
Covering morphisms of crossed complexes and of cubical
omega-groupoids are closed under tensor product

Ronald Brown∗ Ross Street†

March 7, 2011

Abstract

The aim is the proof of the theorems of the title and the corollary that the tensor product of two free
crossed resolutions of groups or groupoids is also a free crossed resolution of the product group or groupoid.
The route to this corollary is through the equivalence of the category of crossed complexes with that of
cubical ω-groupoids with connections where the initial definition of the tensor product lies. It is also in the
latter category that we are able to apply techniques of dense subcategories to identify the tensor product of
covering morphisms as a covering morphism.

Introduction

A series of papers by R. Brown and P.J. Higgins, surveyed in [Bro99, Bro09], has shown how the category
Crs of crossed complexes is a useful tool for certain nonabelian higher dimensional local-to-global problems in
algebraic topology, for example the calculation of homotopy 2-types of unions of spaces; and also that crossed
complexes are suitable coefficients for nonabelian cohomology, generalising an earlier use of crossed modules
as coefficients. While crossed complexes have a long history in algebraic topology, particularly in the reduced
case, i.e. when C0 is a singleton, the extended use in these papers made them a tool whose properties could
be developed independently of classical tools in algebraic topology such as simplicial approximation. A key
new tool for this approach was cubical, using the notion of cubical ω–groupoids with connections. A book is
in press on these topics, [BHS10].

One aspect of this work is that it leads to specific calculations of homotopical and group theoretical invari-
ants; as an example, the notion of identities among relations for a presentation of groups combines both of these
fields, since it also concerns the second homotopy group π2(K(P)) of the 2-complex determined by a presen-
tation P of a group. Calculations of this module were obtained in [BRS99] not through ‘killing homotopy
groups’, or its homological equivalent, finding generators of a kernel, but through the notion of ‘constructing a
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home for a contracting homotopy’. To this end we had to work by constructing a free crossed resolution F̃ of
the universal covering crossed complex of a group or groupoid. Any construction of a contracting homotopy
of F̃ breaks the symmetry of the situation, as is necessary, and also may rely on rewriting methods, such as
determining a maximal tree in the Cayley graph. Thus we see covering crossed complexes as a basic tool in the
application of crossed complex methods, in analogy to the application of covering spaces in algebraic topology.

A major tool for dealing with homotopies is the construction of a monoidal closed structure on the category
Crs of crossed complexes giving an exponential law of the form

Crs(A⊗B, C) ∼= Crs(A,CRS(B, C))

for all crossed complexes A,B, C, [BH87].

This monoidal closed structure and the notion of classifying space BC of a crossed complex C is applied
in [BH91] to give the homotopy classification result

[X, BC] ∼= [ΠX∗, C]

where on the left hand side with X a CW-complex, we have topology, and on the right hand side, with ΠX∗
the fundamental crossed complex of the skeletal filtration of X , we have the algebra of crossed complexes.

Tonks proved in [Ton94, Theorem 3.1.5] that the tensor product of free crossed resolutions of a group is
a free crossed resolution: his proof used the crossed complex Eilenberg-Zilber Theorem, [Ton94, Theorem
2.3.1], which was published in [Ton03]. The result on resolutions is applied in for example [BP96] to construct
some small free crossed resolutions of a product of groups. We give here an alternative approach to this result.

The PhD thesis [Day70] of Brian Day addressed the problem of extending a promonoidal structure on a
category A along a dense functor J : A → X into a suitably complete category X to obtain a closed monoidal
structure onX . The two published papers [Day70a, Day72] are only part of the thesis and represent components
towards the density result. The formulas in, and the spirit of, Day’s work suggested our approach to the present
paper. However, here the category A is actually small (consisting of cubes) and monoidal, and so is an easy
case of Day’s general setting. The same simplification occurs in the approach to the Gray tensor product of
2-categories in [Str88], and of globular ∞-categories in [Cra99, Proposition 4.1].

