
The Seifert-van Kampen Theorem for the fundamental groupoid

of a space with a set of base points

This note is an extract for the convenience of readers of a section of the book [BHS11], with
some additional comments.

1 Proof of the Seifert–van Kampen Theorem

(groupoid case)

In this section we give the full proof that the morphism of groupoids induced by inclusions

η : π1(X1, A1) ∗π1(X0,A0) π1(X2, A2) → π1(X,A) (1)

is an isomorphism when X1,X2 are open subsets of X = X1 ∪ X2 and A meets each path
component of X1,X2 and X0 = X1 ∩X2. Here we write Aλ = Xλ ∩A for λ = 1, 2, 12.

What one would expect is that the proof would construct directly an inverse to η. Alterna-
tively, the proof would verify in turn that η is surjective and injective.

The proof we give might at first seem roundabout, but in fact it follows the important
procedure of verifying a universal property. One advantage of this procedure is that we do
not need to show that the free product with amalgamation of groupoids exists in general, nor
do we need to give a construction of it at this stage. Instead we define the free product with
amalgamation by its universal property, which enables us to go directly to an efficient proof of the
Seifert–van Kampen Theorem. It also turns out that the universal property guides many explicit
calculations. More importantly, the proof guides other results, such the higher dimensional ones
in [BHS11].

We use the notion of pushout. Here is the definition for groupoids. We say that the groupoid
G and the two morphisms of groupoids b1 : G1 → G and b2 : G2 → G are the pushout of the two
morphisms of groupoids a1 : G → G1 and a2 : G → G2 if they satisfy the two axioms:
Pushout 1) the diagram

G0
a1 //

a2
��

G1

b1
��

G2
b2

// G
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is a commutative square, i.e. b1a1 = b2a2,
Pushout 2) the previous diagram is universal with respect to this type of diagram, i.e. for any
groupoid K and morphisms of groupoids k1 : G1 → K and k2 : G2 → K such that the following
diagram is commutative

G0
a1 //

a2
��

G1

k1
��

G2
k2

// K

there is a unique morphism of groupoids k : G → K such that kb1 = k1, kb2 = k2. The two
diagrams are often combined into one as follows:

G0

a2
��

a1 // G1

b1
�� k1

��

G2
b2 //

k2 ++

G

k
!!
K.

We think of a pushout square as given by a standard input, the pair (a1, a2), and a standard
output, the pair (b1, b2). The properties of this standard output are defined by reference to all
other commutative squares with the same (a1, a2). At first sight this might seem strange, and
logically invalid. However a pushout square is somewhat like a computer program: given the
data of another commutative square of the right type, then the output will be a morphism (k
in the above diagram) with certain defined properties.

It is a basic feature of universal properties that the standard output, in this case the pair
(b1, b2) making the diagram commute, is determined up to isomorphism by the standard input
(a1, a2).

We now state and prove the Seifert–van Kampen theorem for the fundamental groupoid on
a set of base points in the case of a cover by two open sets. The reason for giving this in detail
is that the proofs of the analogous theorems in higher dimensions are modelled on this one, but
need new gadgets of higher homotopy groupoids to realise them.1

Theorem 1.1 Let X1, X2 be open subsets of X whose union is X and let A be a subset of
X0 = X1∩X2 meeting each path component of X1, X2, X0 (and therefore of X). Let Ai = Xi∩A

1This proof differs from that in [Bro06] in working directly with path classes in π1(X,A) instead of first doing
the case A = X and then using a retraction. That retraction argument is not so easy to extend to the case of
an arbitrary open cover of X, and, more importantly, seemingly impossible to extend to higher dimensions. So
the proof we give returns in essence to the argument in [Cro59]. The result for general covers with best possible
connectivity conditions is given in [BRS84].
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for i = 1, 2, 0. Then the following diagram of morphisms induced by inclusion

π1(X0, A0)
a1 //

a2
��

π1(X1, A1)

b1
��

π1(X2, A2)
b2

// π1(X,A)

is a pushout of groupoids.

