o TOPOLOGY
ﬁ#@ AND ITS
' APPLICATIONS

ELSEVIER Topology and its Applications 115 (2001) 125-138
www.elsevier.com/locate/topol

Lie local subgroupoids and their holonomy and monodromy Lie
groupoids

Ronald Browr?*, llhan Icen®

& school of Informatics, Mathematics Division, University of Wales, Bangor, Gwynedd, LL57 1UT, UK
b University of Inoni, Faculty of Science and Art, Department of Mathematics, Malatya, Turkey

Received 6 August 1998; received in revised form 18 February 2000

Abstract

The notion of local equivalence relation on a topological space is generalized to that of local
subgroupoid. The main result is the construction of the holonomy and monodromy groupoids of
certain Lie local subgroupoids, and the formulation of a monodromy principle on the extendability
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Introduction

It has long been recognized that the notion of Lie group is inadequate to express the
local-to-global ideas inherent in the investigations of Sophus Lie, and various extensions
have been developed, particularly the notion of Lie groupoid, in the hands of Ehresmann,
Pradines, and others.

Another set of local descriptions have been given in the notion of foliation (due to
Ehresmann) and also in the notion of local equivalence relation (due to Grothendieck and
Verdier).

Pradines in [16] also introduced the notion of what he called ‘morceau d’'un groupoide
de Lie’ and which we have preferred to call ‘locally Lie groupoid’ in [5]. This is a groupoid
G with a subseW of G containing the identities af and with a manifold structure oW
making the structure maps ‘as smooth as possible’. It is a classical result that in the case
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G is a group the manifold structure can be transported arautal makeG a Lie group.
This is false in general for groupoids, and this in fact gives rise tdwthenomy groupoid
for certain suchG, W).

In [6] it is shown that a foliation on a paracompact manifold gives rise to a locally Lie
groupoid. It is part of the theory of Lie groupoids that a Lie algebroid gives rise, under
certain conditions, to a locally Lie groupoid. Thus a locally Lie groupoid is one of the
ways of giving a useful expression of local-to-global structures.

The notion oflocal eguivalence relation was introduced by Grothendieck and Verdier
[10] in a series of exercises presented as open problems concerning the construction of a
certain kind of topos. It was investigated further by Rosenthal [17,18] and more recently
by Kock and Moerdijk [13,14]. A local equivalence relation is a global section of the sheaf
& defined by the preshe@f whereE (U) is the set of all equivalence relations on the open
subsetsy of X, and Eyy is the restriction map fronk (U) to E(V) for V C U. The
main aims of the papers [10,13,14,17,18] are towards the connections with sheaf theory
and topos theory. Any foliation gives rise to a local equivalence relation, defined by the
path components of local intersections of small open sets with the leaves.

An equivalence relation on a sktis just a wide subgroupoid of the indiscrete groupoid
U x U onU. Thus itis natural to consider the generalization which replaces the indiscrete
groupoid on the topological spaceé by any groupoidQ on X. So we define docal
subgroupoid of the groupoidQ to be a global section of the shed&f associated to
the presheaf o where L(U) is the set of all wide subgroupoids @|U and Lyy is
the restriction map fronL(U) to L(V) for V C U. Examples of local subgroupoids,
generalizing the foliation example, are given in [4].

Our aim is towards local-to-global principles and in particular the monodromy principle,
which in our terms is formulated as the globalization of local morphisms (compare [7,16,
5]). Our first formulation is for the cas@ has no topology, and this gives our ‘weak
monodromy principle’ (Theorem 2.3).

In the caseQ is a Lie groupoid we expect to deal with Lie local subgroupaidad
the globalization of local smooth morphisms to a smooth morphigm) —~ K on a
‘monodromy Lie groupoid’M (s) of s. The construction of the Lie structure d(s)
requires extra conditions onand its main steps are:

e the construction of a locally Lie groupoid froimand a strictly regular atlas for,

e applying the construction of the holonomy Lie groupoid of the locally Lie groupoid,

asin[1,5],

e the further construction of the monodromy Lie groupoid, as in [6].