One advantage of cubical methods is the standard formula

Im
∗ ⊗ In

∗ ∼= Im+n
∗ (1)

where Im∗ is the standard topological m-cube with its standard skeletal filtration. This equation is modelled in
the category ω-Gpd by the formula

Im ⊗ In ∼= Im+n (2)

where for m > 0 Im is the free ω-Gpd on one generator cm of dimension m. We apply (2) by proving in
Theorem 5.1 that the full subcategory of ω-Gpd on these objects Im,m > 0, is dense in ω-Gpd. The proof
requires a further property of ω-groupoids, that they are T -complexes [BH81, BH81c]. We then use the methods
of Brian Day [Day72] to characterise the tensor product on ω-Gpd as determined by the formula (2).

We use freely the notions and properties of ends and coends, for which see [ML71].

The final ingredient we need is the fact that if p : C̃ → C is a covering morphism of crossed complexes then
p∗ : Crs/C → Crs/C̃ preserves colimits, since it has a right adjoint. This result is due to Howie [How79], in
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fact for the case of a fibration rather than just a covering morphism. Because of the equivalence of categories,
this applies also to the case of the category ω-Gpd. However we need to characterise fibrations and coverings
in the category ω-Gpd. This is done in Section 4. It is possible that the covering morphisms are part of a
factorization system as are the discrete fibrations in the contexts of [Bou87] and [SV10].

1 Crossed complexes

For the purposes of algebraic topology the most important feature of the category Crs of crossed complexes is
the fundamental crossed complex functor, [BH81a],

Π: FTop → Crs

from the category of filtered spaces

X∗ : X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X∞.

An extra assumption is commonly made that X∞ is the union of all the Xn, but we do not use that condition.
For such a filtered space X∗, various relative homotopy groups

(ΠX∗)n(x) = πn(Xn, Xn−1, x)

for x ∈ X0 and n > 2, may be combined with the fundamental groupoid (ΠX∗)1 = π1(X1, X0) on the set
X0 to give a crossed complex ΠX∗. There are boundary operations δn : (ΠX∗)n → (ΠX∗)n−1 and operations
of (ΠX∗)1 on (ΠX∗)n, n > 2, satisfying axioms which are characteristic for crossed complexes. This last
fact follows because for every crossed complex C there is a filtered space X∗ such that C ∼= ΠX∗ [BH81a,
Corollary 9.3].

The use of crossed complexes in the single vertex case continues work of J.H.C. Whitehead, [Whi49,
Whi50], and of J. Huebschmann, [Hue80].

2 Fibrations and covering morphisms of crossed complexes

The definition of fibration of crossed complexes we are using is due to Howie in [How79]; it requires the
definition of fibration of groupoids given in [Bro70, Bro06], generalising the definition of covering morphism
of groupoids given in [Hig71]. The notion of fibration of crossed complexes given in this Section leads to a
Quillen model structure on the category Crs, as shown by Brown and Golasiński in [BG89], and compared with
model structures on related categories in [ArMe10].

First recall that for a groupoid G and object x of G we write CostG x for the union of the G(u, x) for all
objects u of G. A morphism of groupoids p : H → G is called a fibration (covering morphism), [Bro70], if
the induced map CostH y → CostG py is a surjection (bijection) for all objects y of H . (Here we use the
conventions of [BHS10] rather than of [Bro06].)

Definition 2.1 A morphism p : D → C of crossed complexes is a fibration (covering morphism) if
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(i) the morphism p1 : D1 → C1 is a fibration (covering morphism) of groupoids;

(ii) for each n > 2 and y ∈ D0, the morphism of groups pn : Dn(y) → Cn(py) is surjective (bijective).

The morphism p is a trivial fibration if it is a fibration, and also a weak equivalence, by which is meant that p
induces a bijection on π0 and isomorphisms π1(D, y) → π1(C, py), Hn(D, y) → Hn(C, py) for all y ∈ D0

and n > 2. 2

Remark 2.2 It is worth remarking that the notion of covering morphism of groupoids appears in the paper
[Smi51, (7.1)] under the name ‘regular morphism’. Strong applications of covering morphisms to combinatorial
group theory are given in [Hig71], and a full exposition is also given in [Bro06, Chapter 10].

