1

kn−1

��
Dn+1

δn+1 // Dn
δn // Dn−1

We know that δn−1kn−1χn(xn) = 0. By exactness kn−1χn(xn) = δn(yn) for some yn.

Let knxn = yn. By freeness this defines kn. As xn generates Cn, δnkn = kn−1χn.

So suppose k, l : (C, χ)→ (D, δ) such that δ∗k1 = αχ∗ and δ∗l1 = αχ∗. Then there

exists a homotopy h : k ≃ l.

Recall X1 is the generating set for C1. By properties of morphisms of crossed

complexes, for all x ∈ X1, ψf1x = f0φx = ψg1x. Therefore ψ(f1x− g1x) = 0 and there
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exists h1x ∈ D2 such that δ2h1x = f1x − g1x. Since C1 is a free group there exists a

unique g1-derivation h1 : C1 → D2 such that δ2h1c1 = f1c1 − g1c1 for all c1 ∈ C1.

Let x ∈ X2 where X2 is a generating set for C2 and δ3h2x = f2x − g2x − h1χ2x.

Then there exists an h2x such that δ2(f2x− g2x− h1χ2x) = 0.

δ2δ3h2x = δ2f2x− δ2g2x− δ2h1χ2x

= f1χ2x− g1χ2x− δ2h1χ2x

= f1χ2x− g1χ2x+ g1χ2x− f1χ2x

= 0.

For x ∈ Xn (n > 2) where Xn is a generating set for Cn and δn+1hnx = fnx − gnx −

hn−1χnx. Then there exists an hnx such that δn(fnx− gnx− hn−1χnx) = 0.

δnδn+1hnx = δnfnx− δngnx− δnhn−1χnx

= fn1χnx− gn−1χnx+ hn−2χn−1χnx+ gn−1χnx− fn−1χnx

= 0 since hn−2χn−1χnx = 0.

�

We will illustrate the above process by lifting the injective morphism f : Cr → Crm

of cyclic groups to a morphism of small free crossed resolutions of finite cyclic groups.

This is needed for homotopy pushout calculations.

A free crossed resolution for finite cyclic groups is given by Brown and Wensley [10]

which we now describe.

A free crossed resolution FCr := (A, α) of the group Cr is given by a sequence

· · ·
αn+1 // An

αn // An−1
αn−1 // · · ·

α4 // A3
α3 // A2

α2 // A1

where each An is free on one generator an, say.

We choose Cr to have group presentation 〈a | ar = 1〉, A1 := 〈a1〉 to be the free

group on one generator a1, and α∗ : A1 → Cr to be defined by α∗(a1) = a.

The crossed A1-module A2 is free on one generator a2 with α2(a2) = ar1. By

Lemma 4.1.17 A2 is also a free Cr-module on the generator a2. Thus in dimensions

n > 2, we have an isomorphism of Cr-modules An ≃ Z[Cr], but it is convenient to keep
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the separate notation. We denote the A1-action on an element an ∈ An by an · a1 An

element of An is of the form an · z where z ∈ Z[Cr] and so An is additively generated

by an, an · a, . . . , an · ar−1. The group A1 acts on An by its image under α∗ so an

element aj of Cr acts on the generators an · ai of An by cyclically permuting them,

(an · ai) · aj = an · a(i+j). We set α2(a2) = ar1 and αn : An → An−1 for n > 2 is given by

αn(an) =

{
an−1 · (a− 1) for n odd

an−1 ·Nr(a) for n even and n > 4.

where Nr(a) := 1 + a + · · ·+ ar−1 and αn(an · ai) = αn(an) · ai. We note that Nr(a) ·

(a− 1) = 0 which we use to check the crossed complex FCr is exact.

An element of Ai can be represented by
r−1∑
i=0

xia
i. To check Imαn+1 = Kerαn we have

two cases where n is odd and n is even.

For n odd, the kernel of αn is determined by,

αn(

r−1∑

i=0

xia
i) =

r−1∑

i=0

xia
i · (a− 1)

= (x0 + x1a+ · · ·+ xr−1a
r−1) · (a− 1)

= (xr−1 − x0) + (x0 + x1)a+ · · ·+ (xr−2 − xr−1)a
r−1.