Proof We suppose given a commutative diagram of morphisms of groupoids

π1(X0, A0)
a1 //

a2
��

π1(X1, A1)

k1
��

π1(X2, A2)
k2

// K

We have to prove that there is a unique morphism k : π1(X,A) → K such that kb1 = k1, kb2 = k2.
We write b12 : π1(X0, A0) → π1(X,A) for the composite b1a1 = b2a2, write k12 = k1b1 = k2b2,

and also write bi for the map of spaces Xi → X.
Let us take an element [α] ∈ π1(X,A) with representative α : (I, ∂I) → (X,A). Suppose

first α has image in Xλ for λ = 1 or 2. Then α = aλβ for β : (I, ∂I) → (Xλ, Aλ) and we define
k[α] = kλ[β]. The condition k1a1 = k2a2 ensures this definition is independent of the choice of
λ if α has image in X1 ∩ X2, but it still has to be shown the definition is independent of the
choice of α in its class.

We now consider a general [α]. By the Lebesgue Covering Lemma ([Bro06, 3.6.4] ) there is
a subdivision

0 = t0 < t1 < · · · < tn−1 < tn = 1

of I into intervals by equidistant points such that α maps each [ti, ti+1] into X1 or X2 (possibly
in both). Choose one of these written Xi for each i. The subdivision determines a decomposition

α = α0α1 . . . αn−1

such that αi has image in Xi. Of course the point α(ti) need not lie in A, but it lies in
Xi ∩Xi−1 and this intersection may be X1,X2 or X0. By the connectivity conditions, for each
i = 0, 1, · · · , n− 1, we may choose a path γi in Xi ∩Xi−1 joining α(ti) to A. Moreover, if α(ti)
already lies in A we choose γi to be the constant path at α(ti). In particular γ0 and γn are
constant paths. The following figure shows the path α in black and the paths γi in white:

Now for each 0 6 i < n the path βi = γ−1
i αiγi+1 lies in Xi and joins points of A. Notice that

βi also represents a class in π1(X
i, A), which maps by bi (which may be b1, b2, b12) to π1(X,A).

It is clear that
[α] = b0[β0]b

1[β1] . . . b
n−1[βn−1] ∈ π1(X,A).
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X1

X1

X2 X2

Figure 1: A decomposition of a path α in a Seifert–van Kampen type situation

If there exists the homomorphism k of groupoids that makes the external square commute then
the value of k([α]) is determined by the above subdivision as

k([α]) = k(b0[β0]b
1[β1] . . . b

n−1[βn−1])

= k0[β0]k
1[β1] . . . k

n−1[βn−1].

This proves uniqueness of k, and also proves that π1(X,A) is generated as a groupoid by the
images of π1(X1, A1), π1(X2, A2) by b1, b2 respectively.

We have yet to prove that the element k([α]) is independent of all the choices made. Before
going into that, notice that the construction we have just made can be interpreted diagrammat-
ically as follows. The starting situation looks like the bottom side of the diagram

•
β0 //____ •

β1 //____ • •
βn−2 //____ •

βn−1 //____ •

•

γ0

α0
// ◦

γ1

OO

α1
// ◦

γ2

OO

◦

γn−2

OO

αn−2
// ◦

γn−1

OO

αn−1
// •

γn (2)

where the solid circles denote points which definitely lie in A, and in which γ0, γn are constant
paths. The path βi may be obtained from the other three paths in its square by composing with
a retraction from above, as shown in Fig. 2.
This retraction also provides a homotopy

u : α ≃ β = (b0β0)(b
1β1) . . . (b

n−1βn−1) (3)
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Figure 2: Retraction from above-centre

rel end points. This is the first of many possible and useful filling arguments where we define a
map on parts of the boundary of a cube and extend the map to the whole cube using appropriate
retractions. 2

We shall use another filling argument in I3 to prove independence of choices. Suppose that
we have a homotopy rel end points h : α ≃ α′ of two maps (I, ∂I) → (X,A). We can perform
the construction of a homotopy in (3) for each of α, α′, and then glue the three homotopies
together. Here thick lines denote constant paths.