A fibration of groupoids gives rise to a family of exact sequences, [Bro70, Bro06], which are extended
in [How79] to a family of exact sequences arising from a fibration of crossed complexes. These latter exact
sequences have been applied to the classification of nonabelian extensions of groups in [BM94], and to the
homotopy classification of maps of spaces in [Bro08a]. 2

In Section 4 we will need the following result, which is an analogue for crossed complexes of known results
for groupoids [Bro06, 10.3.3] and for spaces.

Proposition 2.3 Let p : C̃ → C be a covering morphism of crossed complexes, and let y ∈ C̃0. Let F be a
connected crossed complex, let x ∈ F0, and let f : F → C be a morphism of crossed complexes such that
f(x) = p(y). Then the following are equivalent:

(i) f lifts to a morphism f̃ : F → C̃ such that f̃(x) = y and pf̃ = f ;

(ii) f(F1(x)) ⊆ p(C̃1(y));

(iii) f∗(π1(F, x)) ⊆ p∗(π1(C̃, y)).

Further, if the lifted morphism as above exists, then it is unique.

Proof That (i)⇒ (ii) ⇒ (iii) is clear.

So we assume (iii) and prove (i).

We first assume F0 consists only of x. Then the value of f̃ on x is by assumption defined to be y.

Next let a ∈ F1(x). By the assumption (iii) there is c ∈ C2(py) and b ∈ C̃(y) such that f(a) = p(b)+δ2(c).
Since p is a covering morphism there is a unique d ∈ C̃2(y) such that p(d) = c. Thus f(a) = p(b + δ2(d)). So
we define f̃(a) = b+ δ2(d) ∈ C̃2(y). It is easy to prove from the definition of covering morphism of groupoids
that this makes f̃ a morphism F1(x) → C̃1(y) such that pf̃ = f .

For n > 2 we define f̃ : Fn(x) → C̃n(y) to be the composition of f in dimension n and the inverse of the
bijection p : C̃n(y) → Cn(py).

It is now straightforward to check that this defines a morphism f̃ : F, x → C̃, y of crossed complexes as
required.
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If F0 has more than one point, then we choose for each u in F0 an element τu ∈ F1(u, x) with τx = 1x.
Then f(τu) lifts uniquely to τ̄u ∈ Cost eC y : any lift f̃ : F, x → C̃, y of f must satisfy f̃(τu) = τ̄u so we take
this as a definition of f̃ on these elements.

If a ∈ F1(u, v) then a = τu +a′− τv where a′ ∈ F1(x) and so we define f̃(a) = τ̄u + f̃(a′)− τ̄v. If n > 2
and α ∈ Fn(u) then ατu ∈ Fn(x) and we define f̃(α) = f̃(ατu)−τ̄u .

It is straightforward to check that these definitions give a morphism f̃ : F, x → C̃, y of crossed complexes
lifting f , and the uniqueness of such a lift is also easy to prove. 2

We will use the above result in the following form.

Corollary 2.4 Let p : C̃ → C be a covering morphism of crossed complexes, and let F be a connected and
simply connected crossed complex. Then the following diagram, in which each ε is an evaluation morphism, is
a pullback in the category of crossed complexes:

Crs(F, C̃)× F
ε //

p∗ × 1
²²

C̃

p
²²

Crs(F, C)× F ε
// C,

where the sets of morphisms of crossed complexes have the discrete crossed complex structure.

Proof This is simply a restatement of a special case of the existence and uniqueness of liftings of morphisms
established in the Proposition. 2

Remark 2.5 Because the category Crs is equivalent to that of strict globular ω-groupoids, as shown in [BH81b],
the methods of this paper are also relevant to that category; see also [Bro08b]. However we are not able to make
use of the globular case, nor even the 2-groupoid case. 2

Let C be a crossed complex. We write CrsCov/C for the full subcategory of the slice category Crs/C
whose objects are the covering morphisms of C. The following Theorem, which is proved in [BRS99], shows
that the classification of covering morphisms of crossed complexes, reduces to that of covering morphisms of
groupoids.

