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Abstract

The notion of local equivalence relation on a topological space is generalized to that of local
subgroupoid. The main result is the construction of the holonomy and monodromy groupoids of
certain Lie local subgroupoids, and the formulation of a monodromy principle on the extendability
of local Lie morphisms. 2001 Elsevier Science B.V. All rights reserved.
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Introduction

It has long been recognized that the notion of Lie group is inadequate to express the
local-to-global ideas inherent in the investigations of Sophus Lie, and various extensions
have been developed, particularly the notion of Lie groupoid, in the hands of Ehresmann,
Pradines, and others.

Another set of local descriptions have been given in the notion of foliation (due to
Ehresmann) and also in the notion of local equivalence relation (due to Grothendieck and
Verdier).

Pradines in [16] also introduced the notion of what he called ‘morceau d’un groupoïde
de Lie’ and which we have preferred to call ‘locally Lie groupoid’ in [5]. This is a groupoid
G with a subsetW of G containing the identities ofG and with a manifold structure onW
making the structure maps ‘as smooth as possible’. It is a classical result that in the case
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G is a group the manifold structure can be transported aroundG to makeG a Lie group.
This is false in general for groupoids, and this in fact gives rise to theholonomy groupoid
for certain such(G,W).

In [6] it is shown that a foliation on a paracompact manifold gives rise to a locally Lie
groupoid. It is part of the theory of Lie groupoids that a Lie algebroid gives rise, under
certain conditions, to a locally Lie groupoid. Thus a locally Lie groupoid is one of the
ways of giving a useful expression of local-to-global structures.

The notion oflocal equivalence relation was introduced by Grothendieck and Verdier
[10] in a series of exercises presented as open problems concerning the construction of a
certain kind of topos. It was investigated further by Rosenthal [17,18] and more recently
by Kock and Moerdijk [13,14]. A local equivalence relation is a global section of the sheaf
E defined by the presheafE whereE(U) is the set of all equivalence relations on the open
subsetsU of X, andEUV is the restriction map fromE(U) to E(V ) for V ⊆ U . The
main aims of the papers [10,13,14,17,18] are towards the connections with sheaf theory
and topos theory. Any foliation gives rise to a local equivalence relation, defined by the
path components of local intersections of small open sets with the leaves.

An equivalence relation on a setU is just a wide subgroupoid of the indiscrete groupoid
U ×U onU . Thus it is natural to consider the generalization which replaces the indiscrete
groupoid on the topological spaceX by any groupoidQ on X. So we define alocal
subgroupoid of the groupoidQ to be a global section of the sheafL associated to
the presheafLQ whereL(U) is the set of all wide subgroupoids ofQ|U and LUV is
the restriction map fromL(U) to L(V ) for V ⊆ U . Examples of local subgroupoids,
generalizing the foliation example, are given in [4].

Our aim is towards local-to-global principles and in particular the monodromy principle,
which in our terms is formulated as the globalization of local morphisms (compare [7,16,
5]). Our first formulation is for the caseQ has no topology, and this gives our ‘weak
monodromy principle’ (Theorem 2.3).

In the caseQ is a Lie groupoid we expect to deal with Lie local subgroupoidss and
the globalization of local smooth morphisms to a smooth morphismM(s) → K on a
‘monodromy Lie groupoid’M(s) of s. The construction of the Lie structure onM(s)

requires extra conditions ons and its main steps are:
• the construction of a locally Lie groupoid froms and a strictly regular atlas fors,
• applying the construction of the holonomy Lie groupoid of the locally Lie groupoid,

as in [1,5],
• the further construction of the monodromy Lie groupoid, as in [6].
For strictly regular atlasesUs = {(Ui,Hi): i ∈ I } for s this leads to a morphism of Lie

groupoids

ζ : Mon(s,Us ) → Hol(s,Us )

each of which contains theHi, i ∈ I , as Lie subgroupoids, and which are in a certain
sense maximal and minimal, respectively for this property. This morphismζ is étale on
stars. Further, a smooth local morphism{fi :Hi → K, i ∈ I } to a Lie groupoidK extends
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uniquely to a smooth morphismMon(s,Us ) → K. This is our strong monodromy principle
(Theorem 3.13).

It should be noticed that this route to a monodromy Lie groupoid is different from that
commonly taken in the theory of foliations. For a foliationF it is possible to define the
monodromy groupoid as the union of the fundamental groupoids of the leaves, and then
to take the holonomy groupoid as a quotient groupoid of this, identifying classes of paths
which induce the same holonomy.