For strictly regular atlasdd, = {(U;, H;): i € I} for s this leads to a morphism of Lie
groupoids

¢ :Mon(s, Uy) — Hol(s, U,)

each of which contains thé/;, i € I, as Lie subgroupoids, and which are in a certain
sense maximal and minimal, respectively for this property. This morphissnétale on
stars. Further, a smooth local morphi§ya: H; — K, i € I} to a Lie groupoidk extends
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uniquely to a smooth morphisMon(s, U;) — K. This is our strong monodromy principle
(Theorem 3.13).

It should be noticed that this route to a monodromy Lie groupoid is different from that
commonly taken in the theory of foliations. For a foliatighit is possible to define the
monodromy groupoid as the union of the fundamental groupoids of the leaves, and then
to take the holonomy groupoid as a quotient groupoid of this, identifying classes of paths
which induce the same holonomy.

However there seem to be strong advantages in seeing these holonomy and monodromy
groupoids as special cases of much more general constructions, in which the distinct
universal properties become clear. In particular, this gives a link between the monodromy
groupoid and the important monodromy principle, of extendability of local morphisms.

In the Lie case, this requires moving away from the étale groupoids which is the main
emphasis in [13,14].

We plan to investigate elsewhere the relation of these ideas to questions on fibre bundles
and transformation groups.

We would like to thank a referee for helpful comments.

1. Local subgroupoids

Consider a groupoi@ on a setX of objects, and suppose alXohas a topology. For any
open subsel/ of X we write Q|U for the full subgroupoid oD on the object sel/. Let
Lo (U) denote the set of all wide subgroupoids@fU. ForV C U, there is a restriction
mapLyy :Lo(U) — Lo(V) sendingH in Lo(U) to H|V. This givesL o the structure
of presheaf ork.

We first interpret in our case the usual construction of the sheafly — X
constructed from the preshe&p .

Forx € X, the Stalkpél(x) of Lo has elements the germi&, Hy ], whereU is open
in X, x € U, Hy is awide subgroupoid of |U, and the equivalence relation, yielding
the germs at is thatHy ~, Ky, whereKy is wide subgroupoid 0®|V, if and only if
there is a neighbourhoddl of x suchthatW C U NV andHy|W = Ky |W.

Definition 1.1. A local subgroupoid of Q on the topological spac¥ is a global section
of the sheap : Lo — X associated to the preshdap.

An atlasif; = {(U;, H;): i € I} for alocal subgroupoisl of Q consists of an open cover
U={U;:iel}of X, andforeach € I awide subgroupoid; of Q|U; such that for all
xeX,iel,if xeU; thens(x) =[U;, H;]x.

Two standard examples ¢f areQ = X, Q = X x X. Inthe first casel y is a sheaf and
Lx — X is a bijection. In the cas@ is the indiscrete groupoi x X with multiplication
(x,y)(»v,2) = (x,2), x,y,z € X, the local subgroupoids af are the local equivalence
relations onX, as mentioned in the Introduction. It is known tlat x is in general not a
sheaf [17].
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In the following, we show that many of the basic results obtained by Rosenthal in [17,
18] extend conveniently to the local subgroupoid case.

The setL ¢ (X) of wide subgroupoids 0© is a poset under inclusion. We write for
this partial order.

Let Loc(Q) be the set of local subgroupoids@f We define a partial ordeg on Lo Q)
as follows.

Letx € X. We define a partial order on the sta[zkgl(x) = ,CXQ by [U’, H'], <[U, Hlx
if there is an open neighbourho@idof x such that¥ C UNU’ andH'|W is a subgroupoid
of H|W. Clearly this partial order is well defined. It induces a partial order on Qody
s<tifandonlyifs(x) <t(x) forall x € X.

We now fix a groupoid) on X, so thatL o (X) is the set of wide subgroupoids 6f,
with its inclusion partial order, which we shall write.

We define poset morphisms

locg:Lo(X) — Loc(Q) and glob,:Loc(Q) — Lo(X)

as follows. We abbreviatecy, glob, to loc, glob.

Definition 1.2. If H is a wide subgroupoid of the groupo@ on X, thenloc(H) is the
local subgroupoid defined by

loc(H)(x)=[X, H],.

