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Abstract

This work reconsiders recent ideas on the origin of biological homochi-
rality, using a groupoid Morse Theory approach to stereochemistry. On
Earth, limited metabolic free energy density may have served as a low
temperature-analog to ‘freeze’ the system in the lowest energy state, i.e.,
the set of simplest homochiral transitive groupoids representing reproduc-
tive chemistries. These engaged in Darwinian competition until a single
configuration survived. Subsequent path-dependent evolutionary process
locked-in this initial condition. Astrobiological outcomes, in the presence
of higher initial metabolic free energy densities, could well be considerably
richer, for example, of mixed chirality. One result would be a complicated
distribution across a statistically large sample of extraterrestrial stereo-
chemistry.
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1 Introduction

Amino acids and the backbone of DNA/RNA in living things on Earth are
found in only one of the two possible mirror-image states available to them.
Respectively, the L-forms of amino acids primarily serve as the building blocks
of proteins, and D-sugars form the DNA/RNA backbone (e.g., Fitz, et al. 2007).
Attempts to replicate early conditions on Earth – Miller/Urey experiments –
always produce ‘racemic’ mixtures having equal amounts of both possible amino
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acid symmetry forms. This fundamental conundrum was recently addressed by
Gleiser et al. (2008), adapting Sandars’ (2003) polymerization model in a highly
computationally-intensive study. With no small biological insight, Gleiser et al.
argue that

Coupling the spatiotemporal evolution of a general autocatalytic
polymerization reaction network to external environmental effects...
[shows] that life’s homochirality resulted from sequential chiral sym-
metry breaking triggered by environmental events, thus extending
the theory of punctuated equilibrium to the prebiotic realm... [W]e
propose that the homochirality of life may be explained by extending
to prebiotic times the punctuated equilibrium hypothesis of Eldredge
and Gould, whereby speciation occurred through alternating periods
of stasis and intense activity prompted by external influences (El-
dredge and Gould 1972)... [W]e are borrowing the concept of punc-
tuated equilibrium with some freedom... [and] propose... that envi-
ronmental effects might destroy any memory of a prior chiral bias,
whatever its origin. Life’s chirality is interwoven with early-Earth’s
environmental history; specifically, with how the environment influ-
enced the prebiotic soup that led to first life...

Our analysis predicts that other planetary platforms in this solar
system and elsewhere could have developed an opposite chiral bias.
As a consequence, a statistically large sampling of extraterrestrial
stereochemistry would be necessarily racemic on average.

Here we will attempt a more direct treatment based on the homology be-
tween free energy density and information source uncertainty that was the basis
of the analysis by Wallace and Wallace (2008a). We argue, via a statistical ther-
modynamic construction, that available metabolic energy could well have been
the principal determining environmental influence, and that, as a consequence
of groupoid symmetries associated with stereochemical structure, a statistically
large sampling of extraterrestrial stereochemistries could well be far more com-
plex than Gleiser et al. propose.

The development is straightforward and involves several basic ideas:
[1] Reproducing molecular codes, in the largest sense, themselves consti-

tute information sources that are Darwinian individuals, subject to variation,
selection, and chance extinction.

[2] Enantiomeric forms of molecules constitute equivalence classes that can be
represented by groupoid, rather than group, symmetries, leading to a groupoid
version of Landau’s classic phenomenological model for phase transition and its
extension via Pettini’s (2007) ‘topological hypothesis’. The utility of groupoids
in stereochemistry has long been recognized (e.g., Dornberger-Schiff and Grell-
Niemann, 1961; Klemperer 1973; Nourse 1975; Sadanaga and Ohsumi, 1979;
Fichtner, 1986; Yamamoto and Ishihara, 1988; Cayron, 2006, 2007).

[3] Groupoid symmetries and available metabolic free energy are, as a con-
sequence of the Darwinian individuality of coding schemes, contexts for, rather
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than determinants of, the resulting evolutionary processes, including punctu-
ated equilibrium. That is, they define the banks between which the evolutionary
glacier flows – sometimes slowly, sometimes in a sudden avalanche.

The Mathematical Appendix provides a brief introduction to groupoids, and
Wallace and Wallace (2008a) provide some necessary background on information
theory and Morse Theory.