However there seem to be strong advantages in seeing these holonomy and monodromy
groupoids as special cases of much more general constructions, in which the distinct
universal properties become clear. In particular, this gives a link between the monodromy
groupoid and the important monodromy principle, of extendability of local morphisms.
In the Lie case, this requires moving away from the étale groupoids which is the main
emphasis in [13,14].

We plan to investigate elsewhere the relation of these ideas to questions on fibre bundles
and transformation groups.

We would like to thank a referee for helpful comments.

1. Local subgroupoids

Consider a groupoidQ on a setX of objects, and suppose alsoX has a topology. For any
open subsetU of X we writeQ|U for the full subgroupoid ofQ on the object setU . Let
LQ(U) denote the set of all wide subgroupoids ofQ|U . ForV ⊆ U , there is a restriction
mapLUV :LQ(U) → LQ(V ) sendingH in LQ(U) to H |V . This givesLQ the structure
of presheaf onX.

We first interpret in our case the usual construction of the sheafpQ :LQ → X

constructed from the presheafLQ.
For x ∈ X, the stalkp−1

Q (x) of LQ has elements the germs[U,HU ]x whereU is open
in X, x ∈ U , HU is a wide subgroupoid ofQ|U , and the equivalence relation∼x yielding
the germs atx is thatHU ∼x KV , whereKV is wide subgroupoid ofQ|V , if and only if
there is a neighbourhoodW of x such thatW ⊆ U ∩ V andHU |W = KV |W .

Definition 1.1. A local subgroupoid of Q on the topological spaceX is a global section
of the sheafpQ :LQ → X associated to the presheafLQ.

An atlas Us = {(Ui,Hi): i ∈ I } for a local subgroupoids of Q consists of an open cover
U = {Ui : i ∈ I } of X, and for eachi ∈ I a wide subgroupoidHi of Q|Ui such that for all
x ∈ X, i ∈ I , if x ∈ Ui thens(x) = [Ui,Hi]x .

Two standard examples ofQ areQ = X, Q = X×X. In the first case,LX is a sheaf and
LX → X is a bijection. In the caseQ is the indiscrete groupoidX ×X with multiplication
(x, y)(y, z) = (x, z), x, y, z ∈ X, the local subgroupoids ofQ are the local equivalence
relations onX, as mentioned in the Introduction. It is known thatLX×X is in general not a
sheaf [17].
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In the following, we show that many of the basic results obtained by Rosenthal in [17,
18] extend conveniently to the local subgroupoid case.

The setLQ(X) of wide subgroupoids ofQ is a poset under inclusion. We write� for
this partial order.

Let Loc(Q) be the set of local subgroupoids ofQ. We define a partial order� on Loc(Q)

as follows.
Let x ∈ X. We define a partial order on the stalksp−1

Q (x) = LQ
x by [U ′,H ′]x � [U,H ]x

if there is an open neighbourhoodW of x such thatW ⊆ U ∩U ′ andH ′|W is a subgroupoid
of H |W . Clearly this partial order is well defined. It induces a partial order on Loc(Q) by
s � t if and only if s(x) � t (x) for all x ∈ X.

We now fix a groupoidQ on X, so thatLQ(X) is the set of wide subgroupoids ofQ,
with its inclusion partial order, which we shall write�.

We define poset morphisms

locQ :LQ(X) → Loc(Q) and globQ : Loc(Q) → LQ(X)

as follows. We abbreviatelocQ, globQ to loc,glob.

Definition 1.2. If H is a wide subgroupoid of the groupoidQ on X, thenloc(H) is the
local subgroupoid defined by

loc(H)(x) = [X,H ]x.
Let s be a local subgroupoid ofQ. Thenglob(s) is the wide subgroupoid ofQ which is
the intersection of all wide subgroupoidsH of Q such thats � loc(H).

We think ofglob(s) as an approximation tos by a global subgroupoid.

Proposition 1.3.
(i) loc and glob are morphisms of posets.
(ii) For any wide subgroupoid H of Q, glob(loc(H)) � H .

The proofs are clear.
However,s � loc(glob(s)) need not hold. Examples of this are given in Rosenthal’s

paper [17] for the case of local equivalence relations.
Here is an alternative description ofglob. Let Us = {(Ui,Hi): i ∈ I } be an atlas for the

local subgroupoids. We defineglob(Us) to be the subgroupoid ofQ generated by all the
Hi, i ∈ I .