Let s be a local subgroupoid af. Thenglob(s) is the wide subgroupoid of which is
the intersection of all wide subgroupoi#@isof Q such that < loc(H).

We think ofglob(s) as an approximation toby a global subgroupoid.

Proposition 1.3.
(i) loc and glob are morphisms of posets.
(i) For any wide subgroupoid H of Q, glob(loc(H)) < H.

The proofs are clear.

However,s < loc(glob(s)) need not hold. Examples of this are given in Rosenthal’s
paper [17] for the case of local equivalence relations.

Here is an alternative descriptionglbb. Leti/; = {(U;, H;): i € I} be an atlas for the
local subgroupoid. We defineglob(/) to be the subgroupoid a@ generated by all the
H;, iel.

An atlasVs = {(V}, sj): j € J} for s is said to refiné/, if for each index;j € J there
exists an index(j) € I such thatV; C U;(;y ands;(;|V; =s;.

Proposition 1.4. Let s be a local subgroupoid of Q given by the atlas U; = {(U;, H;):
i € I}. Then glob(s) is the intersection of the subgroupoids glob(Vs) of O for all
refinements V; of U.

Proof. Let K be the intersection given in the proposition.
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Let S be a subgroupoid 0f) on X such thats < loc(S). Then for allx € X there
is a neighbourhood of x andi, € I such thatx € U;, and H; |V, N U;, < S. Then
W={(V.NU,,, H; |V, NU;,): x € X} refinesld; andglob(WW) < S. Hencek < S, and
S0 K < glob(s).

Conversely, leVs = {(V;, H]/.): j € J} be an atlas fos which refined/;. Then for each
j € J there is ani(j) € I such thatV; C U;(;, Hj/. = H;j»|V;. Thens < loc(glob(Vy)).
Henceglob(s) < glob(Vy) and soglob(s) < K. O

We need the next definition in the following sections.

Definition 1.5. Lets be a local subgroupoid of the groupailon X. An atlasi/(; for s is
calledglobally adapted if glob(s) = glob(l).

Remark 1.6. This is a variation on the notion of anadaptable family defined by
Rosenthal in [18, Definition 4.4] for the case of a local equivalence relatidte also
imposes a connectivity condition on the local equivalence classes.

2. The weak monodromy principle for local subgroupoids

Lets be alocal subgroupoid @ which is given by an atlad, = {(U;, H;): i € I}, and
let H = glob(s), W(Us) = ;c; Hi. ThenW Us) C H.

The setW (U;) inherits apregroupoid structure from the groupoi#f . That is, the source
and target maps, 8 restrict to maps oV (L), and ifu, v € W(U;) andfu = av, then the
compositioruv of u, v in H may or may not belong t& (1/;). We now follow the method
of Brown and Mucuk in [5], which generalizes work for groups in Douady and Lazard [8].

There is a standard constructidti(W (U4;)) associating to the pregroupoldl (I4) a
morphismi : W (Us) — M (W (Us)) to a groupoidM (W (L)) and which is universal for
pregroupoid morphisms to a groupoid. First, form the free grougdaie/ (4)) on the
graphW ), and denote the inclusioW (i) — F(WUy)) by u — [u]. Let N be the
normal subgroupoid (Higgins [11], Brown [2]) df (W (U;)) generated by the elements
[vu]~Y[v][u] for all u,v € W(U,) such thatvu is defined and belongs t& (4;). Then
M (W (Uy)) is defined to be the quotient groupoid (loc. cit)W (Us))/N. The composition
WUs) — F(WUs)) — M(W(Uy)) is written?, and is the required universal morphism.

There is a unique morphism of groupoidsM (W (U;)) — glob(s) such thatpi is the
inclusioni : W (U,) — glob(s). It follows thati is injective. Clearly,p is surjective if and
only if the atlas fors is globally adapted. In this case, we cMl(W (U4;)) the monodromy
groupoid of W (i) and write itMon(s, U).

Definition 2.1. The local subgroupoid is calledsimply connected if it has a globally
adapted atla&/; such that the morphismp: Mon(s, U;) — glob(s) is an isomorphism.