•
β

u

•

•
α

h

•

•
α′

−u′
•

•
β′

•

(4)

So, replacing βs by αs, we can assume the maps α, α′ have subdivisions α = [αi], α
′ = [α′

j ]
such that each αi, α

′
j has end points in A and has image in one of X1, X2. Since h is a map

I2 → X, we may again by the Lebesgue covering lemma make a subdivision h = [hlm] such that
each hlm lies in one of X1, X2. Also by further subdivision as necessary, we may assume this
subdivision of h refines on I × ∂I the given subdivisions of α, α′.

The problem is that none of the vertices of this subdivision are necessarily mapped into A,
except those on ∂I × I (since the homotopy is rel vertices and α, α′ both map ∂I to A) and
those on I × ∂I determined by the initial subdivisions of α, α′. So the situation looks like the
following:

2These collapsing techniques were developed by J.H.C. Whitehead in [Whi41, Whi50] and have become an
important tool in geometric topology.
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α

• //• //◦ //• //◦ //• //•

• //◦ //

OO

◦ //

OO

◦ //

OO

◦ //

OO

◦ //

OO

•

• //◦

OO

//◦ //

OO

◦ //

OO

◦ //

OO

◦

OO

//•

• //◦ //

OO

• //

OO

• //

OO

α′

• //

OO

◦ //

OO

•

(5)

Again thick lines denote constant paths. We want to deform the homotopy h to a new homotopy
h̄ : ᾱ ≃ ᾱ′ again rel end points such that:

[α] = [ᾱ], [α′] = [ᾱ′] in π1(X,A);

h′ has the same subdivision as does h;

any subsquare mapped by h into Xi, i = 1, 2, 12 remains so in h′;

and any vertex already in A is not moved.

This deformation is constructed inductively on dimension of cells of the subdivision by what we
call ‘filling arguments’ in the cube I3.

Let us imagine the 3-dimensional cube I3 as I2 × I where I2 has the subdivision we are
working with in h. Define the bottom map to be h. We have to fill I3 so that in the top face
we get a similar diagram but with all the vertices solid, i.e. in A, and each subsquare in the top
face lies in the same Xi as the corresponding in the bottom one.

We start by defining the deformation on all ‘vertical’ edges {v} × I arising from vertices v

in the partition of I2. If the image of a vertex lies in A, then v is to be deformed by a constant
deformation; otherwise, we consider the 4,2, or 1 squares of which v is a vertex, let Xv be the
intersection of the sets of the cover into which these are mapped, and choose a path in Xv

joining h(v) to a point of A. Let us write elm for the path we have chosen between the vertex
h(sl, tm) and A. (These elm are constant if h(sl, tm) lies already in A). This gives us the map
on the vertical edges of I3 as in Figure 3.

From now on, we restrict our construction to the part of I3 over the square Slm = [sl, sl+1]×
[tm, tm+1] and fix some notation for the restriction of h to its sides, σlm = h|[sl,sl+1]×{tm} and
τlm = h|{sl}×[tm,tm+1]. Then, using the retraction of Figure 2 on each lateral face, we can fill
all the faces of a 3-cube except the top one. Now, using the retraction from a point on a line
perpendicular to the centre of the top face, as in the following Figure 4
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• • • • •

• •

• •

• • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

Figure 3: Extending to the edges

......

• •

• •

• •

• •

Figure 4: Extending to the lateral faces

we get at the top face a map that looks like

•

@@
@@

@@
@ •

~~
~~
~~
~

◦
τlm hlm

◦

◦ σlm
elm~~

~~
~~
~ ◦

@@
@@

@@
@

• •

(6)

and in particular is a map into Xi sending all vertices into A.
If we do the above construction in each square of the subdivision, we get a top face of the

cube that is an homotopy h̄ rel end points between two paths in the same classes as α and α′,
and subdivided in such a way that each subsquare goes into some Xλ and sends all vertices of
the subsquare into A. Each of these squares produces a commutative square say σij of path
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classes in one of π1(Xλ, A), λ = 1, 2. Thus the diagram can be pictured as

ᾱ

• //• //• //• //• //• //•

• //• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

•

• //•

OO

//• //

OO

• //

OO

• //

OO

•

OO

//•

• //• //

OO

• //

OO

• //

OO

ᾱ′

• //

OO

• //

OO

•

Applying the appropriate kλ to a subsquare σij we get a commutative square lij in K. Since
k1a1 = k2a2, we get that the lij compose in K to give a square l in K.