Theorem 2.6 If C is a crossed complex, then the functor π1 : Crs → Gpd induces an equivalence of categories

π′1 : CrsCov/C → GpdCov/(π1C).

An alternative descriptions of the category GpdCov/G for a groupoid G in terms of actions of G on sets
is well known and of course gives the classical theory of covering maps of spaces, see [Bro06, Chapter 10].
Consequently, if the crossed complex C is connected, and x ∈ C0, then connected covering morphisms of C
are determined up to isomorphism by conjugacy classes of subgroups of π1(C, x). In particular, a universal
cover C̃ → C of a connected crossed complex is constructed up to isomorphism from a base point x ∈ C0 and
the trivial subgroup of π1(C, x).
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The monoidal closed structure and many other major properties of crossed complexes are obtained by work-
ing through another algebraic category, that of cubical ω-groupoids with connections which we abbreviate here
to ω-groupoids. The category of these, which we write ω-Gpd, is a natural home for these deeper properties.
The equivalence with crossed complexes proved in [BH81] is a foundation for this whole project. Indeed the
definition of tensor product for ω-groupoids is much easier to deal with than that for crossed complexes, and
we find it easier to give a dense subcategory for ω-groupoids than for crossed complexes.

3 Cubical omega-groupoids with connection

We recall from [BH81] that a cubical ω-groupoid with connection is in the first instance a cubical set {Kn |
n > 0}, so that it has face maps {∂±i : Kn → Kn−1 | i = 1, . . . , n; n > 1} and degeneracy maps {εi : Kn →
Kn+1 | i = 1, . . . , n; n > 0} satisfying the usual rules. Further there are connections {Γ±i : Kn → Kn+1 | i =
1, . . . , n; n > 1} which amount to an additional family of ‘degeneracies’ and which in the case of the singular
cubical complex of a space derive from the monoid structures max,min on the unit interval [0, 1]. Finally there
are n groupoid structures {◦i | i = 1, . . . , n}, defined on Kn with initial, final and identity maps ∂−i , ∂+

i , εi

maps respectively.

The laws satisfied by all these structures are given in several places, such as [AABS02, GM03], and we do
not repeat them here. Note that because we are dealing with groupoid operations ◦i we can set Γi = Γ−i so that
Γ+

i = −i −i+1 Γi. In this case the laws were first given in [BH81].

A major example of this structure is constructed from a filtered space X∗ as follows. One first forms the
cubical set with connections RX∗ which in dimension n is the set of filtered maps In∗ → X∗ where In∗ is
the standard n-cube with its skeletal filtration. Then ρX∗ is the quotient of RX∗ by the relation of homotopy
through filtered maps and relative to the vertices of In. It is easy to see that ρX∗ inherits the structure of cubical
set with connection, and it is proved in [BH81a, Theorem A] that the obvious compositions on RX∗ are also
inherited by ρX∗ to make it what is called the fundamental ω-groupoid ρX∗ of the filtered space X∗.

The main result of [BH81] is that the category ω-Gpd is equivalent to the category Crs of crossed complexes,
and in [BH81a, Theorem 5.1] it is proved that this equivalence takes ρX∗ to ΠX∗.

As said in the Introduction, the free ω-groupoid on a generator cn of dimension n is written In. More
generally, the free ω-groupoid on a cubical set K is written ρ′K: this is a purely algebraic definition. A major
result is that ρ′K is equivalent to ρ|K|∗ where |K|∗ is the skeletal filtration of the geometric realisation of K
and ρ is defined above; so we write both as ρK. This equivalence is proved in [BH81a, Proposition 9.5] for the
case K = In, and the general case follows by similar methods.

We shall also need the properties of thin elements in an ω–groupoid G. An element t of Gn is called thin
if it has a decomposition as a multiple composition of elements εix,Γjy, or their repeated negatives in various
directions. Clearly a morphism of ω–groupoids preserves thin elements.