We now relateMon(s, U;) to the extendability of local morphisms to a groupdid
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Let K be a groupoid with object space

Definition 2.2. A local morphism f :U; — K consists of a globally adapted atlals =
{(Ui, Hj): i e I} for s and a family of morphismg; : H; — K, i € I over the inclusion
U; — X such thatfor all, j € I,

Jil(Hi N Hj) = f;|(H; N Hj),

and the resulting functioft”: W () — K is a pregroupoid morphism.

Theorem 2.3 (Weak monodromy principle)A local morphism f:U; — K defines
uniquely a groupoid morphism M ( f) : Mon(s, Us) — K over the identity on objects such
that M(f)|H; = fi, i € I. Further, if s is simply connected, then the (f;) determine a
groupoid morphismglob(s) — K.

Proof. The proofis direct from the definitions. A local morphisfrdefines a pregroupoid
morphism f’: W) — K which therefore defined/(f):Mon(s,U;) — K by the
universal property oV (U;) — Mon(s,U;). O

In the next section, we will show how to extend this result to the Lie case. This involves
discussing the construction of a topology Mon(s,) under the given conditions.
For this we follow the procedure of Brown—Mucuk in [5] in using the construction and
properties of the holonomy groupoid of a locally Lie groupoid. This procedure is in essence
due to Pradines, and was announced without detail in [16]. As explained in the preliminary
preprint [3] these details were communicated by Pradines to Brown in the 1980s.

3. Local Liesubgroupoids, holonomy and monodromy

The aim of this section is to give sufficient conditions on local subgroupafl G
for the monodromy groupoid of to admit the structure of a Lie groupoid, so that the
globalizationf : Mon(s, U;) — K of a local smooth morphisnfi : H; — K, i € I, is itself
smooth. As explained in the Introduction, our method follows [5] in first constructing
a locally Lie groupoid(glob(s), W (U)); the holonomy Lie groupoid of this locally Lie
groupoid comes with a morphism of groupoi@dsHol(glob(s), W (Us)) — glob(s) which
is a minimal smooth overgroupoid glob(s) containingW (i) as an open subspace. From
this holonomy Lie groupoid we construct the Lie structure on the monodromy groupoid.
We begin therefore by recalling the holonomy groupoid construction.

We considerC”-manifolds forr > —1. Here aC~'-manifold is simply a topological
space and for = —1, a smooth map is simply a continuous map. Thus the Lie groupoids
in the C~1 case will simply be the topological groupoids. Foe 0, aC%manifold is
as usual a topological manifold, and a smooth map is just a continuous map >Fby
r =00, w the definition ofC”-manifold and smooth map are as usual. We now fix—1.

One of the key differences between the cases —1 or 0 andr > 1 is that for
r > 1, the pullback off” maps need not be a smooth submanifold of the product, and
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so differentiability of maps on the pullback cannot always be defined. We therefore adopt
the following definition of Lie groupoid. Mackenzie [15, pp. 84—86] discusses the utility
of various definitions of differentiable groupoid.

Recall that ifG is a groupoid then the difference map6Grisé: G x, G — G, (g, h) —
g 1.

A Lie groupoid is a topological groupoid such that

(i) the space of arrows is a smooth manifold, and the space of objects is a smooth
submanifold ofG,

(ii) the source and target mapsg, are smooth maps and are submersions,

(iii) the domainG x4 G of the difference map is a smooth submanifold & x G,

(iv) the difference map is a smooth map.
The termlocally Lie groupoid (G, W) is defined later.

The following definition is due to Ehresmann [9].

Definition 3.1. Let G be a groupoid and le¥ = O be a smooth manifold. Aadmissible
local section of G is a functiono : U — G from an open set itX such that
(i) ao(x)=xforallx e U,
(i) Bo(U)isopeninX; and
(i) Bo mapsU diffeomorphically togo (U).

Let W be a subset of; and letW have the structure of a smooth manifold such tkiat
is a submanifold. We say that, 8, W) is locally sectionable if for eachw € W there is
an admissible local sectian: U — G of G such that

() oa(w) =w,

(i) o(U)<Wand

(iii) o is smooth as a function froii to W.
Such as is called asmooth admissible local section.

