The twisted Eilenberg-Zilber Theorem

Ronald Brown*

April 15, 2009

The purpose of this paper is to give a simpler proof of a theorem of E.H. Brown [Bro59], that if $F \to E \to B$ is a fibre space, then there is a differential on the graded group $X = C(B) \otimes_{\Lambda} C(F)$ such that X with this differential is chain equivalent to to C(E) (where C(E) denotes the normalised singular chains of E over a ring Λ).

We work in the context of (semi-simplicial) twisted cartesian products (thus we assume as do the proofs of the theorem given in [Gug60, Shi62, Szc61] the results of [BGM59] on the relation between fibre spaces and twisted cartesian products). In fact we prove a general result on filtered chain complexes; this result applies to give proofs not only of Brown's theorem but also of a theorem of G. Hirsch, [Hir53]. Our proof is suggested by the formulae (1) of [Shi62, Ch. II, §1].

Let (X,d), (Y,d) be chain complexes over a ring Λ . Let

$$(Y,d) \xrightarrow{\nabla} (X,d) \xrightarrow{f} (Y,d)$$

be chain maps and let $\Phi: X \to X$ be a chain homotopy such that

(1.1)
$$f\nabla = 1;$$
 (1.2) $\nabla f = 1 + d\Phi + \Phi d;$ (1.3) $f\Phi = 0;$ (1.4) $\Phi\nabla = 0;$ (1.5) $\Phi^2 = 0;$ (1.6) $\Phi d\Phi = -\Phi.$

(1.4)
$$\Phi \nabla = 0;$$
 (1.5) $\Phi^2 = 0;$ (1.6) $\Phi d\Phi = -\Phi$

Let X, Y have filtrations

$$0 = F^{-1}X \subseteq F^0X \subseteq \dots \subseteq F^pX \subseteq F^{p+1}X \subseteq \dots \tag{1}$$

$$0 = F^{-1}Y \subseteq F^0Y \subseteq \dots \subseteq F^pY \subseteq F^{p+1}Y \subseteq \dots \tag{2}$$

and let ∇ , f, Φ all preserve these filtrations.

Example 1 Let B, F be (semi-simplicial) complexes, let $(X, d) = C(B \times F)$, the normalised chains of $B \times F$, let $(Y,d) = C(B) \otimes_{\Lambda} C(F)$, and let ∇, f, Φ be the natural maps of the Eilenberg-Zilber theorem as constructed explicitly in [EML53]. The relations (1.1)-(1.4) are proved in [EML53] while (1.5), (1.6) are easily proved (cf. [Shi62, p.114]). The filtrations on X, Y are induced by the filtration of B by its skeletons. The fact that ∇ , f, Φ preserve filtrations is a consequence of naturality of these maps (cf. [Moo56, Ch. 5, p.13]).

We now wish to compare $C(B \times F)$ with $C(B \times_{\tau} F)$ where $B \times_{\tau} F$ coincides with $B \times F$ as a complex except that ∂_0 in $B \times_{\tau} F$ is given by

$$\partial_0(b,x) = (\partial_0 b, \tau(b,x)), \qquad b \in B_p, x \in F_p.$$

Then the filtered groups of $C(B \times F)$ and $C(B \times_{\tau} F)$ coincide but the latter has a differential d^{τ} . If τ satisfies the normalisation condition

$$\tau(s_0b',x) = \partial_0x, \quad b' \in B_{p-1}, x \in F_p$$

^{*}email: r.brown@bangor.ac.uk. This is a version in latex of [Bro65] with some extra comments. Current address: School of Computer Science, Bangor University, Gwynedd LL57 1UT, U.K. http://www.bangor.ac.uk/r.brown

then $d^{\tau} - d$ lowers filtration in X.