A family B of elements of In is called an (n − 1)-box in In if they form all faces ∂±i cn but one of cn. An
element x is called a filler of the box if these all-but-one faces ∂±i x are exactly the elements of B.

Then B generates a sub-ω-groupoid B̄ of In. The image family b̂(B) of this by a morphism of ω–groupoids
b̂ : B̄ → G is called an (n− 1)-box in G. Again we have the notion of a filler of a box in G. A basic result on
ω–groupoids [BH81, Proposition 7.2] is:
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Proposition 3.1 (Uniqueness of thin fillers) A box in an ω–groupoid has a unique thin filler.

The thin elements in an ω-groupoid satisfy Keith Dakin’s axioms, [Dak76]:

D1) a degenerate element is thin;

D2) every box has a unique thin filler;

D3) if all faces but one of a thin element are thin, then so is the remaining face.

These axioms for a thin structure in fact give a structure equivalent to that of an ω–groupoid, as shown in
[BH81c]. That is, the connections and the compositions are determined by the thin structure: we will use this
fact in the proof of Theorem 5.1. The following Lemma is also used there.

Lemma 3.2 If t ∈ Gn is a thin element of an ω–groupoid G , then there is a thin element bt ∈ In such that
t̂(bt) = t̂(cn).

Proof Let t̂ : In → G be the morphism such that t̂(cn) = t. We can find a box B in In and such that t is a filler
of t̂ | : B̄ → G. This box B in In also has a unique thin filler bt in In. Since t̂ is a morphism of ω-groupoids,
it preserves thin elements and so t̂(bt) is thin and also a filler of the box B in G. By uniqueness of thin fillers
t̂(bt) = t = t̂(cn). 2

Remark 3.3 Thin elements in higher categorical rather than groupoid situations are also used in [Str87, Hig05,
Ste06, Ver08]. 2

4 Fibrations and coverings of omega-groupoids

We now transfer to cubical ω–groupoids the definition in Section 2 of fibration and covering morphism of
crossed complex.

Theorem 4.1 Let p : G → H be a morphism of ω-Gpds. Then the corresponding morphism of crossed com-
plexes γ(p) : γ(G) → γ(H) is a fibration (covering morphism) if and only if p : G → H is a Kan fibration
(covering map) of cubical sets.

Proof Let Jn
ε,i for ε = ±, i = 1, . . . , n, be the subcubical set of the cubical set In generated by all faces of In

except ∂ε
i .

We consider the following diagrams:
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ΠJn
ε,i

²²

// γG

γ(p)
²²

ΠIn

<<

// γH

(i)

ρJn
ε,i

²²

// G

p
²²

ρIn

==

// H

(ii)

Jn
ε,i

²²

// UG

Up
²²

In

<<

// UH

(iii)

By a simple modification of the simplicial argument in [BH91], we find that the condition that diagrams of the
first type have the completion shown by the dotted arrow is necessary and sufficient for γp to be a fibration of
crossed complexes (with uniqueness for a covering morphism). In the second diagram, ρ(K) is the free cubical
ω-groupoid on the cubical set K, and the equivalence of the first and the second diagram is one of the results of
[BH81a, Section 9]. Finally, the equivalence with the third diagram, in which U gives the underlying cubical
set, follows from freeness of ρ. 2

Corollary 4.2 Let p : K → L be a morphism of ω-Gpds such that the underlying map of cubical sets is a Kan
fibration. Then the pullback functor

f∗ : ω-Gpd/L → ω-Gpd/K

has a right adjoint and so preserves colimits.

Proof This is immediate from Theorem 4.1 and the main result of Howie [How79]. 2

Corollary 4.3 A covering crossed complex of a free crossed complex is also free.

Proof A free crossed complex is given by a sequence of pushouts, analogously to the definition of CW-
complexes, see [BH91, BHS10]. 2

5 Dense subcategories

Our aim in this section is to explain and prove the theorem:

Theorem 5.1 The full subcategory I of ω-Gpd on the objects In is dense in ω-Gpd.