The following definition is due to Pradines [16] under the namerteau de groupoide
différentiables’.

Definition 3.2. A locally Lie groupoid is a pair(G, W) consisting of a groupoid and a
smooth manifold¥ such that:
(Gl) O S W CG;
(G2) w=w"1;
(G3) the setV (8) = (W xq W) NS~L(W) is open inW x, W and the restriction of
to W($) is smooth;
(G4) the restrictions toV of the source and target mapsand 8 are smooth and the
triple («, 8, W) is locally sectionable;
(G5) W generates as a groupoid.

Note that in this definitionG is a groupoid but does not need to have a topology. The
locally Lie groupoid(G, W) is said to beextendable if there can be found a topology
on G making it a Lie groupoid and for whichV is an open submanifold. In general,
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(G, W) is not extendable, but there is a holonomy grougeddi(G, W) and a morphism
Y :Hol(G, W) — G such thatHol (G, W) admits the structure of Lie groupoid and is the
“minimal” such overgroupoid of;. The construction is given in detail in [1] and is outlined
below.

Definition 3.3. A Lie local subgroupoid s of a Lie groupoidQ is a local subgroupoid
given by an atlag/; = {(U;, H;): i € I} such that fori € I eachH; is a Lie subgroupoid
of Q.

We know from examples for foliations and hence for local equivalence relations that
glob(s) need not be a Lie subgroupoid 6f[6]. Our aim is to define a holonomy groupoid
Hol(s, Us) which is a Lie groupoid.

We now adapt some definitions from [18].

Definition 3.4. An atlasl{; = {(U;, H;): i € I} for a Lie local subgroupoid of Q is said
to beregular if the groupoid(«;, 8;, H;) is locally sectionable for all € 7. A Lie local
subgroupoid is regular if it has a regular atlas.

Definition 3.5. An atlasi/; = {(U;, H;): i € I} for a Lie local subgroupoid is said to be
gtrictly regular if
(i) U is globally adapted te,

(i) U is regular,

(i) W (Us) has with its topology as a subset@fthe structure of smooth submanifold
containing eachH;, i € I, as an open submanifold d¥ (4) and such that
W(U,)(8) is open inW (U) xq W(Uy).

A Lie local subgroupoid is strictly regular if it has a strictly regular atlas.

Remark 3.6. The main result of [6] is that the local equivalence relation defined by a
foliation on a paracompact manifold has a strictly regular atlas.

The following is a key construction of a locally Lie groupoid from a strictly regular Lie
local subgroupoid.

Theorem 3.7. Let Q bea Liegroupoidon X and let U, = {(H;, U;): i € I} be a strictly
regular atlas for the Lie local subgroupoid s of Q. Let

G = glob(s), W) =|_J H:.
iel

Then (G, W (Uy)) admits the structure of a locally Lie groupoid.

Proof. (G1) By the definition ofiG andW (i), clearlyX € W(U;) € H.

(G2) In fact, W (Us) = W(U,) L. Letg € W(Uy). Then there is an indexe I such that
g € H;. SinceH; is a groupoid orU;, g~1 € H;. SoW (Uy) = W (U) L.

(G3) Sinces is strictly regular, by definitionW (U4 (8)) is open inW (Uy) xs W (Uy).
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We now prove the restriction éfto W () (8) is smooth.
For each € 1, H; is a Lie groupoid orU; and so the difference map

6; . H; xo Hi — H;

is smooth. Becausél; € W), i € I, using the smoothness of the inclusion map
ig, : Hi — W(U;), we get a smooth map

i Xig Hi xo Hi— WUs) xq W(Us).
The restriction ofW (U4;)(8) is also smooth, that is,
im X iy Hi xo Hi — WUs)(8)
is smooth. Then the following diagram is commutative:
H; xo Hi—>—H;
in, xip, in,
W Us)(8) —5—= W (Uy)

This verifies (G3), sincél; is open inW (U;) and hencedd; x, H; is open inW (Us)(35).
(G4) We define source and target maggg,,, and Bw ), respectively as follows: if
g € W(U,) there exist € I such thaig € H; and we let

awu)(g) = ai(g), Bww,) (&) = Bi ().