For the last equation to equal 0, all the xi equal the same value. Hence the kernel of

αn = lNr(a) for all l ∈ Z.

The image of αn+1 is given by,

αn+1(
r−1∑

i=0

xia
i) =

r−1∑

i=0

xia
i ·Nr(a)

= x0 + x1a+ · · ·+ xr−1a
r−1

+xr−1 + x0a + · · ·+ xr−2a
r−1 + · · ·

+x1 + x2a+ · · ·+ x0a
r−1

= k(1 + a+ a2 + · · ·+ ar−1) where k = (x0 + · · ·+ xr−1)

= kNr(a)

which gives the result Im(αn+1) = Ker(αn) where n is odd. Similarly for n even.

We call this free crossed resolution of the cyclic group Cr the small free crossed

resolution of Cr.
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Similarly the small free crossed resolution FCrl
:= (B, β) of the group Crl is given

by the sequence

· · ·
βn+1 // Bn

βn // Bn−1
βn−1 // · · ·

β4 // B3
β3 // B2

β2 // B1,

where Crl := 〈b | brl = 1〉, where Bn for n > 2 is generated by bn as a free Z[Crl]-module,

and morphisms βn are defined on generators as follows:

βn(bn) =





brl1 for n = 2

bn−1 · (b− 1) for n odd

bn−1 ·Nrl(b) for n even and n > 4.

Given small free crossed resolutions FCr and FCrl
for Cr and Crl and the inclusion

f : Cr → Crl defined by f(a) = bl we can construct a morphism f : (A, α) → (B, β)

of free crossed resolutions and label the family of morphisms fi mapping an element

in dimension i of FCr to an element of dimension i in FCrl
. We consider the following

two diagrams where we use the notation Z[Cr] and Z[Crl] in the resolutions as this is

more suggestive.

· · ·
α6 // Z[Cr]

α5 //

f5
��

Z[Cr]
α4 //

f4
��

Z[Cr]
α3 //

f3
��

Z[Cr]
α2 //

f2
��

A1

f1

��
· · ·

β6 // Z[Crl]
β5 // Z[Crl]

β4 // Z[Crl]
β3 // Z[Crl]

β2 // B1

A1
α∗

//

f1
��

Cr

f
��

B1
β∗

// Crl

The morphism f1 on the free groups should make the second diagram commute.

Since fα∗(a1) = f(a) = bl and β∗(b1) = b we choose f1(a1) = bl1.

To construct the morphisms fi we use the conditions of a crossed complex morphism

that squares commute, fn−1αn = βnfn, and the action conditions are preserved.

Theorem 4.1.28 The inclusion f : Cr → Crl, given by f(a) = bl lifts to a morphism

of small free crossed resolutions of groups Cr and Crl defined on generators by

fn(an) =





bl1 for n = 1

bn for n even

bn ·Nl(b) for n > 3 and n odd.
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Proof We first check the action conditions and note that fn(an · ai) = fn(an) · f(ai). In

calculating ap and bq we regard p as in Zr and q as in Zrl.

fn(an · a
i · aj) = fn(an · a

i+j)

= fn(an) · f(a
i+j)

= fn(an) · b
l(i+j)

fn(an · a
i) · f(aj) = fn(an) · f(a

i) · f(aj)

= fn(an) · b
li · blj

= fn(an) · b
l(i+j)

We now check the squares commute. We begin by checking the first square f1α2 = β2f2.

f1α2(a2 · a
i) = f1(α2(a2) · a

i) β2f2(a2 · a
i) = β2(f2(a2) · f(a

i))

= f1(a
r
1 · a

i) = β2(b2 · b
il)

= f1(a
r
1) · f(a

i) = β2(b2) · b
il

= brl1 · b
il = brl1 · b

il

We now consider the following two squares for the general cases fn−1αn = βnfn where

n > 2.