We recall from [ML71] the definition of a dense subcategory. First, in any category C, a morphism f : C →
D induces a natural transformation f∗ : C(−, C) ⇒ C(−, D) of functors Cop → Set. Conversely, any such
natural transformation is induced by a (unique) morphism C → D.

If I is a subcategory of C, then each object C of C gives a functor

C|I(−, C) : Iop → Set
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and a morphism f : C → D of C induces a natural transformation of functors f∗ : C|I(−, C) ⇒ C|I(−, D).
The subcategory I is dense in C if every such natural transformation arises from a morphism. More precisely,
there is a functor η : C → CAT(Iop,Set) defined in the above way, and I is dense in C if η is full and faithful.

Example 5.2 Consider the Yoneda embedding

Υ: C → Cop-Set = CAT(Cop, Set)

where C is a small category. Then each object K ∈ Cop-Set is a colimit of objects in the image of Υ and this is
conveniently expressed in terms of coends as that the natural morphism

∫ c

(Cop-Set(Υc,K)×Υc) → K

is an isomorphism. Thus the Yoneda image of C is dense in Cop-Set. For more on the relation between density
and the Yoneda Lemma, see [Pra09]. 2

Example 5.3 Let Z be the cyclic group of integers. Then {Z} is a generating set for the category Ab of abelian
groups, but the full subcategory of Ab on this set is not dense in Ab. In order for a natural transformation to
specify not just a function f : A → B but a morphism in Ab, we have to enlarge this to a full subcategory
including Z⊕ Z. 2

Proof of Theorem 5.1 We will use the main result of [BH81c], that the compositions in a cubical ω-groupoid
are determined by its thin elements.

Let G,H be ω–groupoids and let f : ω-GpdI(−, G) → ω-GpdI(−,H) be a natural transformation. We
define f : G → H as follows.

Let x ∈ Gn. Then x defines x̂ : In → G. We set f(x) = f(x̂)(cn) ∈ Hn. We have to prove f preserves all
the structure.

For example, we prove that f(∂±i x) = ∂±i f(x). Let ∂̄±i : In−1 → In be given by having value ∂±i cn on
cn−1. The natural transformation condition implies that f(∂̄±i )∗ = (∂̄±i )∗f. On evaluating this on x̂ we obtain
f(∂±i x) = ∂±i f(x) as required. In a similar way, we prove that f preserves the operations εi, Γi.

Now suppose that t ∈ Gn is thin in G. We prove that f(t) is thin in H . By Lemma 3.2, there is a thin
element bt ∈ In such that t̂(bt) = t. Let b̄ : In → In be the unique morphism such that b̄(cn) = bt. Then the
natural transformation condition implies f(t) = f(t̂)(cn) = f(t̂)(bt). Since bt is thin, it follows that f(t) is
thin. Thus f preserves the thin structure.

The main result of [BH81c] now implies that the operations ◦i are preserved by f . 2

We can also conveniently represent each ω–groupoid as a coend.

Corollary 5.4 The subcategory I of ω-Gpd is dense and for each object G of ω-Gpd the natural morphism
∫ n

ω-Gpd(In, G)× In → G

is an isomorphism.
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Proof This is a standard consequence of the property of I being dense. 2

Corollary 5.5 The full subcategory of Crs generated by the objects ΠIn∗ is dense in Crs.

Proof This follows from the fact that the equivalence γ : ω-Gpd → Crs takes In to ΠIn∗ , [BH81a, Theorem
5.1]. 2

Remark 5.6 The paper [BH81b] gives an equivalence between the category Crs of crossed complexes and the
category there called ∞-groupoids and now commonly called globular ω-groupoids. Thus the above Corollary
yields also a dense subcategory, based on models of cubes, in the latter category. 2

Remark 5.7 It is easy to find a generating set of objects for the category Crs, namely the free crossed complexes
on single elements, given in fact by ΠEn∗ , where En∗ is the usual cell decomposition of the unit ball, with one
cell for n = 0 and otherwise three cells. It is not so obvious how to construct directly from this generating set
a dense subcategory closed under tensor products. 2

6 The tensor product of covering morphisms

Our aim is to prove the following:

Theorem 6.1 The tensor product of two covering morphisms of crossed complexes is a covering morphism.