2 Information and Reproduction

One current in contemporary theoretical biology (e.g., Ofria et al. 2003; Adami
and Cerf 2000; Adami et al., 2000) argues that, for modern organisms, ge-
nomic complexity fits within standard information theory as the information
the genome of an organism contains about its environment, so that evolution on
the molecular level is a collection of information transmission channels, subject
to certain constraints defined by the asymptotic limit theorems of information
theory. The organism’s genes code for the information, a message, to be trans-
mitted from progenitor to offspring, and are subject to noise from an imperfect
reproduction process. Thus the information content, or complexity, of a genomic
string by itself, without referring to the embedding environment, is a meaning-
less concept, and a change in environment leads to a change in complexity. The
transmission of reproductive information is thus a contextual matter involv-
ing the operation of an information source that must interact with embedding
ecosystem structures. Here we will focus on the role of available metabolic free
energy density as the main driving environmental factor.

Reproduction – biotic or prebiotic – is thus to be characterized by an infor-
mation source, whose source uncertainty has an important heuristic interpreta-
tion. Ash (1990) puts it this way:

...[W]e may regard a portion of text in a particular language as
being produced by an information source. The probabilities P [Xn =
an|X0 = a0, ...Xn−1 = an−1] may be estimated from the available
data about the language; in this way we can estimate the uncer-
tainty associated with the language. A large uncertainty means, by
the [Shannon-McMillan Theorem], a large number of ‘meaningful’
sequences. Thus given two languages with uncertainties H1 and H2

respectively, if H1 > H2, then in the absence of noise it is easier
to communicate in the first language; more can be said in the same
amount of time. On the other hand, it will be easier to reconstruct
a scrambled portion of text in the second language, since fewer of
the possible sequences of length n are meaningful.

Thus, depending on the degree of noise, either high or low reproductive
source uncertainty can have selective advantage, a kind of stochastic resonance
related to the mesoscale resonance arguments of Wallace and Wallace (2008b).
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3 Free Energy Density and Information Source
Uncertainty

Information source uncertainty can be defined in several ways. Khinchin (1957)
describes the fundamental ‘E-property’ of a stationary, ergodic information
source as the ability, in the limit of infinity long output, to classify strings
into two sets;

[1] a very large collection of gibberish which does not conform to under-
lying rules of grammar and syntax, in a large sense, and which has near-zero
probability, and

[2] a relatively small ‘meaningful’ set, in conformity with underlying struc-
tural rules, having very high probability.

The essential content of the Shannon-McMillan Theorem is that, if N(n)
is the number of ‘meaningful’ strings of length n, then the uncertainty of an
information source X can be defined as

H[X] = lim
n→∞

log[N(n)]/n =

lim
n→∞

H(Xn|X0, ..., Xn−1) =

lim
n→∞

H(X0, ..., Xn),

(1)

where H(...|...) and H(....) are conditional and joint Shannon uncertainties
defined from the appropriate cross-sectional string probabilities.

The free energy density of a physical system having volume V and partition
function Z(K) derived from the system’s Hamiltonian at inverse temperature
K is (e.g., Landau and Lifshitz 2007)

F [K] = lim
V→∞

− 1
K

log[Z(K,V )]
V

=

lim
V→∞

log[Ẑ(K,V )]
V

,

(2)
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where Ẑ = Z−1/K .
Feynman (2000), following arguments by Bennett, concludes that the in-

formation contained in a message is simply the free energy needed to erase
it. Thus, according to this argument, source uncertainty is homologous to free
energy density as defined above.

Ash’s comment above than has a corollary: If, for a biological system, H1 >
H2, source 1 will require more metabolic free energy for ongoing maintenance
than source 2.

4 The Basic Model

We begin by classifying the available molecules in our prebiotic soup by their
underlying stereochemistries, and allow the reproductive systems to, for pur-
poses of initial classification, reflect those stereochemical equivalence classes.
Interactions between stereochemical equivalence classes can be used to classify
higher order structures.

Equivalence classes define groupoids, by the mechanisms described in the
Mathematical Appendix. The basic equivalence classes will define transitive
groupoids, and higher order systems can be constructed by the union of tran-
sitive groupoids, having larger chemical alphabets that allow more complicated
statements in the sense of Ash above.