Z[Cr]
·(a−1) //

·Nl(b)
��

Z[Cr]

1
��

·Nr(a) // Z[Cr]

·Nl(b)
��

Z[Crl]
·(b−1) // Z[Crl]

·Nrl(b)// Z[Crl]
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For n odd we have the following checks.

fn−1αn(an · a
i) = fn−1(αn(an) · a

i)

= fn−1(an−1 · (a− 1) · ai)

= fn−1(an−1) · f(a− 1) · f(ai)

= bn−1 · (b
l − 1) · bil

βnfn(an · a
i) = βn(fn(an) · f(a

i))

= βn(bn ·Nl(b) · b
il)

= βn(bn) ·Nl(b) · b
il

= bn−1 · (b− 1) ·Nl(b) · b
il

= bn−1 · (b
l − 1) · bil

Similarly for n even we have the following checks.

fn−1αn(an · a
i) = fn−1(αn(an) · a

i)

= fn−1(an−1 ·Nr(a) · a
i)

= fn−1(an−1) · f(Nr(a)) · f(a
i)

= bn−1 ·Nl(b) ·Nr(b
l) · bil

= bn−1 ·Nrl(b) · b
il

βnfn(an · a
i) = βn(fn(an) · f(a

i))

= βn(bn · b
il)

= βn(bn) · b
il

= bn−1 ·Nrl(b) · b
il

�

4.1.4 Fundamental Crossed Complexes

In this subsection we define the fundamental crossed complex functor which provides

the link between CW and crossed complexes. To obtain relationships between CW and
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crossed complexes we will consider the following categories and functors.

Crs
B

--

N

��

T op
π

mm

SimpSet

| |

??�����������������

The motivating example for crossed complexes is given by the fundamental crossed

complex functor π. The fundamental crossed complex π(X∗) of a filtered space

X∗ : X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X,

where π1(X∗) is the fundamental groupoid π1(X1, X0) and for n > 2, πn(X∗) are the

relative homotopy groups πn(Xn, Xn−1, x) for all x in X0. For n > 2 there is an action

of π1(X) on πn(X∗), a boundary map δ : πn(X∗) → πn−1(X∗) and source and target

maps s, t : π1(X∗)→ X0. This defines a crossed complex. Hence given a CW-complex

X we can obtain a crossed complex C such that π(X) ≃ C. To show that given a

crossed complex C we can obtain a CW-complex X such that π(X) ≃ C we need to

define the functors N , B and | |.

The category Simpset has objects simplicial set and arrows simplicial maps. The

functor | | is the geometric realisation of a simplicial set. If K is a simplicial set, then

|K| =
(
⊔
n

(Kn ×∆n)
)
/ ∼

where ∆n is the standard n-simplex and ∼ is the equivalence relation generated by

(dix, t) ∼ (x, δit) if x ∈ Kn and t ∈ ∆n−1 and (six, t) ∼ (x, σit) if x ∈ Kn and

t ∈ ∆n+1.

We have already defined the category of crossed complexes. The nerve functor

N applied to C a crossed complex gives a simplicial set defined in dimension n by

(NC)n = Crs(π∆n, C).

The functor B is called the classifying space functor. Given a crossed complex C,

B(C) is the geometric realisation of the nerve of C, B(C) = |NC|.

We can now show that given a crossed complex C we can obtain a space X such

that π(X) ≃ C. Let C be a crossed complex and Cm be the m-truncation of C. We
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then have a crossed complex which we call a filtered crossed complex

C∗ : C0 ⊆ C1 ⊆ · · · ⊆ Cm ⊆ · · ·

This gives rise to a filtered space B(C∗). It is proved in Ashley, T-complexes and

Crossed Complexes [1] that there is a natural isomorphism πB(Cm) ≃ C.

We now state results on crossed complexes and their relationship with CW-complexes

to prove theorem 4.2.3.

If Xs is a filtered space defined by the skeletons of a CW-complex X then π(Xs) is

a free crossed complex. Further, if X is aspherical then π(Xs) is exact and so a free

crossed resolution of π1(X2, X0) = π1(Xn, X0) for all n > 2. We refer the reader to

Whitehead, Combinatorial Homotopy 2 [25] for details and proof.

