ON A METHOD OF P. OLUM

R. BROWN

We present another proof that $\pi_1(S^1) = Z!$. Actually our main purpose is to show that the techniques used by P. Olum in [1] also allow one to prove the following result.

Let $X = A \cup B$ be a topological space such that (i) the interiors of A and B cover X, (ii) A and B are 1-connected, and (iii) $A \cap B$ has exactly n+1 path-components. (Thus X is clearly path-connected.)

THEOREM. $\pi_1(X)$ is a free group on n generators.

This shows that we can derive by a uniform method all the facts necessary to compute the fundamental group of quite general spaces, including, for example, all CW-complexes. (The fact that $\pi_1(S^n) = 0$, n > 1, follows easily from Van Kampen's theorem.)

The method of P. Olum is to construct a Mayer-Victoris sequence for cohomology with coefficients in a non-abelian group Π . Our theorem follows from a study of the bottom end of this sequence.

We consider spaces with base point, and abbreviate $H^i(X, *; \Pi)$ (i = 0, 1) to $H^i(X; \Pi)$; the base point of $A \cup B$ is $* \in A \cap B$. From now on, we make the assumption (i). Then we have, by Theorem 1 (a) of [1], a diagram

$$H^{0}(A; \Pi) \xrightarrow{j_{i}^{*}} H^{0}(A \cap B; \Pi) \xrightarrow{\Delta} H^{1}(X; \Pi)$$

$$H^{0}(B; \Pi) \xrightarrow{j_{i}^{*}} H^{1}(B; \Pi)$$

in which i_1 , i_2 , j_1 , j_2 are injections and

(1) Image $\Delta = \operatorname{Ker} i_1^* \cap \operatorname{Ker} i_2^*$.

We recall that the definition of Δ is not symmetrical in A and B. This is reflected in the following lemma, which describes the amount of exactness at $H^0(A \cap B; \Pi)$.

Let us suppose that X satisfies the following condition: each point of $A \cap B$ can be joined by a path in A to *. Let c, d in $H^0(A \cap B; \Pi)$ be such that $\Delta c = \Delta d$.

LEMMA 1. There is an element b in $H^0(B; \Pi)$ such that

$$c = d + j_2 * b.$$

Received 6 March, 1964.

[[]JOURNAL LONDON MATH. Soc., 40 (1965), 303-304]

This is proved by simple calculations with singular cochains. An immediate corollary of Lemma 1 is the following:

(2) If A and B are path-connected, then Δ is mono.

For any path-connected X, there is a natural bijection [(1.3) of 1]

$$H^1(X; \Pi) \rightarrow \operatorname{Hom}(\pi_1(X), \Pi)$$

So from (1) and (2) we deduce:

(3) If A and B are 1-connected, then there is a natural bijection

$$H^{0}(A \cap B; \Pi) \rightarrow \operatorname{Hom}(\pi_{1}(X), \Pi).$$

We now make the assumption (iii). Then $H^0(A \cap B; \Pi)$ is naturally isomorphic to Π^n , the direct product of *n* copies of Π . So the theorem follows from (3) and the next lemma, for whose proof I am indebted to J. F. Adams.

LEMMA 2. Let Φ be a group such that for any group Π there is a natural bijection

$$\Pi^n \rightarrow \text{Hom}(\Phi, \Pi)$$

Then Φ is a free group on n generators.

Proof. Let F be a free group on n generators. It is well known that there is a natural bijection

$$\Pi^n \rightarrow \operatorname{Hom}(F, \Pi).$$

So we deduce a natural bijection

$$\lambda \colon \operatorname{Hom} \left(\Phi, \Pi\right) \to \operatorname{Hom} \left(F, \Pi\right). \tag{4}$$

We define $f: F \to \Phi$ by setting $\Pi = \Phi, f = \lambda(1_{\Phi})$ in (4); and $g: \Phi \to F$ by setting $\Pi = F, g = \lambda^{-1}(1_F)$ in (4). It is easy to check, using naturality, that $fg = 1_{\Phi}, gf = 1_F$. This proves the lemma.

There remains the determination of generators of $\pi_1(X)$. In each path-component of $A \cap B$ (other than that containing *) let a point x_i be chosen, i = 1, ..., n. Let λ_i in $\pi_1(X)$ be represented by the composite of a path in A joining * to x_i and a path in B joining x_i to *. Then the inverse μ of the bijection of (3) is determined by

$$u(f)(x_i) = f(\lambda_i) \quad i = 1, ..., n$$
 (5)

for any $f \in \text{Hom}(\pi_1(X), \Pi)$. It follows from this that $\lambda_1, ..., \lambda_n$ is a set of generators of $\pi_1(X)$.

Reference

 P. Olum, "Non-abelian cohomology and van Kampen's theorem", Annals of Math., 68 (1958), 658-667.

Department of Pure Mathematics, The University, Liverpool, 3.