Clearly awy,) and Bwqy,) are smooth. Sincély = {(U;, H;): i € I} is strictly regular,
(o, Bi, Hy)ieq is locally sectionable for all e 7. Hence(ayw ¢4y, Bw i), W Us)) is locally
sectionable.

(G5) Since the atla&/; is globally adapted te, thenG = glob(s) is generated by the
{H;},i €1, and sois also generated BY(4;).

Hence(glob(s), W (U;)) is a locally Lie groupoid. O

There is a main globalization theorem for a locally topological groupoid due to Aof—
Brown [1], and a Lie version of this is stated by Brown—Mucuk [5]; it shows how a locally
Lie groupoid gives rise to its holonomy groupoid, which is a Lie groupoid satisfying a
universal property. This theorem gives a full statement and proof of a part of Théoréme 1
of [16]. We can give immediately the generalization to Lie local subgroupoids.

Theorem 3.8 (Globalisability theorem)Let s be a Lie local subgroupoid of a Lie
groupoid Q, and suppose given a dtrictly regular atlas Uy = {(U;, H;): i € I} for
s. Let (glob(s), W(Us)) be the associated locally Lie groupoid. Then there is a Lie
groupoid Hol = Hol (s, U ), amorphism : Hol — glob(s) of groupoidsand an embedding
iy: WU,) — Hol of W) to an open neighborhood of Ong in Hol such that the
following conditions are satisfied:

(i) ¢ is the identity on object, viy = idw(ux),w—l(H,-) is open in Hol, and the

restriction ¥y, : ¥ ~1(H;) — H; of ¢ issmooth;
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(i) Suppose A isa Liegroupoidon X = Ob(Q) and & : A — glob(s) is a morphism of
groupoids such that:
(a) & istheidentity on objects;
(b) for all i the restriction &y, : £ ~1(H;) — H; of & issmooth and & ~1(H;) is open
inA;
(c) theunion of the £ ~1(H;) generates A;
(d) A islocally sectionable;
then there is a unique morphism £’ : A — Hol of Lie groupoids such that &' = &
and&'h =i&h for h e £71(H;).

The groupoidHoal is called theholonomy groupoid Hol(s, i) of the Lie local sub-
groupoids and atlag/s.

We outline the proof of which full details are given in [1]. Some details of part of the
construction are needed for Proposition 1.

Proof (Outline). Let G = glob(s) and letI"(G) be the set of all admissible local sections
of G. Define a product oi” (G) by

(ts)x = (tBsx)(sx)

for two admissible local sectionsand:. If s is an admissible local section then write!
for the admissible local sectiofsD(s) — G, Bsx — (sx)~1. With this productI"(G)
becomes an inverse semigroup. L& W) be the subset af (G) consisting of admissible
local sections which have valuesli and are smooth. Lat” (G, W) be the subsemigroup
of I'(G) generated by™" (W). ThenI"" (G, W) is again an inverse semigroup. Intuitively,
it contains information on the iteration of local procedures.

Let J(G) be the sheaf of germs of admissible local section&ofrhus the elements
of J(G) are the equivalence classes of pairss) such thats € I'(G), x € D(s), and
(x,s) is equivalent ta(y, ¢) if and only if x = y ands andz agree on a neighbourhood of
x. The equivalence class @f, s) is written[s],. The product structure ofi (G) induces
a groupoid structure od (G) with X as the set of objects, and source and target maps
[s]y — x, [s]x — Bsx. Let J"(G, W) be the subsheaf of (G) of germs of elements of
I'"(G,W). ThenJ" (G, W) is generated as a subgroupoid/diG) by the sheaf/” (W) of
germs of elements af " (W). Thus an element of " (G, W) is of the form

[s], = [Sn]xn cee [Sl]xl’

wheres = s, ...s1 With [s;]y, € 7" (W), xi41 = Bsix;, i =1,...,n andxy = x € D(s).