Remark 6.2 The reason why we have to give an indirect proof of this result is that the definition of covering
morphism involves elements of crossed complexes; but it is difficult to specify exactly the elements of a tensor
product whose definition is perforce by generators and relations. 2

It is sufficient to assume that all the crossed complexes involved are connected. We will also work in the
category of ω–groupoids, and prove the following:

Theorem 6.3 Let G,H be connected ω–groupoids with base points x, y respectively, and let p : G̃ → G be the
covering morphism determined by the subgroup M of π1(G, x). Let φ : C → G⊗H be the covering morphism
determined by the subgroup M × π1(H, y) of

π1(G⊗H, (x, y)) ∼= π1(G, x)× π1(H, y).

Then there is an isomorphism ψ : C → G̃⊗H such that (p⊗ 1H)ψ = φ, and, consequently,

p⊗ 1H : G̃⊗H → G⊗H

is a covering morphism.
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Proof Here we were inspired by the formulae of Brian Day [Day70].

First we know from [BH87] that the tensor product of ω-Gpds satisfies Im ⊗ In ∼= Im+n, showing that I is
a full monoidal subcategory of ω-Gpds. Since also from [BH87] the tensor preserves colimits in each variable,
it follows from Corollary 5.4 that the tensor product G⊗H of ω-groupoids G and H satisfies

G⊗H ∼=
∫ m,n

ω-Gpd(Im, G)× ω-Gpd(In,H)× (Im ⊗ In). (3)

Let p : G̃ → G be the covering morphism determined by the subgroup M and let φ : C → G ⊗H be the
covering morphism determined by the subgroup M × π1(H, y) of

π1(G, x)× π1(H, y) ∼= π1(G⊗H, (x, y)).

By Corollary 4.2, pullback φ∗ by φ preserves colimits. Hence

C ∼= φ∗
(∫ m,n

ω-Gpd(Im, G)× ω-Gpd(In,H)× (Im ⊗ In)
)

∼=
∫ m,n

φ∗(ω-Gpd(Im, G)× ω-Gpd(In,H))× (Im ⊗ In)

and so because of the construction of C by the specified subgroup:

∼=
∫ m,n

ω-Gpd(Im, G̃)× ω-Gpd(Im, H)× (Im ⊗ In)

∼= G̃⊗H. 2

Corollary 6.4 The tensor product of covering morphisms of ω-groupoids is again a covering morphism.

Proof Because tensor product commutes with disjoint union, it is sufficient to restrict to the connected case.
Since the composition of covering morphisms is again a covering morphism, it is sufficient to restrict to the
case of p⊗ 1H , and that is proved in Theorem 6.3. 2

The proof of Theorem 6.1 follows immediately.

Corollary 6.5 If F, F ′ are free and aspherical crossed complexes, then so also is F ⊗ F ′.

Proof It is sufficient to assume F, F ′ are connected. Since F, F ′ are aspherical, their universal covers F̃ , F̃ ′
are acyclic. Since they are also free, they are contractible, by a Whitehead type theorem, [BG89, Theorem 3.2].
But the tensor product of free crossed complexes is free, by [BH91, Cor. 5.2]. Therefore F̃ ⊗ F̃ ′ is contractible,
and hence acyclic. Therefore F ⊗ F ′ is aspherical. 2

Acknowledgement We thank a referee for helpful comments.

11



References

[AABS02] Al-Agl, F. A., Brown, R. and Steiner, R. ‘Multiple categories: the equivalence of a globular and a
cubical approach’. Adv. Math. 170 (1) (2002) 71–118. 6

[ArMe10] Ara, D. and Metayer, F. ‘The Brown-Golasinski model structure on strict ∞-groupoids revisited’.
Homology, Homotopy Appl. (2011) (to appear). 3

[Bou87] Bourn, D. ‘The shift functor and the comprehensive factorization for internal groupoids’. Cahiers
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