If X and Y are CW-complexes with skeletal filtration Xs, Ys then we have the

isomorphisms of crossed complexes

π(Xs)⊗ π(Ys) ≃ π(Xs ⊗ Ys)

where Xs⊗ Ys = (X ⊗ Y )s is the skeletal filtration of the product X × Y and π(Xs)⊗

π(Ys) denotes the tensor product of crossed complexes. We refer the reader to Brown

and Higgins [8] for details.

Theorem 4.1.29 If the CW-complex X is the union of a family of sub-complexes Xλ,

λ ∈ Λ, closed under finite intersection, then the natural map

colimλπ(X∗)λ→ π(X∗)

is an isomorphism.

If C is a free crossed resolution of a group G, with basis elements zn in dimensions

n, then there is a CW-complex X with n-cells in one-to-one correspondence with the

elements of zn, n > 0, and an isomorphism of based CW-complexes πX∗ ≃ C. Further a

morphism φ : C → D of such based crossed complexes is realised by a map f : X → Y

of based CW-complexes such that πf = φ. For further details refer to Whitehead,

Combinatorial Homotopy 2 [25] and Simple Homotopy Types [26].
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4.2 Graphs of Crossed Complexes

In this section we adapt the methods used in subsection 3.2.2 on graphs of CW-

complexes by defining graphs of crossed complexes and the total crossed complex of a

graph of crossed complexes. The total crossed complex is used to obtain a free crossed

resolution. We give details of the relationship between the total crossed complex and

the fundamental crossed complex of a total space. The second section gives details of

computations and gives concrete presentations for free crossed resolutions built from

small free crossed resolutions.

4.2.1 Total Crossed Complex

In this subsection we define a graph of crossed complexes and a graph of free crossed

resolutions induced from a graph of groups. We then give an example of a graph of small

free crossed resolutions which will be used in subsection 4.2.2 to obtain information

about fundamental groups of graphs of groups.

We then define the total crossed complex of a graph of crossed complexes by double

mapping cylinders of crossed complexes in an analogous way to homotopy colimits of

graphs of groups.

The main result of this chapter is that the total crossed complex of a graph of re-

duced free crossed complexes gives a free crossed resolution of the fundamental groupoid

of the graph of fundamental groups.

We adapt definition 3.2.15 of a graph of CW-complexes to define a graph of crossed

complexes ΓC as we will be exploiting the relationship between

CW-complexes and crossed complexes in theorem 4.2.3.

Definition 4.2.1 A graph of crossed complexes ΓC is given by a graph Γ with invo-

lution, crossed complexes Cy and Cu associated to each edge and vertex respectively

with Cy = Cy and a morphism of crossed complexes µy : Cy → Ct(y) for each edge y..

We form a graph of crossed complexes ΓC based on a graph of groups ΓG by choosing

a free crossed resolution for each group, and morphisms of free crossed resolutions for

each morphism of groups.
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We now define the total crossed complex of a graph of crossed complexes. We model

this definition on Definition 3.2.16 of the total space of a graph of spaces. This will

enable the modelling of Proposition 3.2.19 by crossed complexes.

Definition 4.2.2 Given a graph of crossed complexes ΓC the total crossed complex

Tot(ΓC) is defined as the quotient of

{∪ Cu : u ∈ V (Γ)} ∪ {∪ Cy ⊗ I : y ∈ E(Γ)}

by the identifications

Cy ⊗ I → Cy ⊗ I (cyn ⊗ ι)→ (cyn ⊗ ι
−1)

Cy ⊗ 0→ Ct(y) (cyn ⊗ 10)→ µy(c
y
n).

Given a graph of free crossed resolutions we model the free crossed resolution by

K(G, 1) spaces and hence obtain an associated graph of aspherical spaces. By Propo-

sition 3.2.19 the total space of a graph of aspherical spaces is aspherical; and by the

fundamental crossed complex of an aspherical space is a free crossed resolution we have

the result that the total crossed complex of a graph of free crossed resolutions is a also

a free crossed resolution.