An atlasVs = {(Vj , sj ): j ∈ J } for s is said to refineUs if for each indexj ∈ J there
exists an indexi(j) ∈ I such thatVj ⊆ Ui(j) andsi(j)|Vj = sj .

Proposition 1.4. Let s be a local subgroupoid of Q given by the atlas Us = {(Ui,Hi):
i ∈ I }. Then glob(s) is the intersection of the subgroupoids glob(Vs) of Q for all
refinements Vs of Us .

Proof. Let K be the intersection given in the proposition.
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Let S be a subgroupoid ofQ on X such thats � loc(S). Then for all x ∈ X there
is a neighbourhoodV of x and ix ∈ I such thatx ∈ Uix and Hix |Vx ∩ Uix � S. Then
W = {(Vx ∩ Uix ,Hix |Vx ∩ Uix ): x ∈ X} refinesUs andglob(W) � S. HenceK � S, and
soK � glob(s).

Conversely, letVs = {(Vj ,H
′
j ): j ∈ J } be an atlas fors which refinesUs . Then for each

j ∈ J there is ani(j) ∈ I such thatVj ⊆ Ui(j),H
′
j = Hi(j)|Vj . Thens � loc(glob(Vs)).

Henceglob(s) � glob(Vs) and soglob(s) � K. ✷
We need the next definition in the following sections.

Definition 1.5. Let s be a local subgroupoid of the groupoidQ onX. An atlasUs for s is
calledglobally adapted if glob(s) = glob(Us).

Remark 1.6. This is a variation on the notion of anr-adaptable family defined by
Rosenthal in [18, Definition 4.4] for the case of a local equivalence relationr. He also
imposes a connectivity condition on the local equivalence classes.

2. The weak monodromy principle for local subgroupoids

Let s be a local subgroupoid ofQ which is given by an atlasUs = {(Ui,Hi): i ∈ I }, and
let H = glob(s), W(Us ) = ⋃

i∈I Hi . ThenW(Us ) ⊆ H .
The setW(Us ) inherits apregroupoid structure from the groupoidH . That is, the source

and target mapsα,β restrict to maps onW(Us ), and ifu,v ∈ W(Us ) andβu = αv, then the
compositionuv of u,v in H may or may not belong toW(Us ). We now follow the method
of Brown and Mucuk in [5], which generalizes work for groups in Douady and Lazard [8].

There is a standard constructionM(W(Us )) associating to the pregroupoidW(Us ) a
morphismı̃ :W(Us ) → M(W(Us )) to a groupoidM(W(Us )) and which is universal for
pregroupoid morphisms to a groupoid. First, form the free groupoidF(W(Us )) on the
graphW(Us ), and denote the inclusionW(Us ) → F(W(Us )) by u �→ [u]. Let N be the
normal subgroupoid (Higgins [11], Brown [2]) ofF(W(Us )) generated by the elements
[vu]−1[v][u] for all u,v ∈ W(Us ) such thatvu is defined and belongs toW(Us ). Then
M(W(Us )) is defined to be the quotient groupoid (loc. cit.)F(W(Us ))/N . The composition
W(Us ) → F(W(Us )) → M(W(Us )) is written ı̃, and is the required universal morphism.

There is a unique morphism of groupoidsp :M(W(Us)) → glob(s) such thatpı̃ is the
inclusioni :W(Us) → glob(s). It follows that ı̃ is injective. Clearly,p is surjective if and
only if the atlas fors is globally adapted. In this case, we callM(W(Us )) themonodromy
groupoid of W(Us ) and write itMon(s,Us ).

Definition 2.1. The local subgroupoids is calledsimply connected if it has a globally
adapted atlasUs such that the morphismp : Mon(s,Us ) → glob(s) is an isomorphism.

We now relateMon(s,Us ) to the extendability of local morphisms to a groupoidK.
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Let K be a groupoid with object spaceX.

Definition 2.2. A local morphism f :Us → K consists of a globally adapted atlasUs =
{(Ui,Hj): i ∈ I } for s and a family of morphismsfi :Hi → K, i ∈ I over the inclusion
Ui → X such that for alli, j ∈ I ,

fi |(Hi ∩ Hj) = fj |(Hi ∩ Hj),

and the resulting functionf ′ :W(Us ) → K is a pregroupoid morphism.