Given an appropriately scaled, dimensionless, fixed, inverse available metabolic
energy density K, we propose that the metabolic-energy-constrained probabil-
ity of a reproductive information source representing stereochemical equivalence
class Di, HDi , will be given by the classic relation (e.g., Landau and Lifshitz
2007)

P [HDi
] = exp[−HDi

K]/[
∑
j

exp[−HDj
K]],

(3)

where the sum is over all possible elements of the largest available symmetry
groupoid. By the arguments above, compound sources, formed by the union of
(interaction of species from) underlying transitive groupoids, being more com-
plex, will all have higher free-energy-density-equivalents than those of the base
(transitive) groupoids.

Let
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ZD ≡
∑
j

exp[−HDj
K].

(4)

We now define the Groupoid free energy of the system, FD, at inverse nor-
malized metabolic energy density K, as

FD[K] ≡ − 1
K

log[ZD[K]].

(5)

We have expressed the probability of a reproductive information source in
terms of its relation to a fixed, scaled, available (inverse) metabolic free energy
density seen as a kind of equivalent (inverse) system temperature. This gives
a statistical thermodynamic path leading to definition of a ‘higher’ free energy
construct – FD[K] – to which we now apply Landau’s fundamental heuristic
phase transition argument (Landau and Lifshitz 2007; Skierski et al. 1989;
Pettini 2007). See, in particular, Pettini (2007) for details.

The essence of Landau’s insight was that second order phase transitions
were usually in the context of a significant symmetry change in the physical
states of a system, with one phase being far more symmetric than the other. A
symmetry is lost in the transition, a phenomenon called spontaneous symmetry
breaking. The greatest possible set of symmetries in a physical system is that
of the Hamiltonian describing its energy states. Usually states accessible at
lower temperatures will lack the symmetries available at higher temperatures,
so that the lower temperature phase is less symmetric: The randomization of
higher temperatures – in this case higher available metabolic free energy densi-
ties – ensures that higher symmetry/energy states – mixed transitive groupoid
structures – will then be accessible to the system. Absent high metabolic free
energy densities, however, only the simplest transitive groupoid structures can
be manifest, i.e., those associated with the simplest stereochemistries. A full
treatment from this perspective requires invocation of groupoid representations,
no small matter (e.g., Buneci, 2003; Bos 2006).

Somewhat more rigorously, the biological renormalization schemes of the
Appendix to Wallace and Wallace (2008a) may now be imposed on FD[K] itself,
leading to a spectrum of highly punctuated transitions in the overall system of
reproductive information sources: punctuated equilibrium writ large.
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Most deeply, however, an extended version of Pettini’s (2007) Morse-Theory-
based topological hypothesis can now be invoked, i.e., that changes in underlying
groupoid structure are a necessary (but not sufficient) consequence of phase
changes in FD[K]. Necessity, but not sufficiency, is important, as it allows
mixed symmetries, e.g., L-forms of amino acids working in concert with the
D-sugar DNA/RNA backbone.

For details on Morse Theory see, e.g., Matsumoto (2002).

5 Discussion and Conclusions

What, in one sense, fatally compromises this delightful fantasy, but in a more
fundamental way completes it, is that the reproductive chemical strategies rep-
resented by the HDj are not merely passive actors. Quite the contrary, they
are full-scale Darwinian individuals subject to variation, selection, and chance
extirpation. Thus, given sufficient initial metabolic energy density, there is no
inherent reason why higher order, non-transitive, groupoid reproductive chemi-
cal systems – of mixed chirality – might not prevail, particularly in view of the
Ash quotation above. That is, one can ‘say’ more in a shorter time using a
richer reproductive language, and this might well have selective value. Thus we
may, if this model is correct, expect to observe some surprising astrobiological
reproductive stereochemistries, in contrast to the simple ‘racemic’ conclusion of
Gleiser et al. (2008).

The corollary to this argument is that initial preaerobic metabolic free
energy density on Earth may just not have been sufficient to activate non-
homochiral reproductive chemistries, and that the two possible amino acid sys-
tems, L,D, engaged in a competition through which one prevailed. Subsequent
path-dependent evolutionary lock-in produced the ultimate result.