The results of subsection 4.1.4 are used to realise the graph of crossed complexes

by a graph of CW-complexes ΓX. By Scott and Wall, proposition 3.2.19 Tot(ΓX) is

aspherical. The above results show π(Tot(ΓX)) ≃ Tot(ΓC). Hence Tot(ΓC) is a free

crossed resolution and we obtain the following theorem.

Theorem 4.2.3 The crossed complex Tot(ΓC) is a free crossed resolution of π1(ΓG).

4.2.2 Computations

Given the graph of groups with graph Γ := u
y // v
y

oo , groups Gy = Gy := Cr, Gu :=

Crl, Gv := Crm and morphisms µy(a) = bl and µy(a) = cm we can form a graph of

crossed complexes. We choose small free crossed resolutions FCr = (A, α) Frl = (B, β)

and FCrm = (C, χ) of the groups Cr, Crl and Crm respectively and lifted morphisms

FCr → FCrl
and FCr → Frm which we label f and g of the group morphisms Cr → Crl

and Cr → Crm.
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The total crossed complex has generators bn ∈ FCrl
, cn ∈ FCrl

and an−1 ⊗ ι, an ⊗

0, an ⊗ 1 ∈ FCr ⊗ I in dimension n. The morphisms α, β and χ are the small free

crossed resolution morphisms. The morphisms δn(an−1⊗ι) are given by example 4.1.21.

We also have the following identifications, given by the definition of the total crossed

complex. We identify (an ⊗ 0) with fn(an) and (an ⊗ 1) with gn(an).

Combining the definitions of δn(an−1⊗ ι), βn(bn) and χn(cn) and the identifications

we can define the morphisms of the total crossed complex of the given graph of free

crossed resolutions.

δ2(a1 ⊗ ι) = −(∗A ⊗ ι)− (a1 ⊗ 0) + (∗ ⊗ ι) + (a1 ⊗ 1)

= (a1 ⊗ 1)− (a1 ⊗ 0)

= g1(a1)− f1(a1)

= cm1 − b
l
1

The formulae for δn where n > 2 can be given in general for n odd and n even. We

begin with n odd.

δn(an−1 ⊗ ι) = −(an−1 ⊗ 1) + (an−1 ⊗ 0)(∗A⊗ι) + (αn−1an−1 ⊗ ι)

= −gn−1(an−1) + (fn−1(an−1))
(∗A⊗ι) + an−1 ·Nr(a)⊗ ι

= −cn−1 + (bn−1)
(∗A⊗ι) + an−2 ·Nr(a)⊗ ι

Similarly with n even.

δn(an−1 ⊗ ι) = (an−1 ⊗ 1)− (an−1 ⊗ 0)(∗A⊗ι) + (αn−1an−1 ⊗ ι)

= gn−1(an−1)− (fn−1(an−1))
(∗A⊗ι) + an−1 ·Nr(a)⊗ ι

= cn−1 ·Nm(c) + (bn−1 ·Nl(b))
(∗A⊗ι) + an−2 · (a− 1)⊗ ι

Hence the total crossed complex is generated by bn, cn, an ⊗ 0, an ⊗ 1 and an−1 ⊗ ι in

dimension n and the morphisms are defined as follows:

δn(an ⊗ ι)

=





cm1 − b
l
1 for n = 2

−cn−1 + (bn−1)
(∗A⊗ι) + an−2 ·Nr(a)⊗ ι for n odd

cn−1 ·Nm(c) + (bn−1 ·Nl(b))
(∗A⊗ι) + an−2 · (a− 1)⊗ ι for n > 3 and n even.
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Conclusion
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Notation

Categories

C category 7

Ob(C) objects of C 7

Arr(C) arrows of C 7

ΓC underlying graph of C 7

1v identity element at v 7

C(u, v) set of arrows from u to v in C 7

Cop opposite category of C 7

C × D direct product of categories C and D 7

Gps category of groups 8

Gphs category of graphs 8

Sets category of sets 8

T op category of topological spaces 8

Gpds category of groupoids 8

Crs category of crossed complexes 8

PΓ category of directed paths in Γ 12

Crossed Complexes

Z[G] free abelian group ??