Theorem 2.3 (Weak monodromy principle).A local morphism f :Us → K defines
uniquely a groupoid morphism M(f ) : Mon(s,Us ) → K over the identity on objects such
that M(f )|Hi = fi, i ∈ I . Further, if s is simply connected, then the (fi) determine a
groupoid morphism glob(s) → K .

Proof. The proof is direct from the definitions. A local morphismf defines a pregroupoid
morphism f ′ :W(Us ) → K which therefore definesM(f ) : Mon(s,Us ) → K by the
universal property ofW(Us ) → Mon(s,Us ). ✷

In the next section, we will show how to extend this result to the Lie case. This involves
discussing the construction of a topology onMon(s,Us ) under the given conditions.
For this we follow the procedure of Brown–Mucuk in [5] in using the construction and
properties of the holonomy groupoid of a locally Lie groupoid. This procedure is in essence
due to Pradines, and was announced without detail in [16]. As explained in the preliminary
preprint [3] these details were communicated by Pradines to Brown in the 1980s.

3. Local Lie subgroupoids, holonomy and monodromy

The aim of this section is to give sufficient conditions on local subgroupoids of G

for the monodromy groupoid ofs to admit the structure of a Lie groupoid, so that the
globalizationf : Mon(s,Us ) → K of a local smooth morphismfi :Hi → K, i ∈ I , is itself
smooth. As explained in the Introduction, our method follows [5] in first constructing
a locally Lie groupoid(glob(s),W(Us )); the holonomy Lie groupoid of this locally Lie
groupoid comes with a morphism of groupoidsψ : Hol(glob(s),W(Us )) → glob(s) which
is a minimal smooth overgroupoid ofglob(s) containingW(Us ) as an open subspace. From
this holonomy Lie groupoid we construct the Lie structure on the monodromy groupoid.
We begin therefore by recalling the holonomy groupoid construction.

We considerCr -manifolds forr � −1. Here aC−1-manifold is simply a topological
space and forr = −1, a smooth map is simply a continuous map. Thus the Lie groupoids
in the C−1 case will simply be the topological groupoids. Forr = 0, a C0-manifold is
as usual a topological manifold, and a smooth map is just a continuous map. Forr � 1,
r = ∞, ω the definition ofCr -manifold and smooth map are as usual. We now fixr � −1.

One of the key differences between the casesr = −1 or 0 andr � 1 is that for
r � 1, the pullback ofCr maps need not be a smooth submanifold of the product, and
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so differentiability of maps on the pullback cannot always be defined. We therefore adopt
the following definition of Lie groupoid. Mackenzie [15, pp. 84–86] discusses the utility
of various definitions of differentiable groupoid.

Recall that ifG is a groupoid then the difference map onG is δ :G×α G → G,(g,h) �→
g−1h.

A Lie groupoid is a topological groupoidG such that
(i) the space of arrows is a smooth manifold, and the space of objects is a smooth

submanifold ofG,
(ii) the source and target mapsα,β , are smooth maps and are submersions,
(iii) the domainG ×α G of the difference mapδ is a smooth submanifold ofG × G,
(iv) the difference mapδ is a smooth map.

The termlocally Lie groupoid (G,W) is defined later.
The following definition is due to Ehresmann [9].

Definition 3.1. Let G be a groupoid and letX = OG be a smooth manifold. Anadmissible
local section of G is a functionσ :U → G from an open set inX such that

(i) ασ(x) = x for all x ∈ U ;
(ii) βσ(U) is open inX; and
(iii) βσ mapsU diffeomorphically toβσ(U).

Let W be a subset ofG and letW have the structure of a smooth manifold such thatX

is a submanifold. We say that(α,β,W) is locally sectionable if for eachw ∈ W there is
an admissible local sectionσ :U → G of G such that

(i) σα(w) = w,
(ii) σ(U) ⊆ W and
(iii) σ is smooth as a function fromU to W .

Such aσ is called asmooth admissible local section.
The following definition is due to Pradines [16] under the name “morceau de groupoide

différentiables”.

Definition 3.2. A locally Lie groupoid is a pair(G,W) consisting of a groupoidG and a
smooth manifoldW such that:

(G1) OG ⊆ W ⊆ G;
(G2) W = W−1;
(G3) the setW(δ) = (W ×α W) ∩ δ−1(W) is open inW ×α W and the restriction ofδ

to W(δ) is smooth;
(G4) the restrictions toW of the source and target mapsα andβ are smooth and the

triple (α,β,W) is locally sectionable;
(G5) W generatesG as a groupoid.