Lety : J(G) — G be the final map defined by ([s],) = s(x), wheres is an admissible
local section. Theny(J" (G, W)) = G. Let Jo = J" (W) Nkery. Then Jy is a normal
subgroupoid of/" (G, W); the proof is the same as in [1, Lemma 2.2]. The holonomy
groupoidH = Hol(G, W) is defined to be the quotient (G, W)/Jo. Letp: J" (G, W) —

H be the quotient morphism and lgt[s],) be denoted bys),. SinceJg C keryr there is
a surjective morphism : H — G such thatpp = .

The topology on the holonomy groupditbl such thatHol with this topology is a Lie

groupoid is constructed as follows. Let I'" (G, W). A partial functionos : W — Hol is
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defined as follows. The domain ef is the set ofw € W such thatBw € D(s). A smooth
admissible local sectiofi throughw is chosen and the valugw is defined to be

OsW = <s)/3w<f)aw = {8 )aw-

It is proven that; w is independent of the choice of the local sectjpand that these
form a set of charts. Then the initial topology with respect to the clgris imposed on
Hol. With this topologyHol becomes a Lie groupoid. Again the proof is essentially the
same as in Aof—Brown [1].

We now outline the proof of the universal property.

Leta € A. The aim is to definé’(a) € Hal.

Since&é (W) generatesA we can writea = a, ...a1 where&(a;) € W and hence
&(a;) € Hy for somei’. Since A has enough continuous admissible local sections, we
can choose continuous admissible local sectifinsf a4 througha;, i =1,...,n, such
that they are composable and their images are containgdlit¥; ). The smoothness of
£ on&~L(W) implies thatt f; is a smooth admissible local sectioneothroughéa; € Hy
whose image is contained #;,. Therefores f € I'°(G, W). Hence we can set

éf/a = <€f>o¢a € Hol.

The major part of the proof is in showing th&t is well defined, smooth, and is the
unique such morphism. We refer again to [1].

Remark 3.9. The above construction shows that the holonomy grouptt{ G, W)
depends on the clag$ chosen, and so should strictly be writtdol” (G, W). An example
of this dependence is given in Aof—Brown [1].

From the construction of the holonomy groupoid we easily obtain the following
extendability condition.

Proposition 3.10. The locally Lie groupoid (G, W) is extendable to a Lie groupoid
structureon G if and only if the following condition holds:

if x € Og, and s isa product s, ...s1 of local sections about x such that
each s; liesin I'" (W) and s(x) = 1, then there is a restriction s” of s
to a neighbourhood of x such that s’ hasimage in W and is smooth, i.e.,
s’ e I'"(W).

@)

Proof. The canonical morphism: H — G is an isomorphism if and only if kef N
J" (W) =keryr. This is equivalent to ke < J"(W). We now show that key C J" (W)
if and only if the condition (1) is satisfied.

Suppose ke € J"(W). Lets =, ...s1 be a product of admissible local sections about
x € Og with s; € I'" (W) andx € Dy such thats(x) = 1,. Then[s], € J" (G, W) and
Y ([s]y) =s(x) =1,. So[s], € kery, so that{s], € J"(W). So there is a neighbourhood
U of x such that the restrictionU € I'" (W).
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Suppose the condition (1) is satisfied. e}, € keryr. Since[s], € J"(G, W), then
[s]y = [sulx, - - - [s1]x; Wheres = s, ...s1 and[s;]y, € J" (W), xiqp1=Bsix;, i=1,....n,
andx; = x € D(s). Sinces(x) = 1,, then by (1) [s], € J*(W). O

In effect, Proposition 1 states that the non-extendability @f W) arises from the
holonomically non trivial elements ofJ” (G, W). Intuitively, such an element is an
iteration of local procedures (i.e., of elements/6f W)) such that: returns to the starting
point (i.e.,ah = gh) buth does not return to the starting value (¢4 # 1).

The following gives a circumstance in which this extendability condition is easily seen

to apply.

Corollary 3.11 (Corollary 4.6 in [5]).Let O bea Liegroupoidand let p: M — Q bea
morphism of groupoidssuch that p: Oy — O istheidentity. Let W be an open subset of
Q such that

(@ Op W,

(b)y w=w-1

(c) W generates Q;

(d) (aw, Bw, W) issmoothly locally sectionable;
and suppose that 7: W — M is given such that pi =i:W — Q is the inclusion and
W' =1(W) generates M.