(F , Cr) free Cr-module ??

X crossed module ??

C = (C, χ) crossed complex ??

I = (I, i) unit interval crossed complex ??

π1(C, χ) fundamental groupoid of a crossed complex ??

(A, α)⊗ (B, β) tensor product of crossed complexes ??

FCr small free crossed resolution of Cr ??

C∗ filtered crossed complex ??

Graphs

Γ directed graph 5
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V (Γ) set of vertices of Γ 5

E(Γ) set of edges of Γ 5

s(y) source vertex of edge e 5

t(y) target vertex of edge e 5

Γ(u, v) set of edges from u to v 5

()v empty path at v 5
−→
Γ (u, v) set of directed paths from u to v 5

D graph map D : Γ→ ΓC 10

Gσ graph 21

ΓG graph of groups

ΓG graph of groupoids

ΓX graph of spaces

ΓK graph of aspherical CW-complexes

Groupoids

G groupoid 7

F(Γ) free and fundamental groupoid of Γ 16

I unit groupoid 13

In tree groupoid 13

G× In direct product of a group and tree groupoid 13

X ( ) generating set 13

N normal subgroupoid 17

G�N quotient groupoid 17

gH left cosets 18

Uσ(G) universal groupoid 21

G disjoint union of vertex groups ??

F(ΓG) fundamental groupoid of a graph of groups ??

Functors

F : C → D functor 7

| | geometric realisation functor ??
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N nerve functor ??

B classifying space functor ??

π(X∗) fundamental crossed complex functor ??

Misc

Mf mapping cylinder of f ??

Mf,g double mapping cylinder of f and g ??

Z integers ??

R real numbers ??

I unit interval ??

Sn n-sphere ??

Dn n-disk ??

X∗ filtered space ??

106



Bibliography

[1] Ashley, N. T-complexes and crossed complexes. Ph.D. thesis, University of

Wales, Bangor (1978). 99

[2] Becker, T. and Weispfenning, V. Grobner Bases: A computational approach

to commutative algebra. Number 141 in Graduate Texts in Mathematics. Springer-

Verlag, Berlin (1991). 39, 50

[3] Bridson, M. and Haefliger, A. Metric Spaces of Non-positive Curvature.

Springer-Verlag, Berlin (1999). 31

[4] Brown, R. Topology: a geometric account of general topology, homotopy types,

and the fundamental groupoid . Ellis Horwood, Chichester (1988). 2, 12, 14, 15,

24, 71, 74, 75

[5] Brown, R. and Higgins, P. “Crossed Complexes and Non-abelian Extensions.”

Lecture Notes in Mathematics, 962 (1982), 39–50. 81

[6] —. “Tensor Products and Homotopies for ω-groupoids and Crossed Complexes.”

Journal Of Pure and Applied Algebra, 47 (1987), 1–33. 88

[7] —. “Crossed Complexes and Chain Complexes with Operators.” Math. Proc.

Camb. Phil. Soc., 107 (1990), 33–57. 87

[8] —. “The Classifying Space of a Crossed Complex.” Math. Proc. Camb. Phil. Soc.,

110 (1991), 95–120. 99

[9] Brown, R. and Huebschmann. “Identities Among Relations.” LMS Lecture

Notes in Mathematics, 48 (1982), 153–202. 84

107



[10] Brown, R. and Wensley, C. “Computing Crossed Modules Induced by an

Inclusion of a Normal Subgroup, with Applications to Homotopy 2-types.” Theory

and Application of Categories, 2 (1996)(1), 3–16. 93

[11] Cohen, D. Combinatorial Group Theory: a topological approach. London Math-

ematical Society Student Texts. Cambridge University Press, Cambridge (1989).