Note that in this definition,G is a groupoid but does not need to have a topology. The
locally Lie groupoid(G,W) is said to beextendable if there can be found a topology
on G making it a Lie groupoid and for whichW is an open submanifold. In general,
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(G,W) is not extendable, but there is a holonomy groupoidHol(G,W) and a morphism
ψ : Hol(G,W) → G such thatHol(G,W) admits the structure of Lie groupoid and is the
“minimal” such overgroupoidofG. The construction is given in detail in [1] and is outlined
below.

Definition 3.3. A Lie local subgroupoid s of a Lie groupoidQ is a local subgroupoids
given by an atlasUs = {(Ui,Hi): i ∈ I } such that fori ∈ I eachHi is a Lie subgroupoid
of Q.

We know from examples for foliations and hence for local equivalence relations that
glob(s) need not be a Lie subgroupoid ofQ [6]. Our aim is to define a holonomy groupoid
Hol(s,Us ) which is a Lie groupoid.

We now adapt some definitions from [18].

Definition 3.4. An atlasUs = {(Ui,Hi): i ∈ I } for a Lie local subgroupoids of Q is said
to beregular if the groupoid(αi , βi,Hi) is locally sectionable for alli ∈ I . A Lie local
subgroupoids is regular if it has a regular atlas.

Definition 3.5. An atlasUs = {(Ui,Hi): i ∈ I } for a Lie local subgroupoids is said to be
strictly regular if

(i) Us is globally adapted tos,
(ii) Us is regular,
(iii) W(Us ) has with its topology as a subset ofQ the structure of smooth submanifold

containing eachHi , i ∈ I , as an open submanifold ofW(Us ) and such that
W(Us )(δ) is open inW(Us ) ×α W(Us ).

A Lie local subgroupoids is strictly regular if it has a strictly regular atlas.

Remark 3.6. The main result of [6] is that the local equivalence relation defined by a
foliation on a paracompact manifold has a strictly regular atlas.

The following is a key construction of a locally Lie groupoid from a strictly regular Lie
local subgroupoid.

Theorem 3.7. Let Q be a Lie groupoid on X and let Us = {(Hi,Ui): i ∈ I } be a strictly
regular atlas for the Lie local subgroupoid s of Q. Let

G = glob(s), W(Us ) =
⋃

i∈I

Hi.

Then (G,W(Us )) admits the structure of a locally Lie groupoid.

Proof. (G1) By the definition ofG andW(Us ), clearlyX ⊆ W(Us ) ⊆ H .
(G2) In fact,W(Us ) = W(Us )

−1. Let g ∈ W(Us ). Then there is an indexi ∈ I such that
g ∈ Hi . SinceHi is a groupoid onUi , g−1 ∈ Hi . SoW(Us ) = W(Us )

−1.
(G3) Sinces is strictly regular, by definition,W(Us (δ)) is open inW(Us ) ×δ W(Us ).
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We now prove the restriction ofδ to W(Us )(δ) is smooth.
For eachi ∈ I , Hi is a Lie groupoid onUi and so the difference map

δi :Hi ×α Hi → Hi

is smooth. BecauseHi ⊆ W(Us ), i ∈ I , using the smoothness of the inclusion map
iHi :Hi → W(Us ), we get a smooth map

iHi × iHi :Hi ×α Hi → W(Us ) ×α W(Us ).

The restriction ofW(Us )(δ) is also smooth, that is,

iHi × iHi :Hi ×α Hi → W(Us )(δ)

is smooth. Then the following diagram is commutative:

Hi ×α Hi
δ

iHi
×iHi

Hi

iHi

W(Us )(δ) δ
W(Us )

This verifies (G3), sinceHi is open inW(Us ) and henceHi ×α Hi is open inW(Us )(δ).
(G4) We define source and target mapsαW(Us ) andβW(Us ), respectively as follows: if

g ∈ W(Us ) there existi ∈ I such thatg ∈ Hi and we let

αW(Us )(g) = αi(g), βW(Us )(g) = βi(g).

Clearly αW(Us ) andβW(Us ) are smooth. SinceUs = {(Ui,Hi): i ∈ I } is strictly regular,
(αi, βi ,Hi)i∈I is locally sectionable for alli ∈ I . Hence(αW(Us ), βW(Us ),W(Us )) is locally
sectionable.