Again, groupoid symmetries and available metabolic free energy are, as a
consequence of the Darwinian individuality of reproductive coding schemes, con-
texts for, rather than determinants of, evolutionary process, including punctu-
ated equilibrium. They are the banks between which the prebiotic evolutionary
glacier flowed – sometimes slowly, and sometimes in sudden advance.

6 Mathematical Appendix: Groupoids

6.1 Basic Ideas

Following Weinstein (1996) closely, a groupoid, G, is defined by a base set A
upon which some mapping – a morphism – can be defined. Note that not all
possible pairs of states (aj , ak) in the base set A can be connected by such a
morphism. Those that can define the groupoid element, a morphism g = (aj , ak)
having the natural inverse g−1 = (ak, aj). Given such a pairing, it is possible to
define ‘natural’ end-point maps α(g) = aj , β(g) = ak from the set of morphisms
G into A, and a formally associative product in the groupoid g1g2 provided

7



α(g1g2) = α(g1), β(g1g2) = β(g2), and β(g1) = α(g2). Then the product is
defined, and associative, (g1g2)g3 = g1(g2g3).

In addition, there are natural left and right identity elements λg, ρg such
that λgg = g = gρg (Weinstein, 1996).

An orbit of the groupoid G over A is an equivalence class for the relation
aj ∼ Gak if and only if there is a groupoid element g with α(g) = aj and
β(g) = ak. Following Cannas da Silva and Weinstein (1999), we note that a
groupoid is called transitive if it has just one orbit. The transitive groupoids
are the building blocks of groupoids in that there is a natural decomposition
of the base space of a general groupoid into orbits. Over each orbit there is
a transitive groupoid, and the disjoint union of these transitive groupoids is
the original groupoid. Conversely, the disjoint union of groupoids is itself a
groupoid.

The isotropy group of a ∈ X consists of those g in G with α(g) = a = β(g).
These groups prove fundamental to classifying groupoids.

If G is any groupoid over A, the map (α, β) : G→ A×A is a morphism from
G to the pair groupoid of A. The image of (α, β) is the orbit equivalence relation
∼ G, and the functional kernel is the union of the isotropy groups. If f : X → Y
is a function, then the kernel of f , ker(f) = [(x1, x2) ∈ X ×X : f(x1) = f(x2)]
defines an equivalence relation.

Groupoids may have additional structure. As Weinstein (1996) explains,
a groupoid G is a topological groupoid over a base space X if G and X are
topological spaces and α, β and multiplication are continuous maps. A criticism
sometimes applied to groupoid theory is that their classification up to isomor-
phism is nothing other than the classification of equivalence relations via the
orbit equivalence relation and groups via the isotropy groups. The imposition
of a compatible topological structure produces a nontrivial interaction between
the two structures. Below we will introduce a metric structure on manifolds of
related information sources, producing such interaction.

In essence, a groupoid is a category in which all morphisms have an inverse,
here defined in terms of connection to a base point by a meaningful path of an
information source dual to a cognitive process.

As Weinstein (1996) points out, the morphism (α, β) suggests another way
of looking at groupoids. A groupoid over A identifies not only which elements
of A are equivalent to one another (isomorphic), but it also parametizes the
different ways (isomorphisms) in which two elements can be equivalent, i.e., all
possible information sources dual to some cognitive process. Given the infor-
mation theoretic characterization of cognition presented above, this produces a
full modular cognitive network in a highly natural manner.

Brown (1987) describes the fundamental structure as follows:

A groupoid should be thought of as a group with many objects,
or with many identities... A groupoid with one object is essentially
just a group. So the notion of groupoid is an extension of that of
groups. It gives an additional convenience, flexibility and range of
applications...
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EXAMPLE 1. A disjoint union [of groups] G = ∪λGλ, λ ∈ Λ, is
a groupoid: the product ab is defined if and only if a, b belong to the
same Gλ, and ab is then just the product in the group Gλ. There is
an identity 1λ for each λ ∈ Λ. The maps α, β coincide and map Gλ
to λ, λ ∈ Λ.

EXAMPLE 2. An equivalence relation R on [a set] X becomes
a groupoid with α, β : R → X the two projections, and product
(x, y)(y, z) = (x, z) whenever (x, y), (y, z) ∈ R. There is an identity,
namely (x, x), for each x ∈ X...