16, 35, 39

[12] Epstein, D. Word Processing in Groups. Jones and Bartlett Publishers, Boston

(1992). 50, 51, 53

[13] Fritsch, R. and Piccinini, R. Cellular Structures in Topology . Combinatorial

Studies in Advanced Mathematics. Cambridge University Press (1990). 70

[14] The GAP Group, Aachen, St Andrews. GAP - Groups, Algorithms and Program-

ming, Version 4 (1988). 29, 54

[15] Haataja, S., Margolis, S., and Meakin, J. “Bass-Serre Theory for

Groupoids and the Structure of Full Regular Semigroup Amalgams.” Journal

of Algebra, 183 (1996), 38–54. 30, 47

[16] Higgins, P. Categories and Groupoids. Van Nostrand Reinhold, London (1971).

6, 12, 16, 17, 21, 22, 24, 29, 34, 35, 40

[17] —. “The fundamental groupoid of a graph of groups.” J. London Math. Soc., 13

(1976), 145–149. 1, 39

[18] Kamps, K. and Porter, T. Abstract Homotopy and Simple Homotopy Theory .

World Scientific (1996). 61, 66, 67

[19] Lyndon, R. and Schupp, P. Combinatorial Group Theory . Springer-Verlag

(1977). 41, 43

[20] MacLane, S. Categories for the Working Mathematician. Number 5 in Graduate

Texts in Mathematics. Springer-Verlag, Berlin (1971). 6, 11

[21] Rotman, J. An Introduction to Algebraic Topology . Number 119 in Graduate

Texts in Mathematics. Springer-Verlag, Berlin (1988). 73

108



[22] Scott, P. and Wall, T. “Topological Methods in Group Theory.” In Homo-

logical Group Theory , volume 36 of London Mathematical Society Lecture Note

Series. Cambridge University Press, Cambridge (1979). 3, 30, 70, 72

[23] Serre, J. Trees. Springer-Verlag, Berlin (1980). 1, 29, 30, 34, 40, 41

[24] Tonks, A. Theory and Application of Crossed Complexes. Ph.D. thesis, Univer-

sity of Wales, Bangor (1993). 91

[25] Whitehead, J. “Combinatorial Homotopy Theory 2.” Bull. Amer. Math. Soc.,

55 (1949), 453–496. 99

[26] —. “Simple Homotopy Types.” American Journal of Mathematics., 72 (1950),

1–57. 99

109


	Introduction
	1 Groupoids
	1.1 Graphs, Categories, and Groupoids
	1.1.1 Graphs
	1.1.2 Categories and Groupoids

	1.2 Groups to Groupoids
	1.2.1 Examples and Properties of Groupoids
	1.2.2 Free Groupoid and Words
	1.2.3 Normal Subgroupoids and Quotient Groupoids
	1.2.4 Groupoid Cosets and Transversals
	1.2.5 Universal Groupoids
	1.2.6 Groupoid Pushouts and Presentations


	2 Graphs of Groups and Normal Forms
	2.1 Fundamental Groupoid of a Graph of Groups
	2.1.1 Graph of Groups
	2.1.2 Fundamental Groupoid
	2.1.3 Fundamental Group
	2.1.4 Normal Form
	2.1.5 Examples
	2.1.6 Graph of Groupoids

	2.2 Implementation
	2.2.1 Normal Form and Knuth Bendix Methods
	2.2.2 Implementation and GAP4 Output


	3 Total Groupoids and Total Spaces
	3.1 Cylinders
	3.1.1 Mapping Cylinders
	3.1.2 Groupoid Mapping Cylinders
	3.1.3 Total Groupoids for Graphs of Groups

	3.2 Graphs of CW-complexes
	3.2.1 CW-complexes
	3.2.2 Total Spaces and Aspherical CW-complexes


	4 Crossed Complexes
	4.1 Crossed Complexes over Groupoids
	4.1.1 Groupoid Modules and Crossed Modules
	4.1.2 Crossed Complexes
	4.1.3 Free Crossed Resolutions
	4.1.4 Fundamental Crossed Complexes

	4.2 Graphs of Crossed Complexes
	4.2.1 Total Crossed Complex
	4.2.2 Computations


	Conclusion