(G5) Since the atlasUs is globally adapted tos, thenG = glob(s) is generated by the
{Hi}, i ∈ I , and so is also generated byW(Us ).

Hence(glob(s),W(Us )) is a locally Lie groupoid. ✷
There is a main globalization theorem for a locally topological groupoid due to Aof–

Brown [1], and a Lie version of this is stated by Brown–Mucuk [5]; it shows how a locally
Lie groupoid gives rise to its holonomy groupoid, which is a Lie groupoid satisfying a
universal property. This theorem gives a full statement and proof of a part of Théorème 1
of [16]. We can give immediately the generalization to Lie local subgroupoids.

Theorem 3.8 (Globalisability theorem).Let s be a Lie local subgroupoid of a Lie
groupoid Q, and suppose given a strictly regular atlas Us = {(Ui,Hi): i ∈ I } for
s. Let (glob(s),W(Us )) be the associated locally Lie groupoid. Then there is a Lie
groupoid Hol = Hol(s,Us ), a morphism ψ : Hol → glob(s) of groupoids and an embedding
is :W(Us ) → Hol of W(Us ) to an open neighborhood of OHol in Hol such that the
following conditions are satisfied:

(i) ψ is the identity on object, ψis = idW(Us ),ψ
−1(Hi) is open in Hol, and the

restriction ψHi :ψ−1(Hi) → Hi of ψ is smooth;
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(ii) Suppose A is a Lie groupoid on X = Ob(Q) and ξ :A → glob(s) is a morphism of
groupoids such that:
(a) ξ is the identity on objects;
(b) for all i the restriction ξHi : ξ−1(Hi) → Hi of ξ is smooth and ξ−1(Hi) is open

in A;
(c) the union of the ξ−1(Hi) generates A;
(d) A is locally sectionable;
then there is a unique morphism ξ ′ :A → Hol of Lie groupoids such that ψξ ′ = ξ

and ξ ′h = iξh for h ∈ ξ−1(Hi).

The groupoidHol is called theholonomy groupoid Hol(s,Us ) of the Lie local sub-
groupoids and atlasUs .

We outline the proof of which full details are given in [1]. Some details of part of the
construction are needed for Proposition 1.

Proof (Outline). Let G = glob(s) and letΓ (G) be the set of all admissible local sections
of G. Define a product onΓ (G) by

(ts)x = (tβsx)(sx)

for two admissible local sectionss andt . If s is an admissible local section then writes−1

for the admissible local sectionβsD(s) → G, βsx �→ (sx)−1. With this productΓ (G)

becomes an inverse semigroup. LetΓ r(W) be the subset ofΓ (G) consisting of admissible
local sections which have values inW and are smooth. LetΓ r(G,W) be the subsemigroup
of Γ (G) generated byΓ r(W). ThenΓ r(G,W) is again an inverse semigroup. Intuitively,
it contains information on the iteration of local procedures.

Let J (G) be the sheaf of germs of admissible local sections ofG. Thus the elements
of J (G) are the equivalence classes of pairs(x, s) such thats ∈ Γ (G), x ∈ D(s), and
(x, s) is equivalent to(y, t) if and only if x = y ands andt agree on a neighbourhood of
x. The equivalence class of(x, s) is written [s]x . The product structure onΓ (G) induces
a groupoid structure onJ (G) with X as the set of objects, and source and target maps
[s]x �→ x, [s]x �→ βsx. Let J r(G,W) be the subsheaf ofJ (G) of germs of elements of
Γ r(G,W). ThenJ r(G,W) is generated as a subgroupoid ofJ (G) by the sheafJ r(W) of
germs of elements ofΓ r(W). Thus an element ofJ r(G,W) is of the form

[s]x = [sn]xn . . . [s1]x1,

wheres = sn . . . s1 with [si]xi ∈ J r(W), xi+1 = βsixi, i = 1, . . . , n andx1 = x ∈ D(s).
Let ψ :J (G) → G be the final map defined byψ([s]x) = s(x), wheres is an admissible

local section. Thenψ(J r(G,W)) = G. Let J0 = J r(W) ∩ kerψ . ThenJ0 is a normal
subgroupoid ofJ r(G,W); the proof is the same as in [1, Lemma 2.2]. The holonomy
groupoidH = Hol(G,W) is defined to be the quotientJ r(G,W)/J0. Letp :J r(G,W) →
H be the quotient morphism and letp([s]x) be denoted by〈s〉x . SinceJ0 ⊆ kerψ there is
a surjective morphismφ :H → G such thatφp = ψ .