Now comes the vital point. Since any composite of commutative squares in a groupoid is
itself a commutative square, the composite square l is commutative.

But because of the way we constructed it, two sides of this composite commutative square
l in K are identities, as the images of the class of constant paths. Therefore the opposite sides
of l are equal. This shows that our element k([α]) is independent of the choices made, and so
proves that k is well defined as a function on arrows of the fundamental groupoid π1(X,A).

The proof that k is a morphism is now quite simple, while uniqueness has already been
shown. So we have shown that the diagram in the statement of the theorem is a pushout of
groupoids.

This completes the proof. 2

There is another way of expressing the above argument on the composition of commutative
squares being a commutative square, namely by working on formulae for each individual square
as in the expression a = cdb−1 for the first square in the following diagram (7), which shows a
composite of two squares.

•
a //

c
��

•

b
��

e // •

f
��

•
d

// • g
// •

(7)

Calculating for the ‘composite’ of the two squares allows cancelation of the middle term

ae = (cdb−1)(bgf−1) = cdgf−1

which if c = 1, f = 1 reduces to ae = dg. This argument extends to longer gluings of commutative
squares, and hence extends, by induction, and in the other direction, to a subdivision of a square.
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Remark 1.2 Essentially the same proof gives a result for arbitrary covers of X by the interiors
of sets Uλ, λ ∈ Λ but then one needs the notion of coequaliser instead of pushout. Also one
needs for the same type of proof the condition that A meets every path component of every
3-fold intersection of the sets Uλ. The details are in [BRS84]. One uses the Lebesgue covering
dimension. 2

Remark 1.3 The original motivation for generalising this theorem from groups to groupoids
was the desire to obtain a theorem from which one could deduce the fundamental group of the
circle, a basic example in algebraic topology. There are two other points to be made here. One
is that the notion of groupoid for describing for example journeys between stations on a railway
system is much more intuitive than the usual notion of ‘change of base point’, which places the
emphasis on return journeys. The other remark is that it is not sensible to use only the notion
of group in the situation of a connected space X with a cover by say 2 open sets each with 20
path components and whose intersection has 120 path components. The groupoid Seifert-van
Kampen theorem accomplishes the transition from topology to algebra, and then to determine
the fundamental group at some chosen point you need a combinatorial analysis of the situation,
and is a standard technique in combinatorial group theory. 2

Remark 1.4 The fact that one can do the calculations in the case of the last remark, and
get a precise answer, is not in the traditions of algebraic topology, which tends to get answers
by exact sequences, without a precise answer when two adjacent dimensions interact. This
problem is clear from the argument using nonabelian cohomology in [Olu58, Bro65]. Thus the
method of using groupoids, as introduced in [Bro67], and developed in [Bro68], is apparently
more powerful than that using nonabelian cohomology, although the situation for pushouts was
recovered somewhat in [BHK]. Such cohomological methods for problems of this type have not
been extended to higher dimensions, whereas the direct method involving higher groupoids has
been so extended. The details and an historical account are in [BHS11]. 2

Remark 1.5 It was contemplating the above proof in 1965 that suggested to R. Brown that
the proof should generalise to all dimensions, or at least to dimension 2, if one had the right
homotopical gadgets to express the ideas of (i) algebraic inverse to subdivision, (ii) the notion
of commutative cube, and (iii) any composition of commutative cubes was commutative. It
took some 9 years to make these ideas begin to work, using the notion first of homotopy double
groupoid of a pair of spaces, and then the cubical homotopy ω-groupoid of a filtered space, as
detailed in the book [BHS11]. 2

Remark 1.6 The paper [BC14] proves that if we are given a pushout of groupoids

C

i
��

r // B

v
��

A u
// G
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in which C is totally disconnected, i, j are the identity on objects, and G is connected, then G

contains a free groupoid as a retract. 2
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