Then M admits a unique structure of Lie groupoid such that W’ is an open subset and
p: M — Q isamorphismof Lie groupoids mapping W’ diffeomorphically to W.

Proof. Itis easy to check thatM, W’) is a locally Lie groupoid. We prove that condition
(1) in Proposition 1 is satisfied (wittG, W) replaced by M, W)).

Suppose given the data of (1). Clearpy, = ps,, ... ps1, and sops is smooth, sinces
is a Lie groupoid. Since(x) = 1, there is a restriction’ of s to a neighbourhood of
x such that Inips) € W. Since p mapsW’ diffeomorphically tow, thens’ is smooth
and has image contained Wi. So (1) holds, and by Proposition 1, the topologyWhis
extendable to mak#&f a Lie groupoid. O

Remark 3.12. It may seem unnecessary to construct the holonomy groupoid in order to
verify extendability under condition (1) of Proposition 1. However the construction of the
smooth structure oM in the last corollary, and the proof that this yields a Lie groupoid,
would have to follow more or less the steps given in Aof and Brown [1] as sketched above.
Thus it is more sensible to rely on the general result. As Corollary 3.11 shows, the utility
of (1) is that it is a checkable condition, both positively or negatively, and so gives clear
proofs of the non-existence or existence of non-trivial holonomy.

Putting everything together gives immediately our main theorem on monodromy.

Theorem 3.13 (Strong monodromy principle)Let s be a strictly regular Lie local
subgroupoid of a Lie groupoid Q, and let U; = {(U;, H;): i € I} beastrictly regular atlas
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for s. Let W(Uy) = U<, Hi- Thenthereisa Liegroupoid M = Mon(s, Us) and morphism
p: M — glob(s) which is the identity on objects with the following properties:
(a) Theinjections H; — glob(s) lift to injections n; : H; — M such that

W' =Jni(Hy)
iel
is an open submanifold of M
(b) W’ generates M
(c) If K isalLiegroupoidand f ={f;: H; — K, i € I} isa smooth local morphism,
then thereis a unique smooth morphism M (f) : M — K extendingthe f;, i € I.

Proof. Starting withs we form the locally Lie groupoidglob(s), W(U;) and then its
holonomy groupoidHol(glob(s), W (;)). RegardingW () as contained inHol we
can form the monodromy groupoitf = M (W (U;)) with its projection toHol. By
Corollary 3.11 (withQ = Hol) M obtains the structure of Lie groupoid.
Conditions (a) and (b) are immediate from this construction of the monodromy groupoid.
In (c), the existence a¥/ ( f) follows from the weak monodromy principle. To prove that
M (f) is smooth it is enough, by local sectionability, to prove it is smooth at the identities
of M. This follows sincep : M — G mapsi (W) diffeomorphically tow. O

Remark 3.14. We have now formed from a strictly regular Lie local subgroupodid the
Lie groupoidG a smooth morphism of Lie groupoids

& :Mon(s, Uy) — Hol(s, Uy)

which is the identity on objects so that the latter holonomy groupoid is a quotient of the
monodromy groupoid. It also follows from [5, Proposition 2.3] that this morphism is a
covering map on each of the stars of these groupoids.

Extra conditions are needed to ensure thit a universal covering map on stars — see
[5, Theorem 4.2]. This requires further investigation, for example we may need to shrink
W to satisfy the required condition.

This also illustrates that Pradines’ theorems in [16] are stated in terms of germs. Again,
the elaboration of this needs further work.

Remark 3.15. The above results also include the notion of a Lie local equivalence relation,
and a strong monodromy principle for these. We note also that the Lie groupoids we obtain
are not étale groupoids. This is one of the distinctions between the direction of this work
and that of Kock and Moerdijk [13,14]. It would be interesting to investigate the relation
further, particularly with regard to the monodromy principle.

A further point is that a local equivalence relation determines a topos of sheaves of a
particular type known as an étendue [14]. What type of topos is determined by a local
subgroupoid?
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