The topology on the holonomy groupoidHol such thatHol with this topology is a Lie
groupoid is constructed as follows. Lets ∈ Γ r(G,W). A partial functionσs :W → Hol is
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defined as follows. The domain ofσs is the set ofw ∈ W such thatβw ∈ D(s). A smooth
admissible local sectionf throughw is chosen and the valueσsw is defined to be

σsw = 〈s〉βw〈f 〉αw = 〈sf 〉αw.

It is proven thatσsw is independent of the choice of the local sectionf and that theseσs

form a set of charts. Then the initial topology with respect to the chartsσs is imposed on
Hol. With this topologyHol becomes a Lie groupoid. Again the proof is essentially the
same as in Aof–Brown [1].

We now outline the proof of the universal property.
Let a ∈ A. The aim is to defineξ ′(a) ∈ Hol.
Since ξ−1(W) generatesA we can writea = an . . . a1 where ξ(ai) ∈ W and hence

ξ(ai) ∈ Hi′ for somei ′. SinceA has enough continuous admissible local sections, we
can choose continuous admissible local sectionsfi of αA throughai, i = 1, . . . , n, such
that they are composable and their images are contained inζ−1(Hi′). The smoothness of
ξ on ξ−1(W) implies thatξfi is a smooth admissible local section ofα throughξai ∈ Hi′
whose image is contained inHi′ . Thereforeξf ∈ Γ c(G,W). Hence we can set

ξ ′a = 〈ξf 〉αa ∈ Hol.

The major part of the proof is in showing thatξ ′ is well defined, smooth, and is the
unique such morphism. We refer again to [1].

Remark 3.9. The above construction shows that the holonomy groupoidHol(G,W)

depends on the classCr chosen, and so should strictly be writtenHolr (G,W). An example
of this dependence is given in Aof–Brown [1].

From the construction of the holonomy groupoid we easily obtain the following
extendability condition.

Proposition 3.10. The locally Lie groupoid (G,W) is extendable to a Lie groupoid
structure on G if and only if the following condition holds:

if x ∈ OG, and s is a product sn . . . s1 of local sections about x such that
each si lies in Γ r(W) and s(x) = 1x , then there is a restriction s′ of s

to a neighbourhood of x such that s′ has image in W and is smooth, i.e.,
s′ ∈ Γ r(W).

(1)

Proof. The canonical morphismφ :H → G is an isomorphism if and only if kerψ ∩
J r(W) = kerψ . This is equivalent to kerψ ⊆ J r(W). We now show that kerψ ⊆ J r(W)

if and only if the condition (1) is satisfied.
Suppose kerψ ⊆ J r(W). Let s = sn . . . s1 be a product of admissible local sections about

x ∈ OG with si ∈ Γ r(W) and x ∈ Ds such thats(x) = 1x . Then [s]x ∈ J r(G,W) and
ψ([s]x) = s(x) = 1x . So [s]x ∈ kerψ , so that[s]x ∈ J r(W). So there is a neighbourhood
U of x such that the restrictions|U ∈ Γ r(W).
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Suppose the condition (1) is satisfied. Let[s]x ∈ kerψ . Since[s]x ∈ J r(G,W), then
[s]x = [sn]xn . . . [s1]x1 wheres = sn . . . s1 and[si]xi ∈ J r(W), xi+1 = βsixi, i = 1, . . . , n,
andx1 = x ∈ D(s). Sinces(x) = 1x , then by (1),[s]x ∈ J r(W). ✷

In effect, Proposition 1 states that the non-extendability of(G,W) arises from the
holonomically non trivial elements ofJ r(G,W). Intuitively, such an elementh is an
iteration of local procedures (i.e., of elements ofJ r(W)) such thath returns to the starting
point (i.e.,αh = βh) buth does not return to the starting value (i.e.,ψh �= 1).

The following gives a circumstance in which this extendability condition is easily seen
to apply.