Going back to the general case, we suppose X has another differential d^{τ} with the property

$$(d^{\tau} - d)F^{p}X \subseteq F^{p-1}X, \qquad p \geqslant 0. \tag{3}$$

Our object is to construct a new differential $d^{\tau} = d_Y^{\tau}$ on Y and a chain equivalence $(Y, d^{\tau}) \to (X, d^{\tau})$. We first note that

$$\Phi(1 + d^{\tau}\Phi)^{r} = (\Phi + \Phi d^{\tau}\Phi)(1 + d^{\tau}\Phi)^{r-1}
= \Phi(d^{\tau} - d)\Phi(1 + d^{\tau}\Phi)^{r-1}$$
 by (1.6)

$$= \Phi(d^{\tau} - d)\Phi \dots \Phi(d^{\tau} - d)\Phi,$$

so that (3) implies

$$\Phi(1+d^{\tau}\Phi)^r F^p X \subseteq F^{p-r} X. \tag{4}$$

But $F^{-1}X = 0$; therefore the map

$$\Phi^{\tau} = \sum_{r=0}^{\infty} \Phi(1 + d^{\tau}\Phi)^r$$

is well defined. Also from (1.3), (1.4), (1.5) we derive immediately

(5.1)
$$f\Phi^{\tau} = 0$$
, (5.2) $\Phi^{\tau}\nabla = 0$, (5.3) $(\Phi^{\tau})^2 = 0$.

Next we must prove relations similar to (1.6). In fact we have

$$(6.1) \Phi^{\tau} d^{\tau} \phi^{\tau} = -\Phi^{\tau}, (6.2) \Phi^{\tau} d^{\tau} \Phi = -\Phi.$$

These relations are proved by operating on the power series for Φ^{τ} ; the operations are justified by (4) and the fact that $F^{-1}X = 0$. For example, we prove (6.1):

$$\Phi^{\tau} d^{\tau} \phi^{\tau} = \sum_{r,s=0}^{\infty} \Phi(1 + d^{\tau} \Phi)^{r} d^{\tau} \Phi(1 + d^{\tau} \Phi)^{s}$$

$$= \sum_{r,s=0}^{\infty} \left(\Phi(1 + d^{\tau} \Phi)^{r+s+1} - \Phi(1 + d^{\tau} \Phi)^{r+s} \right)$$

$$= \sum_{r=0}^{\infty} -\Phi(1 + d^{\tau} \Phi)^{r}$$

$$= -\Phi^{\tau}$$

By (5.3) and (6.1) the deformation operator

$$D^\tau = 1 + d^\tau \Phi^\tau + \Phi d^\tau : X \to X$$

is idempotent. We set

$$\nabla^{\tau} = D^{\tau} \nabla : Y \to X,$$

$$f^{\tau} = f D^{\tau} : X \to Y,$$

$$d_{Y}^{\tau} = f^{\tau} d^{\tau} \nabla^{\tau} : Y \to Y,$$

and prove easily from (5.1), (5.2) and (6.1) respectively

(7.1)
$$\nabla^{\tau} = (1 + \Phi^{\tau} d^{\tau}) \nabla,$$
 (7.2) $f^{\tau} = f(1 + d^{\tau} \Phi^{\tau},$

7.3)
$$d_Y^{\tau} = f(d^{\tau} + d^{\tau}\Phi^{\tau}d^{\tau})\nabla = f^{\tau}d^{\tau}\nabla = fd^{\tau}\nabla^{\tau}, \quad \text{cf. [Shi62, Ch. II §1.]}$$

The relations given so far are sufficient to prove in turn

(8.1)
$$f^{\tau} \nabla^{\tau} = 1$$
, (8.2) $\nabla^{\tau} f^{\tau} = 1 + d^{\tau} \Phi^{\tau} + \Phi d^{\tau}$,

(8.3)
$$d_y^{\tau} f^{\tau} = f^{\tau} d^{\tau},$$
 (8.4) $\nabla^{\tau} d_Y^{\tau} = d^{\tau} \nabla^{\tau},$ (8.5) $(d_Y^{\tau})^2 = 0.$

Thus $\nabla^{\tau}: (Y, d_{Y}^{\tau}) \to (X, d^{\tau})$ is a chain equivalence of chain complexes.

In particular, the construction of d_Y^{τ} and ∇^{τ} applies to Example 1.