Weinstein (1996) makes the following fundamental point:

Almost every interesting equivalence relation on a space B arises
in a natural way as the orbit equivalence relation of some groupoid
G over B. Instead of dealing directly with the orbit space B/G as
an object in the category Smap of sets and mappings, one should
consider instead the groupoid G itself as an object in the category
Ghtp of groupoids and homotopy classes of morphisms.

The groupoid approach has become quite popular in the study of networks of
coupled dynamical systems which can be defined by differential equation models,
(e.g., Golubitsky and Stewart 2006).

6.2 Global and local symmetry groupoids

Here we follow Weinstein (1996) fairly closely, using his example of a finite tiling.
Consider a tiling of the euclidean plane R2 by identical 2 by 1 rectangles,

specified by the set X (one dimensional) where the grout between tiles is X =
H ∪ V , having H = R×Z and V = 2Z ×R, where R is the set of real numbers
and Z the integers. Call each connected component of R2\X, that is, the
complement of the two dimensional real plane intersecting X, a tile.

Let Γ be the group of those rigid motions of R2 which leave X invariant,
i.e., the normal subgroup of translations by elements of the lattice Λ = H ∩V =
2Z × Z (corresponding to corner points of the tiles), together with reflections
through each of the points 1/2Λ = Z × 1/2Z, and across the horizontal and
vertical lines through those points. As noted by Weinstein (1996), much is lost
in this coarse-graining, in particular the same symmetry group would arise if we
replaced X entirely by the lattice Λ of corner points. Γ retains no information
about the local structure of the tiled plane. In the case of a real tiling, restricted
to the finite set B = [0, 2m] × [0, n] the symmetry group shrinks drastically:
The subgroup leaving X ∩B invariant contains just four elements even though
a repetitive pattern is clearly visible. A two-stage groupoid approach recovers
the lost structure.

We define the transformation groupoid of the action of Γ on R2 to be the
set

G(Γ, R2) = {(x, γ, y|x ∈ R2, y ∈ R2, γ ∈ Γ, x = γy},
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with the partially defined binary operation

(x, γ, y)(y, ν, z) = (x, γν, z).

Here α(x, γ, y) = x, and β(x, γ, y) = y, and the inverses are natural.
We can form the restriction of G to B (or any other subset of R2) by defining

G(Γ, R2)|B = {g ∈ G(Γ, R2)|α(g), β(g) ∈ B}

[1]. An orbit of the groupoid G over B is an equivalence class for the relation
x ∼G y if and only if there is a groupoid element g with α(g) = x and

β(g) = y.
Two points are in the same orbit if they are similarly placed within their

tiles or within the grout pattern.
[2]. The isotropy group of x ∈ B consists of those g in G with α(g) = x =

β(g). It is trivial for every point except those in 1/2Λ∩B, for which it is Z2×Z2,
the direct product of integers modulo two with itself.

By contrast, embedding the tiled structure within a larger context permits
definition of a much richer structure, i.e., the identification of local symmetries.

We construct a second groupoid as follows. Consider the plane R2 as being
decomposed as the disjoint union of P1 = B ∩X (the grout), P2 = B\P1 (the
complement of P1 in B, which is the tiles), and P3 = R2\B (the exterior of
the tiled room). Let E be the group of all euclidean motions of the plane,
and define the local symmetry groupoid Gloc as the set of triples (x, γ, y) in
B × E × B for which x = γy, and for which y has a neighborhood U in R2

such that γ(U ∩ Pi) ⊆ Pi for i = 1, 2, 3. The composition is given by the same
formula as for G(Γ, R2).

For this groupoid-in-context there are only a finite number of orbits:
O1 = interior points of the tiles.
O2 = interior edges of the tiles.
O3 = interior crossing points of the grout.
O4 = exterior boundary edge points of the tile grout.
O5 = boundary ‘T’ points.
O6 = boundary corner points.
The isotropy group structure is, however, now very rich indeed:
The isotropy group of a point in O1 is now isomorphic to the entire rotation

group O2.
It is Z2 × Z2 for O2.
For O3 it is the eight-element dihedral group D4.
For O4,O5 and O6 it is simply Z2.
These are the ‘local symmetries’ of the tile-in-context.
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