Corollary 3.11 (Corollary 4.6 in [5]).Let Q be a Lie groupoid and let p :M → Q be a
morphism of groupoids such that p :OM → OQ is the identity. Let W be an open subset of
Q such that

(a) OQ ⊆ W ;
(b) W = W−1;
(c) W generates Q;
(d) (αW ,βW ,W) is smoothly locally sectionable;

and suppose that ı̃ :W → M is given such that pı̃ = i :W → Q is the inclusion and
W ′ = ı̃(W) generates M .

Then M admits a unique structure of Lie groupoid such that W ′ is an open subset and
p : M → Q is a morphism of Lie groupoids mapping W ′ diffeomorphically to W .

Proof. It is easy to check that(M,W ′) is a locally Lie groupoid. We prove that condition
(1) in Proposition 1 is satisfied (with(G,W) replaced by(M,W ′)).

Suppose given the data of (1). Clearly,ps = psn . . .ps1, and sops is smooth, sinceG
is a Lie groupoid. Sinces(x) = 1x , there is a restrictions′ of s to a neighbourhood of
x such that Im(ps) ⊆ W . Sincep mapsW ′ diffeomorphically toW , thens′ is smooth
and has image contained inW . So (1) holds, and by Proposition 1, the topology onW ′ is
extendable to makeM a Lie groupoid. ✷
Remark 3.12. It may seem unnecessary to construct the holonomy groupoid in order to
verify extendability under condition (1) of Proposition 1. However the construction of the
smooth structure onM in the last corollary, and the proof that this yields a Lie groupoid,
would have to follow more or less the steps given in Aof and Brown [1] as sketched above.
Thus it is more sensible to rely on the general result. As Corollary 3.11 shows, the utility
of (1) is that it is a checkable condition, both positively or negatively, and so gives clear
proofs of the non-existence or existence of non-trivial holonomy.

Putting everything together gives immediately our main theorem on monodromy.

Theorem 3.13 (Strong monodromy principle).Let s be a strictly regular Lie local
subgroupoid of a Lie groupoid Q, and let Us = {(Ui,Hi): i ∈ I } be a strictly regular atlas
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for s. Let W(Us ) = ⋃
i∈I Hi . Then there is a Lie groupoid M = Mon(s,Us ) and morphism

p :M → glob(s) which is the identity on objects with the following properties:
(a) The injections Hi → glob(s) lift to injections ηi :Hi → M such that

W ′ =
⋃

i∈I

ηi(Hi)

is an open submanifold of M;
(b) W ′ generates M;
(c) If K is a Lie groupoid and f = {fi :Hi → K, i ∈ I } is a smooth local morphism,

then there is a unique smooth morphism M(f ) :M → K extending the fi, i ∈ I.

Proof. Starting with s we form the locally Lie groupoid(glob(s),W(Us ) and then its
holonomy groupoidHol(glob(s),W(Us )). RegardingW(Us ) as contained inHol we
can form the monodromy groupoidM = M(W(Us )) with its projection toHol. By
Corollary 3.11 (withQ = Hol) M obtains the structure of Lie groupoid.

Conditions (a) and (b) are immediate from this construction of the monodromy groupoid.
In (c), the existence ofM(f ) follows from the weak monodromy principle. To prove that

M(f ) is smooth it is enough, by local sectionability, to prove it is smooth at the identities
of M. This follows sincep :M → G mapsı̃(W) diffeomorphically toW . ✷
Remark 3.14. We have now formed from a strictly regular Lie local subgroupoids of the
Lie groupoidG a smooth morphism of Lie groupoids

ξ : Mon(s,Us ) → Hol(s,Us )

which is the identity on objects so that the latter holonomy groupoid is a quotient of the
monodromy groupoid. It also follows from [5, Proposition 2.3] that this morphism is a
covering map on each of the stars of these groupoids.

Extra conditions are needed to ensure thatξ is a universal covering map on stars — see
[5, Theorem 4.2]. This requires further investigation, for example we may need to shrink
W to satisfy the required condition.

This also illustrates that Pradines’ theorems in [16] are stated in terms of germs. Again,
the elaboration of this needs further work.

Remark 3.15. The above results also include the notion of a Lie local equivalence relation,
and a strong monodromy principle for these. We note also that the Lie groupoids we obtain
are not étale groupoids. This is one of the distinctions between the direction of this work
and that of Kock and Moerdijk [13,14]. It would be interesting to investigate the relation
further, particularly with regard to the monodromy principle.

A further point is that a local equivalence relation determines a topos of sheaves of a
particular type known as an étendue [14]. What type of topos is determined by a local
subgroupoid?
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