As another example, we obtain a generalised form of a theorem of G. Hirsch, [Hir53]:

Example 2 Let $X = C(B) \otimes_{\Lambda} C(F)$, let d^{τ} be the differential on X constructed as above from the twisted cartesian product $B \times_{\tau} F$. Let $Y = C(B) \otimes_{\Lambda} H(F)$ and let the homology H(F) be such that the sequence

$$0 \to B(F) \to Z(F) \to H(F) \to 0$$

where B(F), Z(F) denote the boundaries and cycles of C(F), splits over Λ . This splitting may be used to define chain maps $\nabla' : H(F) \to C(F), f' : C(F) \to H(F)$ and a chain homotopy $\Phi' : C(F) \to C(F)$ satisfying relations of the form (1.1) –(1.6) (H(F)) has of course the trivial differential). Let

$$\nabla = 1 \otimes \nabla', \qquad f = 1 \otimes f', \qquad \Phi = 1 \otimes \Phi'.$$

Then ∇ , f, Φ satisfy the relations (1.1) – (1.6). But on X, $(d^{\tau}-d)F^{p}X \subseteq F^{p-1}X$, p0. So there is a differential d^{τ} on $Y = C(B) \otimes H(F)$ and a chain equivalence $(d_{Y}^{\tau}) \to (X, d_{X}^{\tau})$. Composing this with the chain equivalence for Example 1 we obtain a chain equivalence

$$(C(B) \otimes_{\Lambda} H(F), d^{\tau}) \to (C(B \times_{\tau} F), d^{\tau}).$$

A Appendix¹

As explained earlier, the above was written in 1964 for the conference in Sicily, and published in 1967. The result was found by trying to understand the paper [Shi62], and had been stimulated by earlier discussions and correspondence with M.G. Barratt. Later V.K. A. M. Gugenheim went through the same process and published the same argument in [Gug72]. This area has developed extensively, and is now called *Homological Perturbation Theory*, see for example [LS87, BL91], and many others. In conjunction with the theory of twisting cochains, it has proved an important theoretical and computational tool.

References

- [BL91] Barnes, D. W. and Lambe, L. A. 'A fixed point approach to homological perturbation theory'. *Proc. Amer. Math. Soc.* **112** (3) (1991) 881–892. **3**
- [BGM59] Barratt, M. G., Gugenheim, V. K. A. M. and Moore, J. C. 'On semisimplicial fibre-bundles'. Amer. J. Math. 81 (1959) 639–657. 1
- [Bro59] Brown, E. H., Jr. 'Twisted tensor products. I'. Ann. of Math. (2) 69 (1959) 223–246. 1
- [Bro65] Brown, R. 'The twisted Eilenberg-Zilber theorem'. In 'Simposio di Topologia (Messina, 1964)', Edizioni Oderisi, Gubbio (1965), 33–37. 1
- [EML53] Eilenberg, S. and Mac Lane, S. 'On the groups of $H(\Pi, n)$. I'. Ann. of Math. (2) **58** (1953) 55–106. 1

¹Written in April, 2009

- [Gug60] Gugenheim, V. K. A. M. 'On a theorem of E. H. Brown'. *Illinois J. Math.* 4 (1960) 292–311.
- [Gug72] Gugenheim, V. K. A. M. 'On the chain-complex of a fibration'. *Illinois J. Math.* 16 (1972) 398–414. 3
- [Hir53] Hirsch, G. 'Sur les groupes d'homologie des espaces fibrés'. Bull. Soc. Math. Belgique 6 (1953) 79–96 (1954). 1, 3
- [LS87] Lambe, L. and Stasheff, J. 'Applications of perturbation theory to iterated fibrations'.

 Manuscripta Math. 58 (3) (1987) 363–376. 3
- [Moo56] Moore, J. C. 'Algebraic homotopy theory' (1956). Princeton University. 1
- [Shi62] Shih, W. 'Homologie des espaces fibrés'. Inst. Hautes Études Sci. Publ. Math. (13) (1962) 88. 1, 3
- [Szc61] Szczarba, R. H. 'The homology of twisted cartesian products'. Trans. Amer. Math. Soc. 100 (1961) 197–216. 1